



**DATE: 6 July 2016**

**I.T.L. (PRODUCT TESTING) LTD.**  
**FCC Radio Test Report**  
for  
**Galcon Bakarim Agricultural  
Cooperative Society Ltd.**

**Equipment under test:**

**Irrigation Controller**

**XCI16-WiFi, XCI12-WiFi\*; XCI8-WiFi\*;  
XCI6-WiFi\*; XCI4-WiFi\*; XCI2-WiFi\***

\* See customer's declaration on page 6.

Tested by: \_\_\_\_\_

M. Zohar

Approved by: \_\_\_\_\_

D. Shidowsky

This report must not be reproduced, except in full, without the written  
permission of I.T.L. (Product Testing) Ltd.

This report relates only to items tested.



**Measurement/Technical Report for**  
**Galcon Bakarim Agricultural Cooperative Society**  
**Ltd.**  
**Irrigation Controller**

**XCI16-WiFi**

**FCC ID: SZ8XCIW**

|                                                                          |                                                                                                                  |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| This report concerns:                                                    | Original Grant: <input checked="" type="checkbox"/> X                                                            |
|                                                                          | Class I Change:                                                                                                  |
|                                                                          | Class II Change:                                                                                                 |
| Equipment type:                                                          | Digital Transmission System                                                                                      |
| Limits used:                                                             | 47CFR15 Section 15.247                                                                                           |
| Measurement procedure used is KDB 558074 D01 v03r03 and ANSI 63.10: 2013 |                                                                                                                  |
| Application for Certification<br>prepared by:                            | Applicant for this device:<br>(different from "prepared by")                                                     |
| R. Pinchuck                                                              | Tom Rash                                                                                                         |
| ITL (Product Testing) Ltd.                                               | Galcon Bakerim Agricultural etc.                                                                                 |
| 1 Bat Sheva St.                                                          | Kibbutz Kfar Blum                                                                                                |
| Lod 7116002                                                              | D.N. Upper Galilee, 12150, Israel                                                                                |
| e-mail <a href="mailto:Rpinchuck@itl.co.il">Rpinchuck@itl.co.il</a>      | Tel: +972-4-690-0222<br>Fax: +972-4-690-2727<br>e-mail: <a href="mailto:tomr@galcon.co.il">tomr@galcon.co.il</a> |

# TABLE OF CONTENTS

|                                                                              |           |
|------------------------------------------------------------------------------|-----------|
| <b>1. GENERAL INFORMATION -----</b>                                          | <b>5</b>  |
| 1.1 Administrative Information.....                                          | 5         |
| 1.2 List of Accreditations .....                                             | 7         |
| 1.3 Product Description .....                                                | 8         |
| 1.4 Test Methodology .....                                                   | 8         |
| 1.5 Test Facility .....                                                      | 8         |
| 1.6 Measurement Uncertainty .....                                            | 8         |
| <b>2. SYSTEM TEST CONFIGURATION-----</b>                                     | <b>9</b>  |
| 2.1 Justification.....                                                       | 9         |
| 2.2 EUT Exercise Software .....                                              | 9         |
| 2.3 Special Accessories .....                                                | 9         |
| 2.4 Equipment Modifications .....                                            | 9         |
| 2.5 Configuration of Tested System .....                                     | 10        |
| <b>3. CONDUCTED &amp; RADIATED MEASUREMENT TEST SET-UP PHOTOS -----</b>      | <b>11</b> |
| <b>4. CONDUCTED EMISSION FROM AC MAINS-----</b>                              | <b>14</b> |
| 4.1 Test Specification .....                                                 | 14        |
| 4.2 Test Procedure .....                                                     | 14        |
| 4.3 Test Results.....                                                        | 14        |
| <b>5. 6 DB MINIMUM BANDWIDTH -----</b>                                       | <b>20</b> |
| 5.1 Test Specification .....                                                 | 20        |
| 5.2 Test Procedure .....                                                     | 20        |
| 5.3 Test Results.....                                                        | 20        |
| 5.4 Test Equipment Used; 6dB Bandwidth .....                                 | 26        |
| <b>6. MAXIMUM TRANSMITTED PEAK POWER OUTPUT -----</b>                        | <b>27</b> |
| 6.1 Test Specification .....                                                 | 27        |
| 6.2 Test Procedure .....                                                     | 27        |
| 6.3 Test Results.....                                                        | 28        |
| 6.4 Test Equipment Used; Maximum Peak Power Output.....                      | 38        |
| <b>7. BAND EDGE SPECTRUM -----</b>                                           | <b>39</b> |
| 7.1 Test Specification .....                                                 | 39        |
| 7.2 Test Procedure .....                                                     | 39        |
| 7.3 Test Results.....                                                        | 39        |
| 7.4 Test Equipment Used; Band Edge Spectrum .....                            | 43        |
| <b>8. EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS-----</b>                   | <b>44</b> |
| 8.1 Test Specification .....                                                 | 44        |
| 8.2 Test Procedure .....                                                     | 44        |
| 8.3 Test Results.....                                                        | 45        |
| 8.4 Test Instrumentation Used, Emissions in Non-Restricted Frequency Bands . | 46        |
| 8.5 Field Strength Calculation .....                                         | 47        |
| <b>9. EMISSIONS IN RESTRICTED FREQUENCY BANDS -----</b>                      | <b>48</b> |
| 9.1 Test Specification .....                                                 | 48        |
| 9.2 Test Procedure .....                                                     | 48        |
| 9.3 Test Results.....                                                        | 49        |
| 9.4 Test Instrumentation Used, Emissions in Restricted Frequency Bands ..... | 52        |
| <b>10. TRANSMITTED POWER DENSITY -----</b>                                   | <b>53</b> |
| 10.1 Test Specification .....                                                | 53        |
| 10.2 Test Procedure .....                                                    | 53        |
| 10.3 Test Results.....                                                       | 54        |
| 10.4 Test Equipment Used; Transmitted Power Density .....                    | 59        |
| <b>11. ANTENNA GAIN/INFORMATION-----</b>                                     | <b>60</b> |
| <b>12. R.F EXPOSURE/SAFETY-----</b>                                          | <b>61</b> |



|                                                        |           |
|--------------------------------------------------------|-----------|
| <b>13. APPENDIX A - CORRECTION FACTORS -----</b>       | <b>62</b> |
| 13.1 Correction factors for CABLE .....                | 62        |
| 13.2 Correction factors for log periodic antenna ..... | 63        |
| 13.3 Correction factors for biconical antenna.....     | 64        |
| 13.4 Correction factors for Bilog ANTENNA .....        | 65        |
| 13.5 Correction factors for Horn Antenna .....         | 66        |
| 13.6 Correction factors for Horn ANTENNA.....          | 67        |
| 13.7 Correction factors for ACTIVE LOOP ANTENNA .....  | 68        |



## 1. General Information

### 1.1 Administrative Information

Manufacturer: Galcon Bakarim Agricultural Cooperative Society Ltd.

Manufacturer's Address: Kibbutz Kfar Blum  
D.N. Upper Galilee, 1215000  
Israel  
Tel: +972-4-690-0222  
Fax: +972-4-690-2727

Manufacturer's Representative: Tom Rash

Equipment Under Test (E.U.T): Irrigation Controller

Equipment Model No.: XCI16-WiFi, XCI12-WiFi\*; XCI8-WiFi\*; XCI6-WiFi\*; XCI4-WiFi\*; XCI2-WiFi\*

Equipment Serial No.: Not designated

Date of Receipt of E.U.T: 16.09.2015

Start of Test: 16.09.2015

End of Test: 20.09.2015

Test Laboratory Location: I.T.L (Product Testing) Ltd.  
1 Batsheva St.,  
Lod  
ISRAEL 7120101

Test Specifications: FCC Part 15, Subpart C

\*See customer's Declaration on following page.



Date: 26.11.2015

## DECLARATION

I hereby declare that the E.U.T. and model name of the unit tested at the ITL EMC laboratory between 16 to 20 September 2015 is as follows:

E.U.T. Name: Indoor Irrigation Controller

Model Name: XCI16-WiFi

I hereby declare that model **XCI16-WiFi** is a full configuration model.

**I hereby declare that the only difference between model XCI16-WiFi and model XCI2-WiFi, XCI4-WiFi, XCI6-WiFi, XCI8-WiFi, XCI12-WiFi is the removal of a Varistor, a Triac, a Capacitor and a Resistor per station.**

The number in the model names indicate the number of stations that can be connected to the controller.

Please use the above names in the test report and certificate.

Please relate to them all from an RF/EMC point of view as the same product

Thank you,

Signature: ADR 210  
Tom Rash

**Galcon standards manager**  
Galcon Bakarim Agricultural Cooperative Society Ltd.



## 1.2 *List of Accreditations*

The EMC laboratory of I.T.L. is accredited by the following bodies:

1. The American Association for Laboratory Accreditation (A2LA) (U.S.A.), Certificate No. 1152.01.
2. The Federal Communications Commission (FCC) (U.S.A.), FCC Designation No. IL1005.
3. The Israel Ministry of the Environment (Israel), Registration No. 1104/01.
4. The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) (Japan), Registration Numbers: C-3006, R-2729, T-1877, G-245.
5. Industry Canada (Canada), IC File No.: 46405-4025; Site Nos. IC 4025A-1, 4025A-2.

I.T.L. Product Testing Ltd. is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with I.T.L.'s terms of accreditation unless stated otherwise in the report.



