

ATC

TEST REPORT

Applicant Name : YEALINK (XIAMEN) NETWORK TECHNOLOGY CO., LTD.
Address : FCC: 309, 3rd Floor, No.16, Yun Ding North Road, Huli District, Xiamen City, Fujian, China
ISEDC: 309, 3rd Floor, No.16, Yun Ding North Road, Huli District Xiamen City Fujian 361008 China (Peoples Republic Of)
Report Number : SZNS220428-17358E-RFAA1
FCC ID: T2C-YL430132
IC: 10741A-YL430132

Test Standard (s)

FCC PART 15.247; RSS-GEN ISSUE 5, FEBRUARY 2021 AMENDMENT 2; RSS-247, ISSUE 2, FEBRUARY 2017

Sample Description

Product Type: Module
Model No.: YL430132
Multiple Model(s) No.: N/A
Trade Mark: YEALINK

Date Received: 2022/04/28
Report Date: 2022/06/16

Test Result:	Pass*
--------------	-------

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:**Approved By:**

Andy Yu
EMC Engineer

Robert Li
EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk “*”.

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk “**”. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China
Tel: +86 755-26503290 Fax: +86 755-26503396 Web: www.atc-lab.com

TABLE OF CONTENTS

GENERAL INFORMATION.....	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
OBJECTIVE	3
TEST METHODOLOGY	3
MEASUREMENT UNCERTAINTY	4
TEST FACILITY	4
SYSTEM TEST CONFIGURATION.....	5
DESCRIPTION OF TEST CONFIGURATION	5
EUT EXERCISE SOFTWARE	5
SPECIAL ACCESSORIES.....	5
EQUIPMENT MODIFICATIONS	5
SUPPORT EQUIPMENT LIST AND DETAILS	5
EXTERNAL I/O CABLE.....	5
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	7
TEST EQUIPMENT LIST	8
FCC §15.247 (I) &§1.1307 (B) (3) - RF EXPOSURE EVALUATION.....	9
APPLICABLE STANDARD	9
RESULT	9
RSS-102 § 2.5.2 –EXEMPTION LIMITS FOR ROUTINE EVALUATION-RF EXPOSURE EVALUATION	10
APPLICABLE STANDARD	10
CALCULATED DATA:.....	10
FCC §15.203 & RSS-GEN §6.8 – ANTENNA REQUIREMENT.....	11
APPLICABLE STANDARD	11
ANTENNA CONNECTOR CONSTRUCTION	11
FCC §15.207 (A) & RSS-GEN § 8.8 – AC LINE CONDUCTED EMISSIONS.....	12
APPLICABLE STANDARD	12
EUT SETUP	12
EMI TEST RECEIVER SETUP.....	12
TEST PROCEDURE	12
CORRECTED FACTOR & MARGIN CALCULATION	13
TEST DATA	13
FCC §15.209, §15.205 & §15.247(D) & RSS-247§ 5.5 - SPURIOUS EMISSIONS	16
APPLICABLE STANDARD	16
EUT SETUP	16
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	17
TEST PROCEDURE	17
FACTOR & MARGIN CALCULATION	17
TEST DATA	17

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

HVIN	YL430132
FVIN	0.0.1.0
Frequency Range	Bluetooth: 2402~2480MHz
Transmit Peak Power	11.68dBm
Modulation Technique	Bluetooth: GFSK, $\pi/4$ -DQPSK, 8DPSK
Antenna Specification*	3.0dBi (It is provided by the manufacturer)
Voltage Range	DC 3.3V
Sample number	SZNS220428-17358E-RFA1-S1(Assigned by ATC)
Sample/EUT Status	Good condition

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions rules and RSS-247, Issue 2, February 2017, RSS-GEN Issue 5, Feb. 2021Amendment 2 of the Innovation, Science and Economic Development Canada rules.

This a Class II permissive change of the device, the differences between the original device and the current device are as follows:

(1) Adding a kind of antenna.

Based on above differences listed, the modifications will impact the test item of “RF Exposure Evaluation”, “Antenna Requirement”, “AC Line Conducted Emissions” and “Radiated Emissions”, so in this report, we will updated those items and related photos, the other test data and photos please refer to the original report.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and RSS-247, Issue 2, February 2017, RSS-GEN Issue 5, Feb. 2021Amendment 2 of the Innovation, Science and Economic Development Canada rules.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter	Uncertainty	
Occupied Channel Bandwidth	5%	
RF Frequency	0.082×10^{-7}	
RF output power, conducted	0.73dB	
Unwanted Emission, conducted	1.6dB	
AC Power Lines Conducted Emissions	2.72dB	
Emissions, Radiated	9kHz - 30MHz	2.66dB
	30MHz - 1GHz	4.28dB
	1GHz - 18GHz	4.98dB
	18GHz - 26.5GHz	5.06dB
	26.5GHz- 40GHz	4.72dB
Temperature	1°C	
Humidity	6%	
Supply voltages	0.4%	

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189.

Accredited by American Association for Laboratory Accreditation (A2LA). The Certificate Number is 4297.01

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0016. The Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

“AuthenticTool”* exercise software was used and the power level is defult*. The software and power level was provided by the applicant.

