

TESTING LABORATORY
CERTIFICATE #4820.01

FCC PART 15.247

RSS-GEN, ISSUE 5, MARCH 2019 AMENDMENT 1

RSS-247, ISSUE 2, FEBRUARY 2017

TEST REPORT

For

**YEALINK(XIAMEN) NETWORK TECHNOLOGY
CO.,LTD.**

FCC: 309, 3rd Floor, No.16, Yun Ding North Road, Huli District, Xiamen City, Fujian, China
IC: 309, 3rd Floor, No.16, Yun Ding North Road, Huli District Xiamen City Fujian 361008
China (Peoples Republic Of)

**FCC ID: T2C-58
IC: 10741A-58**

Report Type: Original Report	Product Name: Smart Business Phone
Report Number: <u>RSZ201207003-00A</u>	
Report Date: <u>2021-02-04</u>	
Reviewed By: Ivan Cao Assistant Manager	
Test Laboratory: Bay Area Compliance Laboratories Corp. (Dongguan) No.12, Pulong East 1 st Road, Tangxia Town, Dongguan, Guangdong, China Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn	

TABLE OF CONTENTS

GENERAL INFORMATION.....	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	3
OBJECTIVE	3
TEST METHODOLOGY	4
MEASUREMENT UNCERTAINTY	4
TEST FACILITY	4
DECLARATIONS.....	5
SYSTEM TEST CONFIGURATION.....	6
DESCRIPTION OF TEST CONFIGURATION	6
EUT EXERCISE SOFTWARE	6
EQUIPMENT MODIFICATIONS	6
SUPPORT EQUIPMENT LIST AND DETAILS	6
SUPPORT CABLE LIST AND DETAILS	6
BLOCK DIAGRAM OF TEST SETUP	7
SUMMARY OF TEST RESULTS.....	8
FCC §15.247 (i) & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE).....	9
APPLICABLE STANDARD	9
RSS-102 § 2.5.2 - EXEMPTION LIMITS FOR ROUTINE EVALUATION – RF EXPOSURE EVALUATION	10
APPLICABLE STANDARD	10
FCC §15.203 & RSS-GEN CLAUSE 6.8 - ANTENNA REQUIREMENT	11
APPLICABLE STANDARD	11
ANTENNA INFORMATION AND CONNECTOR CONSTRUCTION.....	11
FCC §15.207 (a) & RSS-GEN CLAUSE 8.8 – AC LINE CONDUCTED EMISSIONS.....	12
APPLICABLE STANDARD	12
EUT SETUP	12
EMI TEST RECEIVER SETUP.....	12
TEST PROCEDURE	13
CORRECTED AMPLITUDE & MARGIN CALCULATION	13
TEST EQUIPMENT LIST AND DETAILS.....	13
TEST DATA	14
FCC §15.209, §15.205 & §15.247(d) & RSS-247 CLAUSE 5.5,RSS -GEN CLAUSE 8.10- SPURIOUS EMISSIONS.....	16
APPLICABLE STANDARD	16
EUT SETUP	16
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	17
TEST PROCEDURE	17
TEST EQUIPMENT LIST AND DETAILS.....	17
CORRECTED AMPLITUDE & MARGIN CALCULATION	18
TEST DATA	18

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

EUT Name:	Smart Business Phone
EUT Model:	SIP-T58W
Multiple Model:	MP58
Operation Frequency:	2402-2480MHz
Maximum Peak Output Power (Conducted):	6.18 dBm
Modulation Type:	GFSK, $\pi/4$ -DQPSK, 8DPSK
Antenna Gain ▲:	3.0 dBi
Rated Input Voltage:	DC 5V from adapter
Adapter 1# Information	Model: YLPS052000B1-US
	Input: 100-240Vac 50/60Hz 0.5A
	Output: 5.0Vdc 2.0A
Adapter 2# Information	Model: YLPS052000C1-US
	Input: 100-240Vac 50/60Hz 0.5A
	Output: 5.0Vdc 2.0A
Serial Number:	RSZ201207003-RF-S1
EUT Received Date:	2020.12.07
EUT Received Status:	Good

Note: The series product, models MP58, SIP-T58W are electrically identical, the model SIP-T58W was fully tested. The difference between them please refer to the declaration letter for details.

Objective

This report is prepared on behalf of **YEALINK(XIAMEN) NETWORK TECHNOLOGY CO.,LTD.** in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communications Commission's rules and RSS-247, Issue 2, February 2017, RSS-Gen, Issue 5, March 2019 Amendment 1 of the Innovation, Science and Economic Development Canada.

The tests were performed in order to determine the Bluetooth BDR and EDR mode of EUT compliance with FCC Rules Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules and RSS-247, Issue 2, February 2017, RSS-Gen, Issue 5, March 2019 Amendment 1 of the Innovation, Science and Economic Development Canada.

Test Methodology

All measurements detailed in this test report were performed in accordance with ANSI C63.10-2013 "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices" and KDB 558074 D01 15.247 Meas Guidance v05r02. And RSS-247, Issue 2, February 2017, RSS-Gen, Issue 5, March 2019 Amendment 1 of the Innovation, Science and Economic Development Canada.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan).

Measurement Uncertainty

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.61dB
Unwanted Emissions, radiated	30M~200MHz: 4.55 dB, 200M~1GHz: 5.92 dB, 1G~6GHz: 4.98 dB, 6G~18GHz: 5.89 dB, 18G~26.5G: 5.47 dB, 26.5G~40G: 5.63 dB
Unwanted Emissions, conducted	±1.5 dB
Temperature	±1°C
Humidity	±5%
DC and low frequency voltages	±0.4%
Duty Cycle	1%
AC Power Lines Conducted Emission	3.12 dB (150 kHz to 30 MHz)

Note: Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 897218, the FCC Designation No. : CN1220.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022.

