

TEST REPORT

Applicant Name: YEALINK(XIAMEN) NETWORK TECHNOLOGY CO.,LTD.

Address: No.666 Hu'an Rd. Huli District Xiamen City, Fujian, P.R. China

Report Number: 2501R08197E-RFE FCC ID: T2C-MCORE4

IC: 10741A-MCORE4

Test Standard (s)

FCC PART 15.407; RSS-247 ISSUE 3, AUGUST 2023

Sample Description

Product Type: Mini-PC
Model No.: MCore 4
Multiple Model(s) No.: N/A

Trade Mark:

Yealink

Date Received: 2025-03-28 Issue Date: 2025-06-30

Test Result: Pass▲

▲ In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Approved By:

Bruce Lin

J J

Bruce Lin RF Engineer Nancy Wang RF Supervisor

Note: The information marked # is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government. This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk " Ψ ".

Bay Area Compliance Laboratories Corp. (Shenzhen)

5F(B-West) , 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	3
GENERAL INFORMATION	Δ
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
TEST METHODOLOGY	
Measurement Uncertainty Test Facility	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
EQUIPMENT MODIFICATIONS	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	
APPLICABLE STANDARDS	
DFS REQUIREMENT	
DFS MEASUREMENT SYSTEM	
SYSTEM BLOCK DIAGRAM	
CONDUCTED METHOD	14
RADIATED METHOD	
TEST PROCEDURE	_
TEST RESULTS	
DESCRIPTION OF EUT	
RADAR WAVEFORM CALIBRATION	
CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME	
TEST PROCEDURE TEST DATA	
NON-OCCUPANCY PERIOD	
Test Procedure Test Data	
EUT PHOTOGRAPHS	
TEST SETUP PHOTOGRAPHS	20
APPENDIX	
APPENDIX A: DFS DETECTION THRESHOLDS	
APPENDIX B: CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME	
APPENDIX C: NON-OCCUPANCY PERIOD	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	2501R08197E-RFE	Original Report	2025-06-30

Report No.: 2501R08197E-RFE

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

HVIN	MCore 4
FVIN	MCore 4
Product	Mini-PC
Tested Model	MCore 4
Multiple Model(s)	N/A
Frequency Range	5GHz Wi-Fi: 5250-5350 MHz; 5470-5600MHz & 5650-5725MHz
Mode	802.11a/n20/n40/ac20/ac40/ac80/ax20/ax40/ax80/ax160
Maximum Conducted Average Output Power	5250-5350MHz: 15.85dBm 5470-5725MHz: 16.10dBm
Modulation Technique	OFDM, OFDMA
Antenna Specification#	5250-5350MHz: ANT1: 4.76dBi; ANT2: 3.38dBi 5470-5725MHz: ANT1: 4.40dBi; ANT2: 1.98dBi (provided by the applicant)
Voltage Range	DC 19V from adapter
Sample serial number	30LS-4 (Assigned by BACL, Shenzhen)
Sample/EUT Status	Good condition
Adapter Information	Model: HKA09019047-6U Input: AC 100-240V, 50/60Hz, 1.5A Output: DC 19.0V, 4.74A, 90.06W

Report No.: 2501R08197E-RFE

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts E of the Federal Communications Commission's rules, and RSS-247 Issue 3, August 2023 of the Innovation, Science and Economic Development Canada..

The objective is to determine compliance with FCC Part 15, Subpart E, section 15.407 Dynamic Frequency Selection (DFS) for devices operating in the bands 5250-5350 MHz, 5470-5725 MHz.

The objective is to determine compliance with Dynamic Frequency Selection (DFS) of the RSS-247 Issue 3, August 2023 of the Innovation, Science and Economic Development Canada for devices operating in the bands 5250-5350 MHz, 5470-5600MHz and 5650-5725 MHz.

Test Methodology

FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02.

FCC KDB 905462 D03 Client Without DFS New Rules v01r02.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter	Uncertainty	
Time	±1%(k=2, 95% level of confidence)	
Temperature	±1 °C	
Humidity	±1%	
Supply voltages	±0.4%	

Report No.: 2501R08197E-RFE

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 715558, the FCC Designation No.: CN5045.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0023.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The EUT was configured for testing in an engineering mode which was provided by the manufacturer.