### **1.3 Product Description**

The E.U.T. is an indoor irrigation controller with integrated Wi-Fi connectivity

- Cloud based internet application lets you control your system from anywhere at any time using your computer, laptop, tablet or smartphone.
- Smart ET Scheduling.
- Checks the weather and automatically adjusts your irrigation schedule according to changing conditions.
- System advisor offers optimized irrigation schedules that factor plant type, irrigation type, location and site parameters.
- Available with 8 or 16 stations.
- Easy to install.
- Easy to operate.

### **1.4 Test Methodology**

Both conducted and radiated testing was performed according to the procedures in KDB 558074 D01 v03r03 and ANSI 63.10: 2013. Radiated testing was performed at an antenna to EUT distance of 3 meters.

### **1.5 Test Facility**

Emissions tests were performed at I.T.L.'s testing facility in Lod, Israel. I.T.L.'s EMC Laboratory is accredited by A2LA, certificate No. 1152.01 and its FCC Designation Number is IL1005.

### **1.6 Measurement Uncertainty**

#### **Conducted Emission**

Conducted Emission (CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4)

0.15 – 30 MHz:

Expanded Uncertainty (95% Confidence, K=2):

± 3.44 dB

#### **Radiated Emission**

Radiated Emission (CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4) for open site 30-1000MHz:

Expanded Uncertainty (95% Confidence, K=2):

± 4.98 dB

## 2. System Test Configuration

### 2.1 **Justification**

The E.U.T. was evaluated in the installation position.

The E.U.T. was evaluated while transmitting at the low channel (2412 MHz), mid channel (2437 MHz) and the high channel (2462 MHz) using 802.11 standard (Wi-Fi).

Regarding Radiated Spurious Emission, exploratory testing was performed to find the “worst case” bit rate between the different modulations (DSSS, CCK and OFDM). The CCK modulation was chosen as the worst case. See results below in *Figure 1*.

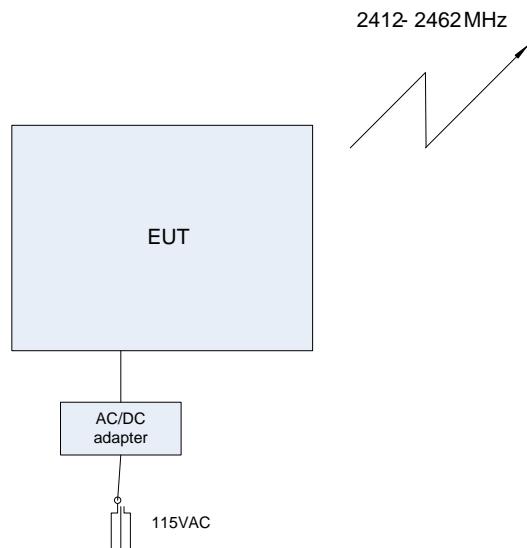
| FREQUENCY<br>MHz | DSSS<br>(1Mbps) | CCK<br>(5.5Mbps) | OFDM<br>(6.0Mbps) |
|------------------|-----------------|------------------|-------------------|
| 2412             | 101.6           | 102.5            | 101.3             |
| 2437             | 101.9           | 103.5            | 103.5             |
| 2462             | 101.3           | 103.0            | 102.7             |

**Figure 1. Screening Results**

### 2.2 **EUT Exercise Software**

No special exercise software was used.

### 2.3 **Special Accessories**


No special accessories were needed to achieve compliance.

### 2.4 **Equipment Modifications**

No modifications were necessary in order to achieve compliance.



## 2.5 Configuration of Tested System



**Figure 2. Configuration of Tested System**

### 3. Conducted & Radiated Measurement Test Set-up Photos




Figure 3. Conducted Emission Test



Figure 4. Radiated Emission Test



**Figure 5. Radiated Emission Test**



**Figure 6. Radiated Emission Test**



**Figure 7. Radiated Emission Test**

## 4. Conducted Emission From AC Mains

### 4.1 Test Specification

FCC Part 15, Subpart C, Section 15.207

### 4.2 Test Procedure

The E.U.T operation mode and test setup are as described in Section 2 of this report. In order to minimize background noise interference, the conducted emission testing was performed inside a shielded room with the E.U.T placed on a 0.8 meter high wooden table, 0.4 meter from the room's vertical wall. In the case of a floor-standing E.U.T., it was placed on the horizontal ground plane.

The E.U.T was powered from 115 V AC / 60 Hz via 50 Ohm / 50  $\mu$ Hn Line Impedance Stabilization Network (LISN) on the phase and neutral lines. The LISN's were grounded to the shielded room ground plane (floor), and were kept at least 0.8 meters from the nearest boundary of the E.U.T

The center of the E.U.T.'s AC cable was folded back and forth, in order to form a bundle less than 0.40 meters and a total cable length of 1 meter.

The effect of varying the position of the cables was investigated to find the configuration that produces maximum emission. The configuration tested is shown in the photograph, *Figure 3. Conducted Emission Test*.

The emission voltages at the LISN's outputs were measured using a computerized receiver, complying with CISPR 16 requirements. The specification limits are loaded to the receiver via a 3.5" floppy disk and are displayed on the receiver's spectrum display.

A frequency scan between 0.15 and 30 MHz was performed at 9 kHz I.F. band width, using peak detection.

The spectral components having the highest level on each line were measured using a quasi-peak and average detector.

### 4.3 Test Results

JUDGEMENT: Passed by 17.9 dB

The margin between the emission levels and the specification limit is, in the worst case, 17.90 dB for the phase line at 19.71 MHz and 19.08 dB at 19.71 MHz for the neutral line.

The EUT met the F.C.C. Part 15, Subpart C specification requirements.

The details of the highest emissions are given in *Figure 8* to *Figure 11*.



## Conducted Emission

E.U.T Description      Irrigation Controller  
Type                    XCI16-WiFi  
Serial Number:        Not designated

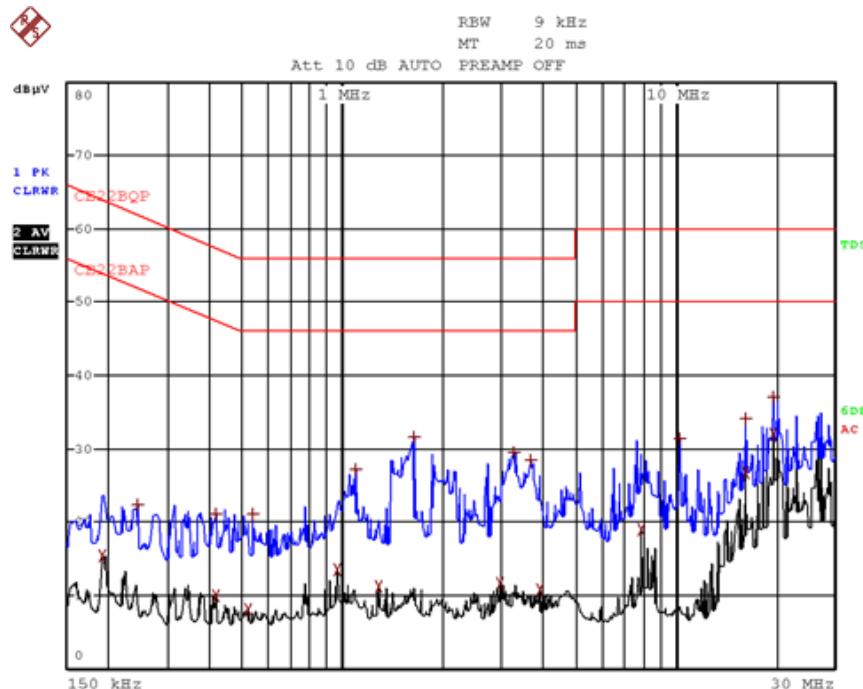
Specification: FCC Part 15, Subpart C, Class B  
Lead:                   Phase  
Detectors:            Peak, Quasi-peak, Average

| EDIT PEAK LIST (Final Measurement Results) |           |                  |                |         |
|--------------------------------------------|-----------|------------------|----------------|---------|
| Trace1:                                    | CE22BQP   | Trace2:          | CE22BAP        | Trace3: |
|                                            | ---       |                  |                |         |
| TRACE                                      | FREQUENCY | LEVEL dB $\mu$ V | DELTA LIMIT dB |         |
| 2 Average                                  | 194 kHz   | 15.75            | -38.11         |         |
| 1 Quasi Peak                               | 242 kHz   | 16.76            | -45.26         |         |
| 1 Quasi Peak                               | 414 kHz   | 15.84            | -41.72         |         |
| 2 Average                                  | 414 kHz   | 8.35             | -39.21         |         |
| 2 Average                                  | 518 kHz   | 7.53             | -38.46         |         |
| 1 Quasi Peak                               | 538 kHz   | 13.23            | -42.76         |         |
| 2 Average                                  | 962 kHz   | 13.50            | -32.49         |         |
| 1 Quasi Peak                               | 1.09 MHz  | 22.33            | -33.67         |         |
| 2 Average                                  | 1.29 MHz  | 10.73            | -35.26         |         |
| 1 Quasi Peak                               | 1.634 MHz | 26.19            | -29.80         |         |
| 2 Average                                  | 2.986 MHz | 10.99            | -35.00         |         |
| 1 Quasi Peak                               | 3.266 MHz | 25.09            | -30.90         |         |
| 1 Quasi Peak                               | 3.69 MHz  | 14.77            | -41.22         |         |
| 2 Average                                  | 3.93 MHz  | 9.70             | -36.29         |         |
| 2 Average                                  | 7.922 MHz | 19.04            | -30.95         |         |
| 1 Quasi Peak                               | 10.27 MHz | 16.14            | -43.85         |         |
| 1 Quasi Peak                               | 16.23 MHz | 31.61            | -28.39         |         |
| 2 Average                                  | 16.23 MHz | 26.44            | -23.55         |         |
| 1 Quasi Peak                               | 19.71 MHz | 35.96            | -24.03         |         |
| 2 Average                                  | 19.71 MHz | 32.09            | -17.90         |         |