Declarations

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol “▲”. Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk “★”.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

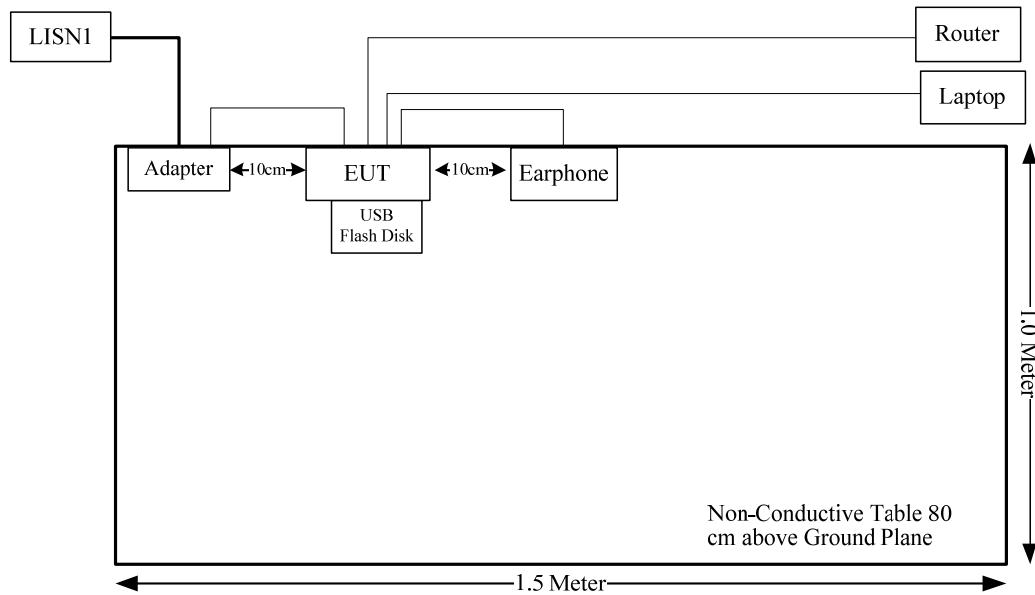
The system was configured for testing in engineering mode, which was provided by manufacturer.

EUT Exercise Software

The software "QRCT 3" was used for testing and the maximum power was configured as below, which was provided by the manufacturer ▲ :

Mode	Channel	Frequency (MHz)	Power Level Setting
GFSK	Low	2402	Default
	Middle	2441	Default
	High	2480	Default
$\pi/4$ -DQPSK	Low	2402	Default
	Middle	2441	Default
	High	2480	Default
8DPSK	Low	2402	Default
	Middle	2441	Default
	High	2480	Default

Equipment Modifications


No modification was made to the EUT.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
Lenovo	Laptop	Legion Y7000 2019 PG0	PF21N40H
zioncom	Router	A3700R	200622002S1
Kinston	Flash Disk	4G	4G-1
Yealink	Earphone	MP58	RSZ201207003-RF-S2

Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	To
RJ45 Cable	No	No	10	EUT	Laptop
RJ45 Cable	No	No	10	EUT	Router
RJ11 Cable	No	No	2	EUT	Earphone

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

Rules	Description of Test	Result
§15.247 (i) & §1.1310 & §2.1091	Maximum Permissible Exposure (MPE)	Compliance
RSS-102 Clause 2.5.2	Exemption Limits For Routine Evaluation-RF Exposure Evaluation	Compliance
FCC§15.203, RSS-Gen Clause 6.8	Antenna Requirement	Compliance
FCC§15.207 (a), RSS-Gen Clause 8.8	Conducted Emissions	Compliance
FCC§15.205, §15.209, FCC §15.247(d), RSS-247 Clause 5.5, RSS-Gen Clause 8.10	Spurious Emissions	Compliance
FCC §15.247 (a)(1), RSS-247 Clause 5.1 b) RSS-Gen Clause 6.7	Emission Bandwidth	Compliance*
FCC §15.247(a)(1), RSS-247 Clause 5.1 b)	Channel Separation Test	Compliance*
FCC§15.247(a)(1)(iii), RSS-247 Clause 5.1 d)	Time of Occupancy (Dwell Time)	Compliance*
FCC§15.247(a)(1)(iii), RSS-247 Clause 5.1 d)	Quantity of hopping channel Test	Compliance*
FCC§15.247(b)(1), RSS-247 Clause 5.4 b)	Peak Output Power Measurement	Compliance*
FCC§15.247(d) RSS-247 Clause 5.5	Band Edges	Compliance*

Compliance*: The device built in a certified RF module, FCC ID: T2C-YL1023, IC: 10741A-YL1023. The RF Port conducted test please refer to the Module report: ES180426020W02, which was issued on 2018-04-29 by EMTEK(SHENZHEN) CO., LTD.

FCC §15.247 (i) & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247(i) and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure				
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)
0.3–1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f ²)	30
30–300	27.5	0.073	0.2	30
300–1500	/	/	f/1500	30
1500–100,000	/	/	1.0	30

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculation formula:

Prediction of power density at the distance of the applicable MPE limit

$S = PG/4\pi R^2$ = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

Operation Mode	Frequency (MHz)	Antenna Gain		Conducted output power including Tune-up Tolerance		Evaluation Distance (cm)	Power Density (mW/cm ²)	MPE Limit (mW/cm ²)
		(dBi)	(numeric)	(dBm)	(mW)			
Bluetooth	2402-2480	3	2.00	7	5.01	20.00	0.002	1.0
2.4G Wi-Fi	2412-2462	3	2.00	20	100.00	20.00	0.04	1.0
5G Wi-Fi	5150-5250	3	2.00	14	25.12	20.00	0.01	1.0
	5250-5350	3	2.00	15	31.62	20.00	0.01	1.0
	5470-5725	3	2.00	17	50.12	20.00	0.02	1.0
	5725-5850	3	2.00	14	25.12	20.00	0.01	1.0

Note: Non of those modes can't transmit simultaneously.