Report No.: 2501R08197E-RFE

EUT Exercise Software

N/A

Equipment Modifications

N/A

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
Lenovo	PC	TIANYI510Pro-18ICB	R3NO28B21001
Lenovo	LED display	L2364A	U310FZR9
Lenovo	Keyboard	EKB-536A	811A19A5
DELL	Mouse	WM-100	Unknown
Grandstream	Router	GWN7665 (FCC ID: YZZGWN7665) (IC: 11964A-GWN7665)	C074AD251F0A
DELL	Notebook	DESKTOP-1630AQ3	9RVYFH2
Yealink	POE	SIP-T74W	Unknown

External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielded Detachable AC cable	0.5	AC Mains	Adapter
Shielded Un-detachable DC cable	1.6	EUT	Adapter
Unshielded Un-detachable AC cable	1.0	AC Mains	POE
Unshielded Detachable RJ45 cable	1.0	PC	POE
Unshielded Detachable RJ45 cable	1.0	POE	Router

SUMMARY OF TEST RESULTS

The following result table represents the list of measurements required under the CFR §47 Part 15.407(h), RSS-247 Issue 3 §6.3 and KDB: 905462 D02 UNII DFS Compliance Procedures New Rules v02

Report No.: 2501R08197E-RFE

Items	Description of Test	Result
Detection Bandwidth	UNII Detection Bandwidth	Not Applicable
D. C	Initial Channel Availability Check Time (CAC)	Not Applicable
Performance Requirements	Radar Burst at the Beginning of the CAC	Not Applicable
Check	Radar Burst at the End of the CAC	Not Applicable
	Channel Move Time	Compliant
In-Service Monitoring	Channel Closing Transmission Time	Compliant
	Non-Occupancy Period	Compliant
Radar Detection	Statistical Performance Check	Not Applicable

Note: EUT is a client without radar detection.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Tonscend	RF control Unit	JS0806-2	19D8060154	2024/08/06	2025/08/05
Rohde & Schwarz	Spectrum Analyzer	FSV40	101473	2024/12/04	2025/12/03
Keysight	MXG Vector Signal Generator	N5182B	MY53051503	2024/12/04	2025/12/03
Unknown	10dB Attenuator	Unknown	F-03-EM122	2024/06/27	2025/06/26
Unknown	10dB Attenuator	Unknown	F-03-EM065	2024/06/27	2025/06/26
НР	Power Splitter	11667A	1610A	2024/06/27	2025/06/26
Unknown	RF Cable	65475	01670515	2024/06/27	2025/06/26

Report No.: 2501R08197E-RFE

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

APPLICABLE STANDARDS

DFS Requirement

CFR §47 Part 15.407(h) & RSS-247 Issue 3, August 2023 section 6.3

FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

Report No.: 2501R08197E-RFE

Requirement	Operational Mode		
	Master	Client Without Radar Detection	Client With Radar Detection
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Not required
U-NII Detection Bandwidth	Yes	Not required	Yes

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode		
	Master Device or Client with Radar Detection	Client Without Radar Detection	
DFS Detection Threshold	Yes	Not required	
Channel Closing Transmission Time	Yes	Yes	
Channel Move Time	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and	All BW modes must be	Not required
Statistical Performance Check	tested	
Channel Move Time and Channel	Test using widest BW mode	Test using the widest
Closing Transmission Time	available	BW mode available
		for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

Maximum Transmit Power	Value
	(See Notes 1, 2, and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and	-62 dBm
power spectral density < 10 dBm/MHz	
EIRP < 200 milliwatt that do not meet the power spectral	-64 dBm
density requirement	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Table 4: DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an
	aggregate of 60
	milliseconds over
	remaining 10 second
	period.
	See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-
	NII 99% transmission
	power bandwidth. See
	Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Table 5 - Short Pulse Radar Test Waveforms

D 1	D. 1	DDI	N. 1 CD 1	ν) (C	
Radar	Pulse	PRI	Number of Pulses	Minimum	Minimum	
Type	Width	(µsec)		Percentage of	Number	
	(µsec)			Successful	of	
				Detection	Trials	
0	1	1428	18	See Note 1	See Note	
					1	
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	Roundup $ \left\{ \frac{1}{360} \right\} \cdot \left\{ \frac{1}{360} \cdot \left\{ \frac{1}{9 \cdot 10^6} \right\} \right\} $	60%	30	
2	1-5	150-230	23-29	60%	30	
3	6-10	200-500	16-18	60%	30	
4	11-20	200-500	12-16	60%	30	
Aggregate (Radar Types	1-4)		80%	120	
No. 1 of a D. I. W. O. I. 111 . I. C. I.						