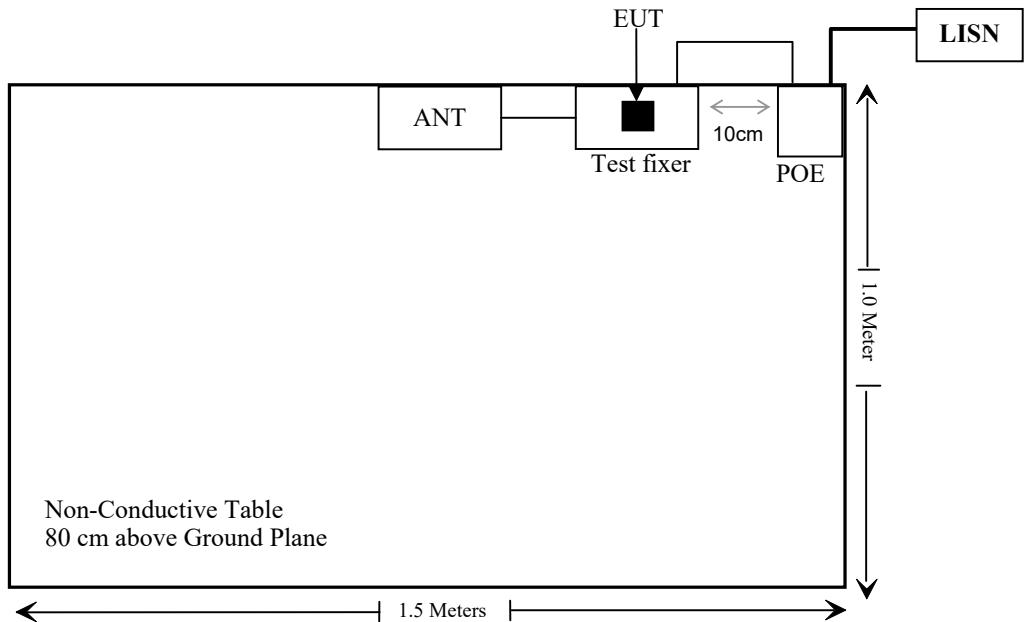
Special Accessories

No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
YEALINK	Test fixer	Unknown	Unknown
YEALINK	POE	YLPOE30	SU10551

External I/O Cable


Cable Description	Length (m)	From Port	To
Un-shielding Un-Detachable RJ45 Cable	6.0	POE	Test fixer
Un-shielding Detachable AC Cable	1.5	LISN	POE

Block Diagram of Test Setup

For conducted emission

For Radiated Emissions:

SUMMARY OF TEST RESULTS

Rules	Description of Test	Result
§15.247 (i) &§1.1307 (b) (3)	RF Exposure Evaluation	Compliant
RSS-102 § 2.5.2	Exemption Limits For Routine Evaluation-RF Exposure Evaluation	Compliant
FCC §15.203 RSS-Gen §6.8	Antenna Requirement	Compliant
FCC §15.207(a) RSS-Gen §8.8	AC Line Conducted Emissions	Compliant
FCC §15.205, §15.209, §15.247(d) RSS-247 § 5.5, RSS-GEN § 8.10	Radiated Emissions	Compliant
FCC §15.247(a)(1) RSS-247 § 5.1(a), RSS-GEN § 6.7	20 dB Emission Bandwidth & 99% Occupied Bandwidth	Compliant*
FCC §15.247(a)(1) RSS-247 § 5.1 (b)	Channel Separation Test	Compliant*
FCC §15.247(a)(1)(iii) RSS-247 § 5.1 (d)	Time of Occupancy (Dwell Time)	Compliant*
FCC §15.247(a)(1)(iii) RSS-247 § 5.1 (d)	Quantity of hopping channel Test	Compliant*
FCC §15.247(b)(1) RSS-247 § 5.1(b) &§ 5.4(b)	Peak Output Power Measurement	Compliant*
FCC §15.247(d) RSS-247 § 5.5	Band edges	Compliant*

Compliant*: Please refer to the original report GZCR211002125801 with FCC ID: T2C-YL430132 and GZCR211002125901 with IC: 10741A-YL430132, which tested and granted by SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Conducted emission test					
Rohde & Schwarz	EMI Test Receiver	ESCI	100784	2021/12/13	2022/12/12
Rohde & Schwarz	L.I.S.N.	ENV216	101314	2021/12/13	2022/12/12
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2021/12/13	2022/12/12
Unknown	RF Coaxial Cable	No.17	N0350	2021/12/14	2022/12/13
Conducted Emission Test Software: e3 19821b (V9)					
Radiated emission					
Rohde & Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12
Rohde & Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2021/11/09	2022/11/08
Quinstar	Amplifier	QLW-18405536-J0	15964001002	2021/11/11	2022/11/10
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04
Radiated Emission Test Software: e3 19821b (V9)					
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.15	N600	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.16	N650	2021/12/14	2022/12/13
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2021/12/14	2022/12/13

*** Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §15.247 (i) &§1.1307 (b) (3) - RF EXPOSURE EVALUATION

Applicable Standard

According to subpart 15.247 (i) and §1.1307(b) (3), systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

According to KDB 447498 D04 Interim General RF Exposure Guidance

SAR-Based Exemption:

SAR-based thresholds are derived based on frequency, power, and separation distance of the RF source. The formula defines the thresholds in general for either available maximum timeaveraged power or maximum time-averaged ERP, whichever is greater.