Result: The device meet FCC MPE at 20 cm distance

RSS-102 § 2.5.2 - EXEMPTION LIMITS FOR ROUTINE EVALUATION – RF EXPOSURE EVALUATION

Applicable Standard

According to RSS-102 § (2.5.2):

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

- below 20 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance);
- at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $4.49/f^{0.5}$ W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 0.6 W (adjusted for tune-up tolerance);
- at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $1.31 \times 10^{-2} f^{0.6834}$ W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance).

In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the e.i.r.p. was derived.

Calculated Data:

Operation Mode	Frequency (MHz)	Antenna Gain	Conducted output power including Tune-up Tolerance	EIRP		Exemption limits (mW)
				(dBi)	(dBm)	
Bluetooth	2402-2480	3	7	10	10.00	2676
2.4G Wi-Fi	2412-2462	3	20	23	199.53	2684
5G Wi-Fi	5150-5250	3	14	17	50.12	4507
	5250-5350	3	15	18	63.10	4567
	5470-5725	3	17	20	100.00	4697
	5725-5850	3	14	17	50.12	4845

Note: Non of those modes can't transmit simultaneously.

Result: Compliance. The device is compliance exemption from Routine Evaluation Limits –RF exposure Evaluation.

FCC §15.203 & RSS-GEN CLAUSE 6.8 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

According to RSS-Gen §6.8, The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer. The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

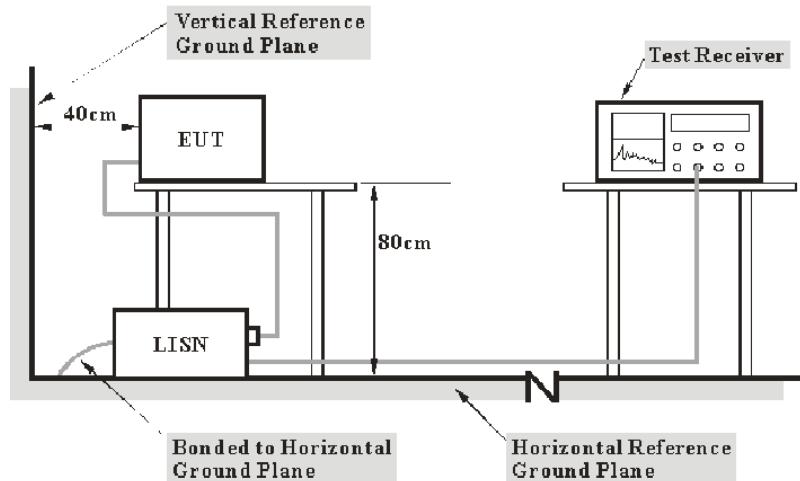
This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

Antenna Information And Connector Construction

The EUT has one internal antenna arrangement, fulfill the requirement of this section. Please refer to below information and the EUT photos:

Antenna Type	input impedance (Ohm)	Antenna Gain /Frequency Range
PCB	50	3.0 dBi/2.4~2.5GHz


Result: Compliance.

FCC §15.207 (a) & RSS-GEN CLAUSE 8.8 – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207(a), RSS-GEN CLAUSE 8.8.

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 and RSS-Gen limits.

The spacing between the peripherals was 10 cm.

The EUT was connected to the main LISN with a 120 V/60 Hz AC power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the EUT was connected to the outlet of the first LISN.

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase (“hot”) line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit from among all the measurements identifying the frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the current-carrying conductors, or the six highest emissions may be reported over all the current-carrying conductors.

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_c + VDF$$

Herein,

V_C : corrected voltage amplitude

V_R : reading voltage amplitude

A_c : attenuation caused by cable loss

VDF: voltage division factor of AMN or ISN

The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

Test Equipment List and Details

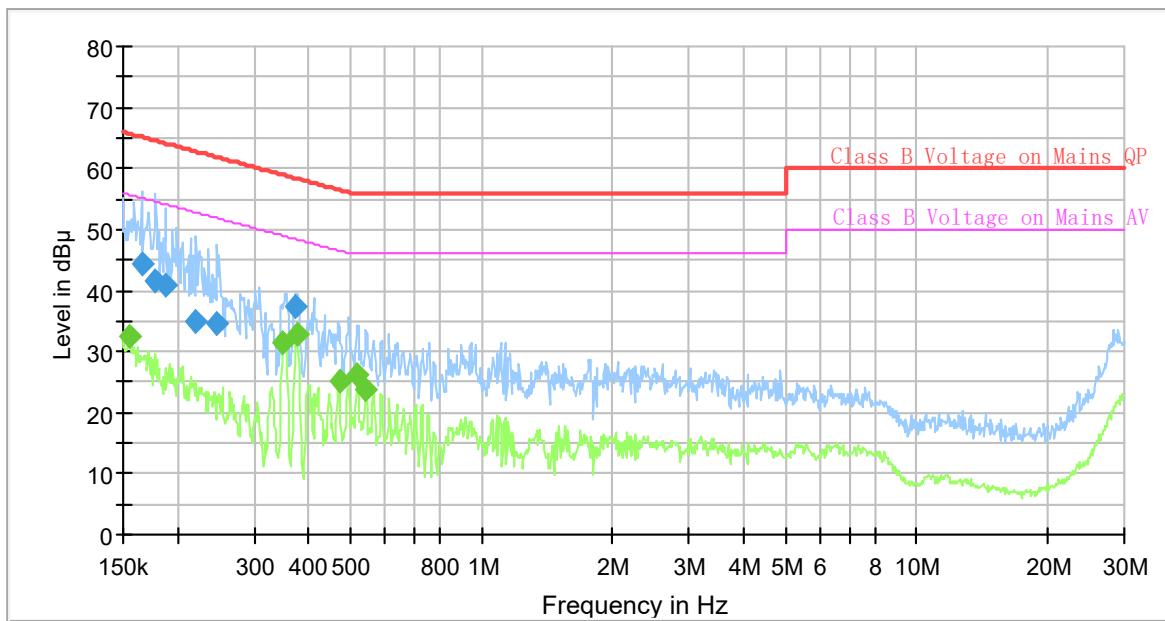
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	LISN	ENV 216	101614	2020-09-12	2021-09-12
R&S	EMI Test Receiver	ESCI	101121	2020-07-07	2021-07-07
MICRO-COAX	Coaxial Cable	C-NJNJ-50	C-0200-01	2020-09-05	2021-09-05
R&S	Test Software	EMC32	Version 9.10.00	N/A	N/A