Date: 17.SEP.2015 11:26:10

**Figure 8. Detectors: Peak, Quasi-peak, AVERAGE**

*Note: Delta Limit refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.*


# Conducted Emission

E.U.T Description      Irrigation Controller  
Type                      XCI16-WiFi  
Serial Number:           Not designated

Specification:    FCC Part 15, Subpart C, Class B

Lead:                      Phase

Detectors:              Peak, Quasi-peak, Average



Date: 17.SEP.2015 11:25:09

**Figure 9. Detectors: Peak, Quasi-peak, Average**

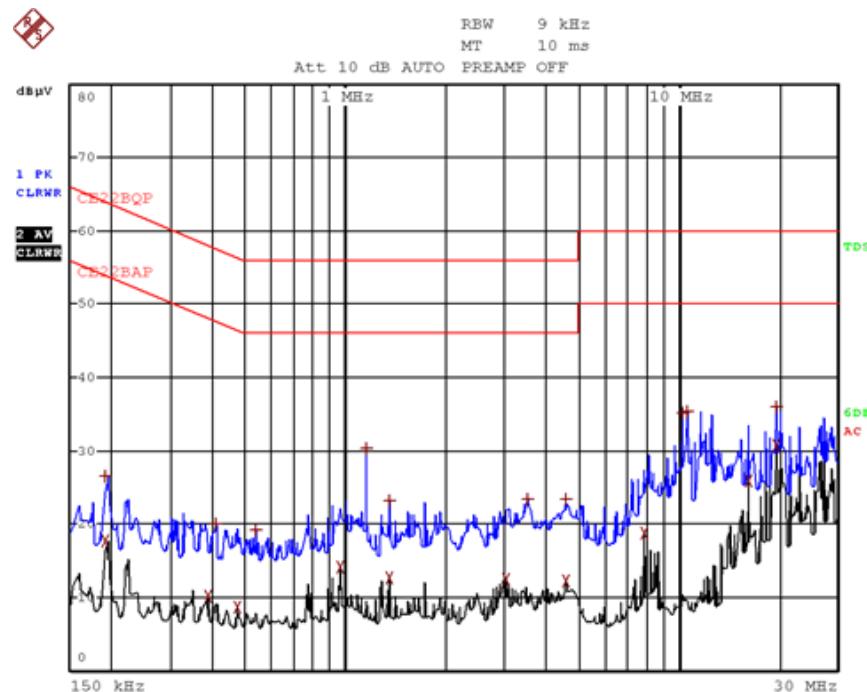
## Conducted Emission

E.U.T Description      Irrigation Controller  
Type                      XCI16-WiFi  
Serial Number:           Not designated

Specification:    FCC Part 15, Subpart C, Class B  
Lead:                   Neutral  
Detectors:              Peak, Quasi-peak, Average

| EDIT PEAK LIST (Final Measurement Results) |                          |                  |                |  |
|--------------------------------------------|--------------------------|------------------|----------------|--|
| Trace1:                                    | CE22BQP                  |                  |                |  |
| Trace2:                                    | CE22BAP                  |                  |                |  |
| Trace3:                                    | ---                      |                  |                |  |
| TRACE                                      | FREQUENCY                | LEVEL dB $\mu$ V | DELTA LIMIT dB |  |
| 1                                          | Quasi Peak    194 kHz    | 22.39            | -41.46         |  |
| 2                                          | Average        194 kHz   | 17.19            | -36.66         |  |
| 2                                          | Average        386 kHz   | 10.04            | -38.10         |  |
| 1                                          | Quasi Peak    406 kHz    | 14.66            | -43.06         |  |
| 2                                          | Average        470 kHz   | 8.69             | -37.82         |  |
| 1                                          | Quasi Peak    534 kHz    | 11.96            | -44.03         |  |
| 2                                          | Average        962 kHz   | 13.96            | -32.03         |  |
| 1                                          | Quasi Peak    1.158 MHz  | 18.12            | -37.88         |  |
| 1                                          | Quasi Peak    1.35 MHz   | 17.62            | -38.37         |  |
| 2                                          | Average        1.35 MHz  | 12.43            | -33.56         |  |
| 2                                          | Average        3.05 MHz  | 12.39            | -33.60         |  |
| 1                                          | Quasi Peak    3.522 MHz  | 15.71            | -40.28         |  |
| 1                                          | Quasi Peak    4.57 MHz   | 14.72            | -41.27         |  |
| 2                                          | Average        4.59 MHz  | 10.10            | -35.89         |  |
| 2                                          | Average        7.922 MHz | 18.91            | -31.09         |  |
| 1                                          | Quasi Peak    10.246 MHz | 24.68            | -35.31         |  |
| 1                                          | Quasi Peak    10.618 MHz | 16.35            | -43.64         |  |
| 2                                          | Average        16.23 MHz | 25.53            | -24.47         |  |
| 1                                          | Quasi Peak    19.71 MHz  | 34.73            | -25.26         |  |
| 2                                          | Average        19.71 MHz | 30.91            | -19.08         |  |

Date: 17.SEP.2015 11:30:59


**Figure 10. Detectors: Peak, Quasi-peak, AVERAGE**

**Note:** *Delta Limit refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.*

## Conducted Emission

E.U.T Description      Irrigation Controller  
Type                      XCI16-WiFi  
Serial Number:           Not designated

Specification:      FCC Part 15, Subpart C, Class B  
Lead:                      Neutral  
Detectors:              Peak, Quasi-peak, Average



Date: 17.SEP.2015 11:30:16

**Figure 11 Conducted Emission: NEUTRAL**  
**Detectors: Peak, Quasi-peak, Average**



#### 4.4 **Test Instrumentation Used, Conducted Measurement**

| Instrument        | Manufacturer    | Model        | Serial No. | Last Calibration Date | Next Calibration Date |
|-------------------|-----------------|--------------|------------|-----------------------|-----------------------|
| LISN              | Fischer         | FCC-LISN-25A | 127        | March 16, 2015        | March 16, 2016        |
| Transient Limiter | HP              | 11947A       | 3107A03041 | May 13, 2015          | May 13, 2016          |
| EMI Receiver      | Rohde & Schwarz | ESCI7        | 100724     | January 4, 2015       | January 31, 2016      |

**Figure 12 Test Equipment Used**

## 5. 6 dB Minimum Bandwidth

### 5.1 Test Specification

FCC, Part 15, Subpart C, Section 247(a)(2)

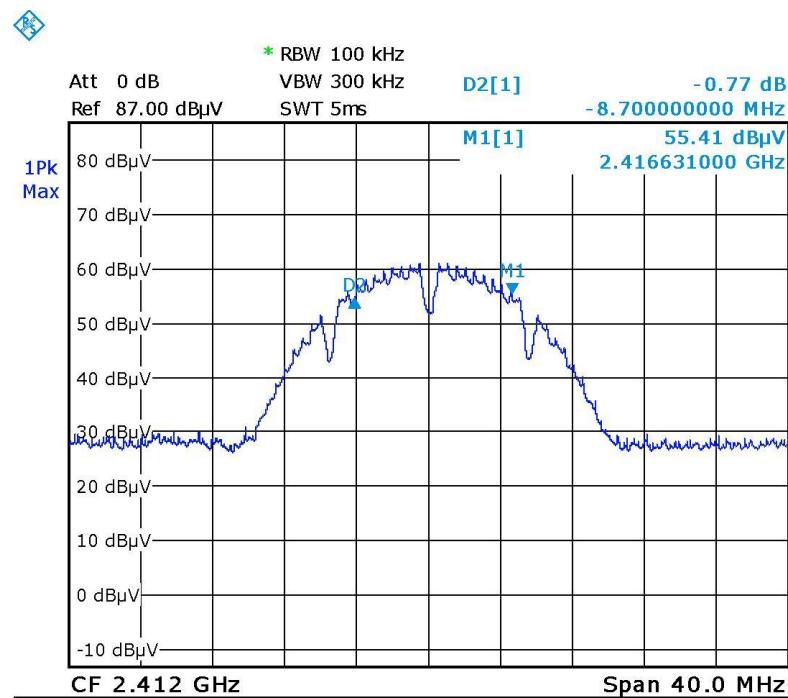
### 5.2 Test Procedure

The E.U.T operation mode and test set-up are as described in Section 2 of this report.

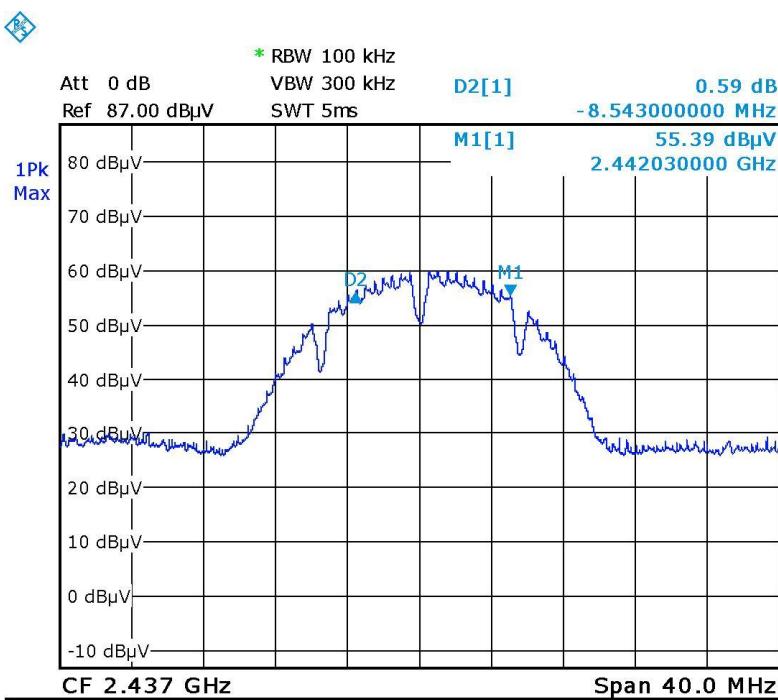
The E.U.T was tested in the chamber, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The configuration tested is shown in *Figure 2*.