Per § 1.1307(b)(3)(i)(B), for single RF sources (i.e., any single fixed RF source, mobile device, or portable device, as defined in paragraph (b)(2) of this section): A single RF source is exempt if:

the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold P_{th} (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive). P_{th} is given by:

$$P_{th} \text{ (mW)} = \begin{cases} ERP_{20 \text{ cm}} (d/20 \text{ cm})^x & d \leq 20 \text{ cm} \\ ERP_{20 \text{ cm}} & 20 \text{ cm} < d \leq 40 \text{ cm} \end{cases}$$

Where

$$x = -\log_{10} \left(\frac{60}{ERP_{20 \text{ cm}} \sqrt{f}} \right) \text{ and } f \text{ is in GHz;}$$

and

$$ERP_{20 \text{ cm}} \text{ (mW)} = \begin{cases} 2040f & 0.3 \text{ GHz} \leq f < 1.5 \text{ GHz} \\ 3060 & 1.5 \text{ GHz} \leq f \leq 6 \text{ GHz} \end{cases}$$

d = the separation distance (cm);

Result

Mode	Frequency (MHz)	P _{th}		Maximum tune-up conducted power (dBm)	Maximum ERP (dBm)	Exemption
		(mW)	(dBm)			
Bluetooth	2402-2480	3060	34.86	12.0	12.85	Compliant

Note: 1. The tune up conducted power was declared by the applicant.
 2. The antenna gain is 3dBi(0.85dB), so the ERP was used for evaluation
 3. The Wi-Fi and Bluetooth can't transmit simultaneously.
 4. To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant.

RSS-102 § 2.5.2 –EXEMPTION LIMITS FOR ROUTINE EVALUATION-RF EXPOSURE EVALUATION

Applicable Standard

According to RSS-102 § (2.5.2):

2.5.2 Exemption Limits for Routine Evaluation — RF Exposure Evaluation

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

- below 20 MHz⁶ and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance);
- at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $22.48/f^{0.5}$ W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 0.6 W (adjusted for tune-up tolerance);
- at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $1.31 \times 10^{-2} f^{0.6834}$ W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance).

In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the e.i.r.p. was derived.

Calculated Data:

For worst case:

The maximum tune-up conducted output power is 12dBm.

And the maximum antenna gain is 3dBi.

So the maximum tune-up EIRP is $15\text{dBm} = 0.032\text{W} < 2.68\text{W}$.

$f = 2402 \text{ MHz}$:

The limit is $1.31 \times 10^{-2} \times 2402^{0.6834} = 2.68\text{W}$

So the RF Exposure evaluation can be exempted.

Note: The Wi-Fi and Bluetooth can't transmit simultaneously.

FCC §15.203 & RSS-GEN §6.8 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

According to FCC § 15.203, the applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

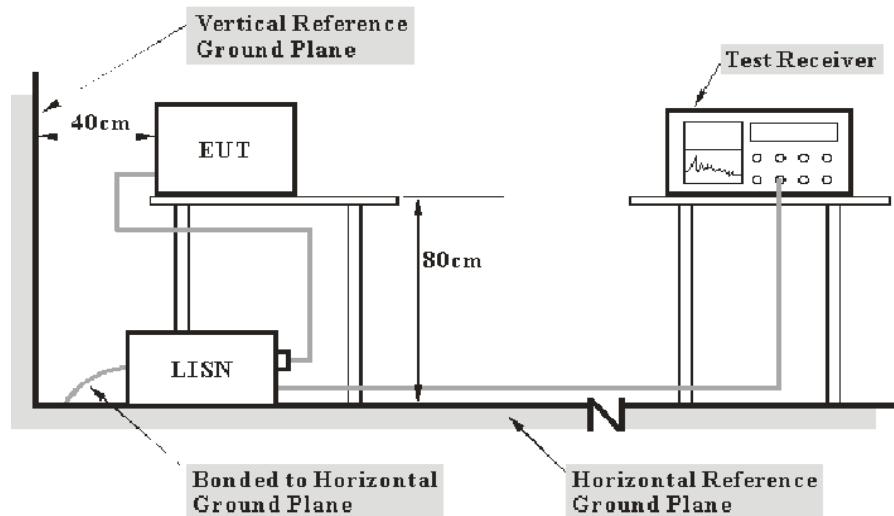
This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

Antenna Connector Construction

The EUT has one FPC antenna arrangement which was integrated on the main PCB use the MHF-Type connector and no consideration of replacement, fulfill the requirement of this section.