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

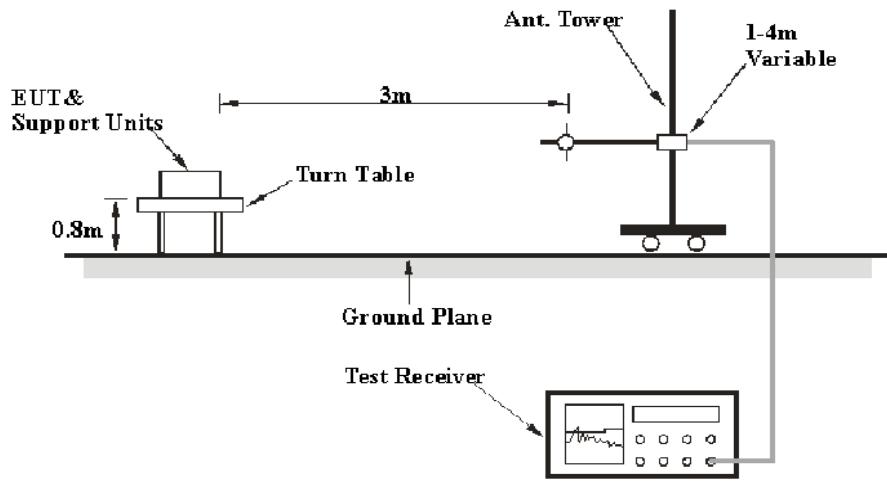
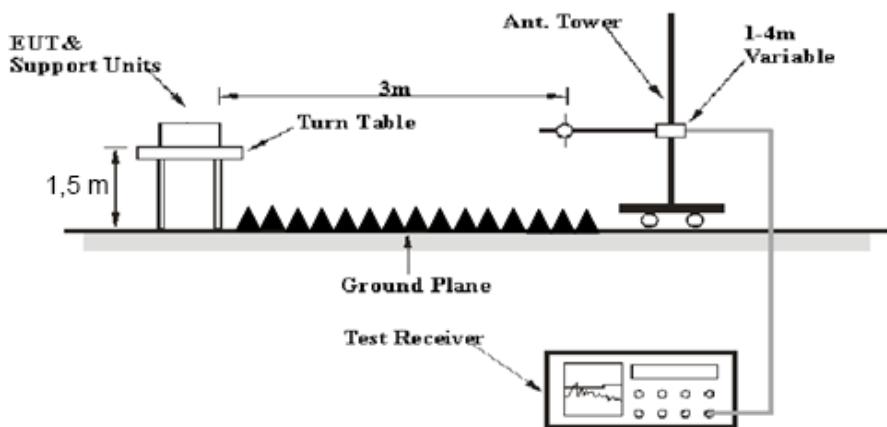
Environmental Conditions

Temperature:	18.9°C
Relative Humidity:	39%
ATM Pressure:	101.6kPa
Test by:	Barry Yang
Test Date:	2020-12-22


Test Result: Compliance

Test Mode: Transmitting
AC120V, 60 Hz, Line:

Final Result



Frequency (MHz)	QuasiPeak (dB μ V)	Average (dB μ V)	Limit (dB μ V)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
0.161652	42.43	---	65.38	22.95	9.000	L1	9.6
0.178609	39.15	---	64.55	25.40	9.000	L1	9.6
0.223551	33.55	---	62.69	29.14	9.000	L1	9.6
0.237339	33.52	---	62.19	28.67	9.000	L1	9.6
0.260930	31.94	---	61.40	29.46	9.000	L1	9.6
0.348462	---	25.14	49.00	23.86	9.000	L1	9.6
0.373663	39.72	---	58.42	18.70	9.000	L1	9.6
0.375532	---	33.25	48.38	15.13	9.000	L1	9.6
0.494060	---	25.58	46.10	20.52	9.000	L1	9.6
0.540467	---	24.05	46.00	21.95	9.000	L1	9.6
0.732654	---	23.89	46.00	22.11	9.000	L1	9.7
0.736317	---	23.51	46.00	22.49	9.000	L1	9.7

AC120V, 60 Hz, Neutral:**Final_Result**

Frequency (MHz)	QuasiPeak (dB μ V)	Average (dB μ V)	Limit (dB μ V)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
0.155329	---	32.62	55.71	23.09	9.000	N	9.6
0.165734	44.38	---	65.17	20.79	9.000	N	9.6
0.177720	41.58	---	64.59	23.01	9.000	N	9.6
0.187743	41.04	---	64.14	23.10	9.000	N	9.6
0.220231	34.98	---	62.81	27.83	9.000	N	9.6
0.247000	34.50	---	61.86	27.36	9.000	N	9.6
0.348462	---	31.36	49.00	17.64	9.000	N	9.6
0.373663	37.42	---	58.42	21.00	9.000	N	9.6
0.377409	---	32.76	48.34	15.58	9.000	N	9.6
0.470023	---	25.11	46.51	21.40	9.000	N	9.6
0.516743	---	26.22	46.00	19.78	9.000	N	9.6
0.543169	---	23.74	46.00	22.26	9.000	N	9.6