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 usec is selected, the number of pulses

would be Roundup
$$\left\{ \left(\frac{1}{360} \right) \cdot \left(\frac{19 \cdot 10^6}{3066} \right) \right\} = \text{Roundup} \left\{ 17.2 \right\} = 18.$$

TR-EM-RF019 Page 11 of 25 Version 3.0

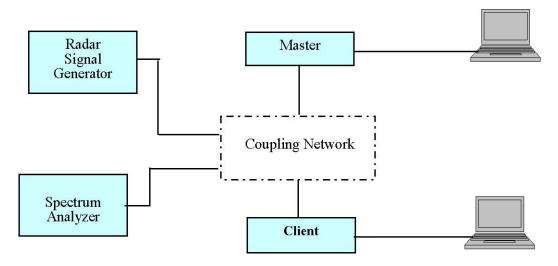
Pulse Renetition Pulse Repetition Frequency Pulse Renet

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

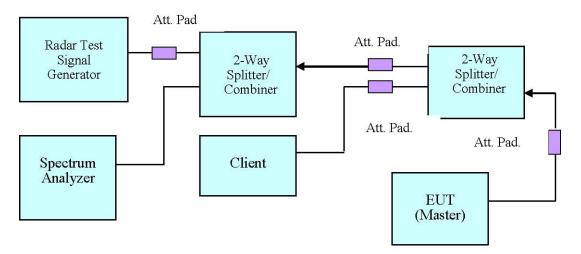
The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4. For example, the following table indicates how to compute the aggregate of percentage of successful detections.

Radar Type	Number of Trials	Number of Successful Detections	Minimum Percentage of Successful Detection		
1	35	29	82.9%		
2	30	18	60%		
3	30	27	90%		
4	50	44	88%		
Aggregate (82.9% + 60% + 90% + 88%)/4 = 80.2%					

_	Those of Dong I have I							
	Radar	Pulse	Chirp	PRI	Number	Number	Minimum	Minimum
1	Type	Width	Width	(µsec)	of Pulses	of Bursts	Percentage of	Number of
		(µsec)	(MHz)		per Burst		Successful	Trials
					_		Detection	
	5	50-100	5-20	1000-	1-3	8-20	80%	30
				2000				

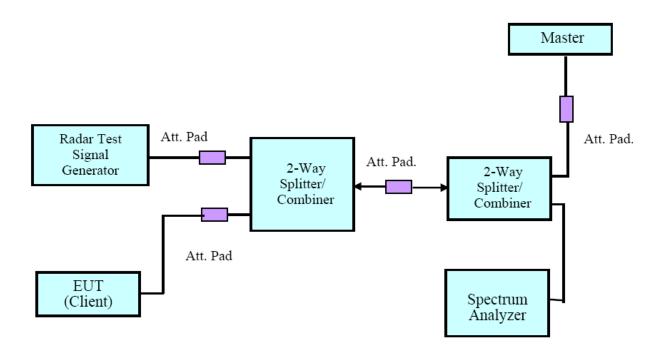

Table 7 - Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length	Minimum Percentage of Successful Detection	Minimum Number of Trials
					(msec)	Detection	
6	1	333	9	0.333	300	70%	30


DFS Measurement System

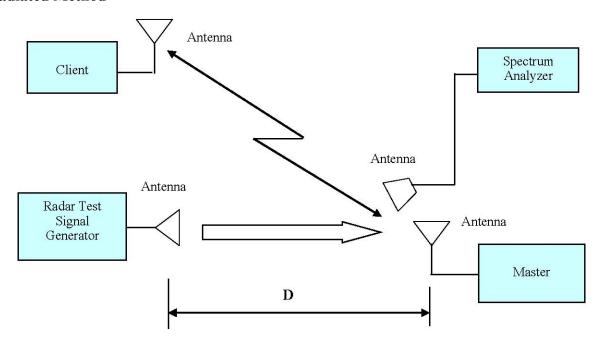
DFS measurement system consists of two subsystems: (1) The radar signal generating subsystem and (2) the traffic monitoring subsystem.