The spectrum bandwidth of the E.U.T. at the point of 6 dB below maximum peak power was measured and recorded. The RBW was set to 100 kHz.

The evaluation was done in Low (2412 MHz), Mid (2437 MHz) and High (2462 MHz) channels each with the 3 modulations: DSS, CCK and OFDM.

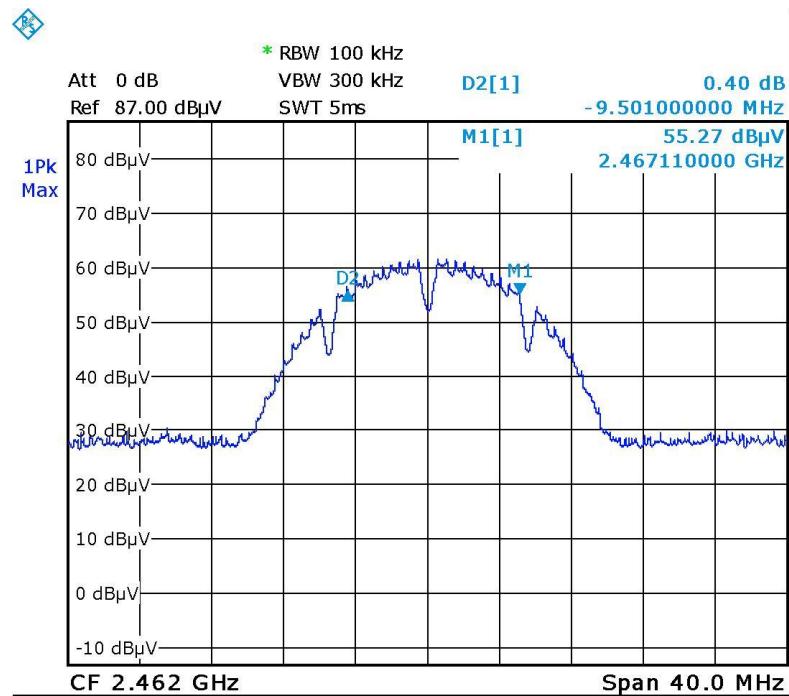

### 5.3 Test Results

| Modulation | Operation Frequency (MHz) | Reading (MHz) | Specification (MHz) |
|------------|---------------------------|---------------|---------------------|
| DSSS       | 2412.0                    | 8.7           | >0.5                |
|            | 2437.0                    | 8.5           | >0.5                |
|            | 2462.0                    | 9.5           | >0.5                |
| CCK        | 2412.0                    | 8.4           | >0.5                |
|            | 2437.0                    | 7.5           | >0.5                |
|            | 2462.0                    | 7.9           | >0.5                |
| DSSS       | 2412.0                    | 15.1          | >0.5                |
|            | 2437.0                    | 14.1          | >0.5                |
|            | 2462.0                    | 13.8          | >0.5                |


Figure 13 6 dB Minimum Bandwidth

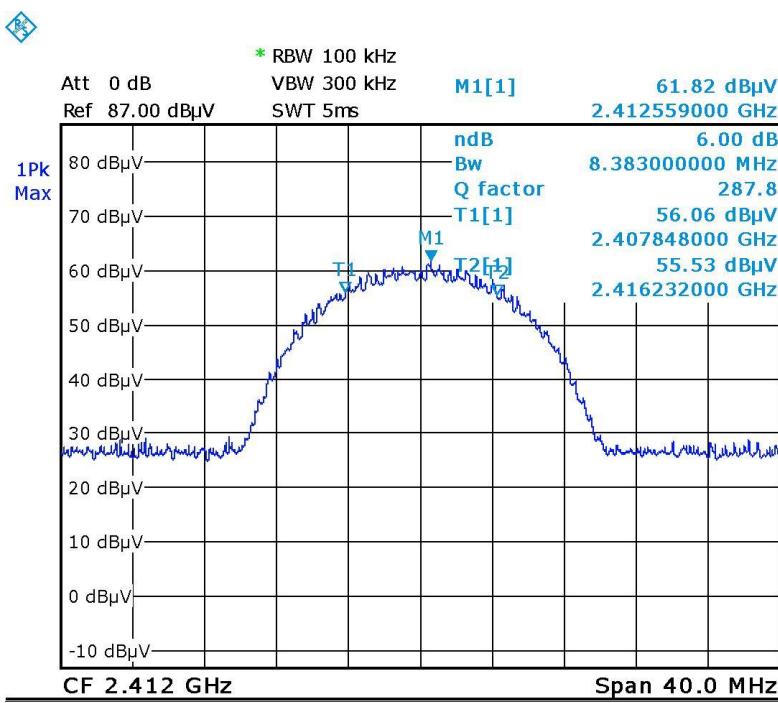
JUDGEMENT: Passed

For additional information see *Figure 14* to *Figure 22*.