FCC §15.209, §15.205 & §15.247(d) & RSS-247 CLAUSE 5.5,RSS -GEN CLAUSE 8.10- SPURIOUS EMISSIONS**Applicable Standard**

FCC §15.247 (d); §15.209; §15.205; RSS-247 Clause 5.5, RSS-GEN Clause 8.10

EUT Setup**Below 1GHz:****Above 1GHz:**

The radiated emission below 1GHz tests were performed in the 10 meters chamber test site, above 1GHz tests were performed in the 3 meters chamber test site B, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 and the RSS-247 Clause 5.5, RSS-GEN Clause 8.10 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	PK
	1MHz	10 Hz	/	AV

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz - 1 GHz, peak and average detection modes for frequencies above 1 GHz.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Radiation Below 1GHz					
Sunol Sciences	Antenna	JB3	A060611-2	2020-08-25	2023-08-25
R&S	EMI Test Receiver	ESCI	100224	2020-09-12	2021-09-12
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2020-09-05	2021-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-02	2020-09-05	2021-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0530-01	2020-09-24	2021-09-24
Sonoma	Amplifier	310N	185914	2020-10-13	2021-10-13
Farad	Test Software	EZ-EMC	V1.1.4.2	N/A	N/A
Radiation Above 1GHz					
ETS-Lindgren	Horn Antenna	3115	000 527 35	2018-10-12	2021-10-12
Ducommun Technologies	Horn Antenna	ARH-4223-02	1007726-01 1304	2020-12-05	2023-12-04
Agilent	Spectrum Analyzer	E4440A	SG43360054	2020-07-07	2021-07-07
Unknown	Coaxial Cable	C-SJSJ-50	C-0800-01	2020-09-05	2021-09-05
Unknown	Coaxial Cable	C-2.4J2.4J-50	C-0700-02	2020-06-27	2021-06-27
Mini-Circuit	Amplifier	ZVA-213-S+	54201245	2020-09-05	2021-09-05
Quinstar	Amplifier	QLW-18405536-JO	15964001001	2020-06-27	2021-06-27
Farad	Test Software	EZ-EMC	V1.1.4.2	N/A	N/A
E-Microwave	Band-stop Filters	OBSF-2400-2483.5-S	OE01601525	2020-06-16	2021-06-16
Micro-tronics	High Pass Filter	HPM50111	S/N-G217	2020-06-16	2021-06-16

*** Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Corrected Amplitude & Margin Calculation

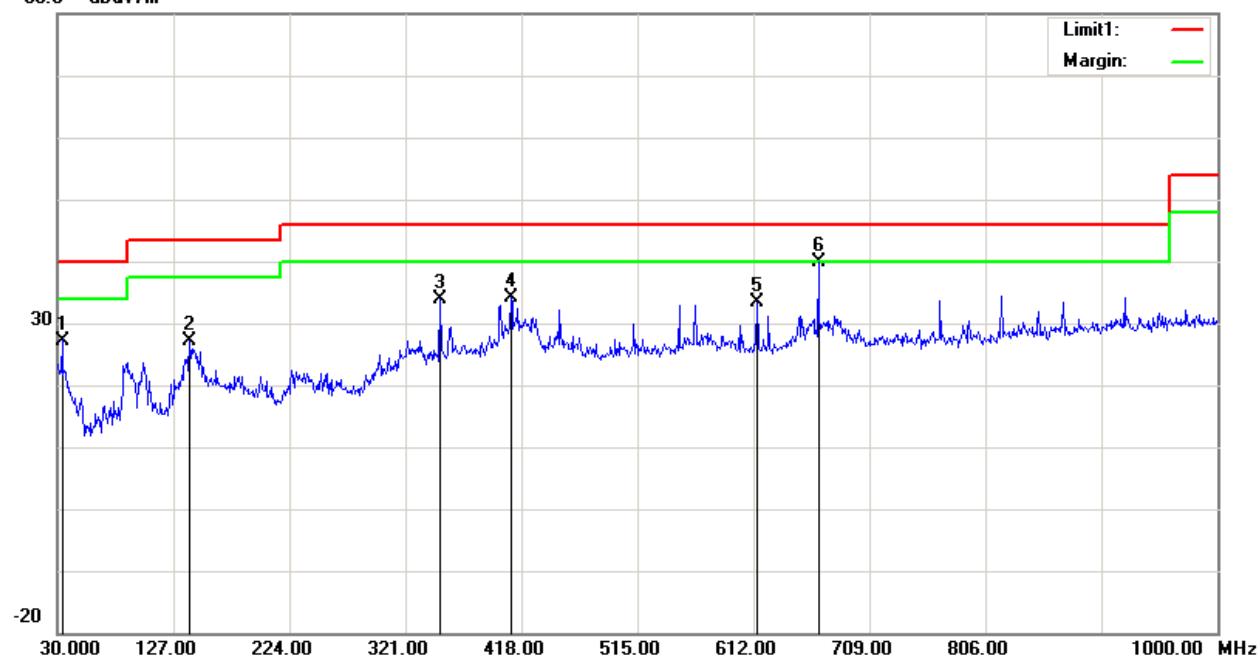
The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

$$\text{Corrected Amplitude} = \text{Meter Reading} + \text{Antenna Factor} + \text{Cable Loss} - \text{Amplifier Gain}$$