Antenna Type	Antenna Gain	Impedance	Frequency Range
FPC	3.0 dBi	50 Ω	2.4~2.5GHz


Result: Compliance

FCC §15.207 (a) & RSS-GEN § 8.8 – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a), RSS-GEN § 8.8

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207 & RSS-Gen.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Corrected Factor & Margin Calculation

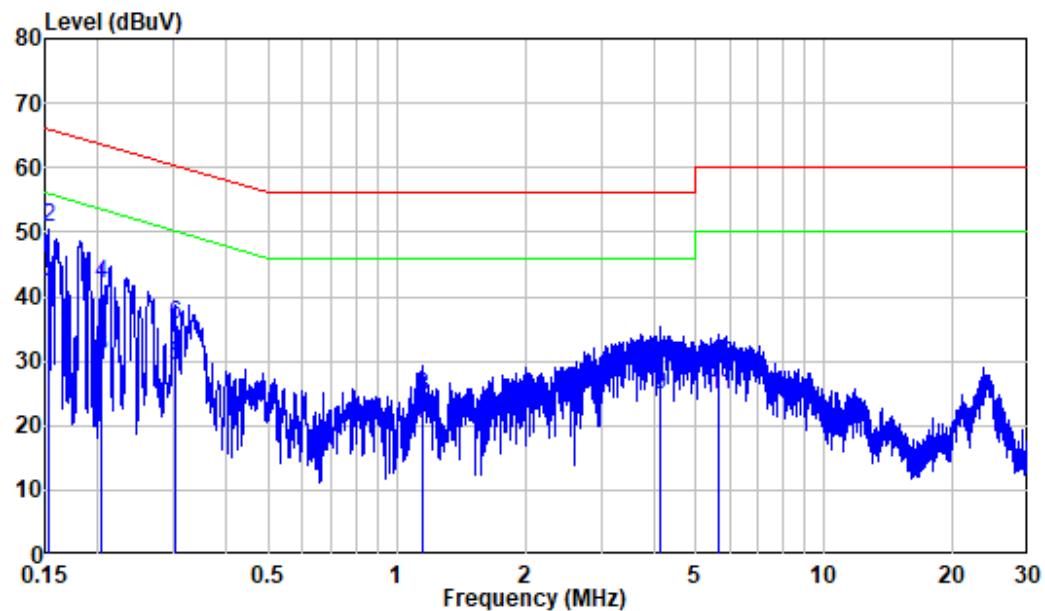
The Transd factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

$$\text{Factor} = \text{LISN VDF} + \text{Cable Loss}$$

The “**Over limit**” column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

$$\begin{aligned}\text{Over Limit} &= \text{Level} - \text{Limit} \\ \text{Level} &= \text{Read Level} + \text{Factor}\end{aligned}$$

Test Data


Environmental Conditions

Temperature:	23 °C
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

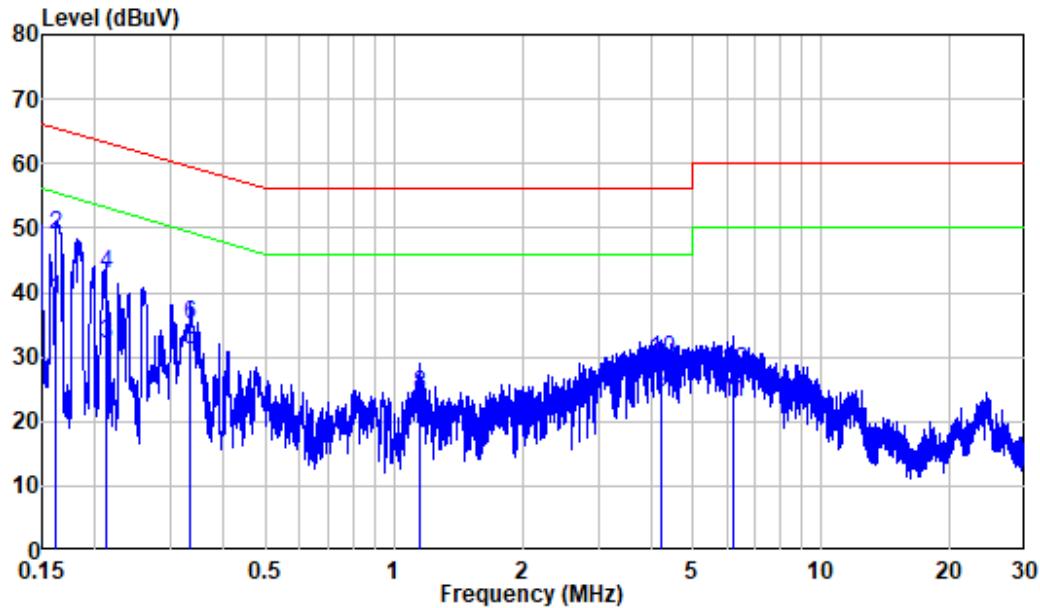
The testing was performed by Jason Liu on 2022-06-06.

EUT operation mode: Transmitting(the worst case is 8DPSK Mode, middle channel)