System Block Diagram



Conducted Method

Report No.: 2501R08197E-RFE

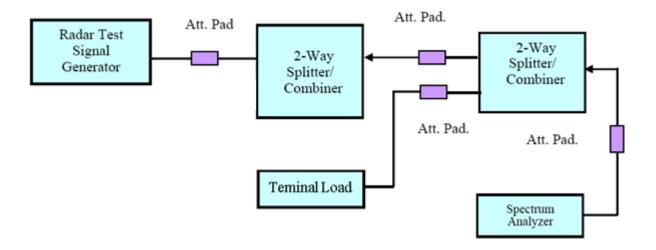

Setup for Master with injection at the Master

Setup for Client with injection at the Master

Setup for Client with injection at the Client

Radiated Method

Test Procedure


A spectrum analyzer is used as a monitor verifies that the EUT status including Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the diction.

TEST RESULTS

Description of EUT

The calibrated radiated DFS detection threshold level is set to -64 dBm.

Radar Waveform Calibration

Report No.: 2501R08197E-RFE

Test Data

Environmental Conditions

Temperature:	25°C
Relative Humidity:	55 %
ATM Pressure:	101 kPa

The testing was performed by Lee Li on 2025-06-06.

EUT operation mode: Transmitting

Test Result: Compliant

Please refer to the Appendix.

CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME

Report No.: 2501R08197E-RFE

Test Procedure

Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = N*Dwell Time

N is the number of spectrum analyzer bins showing a device transmission Dwell Time is the dwell time per bin (i.e. Dwell Time = S/B, S is the sweep time and B is the number of bin, i.e. 8192)

Test Data

Environmental Conditions

Temperature:	25°C
Relative Humidity:	55 %
ATM Pressure:	101 kPa

The testing was performed by Lee Li on 2025-06-06.

EUT operation mode: Transmitting

Test Result: Compliant

Please refer to the Appendix.

NON-OCCUPANCY PERIOD

Test Procedure

Measure the EUT for more than 30 minutes following the channel close/move time to very that the EUT does not resume any transmissions on this channel. Provide one plot to demonstrate no transmission on the channel for the non-occupancy period (30 minutes observation time)

Report No.: 2501R08197E-RFE

Test Data

Environmental Conditions

Temperature:	25℃
Relative Humidity:	55 %
ATM Pressure:	101 kPa

The testing was performed by Lee Li on 2025-06-06.

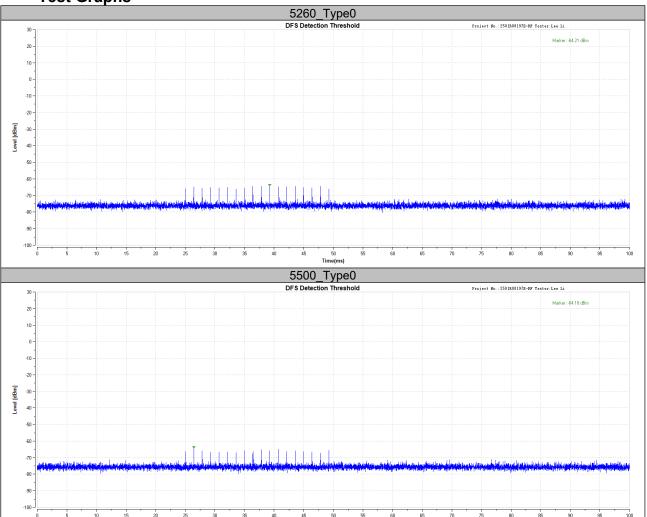
EUT operation mode: Transmitting

Test Result: Compliant

Please refer to the Appendix.