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

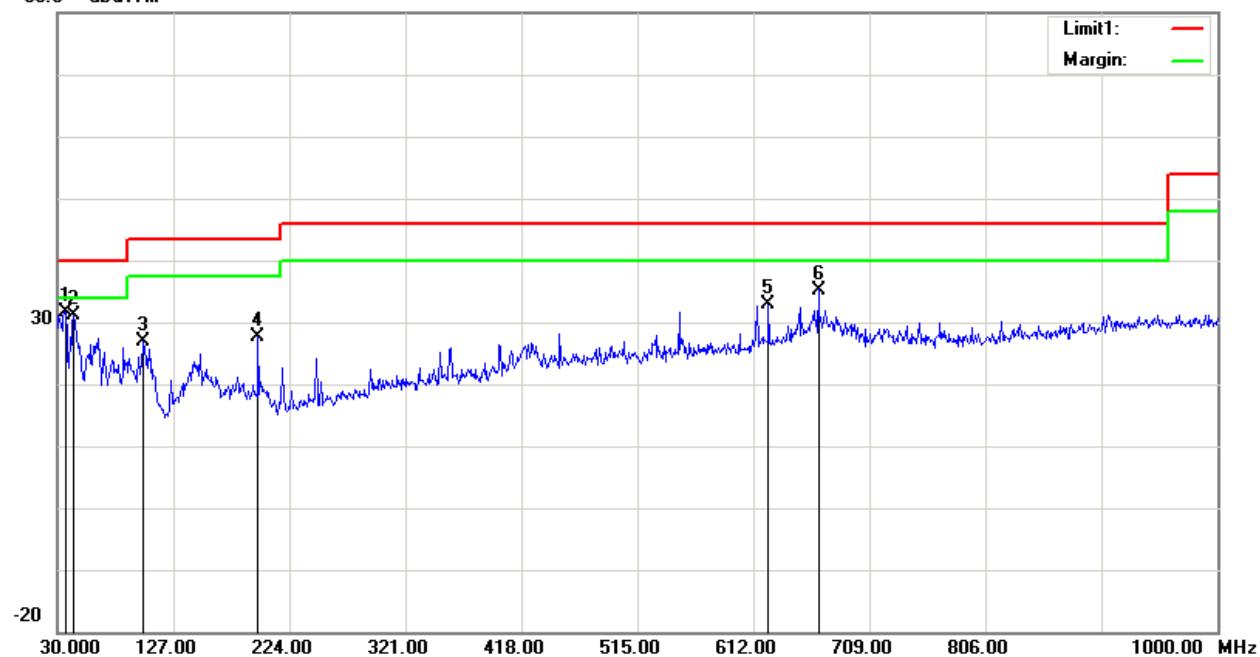
$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

Test Data


Environmental Conditions

Test Items	Radiation Below 1GHz	Radiation Above 1GHz
Temperature:	18.1°C	21.8°C
Relative Humidity:	29%	29%
ATM Pressure:	101.3 kPa	101.9 kPa
Tester:	Jalon Liu	Lee Li
Test Date:	2021-01-27	2020-12-30

Test Mode: Transmitting


Test Result: Compliance. Please refer to the following table and plots.