Date: 17.SEP.2015 10:38:19

**Figure 14. Low Channel, DSSS**


Date: 17.SEP.2015 10:41:18

**Figure 15. Mid Channel, DSSS**



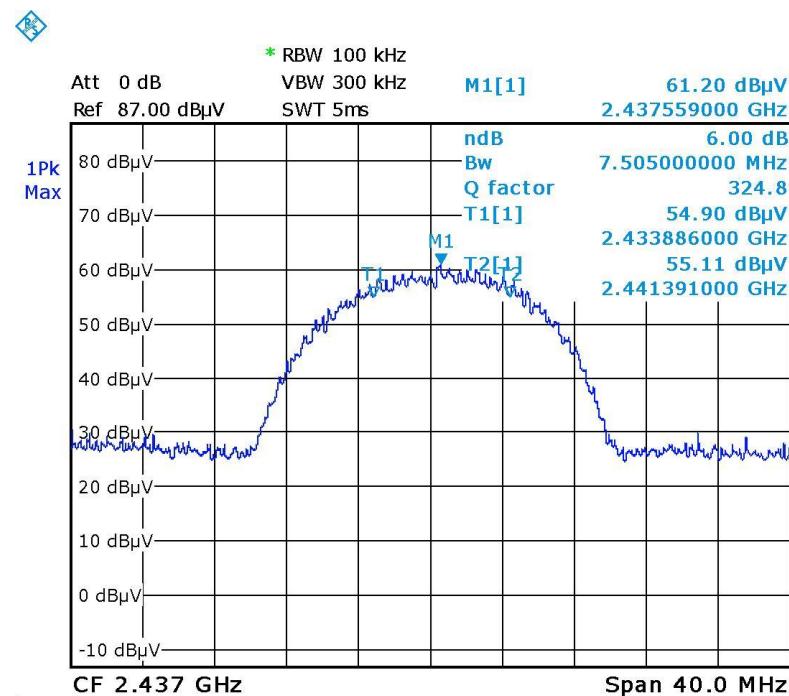

Date: 17.SEP.2015 10:46:46

Figure 16. High Channel, DSSS



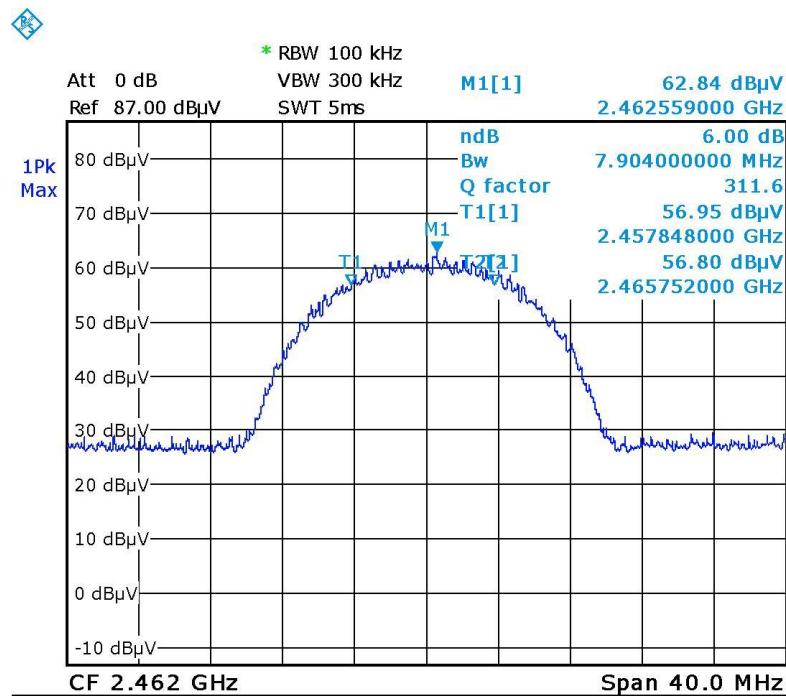
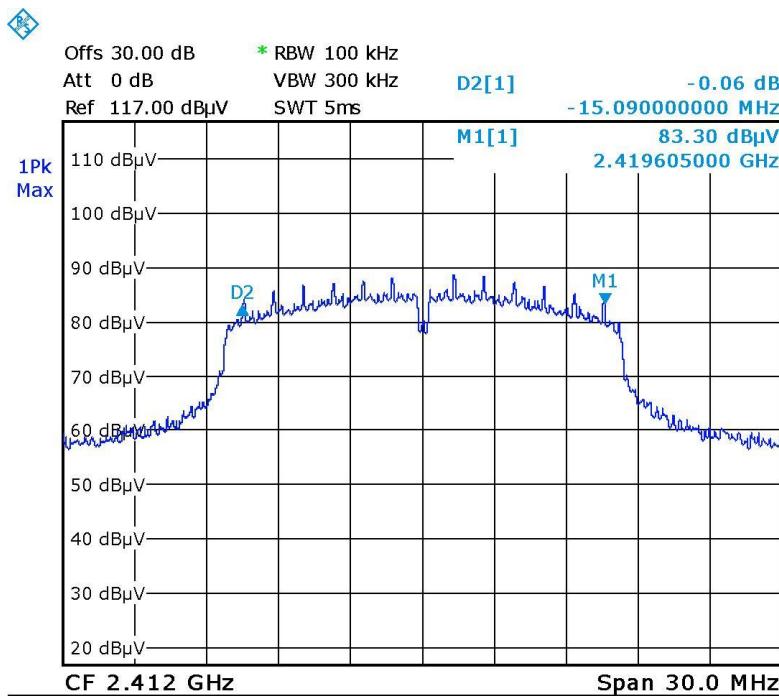
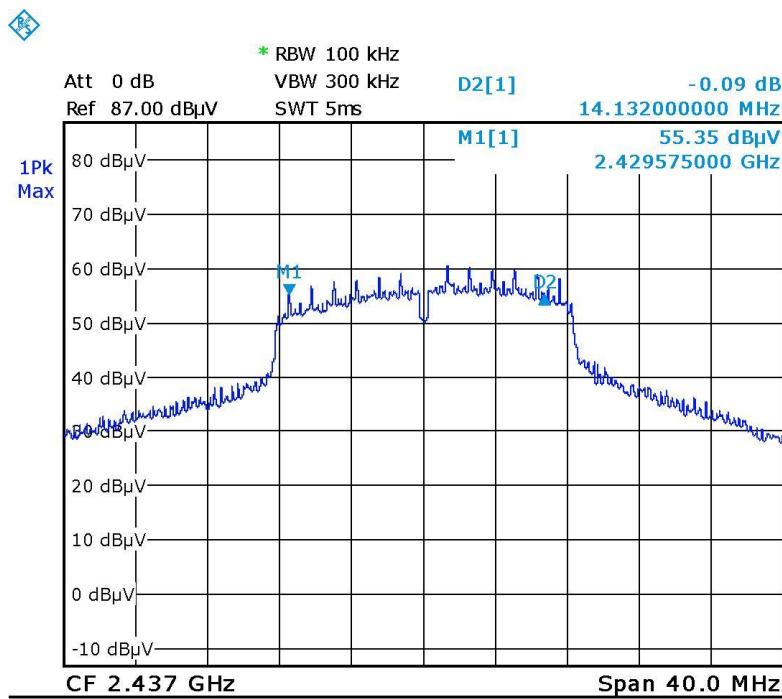

Date: 17.SEP.2015 10:51:57

Figure 17. Low Channel, CCK



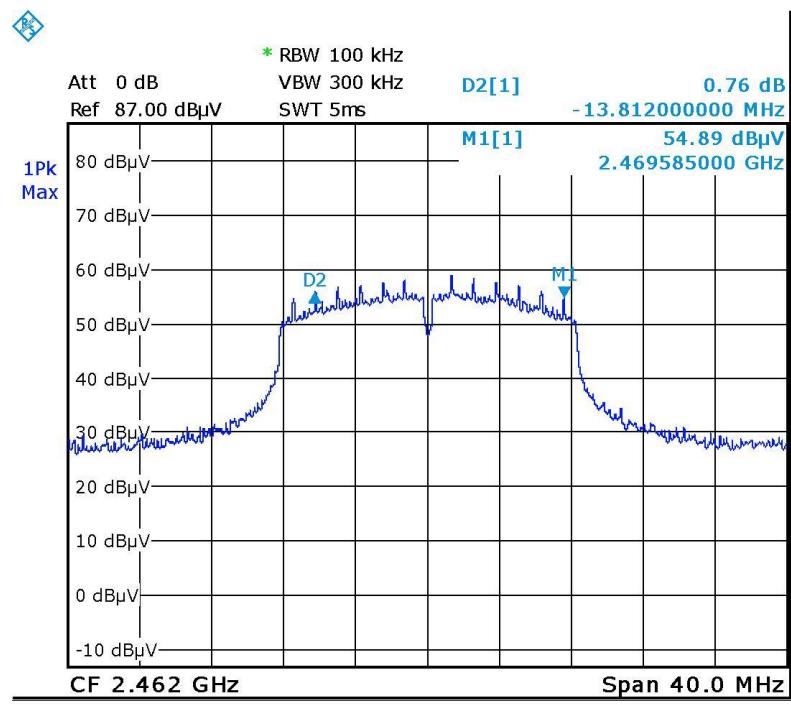

Date: 17.SEP.2015 10:50:24

**Figure 18. Mid Channel, CCK**




Date: 17.SEP.2015 10:49:07

**Figure 19. High Channel, CCK**




Date: 17.SEP.2015 12:14:35

**Figure 20. Low Channel, OFDM**

Date: 17.SEP.2015 11:00:17

**Figure 21. Mid Channel, OFDM**



Date: 17.SEP.2015 11:04:00

**Figure 22. High Channel, OFDM**



#### 5.4 **Test Equipment Used; 6dB Bandwidth**

| Instrument                  | Manufacturer | Model | Serial No. | Last Calibration Date | Next Calibration Date |
|-----------------------------|--------------|-------|------------|-----------------------|-----------------------|
| Spectrum Analyzer           | R&S          | FSL6  | 100194     | January 1, 2015       | January 1, 2016       |
| Horn Antenna                | ETS          | 3115  | 29845      | May 19, 2015          | May 19, 2018          |
| Semi Anechoic Civil Chamber | ETS          | S81   | SL 11643   | N/A                   | N/A                   |

**Figure 23 Test Equipment Used**



## 6. Maximum Transmitted Peak Power Output

### 6.1 *Test Specification*

FCC, Part 15, Subpart C, Section 247(b)(3)

### 6.2 *Test Procedure*

The E.U.T operation mode and test set-up are as described in Section 2 of this report.

The E.U.T was tested in the chamber, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The configuration tested is shown in *Figure 2*.

The E.U.T was evaluated in 3 channels: Low (2412 MHz), Mid (2437 MHz) and High (2462 MHz) each with 3 modulations: DSS, CCK and OFDM.

Radiated output power levels were measured at selected operation frequencies and the results were converted to power level according to the formula as shown below:

$$P = \frac{(E_{V/m} \times d)^2}{(30 \times G)} \quad [W]$$

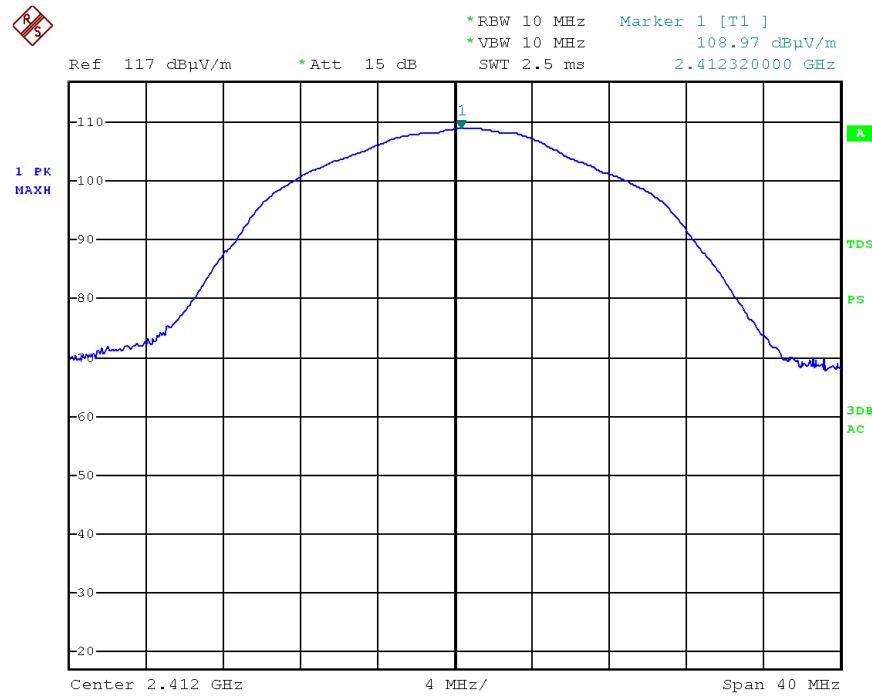
E - Field Strength (V/m)

d – Distance from transmitter (m)