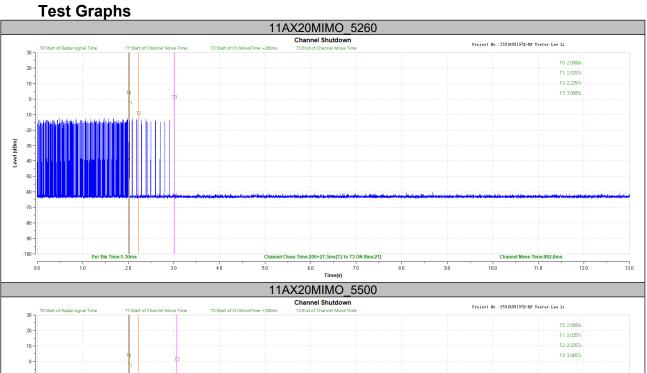
Bay Area Compliance Laboratories Corp. (Shenzhen)	Report No.: 2501R08197E-RFE
EUT PHOTOGRAPHS	
Please refer to the attachment 2501R08197E-RF External photo	and 2501R08197E-RF Internal photo.
·	•

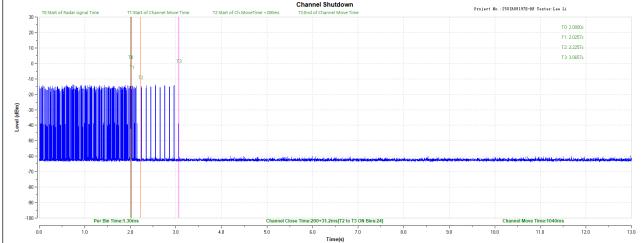
Bay Area Compliance Laboratories Corp. (Shenzhen)	Report No.: 2501R08197E-RFE
TEST SETUP PHOTOGRAPHS	
Please refer to the attachment 2501R08197E-RFB Test Setup p	photo.
2001110017, 2 112 1 1000 2000p p	


APPENDIX

Appendix A: DFS Detection Thresholds Test Result

Frequency [MHz]	Radar Type	Result[dBm]	Limit[dBm]	Verdict
5260	Type0	-64.21	-64.00	PASS
5500	Type0	-64.18	-64.00	PASS
5250	Type0	-64.05	-64.00	PASS
5570	Type0	-64.22	-64.00	PASS


Report No.: 2501R08197E-RFE


Test Graphs

50 Time(ms)

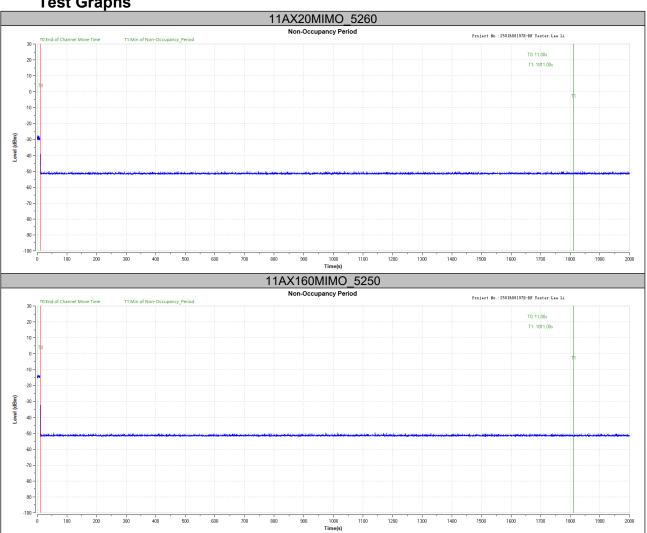
Test Mode	Frequency[MHz]	CCTT[ms]	Limit[ms]	CMT[ms]	Limit[ms]	Verdict
11AX20MIMO	5260	200+27.3	200+60	982.8	10000	PASS
	5500	200+31.2	200+60	1040	10000	PASS
11AX160MIMO	5250	200+29.9	200+60	842.4	10000	PASS
	5570	200+31.2	200+60	980.2	10000	PASS

Channel Close Time:200+31.2ms[T2 to T3 ON Bins:24] 6.0

7.0

11.0

12.0


Appendix C: Non-Occupancy Period

Test Result

Test Mode	Frequency[MHz]	Result	Limit[s]	Verdict
11AX20MIMO	5260	see test graph	≥1800	PASS
11AX160MIMO	5250	see test graph	≥1800	PASS

Report No.: 2501R08197E-RFE

Test Graphs

***** END OF REPORT *****