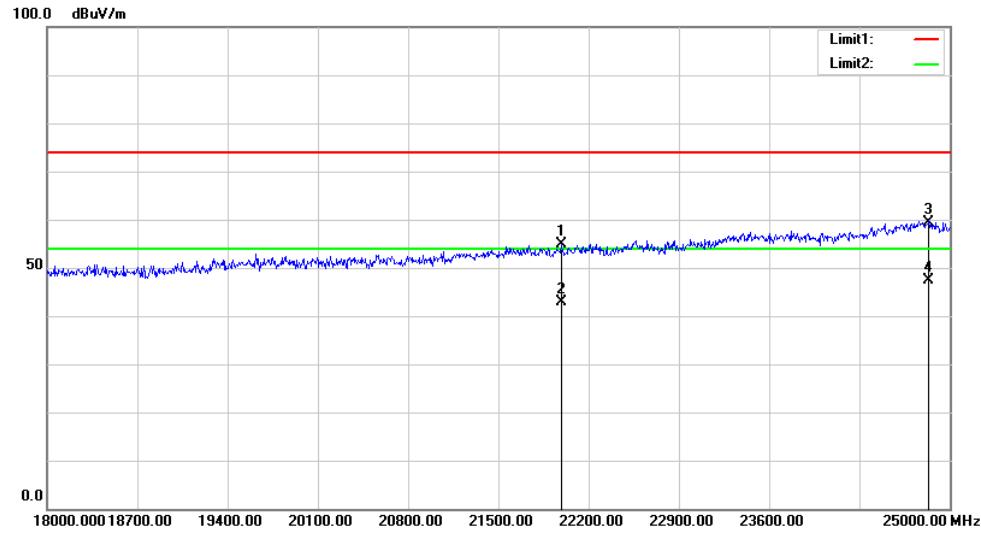
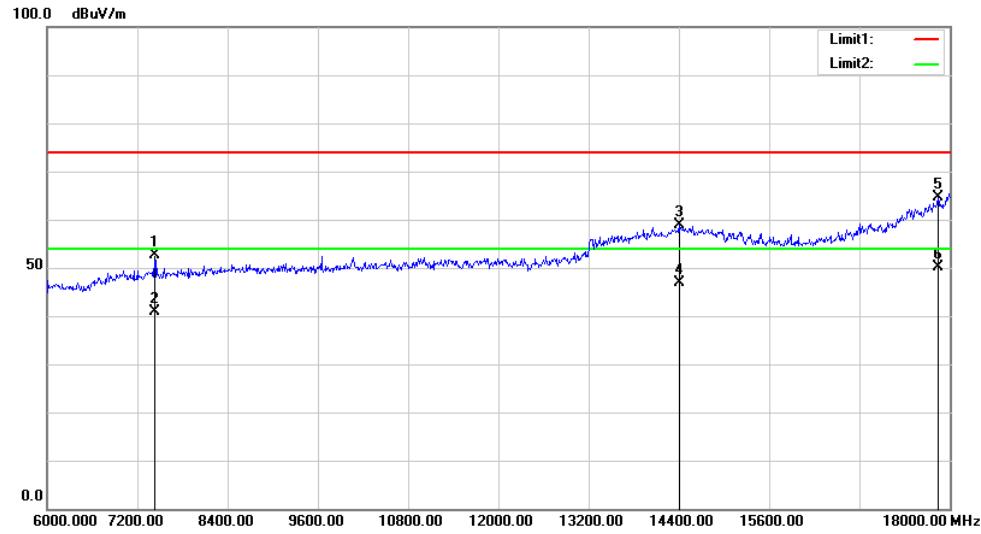
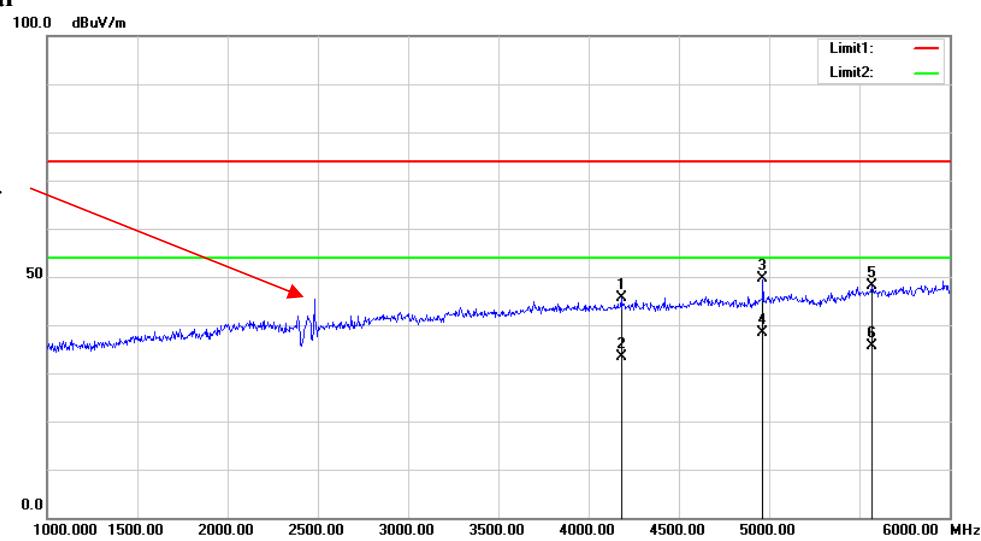
1) 30MHz-1GHz (GFSK high channel was the worst)

Horizontal:80.0 dB μ V/m

Frequency (MHz)	Receiver Reading (dB μ V)	Detector	Correction Factor (dB/m)	Cord. Amp. (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
33.8800	33.36	peak	-6.11	27.25	40.00	12.75
140.5800	36.29	peak	-9.22	27.07	43.50	16.43
350.1000	40.28	peak	-6.37	33.91	46.00	12.09
409.2700	39.07	peak	-4.91	34.16	46.00	11.84
614.9100	34.30	peak	-0.92	33.38	46.00	12.62
666.3200	40.06	peak	-0.12	39.94	46.00	6.06