G – Antenna gain

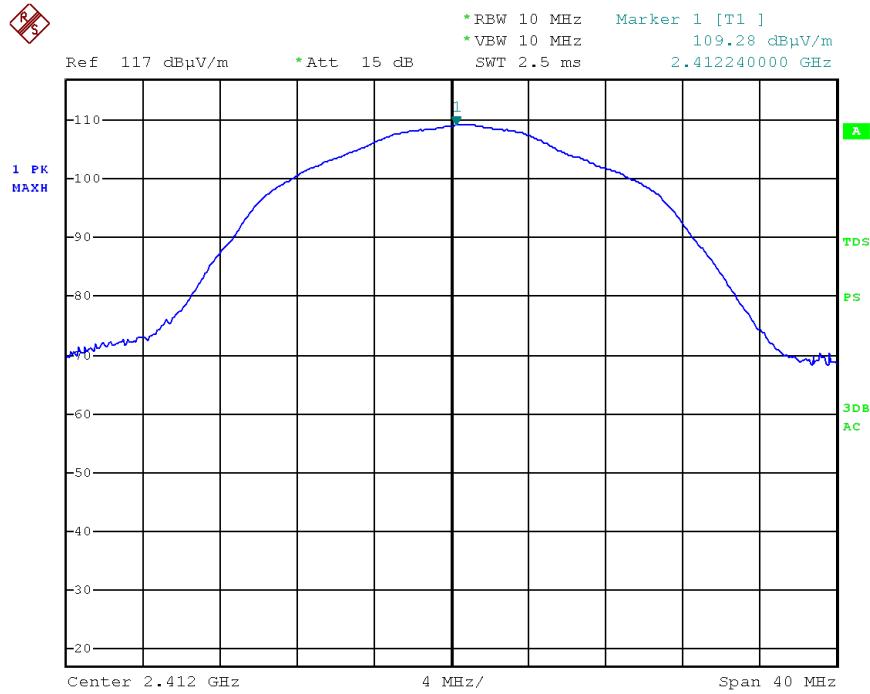
P – Peak power (W)




### 6.3 Test Results

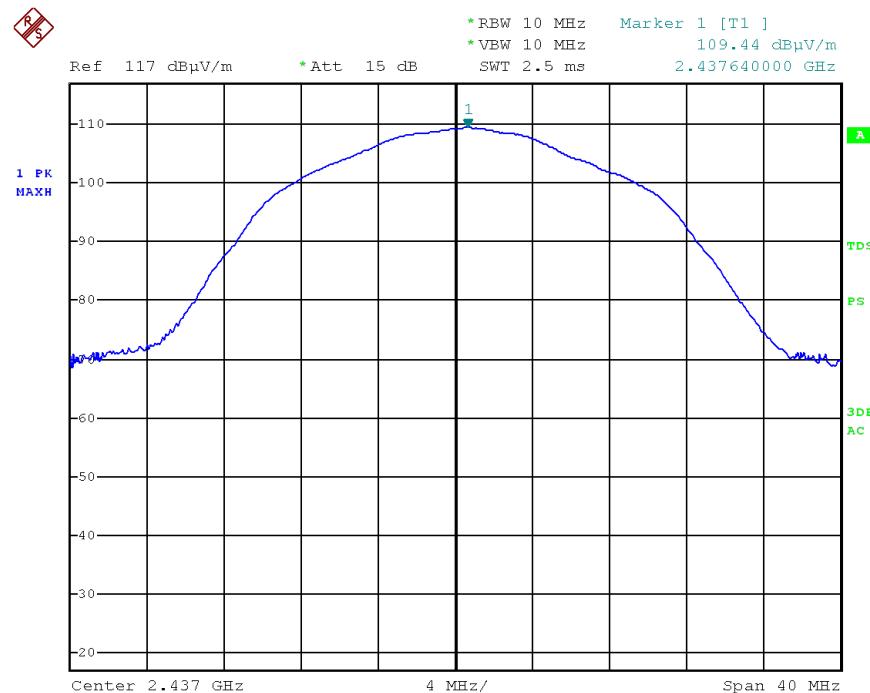
| Modulation | Operation Frequency (MHz) | Polarization (V/H) | Power (dBuV/m) | Power (dBm) | Power (W) | Specification (W) | Margin (W) |
|------------|---------------------------|--------------------|----------------|-------------|-----------|-------------------|------------|
| DSSS       | 2412.0                    | V                  | 109.0          | 13.8        | 0.024     | 1.0               | -0.976     |
|            | 2412.0                    | H                  | 109.3          | 14.1        | 0.026     | 1.0               | -0.974     |
|            | 2437.0                    | V                  | <b>109.4</b>   | 14.2        | 0.026     | 1.0               | -0.974     |
|            | 2437.0                    | H                  | 106.1          | 10.9        | 0.012     | 1.0               | -0.988     |
|            | 2462.0                    | V                  | 109.3          | 14.1        | 0.026     | 1.0               | -0.974     |
|            | 2462.0                    | H                  | 107.9          | 12.7        | 0.019     | 1.0               | -0.981     |
| CCK        | 2412.0                    | V                  | <b>112.6</b>   | 17.4        | 0.055     | 1.0               | -0.945     |
|            | 2412.0                    | H                  | 111.9          | 16.7        | 0.047     | 1.0               | -0.953     |
|            | 2437.0                    | V                  | 109.3          | 14.1        | 0.026     | 1.0               | -0.974     |
|            | 2437.0                    | H                  | 110.5          | 15.3        | 0.034     | 1.0               | -0.966     |
|            | 2462.0                    | V                  | 109.8          | 14.6        | 0.029     | 1.0               | -0.971     |
|            | 2462.0                    | H                  | 108.7          | 13.5        | 0.022     | 1.0               | -0.978     |
| OFDM       | 2412.0                    | V                  | 110.3          | 15.1        | 0.032     | 1.0               | -0.968     |
|            | 2412.0                    | H                  | 109.7          | 14.5        | 0.028     | 1.0               | -0.972     |
|            | 2437.0                    | V                  | 111.3          | 16.1        | 0.041     | 1.0               | -0.959     |
|            | 2437.0                    | H                  | <b>111.5</b>   | 16.3        | 0.043     | 1.0               | -0.957     |
|            | 2462.0                    | V                  | 109.3          | 14.1        | 0.026     | 1.0               | -0.974     |
|            | 2462.0                    | H                  | 109.1          | 13.9        | 0.025     | 1.0               | -0.975     |

Figure 24 Maximum Peak Power Output


JUDGEMENT: Passed by 0.945 W

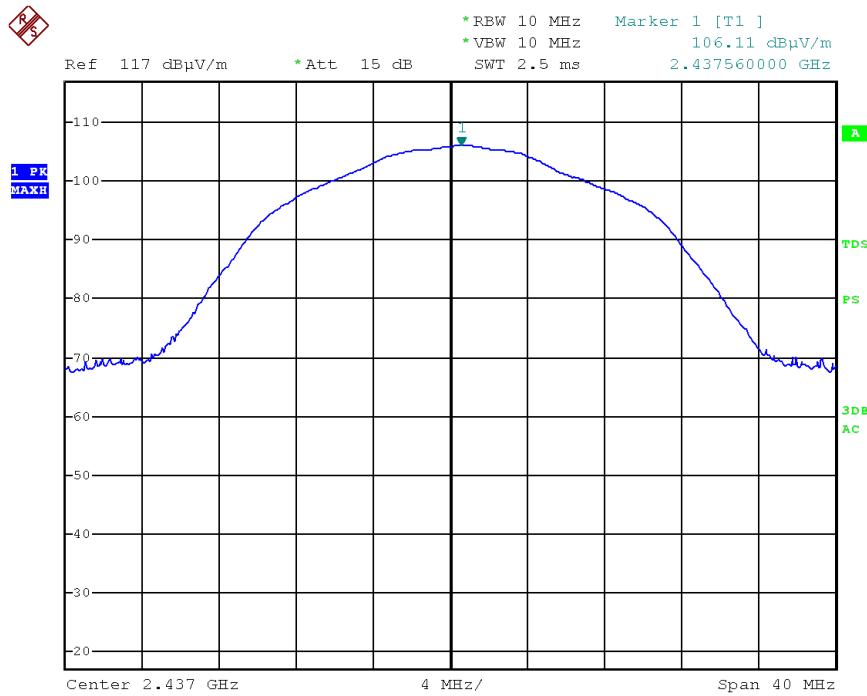
For additional information see *Figure 25* to *Figure 42*.




Date: 16.SEP.2015 10:40:24

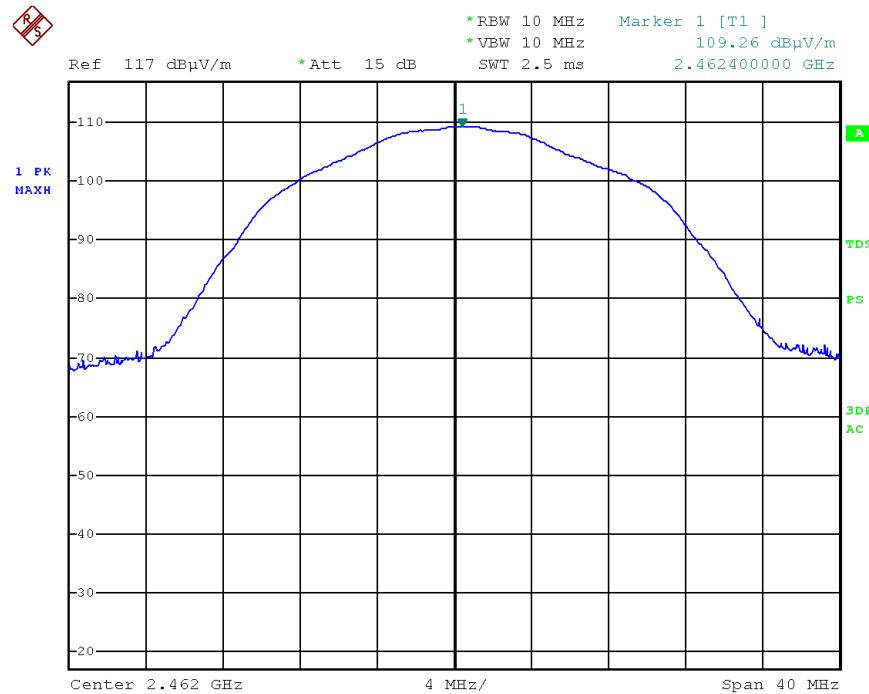
**Figure 25 2412.0 MHz – Vertical, DSSS**