AC 120V/60 Hz, Line

Site : Shielding Room

Condition: Line


Mode : BT

Model : YL430132

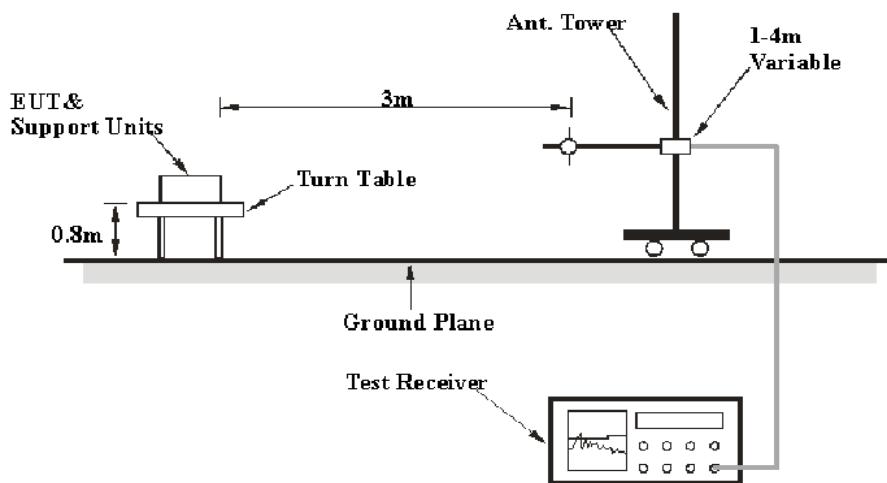
Power : AC 120V 60Hz

	Freq	Factor	Read Level	Limit Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.154	9.80	30.59	40.39	55.80	-15.41	Average
2	0.154	9.80	41.04	50.84	65.80	-14.96	QP
3	0.203	9.80	21.03	30.83	53.48	-22.65	Average
4	0.203	9.80	32.26	42.06	63.48	-21.42	QP
5	0.303	9.80	19.44	29.24	50.17	-20.93	Average
6	0.303	9.80	25.82	35.62	60.17	-24.55	QP
7	1.147	9.81	10.33	20.14	46.00	-25.86	Average
8	1.147	9.81	14.56	24.37	56.00	-31.63	QP
9	4.127	9.84	14.83	24.67	46.00	-21.33	Average
10	4.127	9.84	19.60	29.44	56.00	-26.56	QP
11	5.676	9.86	14.79	24.65	50.00	-25.35	Average
12	5.676	9.86	19.48	29.34	60.00	-30.66	QP

AC 120V/60 Hz, Neutral

Site : Shielding Room
Condition: Neutral
Mode : BT
Model : YL430132
Power : AC 120V 60Hz

Freq	Factor	Read		Limit		Over	Remark
		MHz	dB	dBuV	dBuV		
1	0.162	9.80	29.09	38.89	55.36	-16.47	Average
2	0.162	9.80	38.96	48.76	65.36	-16.60	QP
3	0.212	9.80	22.12	31.92	53.12	-21.20	Average
4	0.212	9.80	33.08	42.88	63.12	-20.24	QP
5	0.334	9.80	21.33	31.13	49.36	-18.23	Average
6	0.334	9.80	25.18	34.98	59.36	-24.38	QP
7	1.145	9.81	9.77	19.58	46.00	-26.42	Average
8	1.145	9.81	14.30	24.11	56.00	-31.89	QP
9	4.207	9.85	14.56	24.41	46.00	-21.59	Average
10	4.207	9.85	19.59	29.44	56.00	-26.56	QP
11	6.219	9.94	12.88	22.82	50.00	-27.18	Average
12	6.219	9.94	17.93	27.87	60.00	-32.13	QP


FCC §15.209, §15.205 & §15.247(d) & RSS-247§ 5.5 - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d); RSS-247§ 5.5; RSS-GEN § 8.10

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013 & RSS-Gen. The specification used was the FCC 15.209, and FCC 15.247/RSS-247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	PK
	1 MHz	10 Hz	/	Average

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

$$\text{Factor} = \text{Antenna Factor} + \text{Cable Loss} - \text{Amplifier Gain}$$

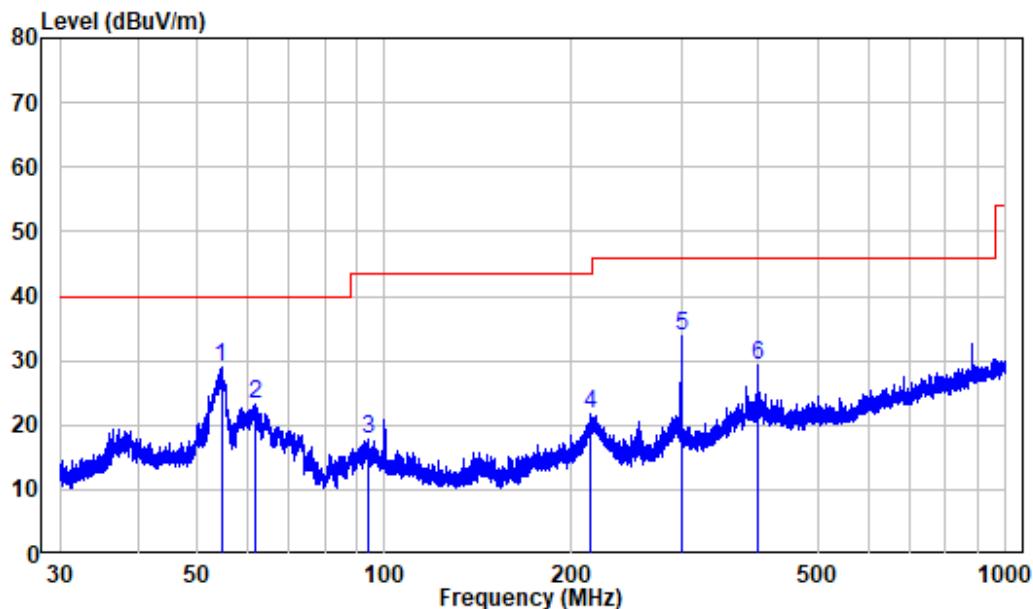
The “**Over Limit/Margin**” column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

$$\begin{aligned} \text{Over Limit/Margin} &= \text{Level} / \text{Corrected Amplitude} - \text{Limit} \\ \text{Level} / \text{Corrected Amplitude} &= \text{Read Level} + \text{Factor} \end{aligned}$$