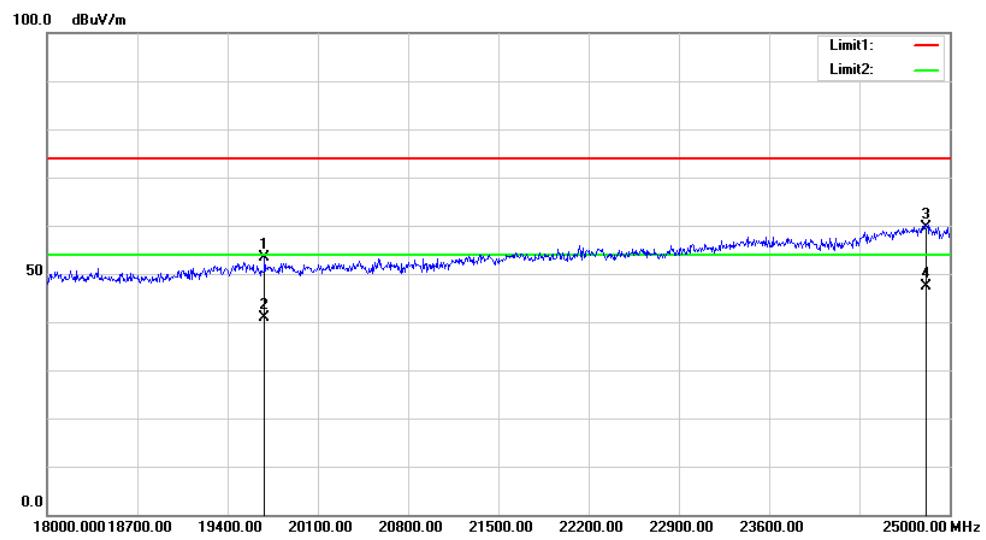
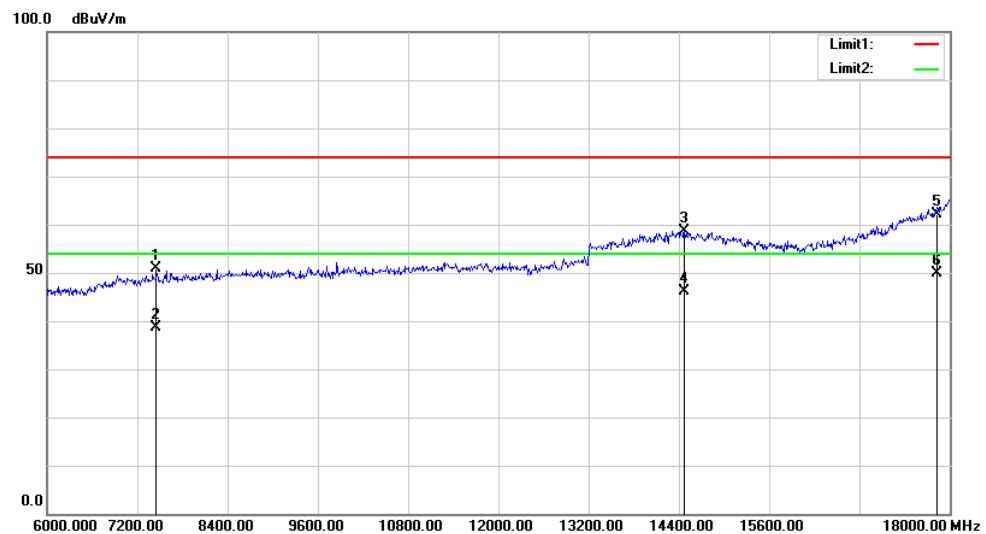
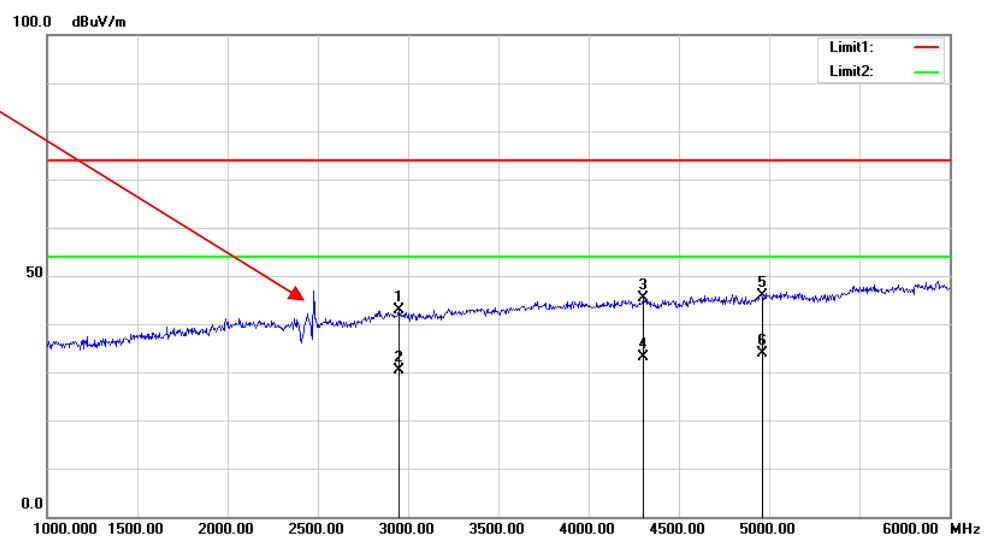
Vertical:

80.0 dB μ V/m




Frequency (MHz)	Receiver Reading (dB μ V)	Detector	Correction Factor (dB/m)	Cord. Amp. (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
36.7900	39.32	peak	-7.63	31.69	40.00	8.31
43.5800	42.87	peak	-11.72	31.15	40.00	8.85
101.7800	40.80	peak	-13.83	26.97	43.50	16.53
197.8100	37.10	peak	-9.58	27.52	43.50	15.98
624.6100	33.75	peak	-0.83	32.92	46.00	13.08
666.3200	35.37	peak	-0.12	35.25	46.00	10.75

2) 1GHz-25GHz:*BDR Mode (GFSK was the worst case):*

Frequency (MHz)	Receiver		Rx Antenna		Cable loss (dB)	Amplifier Gain (dB)	Corrected Amplitude (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
	Reading (dB μ V)	Detector	Polar (H/V)	Factor (dB/m)					
Low Channel: 2402 MHz									
2390.00	26.12	PK	H	28.08	1.80	0.00	56.00	74.00	18.00
2390.00	13.35	AV	H	28.08	1.80	0.00	43.23	54.00	10.77
4804.00	38.21	PK	H	32.91	3.17	25.60	48.69	74.00	25.31
4804.00	27.08	AV	H	32.91	3.17	25.60	37.56	54.00	16.44
7206.00	37.52	PK	H	35.74	4.82	25.60	52.48	74.00	21.52
7206.00	24.68	AV	H	35.74	4.82	25.60	39.64	54.00	14.36
Middle Channel: 2441 MHz									
4882.00	38.50	PK	H	33.06	3.27	25.66	49.17	74.00	24.83
4882.00	27.37	AV	H	33.06	3.27	25.66	38.04	54.00	15.96
7323.00	37.81	PK	H	36.04	4.62	25.73	52.74	74.00	21.26
7323.00	25.37	AV	H	36.04	4.62	25.73	40.30	54.00	13.70
High Channel: 2480 MHz									
2483.50	27.29	PK	H	28.27	1.84	0.00	57.40	74.00	16.60
2483.50	14.52	AV	H	28.27	1.84	0.00	44.63	54.00	9.37
4960.00	38.88	PK	H	33.22	3.23	25.63	49.70	74.00	24.30
4960.00	27.55	AV	H	33.22	3.23	25.63	38.37	54.00	15.63
7440.00	37.83	PK	H	36.34	4.41	25.85	52.73	74.00	21.27
7440.00	25.95	AV	H	36.34	4.41	25.85	40.85	54.00	13.15




Worst plots(GFSK High channel)**Horizontal**

Fundamental
Test with Band
Rejection Filter

Vertical

Fundamental Test with Band Rejection Filter

***** END OF REPORT *****