Date: 16.SEP.2015 11:13:06

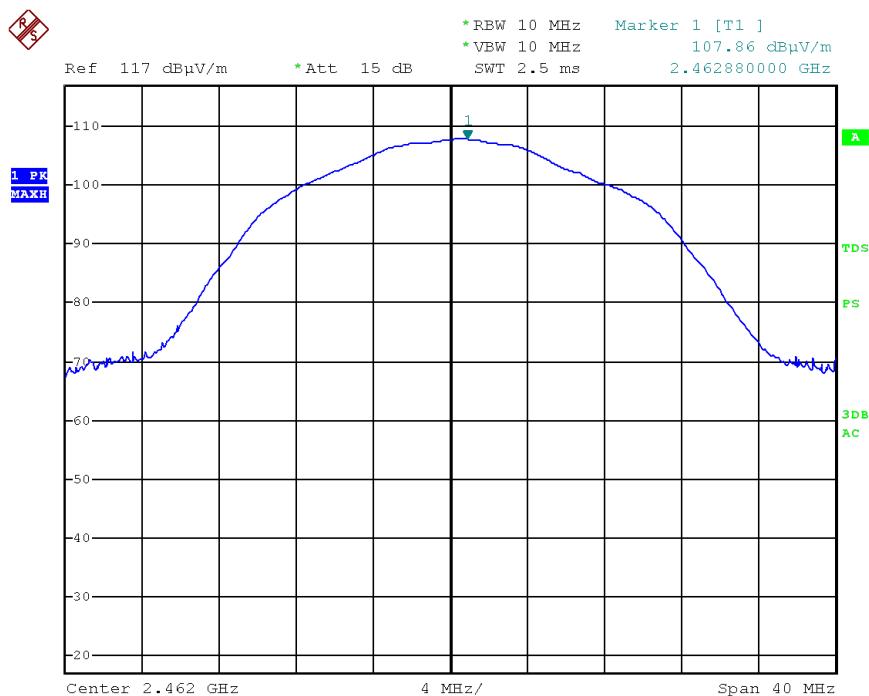
**Figure 26 2412.0 MHz – Horizontal, DSSS**




Date: 16.SEP.2015 10:47:42

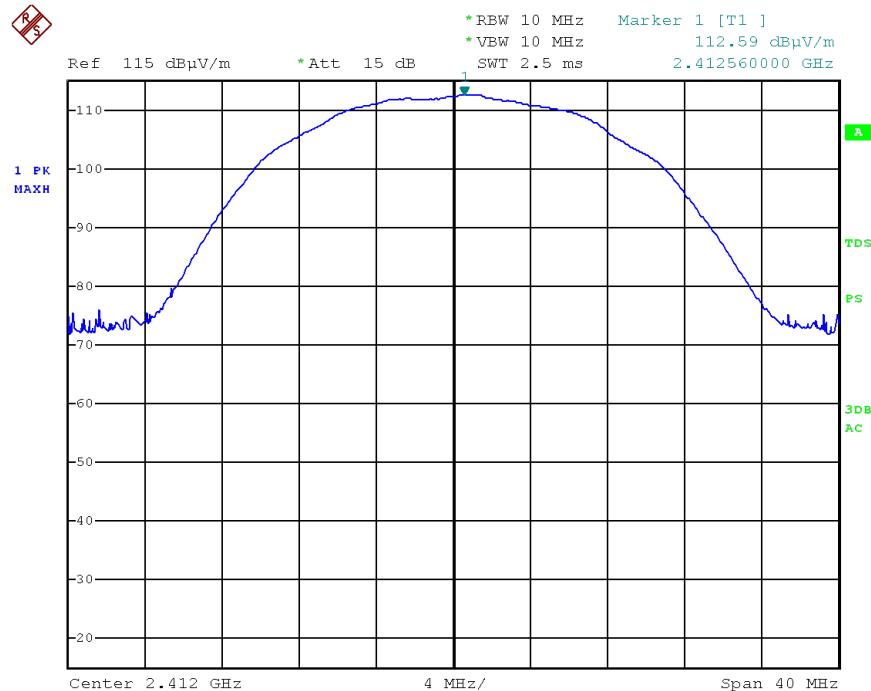
**Figure 27 2437.0 MHz – Vertical, DSSS**




Date: 16.SEP.2015 11:05:52

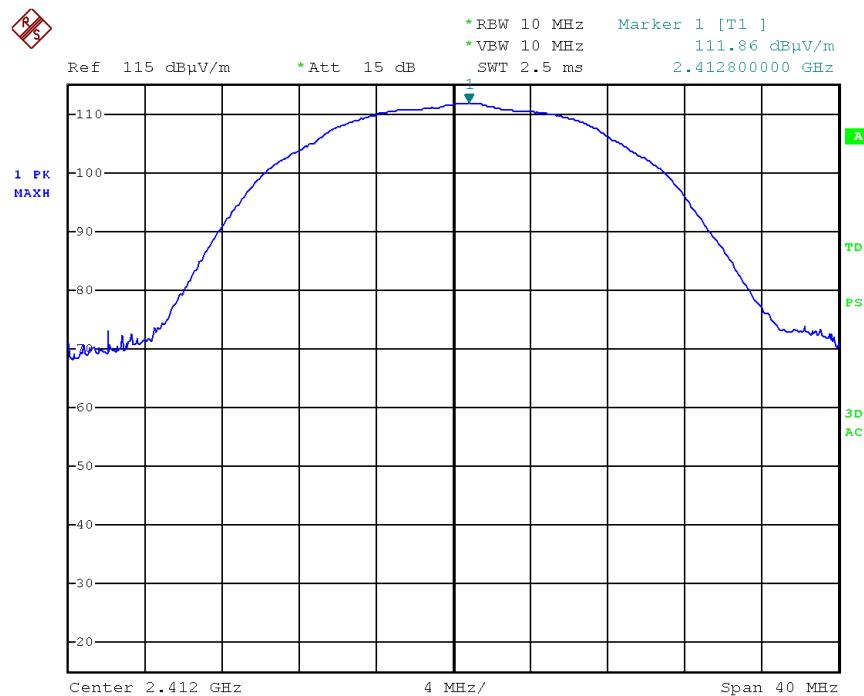
**Figure 28 2437.0 MHz – Horizontal, DSSS**




Date: 16.SEP.2015 10:53:56

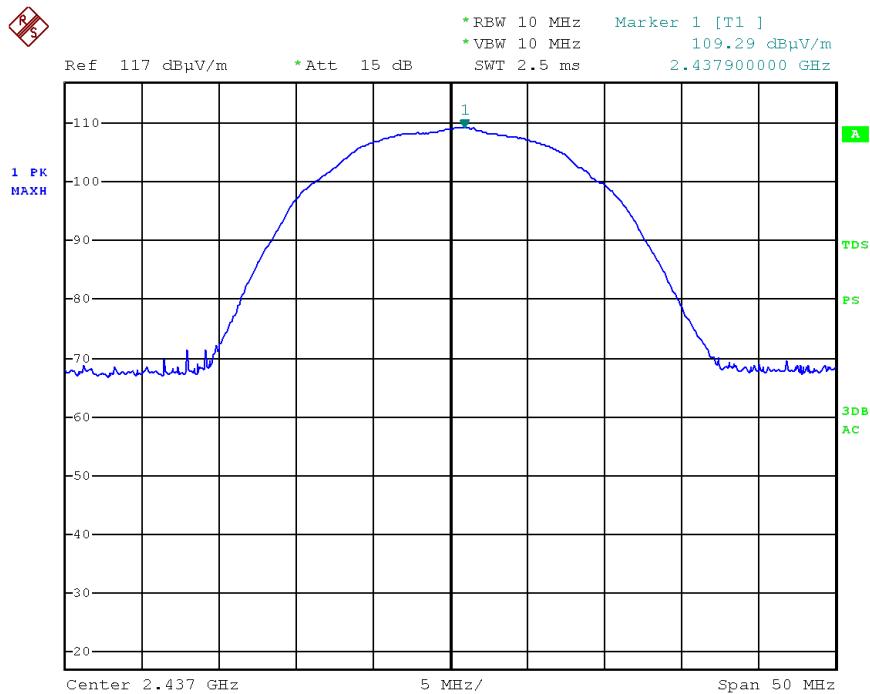
**Figure 29 2462.0 MHz – Vertical, DSSS**