Test Data

Environmental Conditions

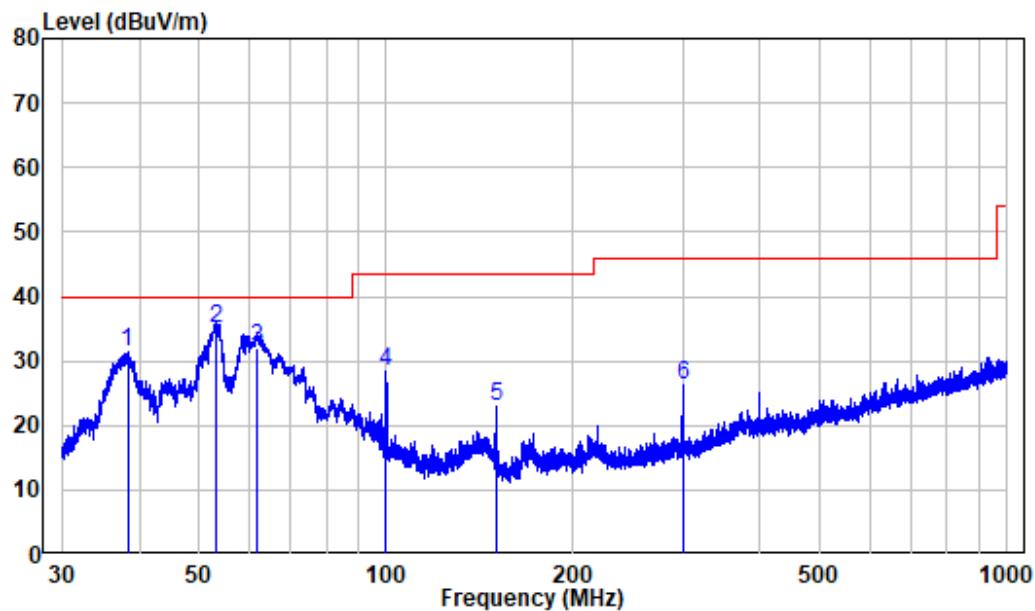
Temperature:	28~29 °C
Relative Humidity:	63~64 %
ATM Pressure:	101.0 kPa


The testing was performed by Level Li on 2022-06-01 for below 1GHz and on 2022-06-08 for above 1GHz.

EUT operation mode: Transmitting(Pre-scan in the X,Y and Z axes of orientation, the worst case X-axis of orientation was recorded)

Below 1GHz: (the worst case is 8DPSK Mode, Middle channel)

Note: When the test result of peak was less than the limit of QP more than 6dB, just peak value were recorded.


Horizontal

Site : chamber
Condition: 3m HORIZONTAL
Job No. : SZNS220428-17358E-RFA1
Test Mode: BT
Note : POE

	Freq	Factor	Read Level	Limit Level	Line	Over Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	54.547	-10.31	39.16	28.85	40.00	-11.15	Peak
2	61.697	-11.32	34.50	23.18	40.00	-16.82	Peak
3	93.851	-12.73	30.47	17.74	43.50	-25.76	Peak
4	214.985	-11.68	33.48	21.80	43.50	-21.70	Peak
5	299.973	-9.23	43.12	33.89	46.00	-12.11	Peak
6	400.081	-6.73	36.00	29.27	46.00	-16.73	Peak

Vertical

Site : chamber

Condition: 3m VERTICAL

Job No. : SZNS220428-17358E-RFA1

Test Mode: BT

Note : POE

Freq	Factor	Read		Limit		Over	Remark
		MHz	dB/m	dBuV	dBuV/m	dBuV/m	
1	38.296	-10.75	42.09	31.34	40.00	-8.66	Peak
2	53.085	-10.18	45.05	34.87	40.00	-5.13	QP
3	61.859	-11.38	43.42	32.04	40.00	-7.96	QP
4	100.009	-11.80	40.05	28.25	43.50	-15.25	Peak
5	150.011	-15.27	38.10	22.83	43.50	-20.67	Peak
6	299.973	-9.23	35.56	26.33	46.00	-19.67	Peak

Above 1GHz: (worst case for 8DPSK)

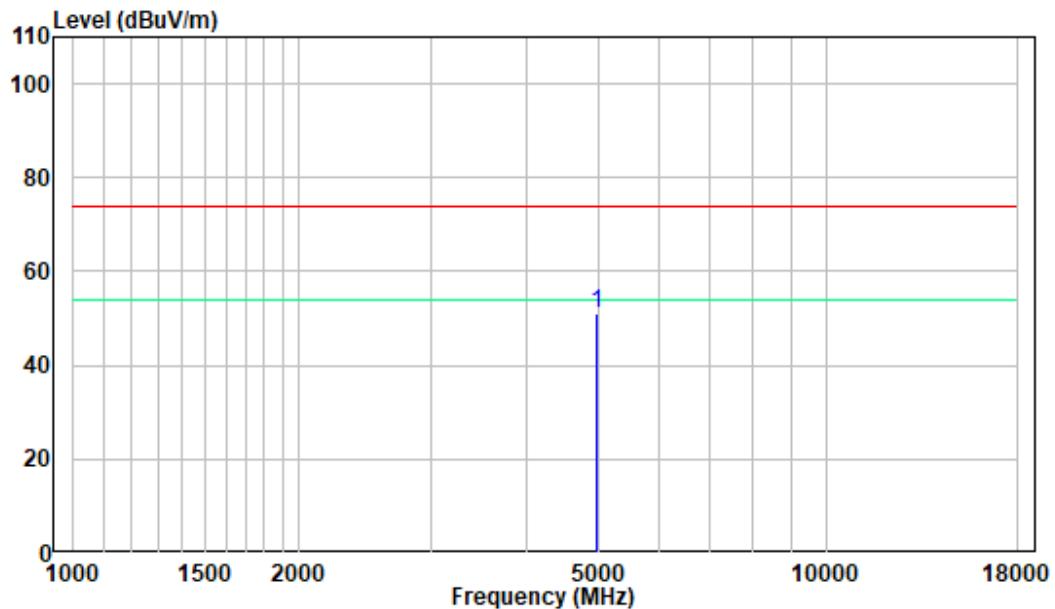
Frequency (MHz)	Receiver		Turntable Angle Degree	Rx Antenna		Factor (dB/m)	Absolute Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	Reading (dBuV)	PK/AV		Height (m)	Polar (H/V)				
Low Channel									
2310	67.89	PK	251	1.5	H	-7.24	60.65	74	-13.35
2310	53.62	AV	251	1.5	H	-7.24	46.38	54	-7.62
2310	68.01	PK	265	2.1	V	-7.24	60.77	74	-13.23
2310	53.45	AV	265	2.1	V	-7.24	46.21	54	-7.79
2390	70.39	PK	242	2.4	H	-7.22	63.17	74	-10.83
2390	54.31	AV	242	2.4	H	-7.22	47.09	54	-6.91
2390	70.51	PK	89	1.5	V	-7.22	63.29	74	-10.71
2390	54.26	AV	89	1.5	V	-7.22	47.04	54	-6.96
4804	53.88	PK	310	2.4	H	-3.51	50.37	74	-23.63
4804	54.09	PK	241	1.8	V	-3.51	50.58	74	-23.42
Middle Channel									
4882	54.45	PK	12	1.8	H	-3.37	51.08	74	-22.92
4882	54.21	PK	58	2	V	-3.37	50.84	74	-23.16
High Channel									
2483.5	69.45	PK	60	1.5	H	-7.2	62.25	74	-11.75
2483.5	54.98	AV	60	1.5	H	-7.2	47.78	54	-6.22
2483.5	70.31	PK	180	2.4	V	-7.2	63.11	74	-10.89
2483.5	55.11	AV	180	2.4	V	-7.2	47.91	54	-6.09
2500	69.16	PK	149	1.4	H	-7.18	61.98	74	-12.02
2500	55.06	AV	149	1.4	H	-7.18	47.88	54	-6.12
2500	69.08	PK	144	2.4	V	-7.18	61.9	74	-12.10
2500	54.97	AV	144	2.4	V	-7.18	47.79	54	-6.21
4960	54.20	PK	71	1.3	H	-3.01	51.19	74	-22.81
4960	54.02	PK	45	2.3	V	-3.01	51.01	74	-22.99

Note:

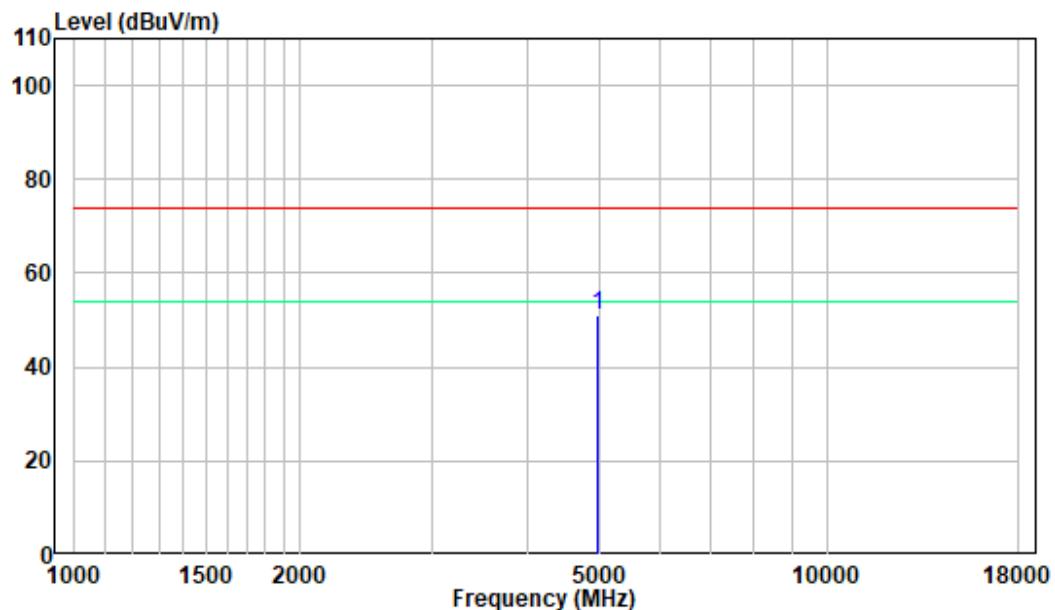
Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

Corrected Amplitude = Corrected Factor + Reading

Margin = Corrected. Amplitude - Limit

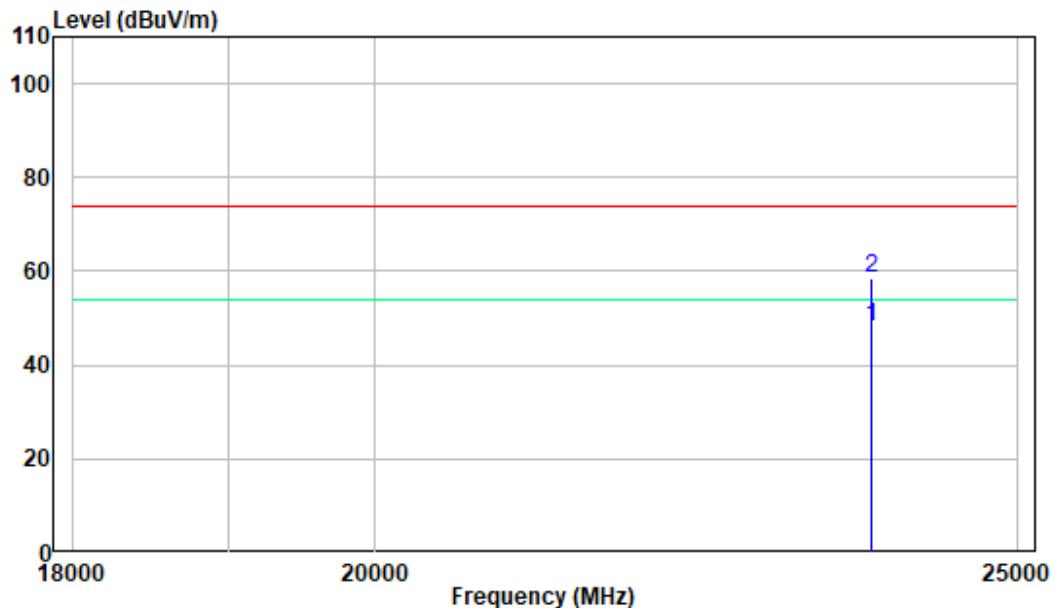

The other spurious emission which is 20dB to the limit or in the noise floor was not recorded.

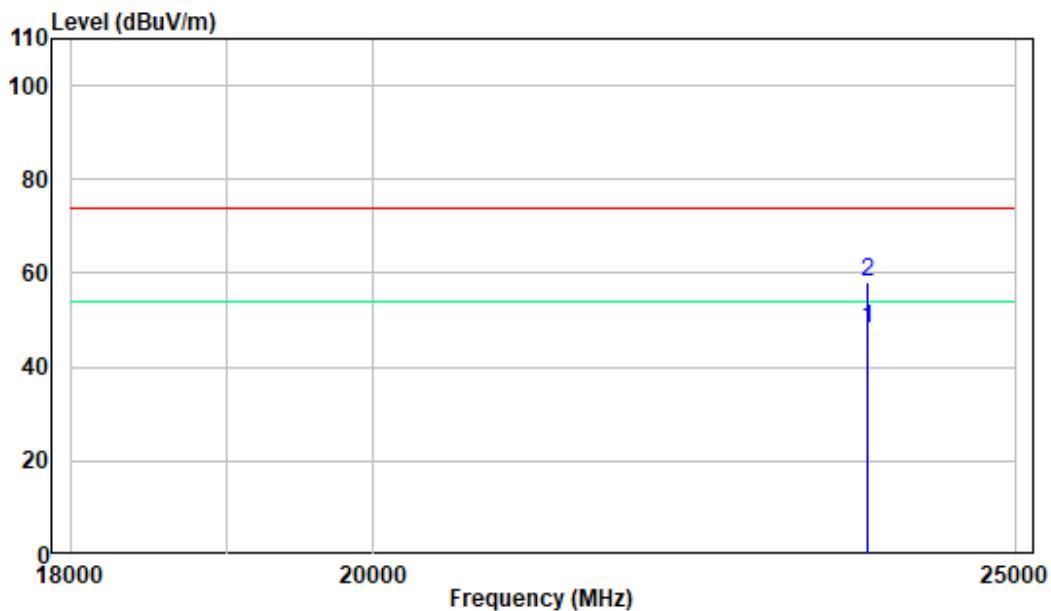
When the test result of peak was less than the limit of average, just peak value were recorded.


1 GHz - 18 GHz: (Pre-Scan plots)

High channel

Horizontal


Vertical


18-25GHz: (Pre-Scan plots)

High channel

Horizontal

Vertical

******* END OF REPORT *******