Date: 16.SEP.2015 11:02:29

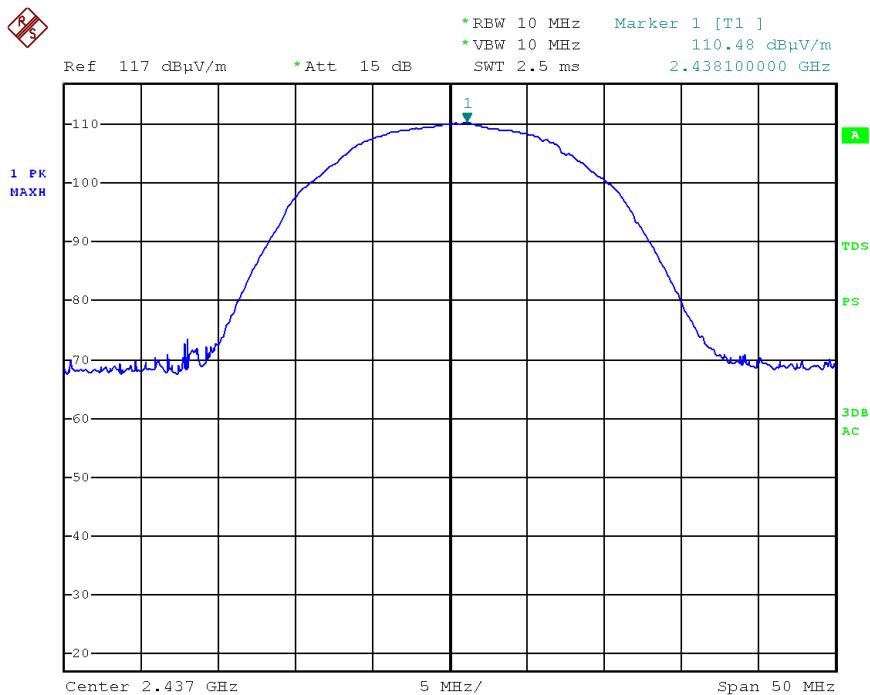
**Figure 30 2462.0 MHz – Horizontal, DSSS**




Date: 16.SEP.2015 13:58:54

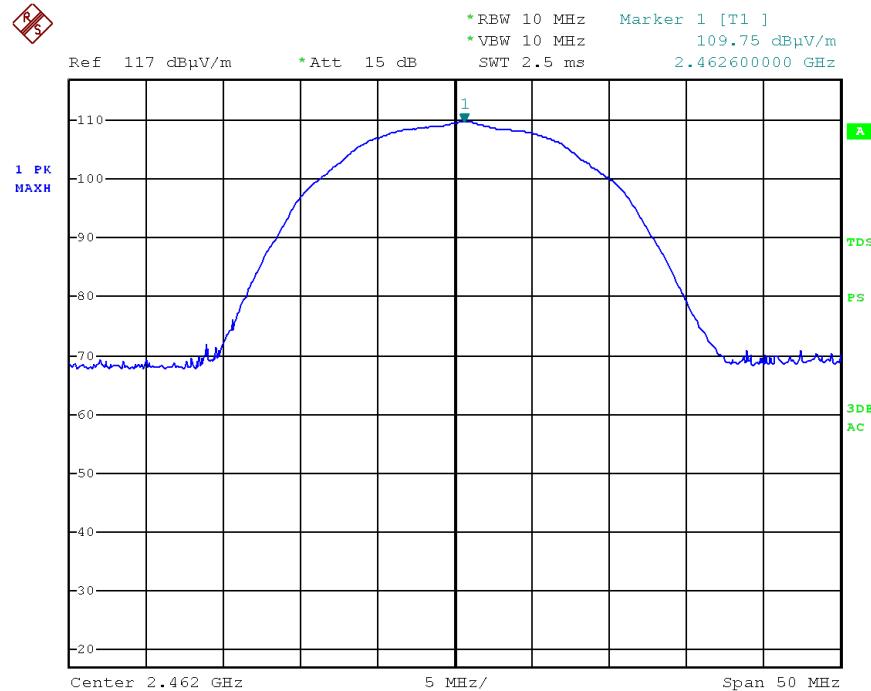
**Figure 31 2412.0 MHz – Vertical, CCK**




Date: 16.SEP.2015 14:02:34

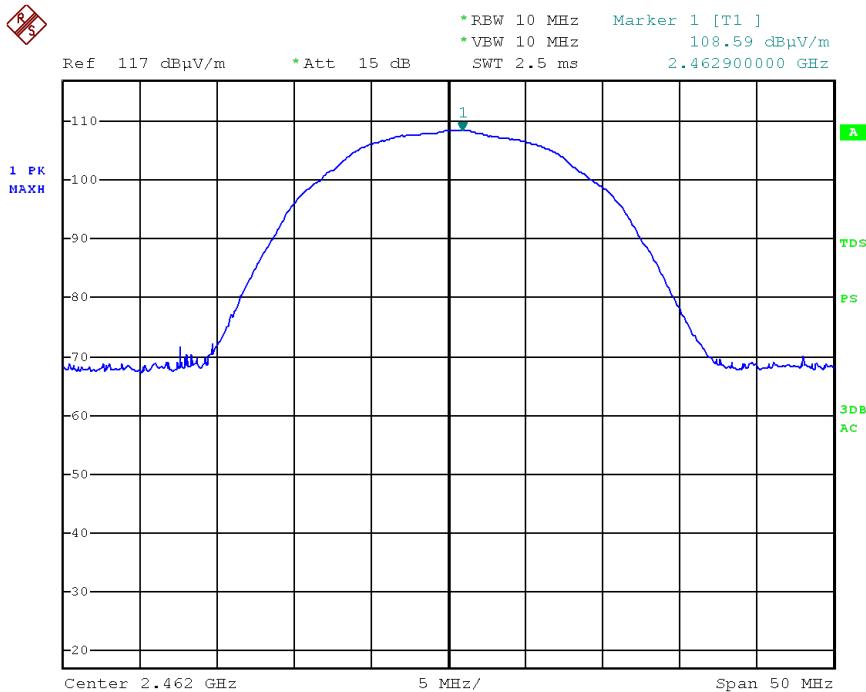
**Figure 32 2412.0 MHz – Horizontal, CCK**




Date: 16.SEP.2015 14:32:18

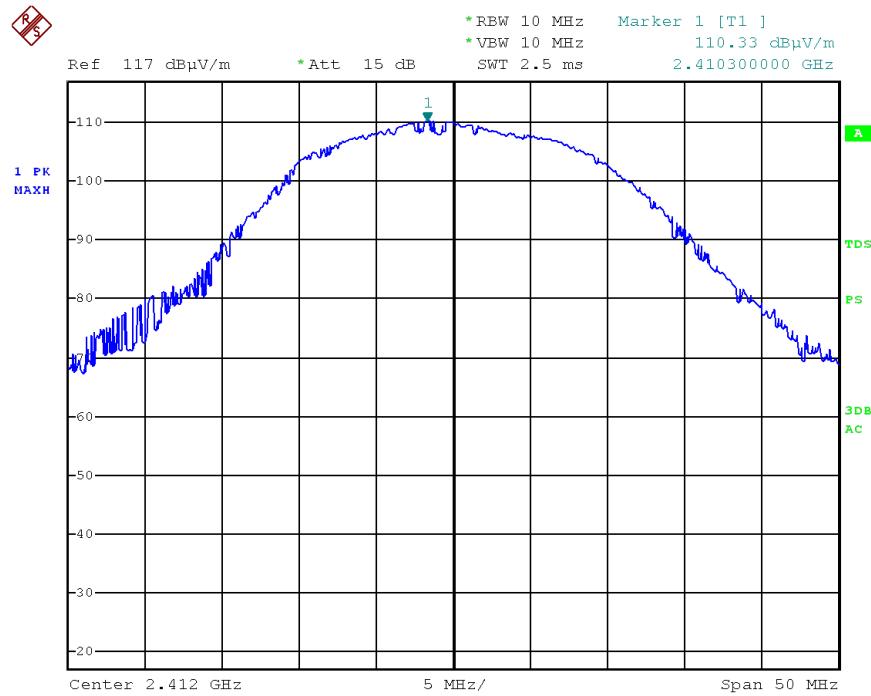
**Figure 33 2437.0 MHz – Vertical, CCK**




Date: 16.SEP.2015 14:25:45

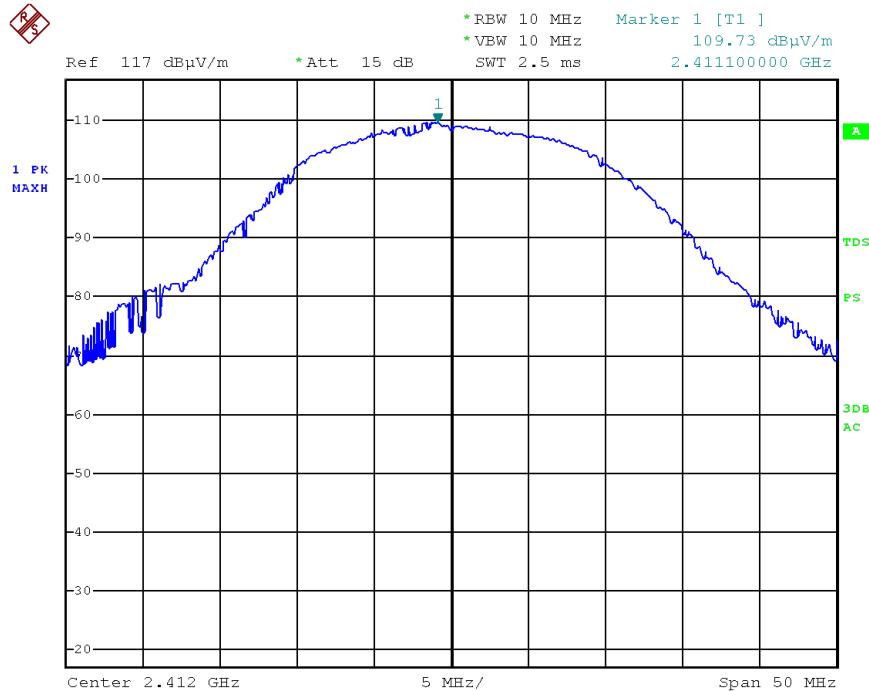
**Figure 34 2437.0 MHz – Horizontal, CCK**




Date: 16.SEP.2015 14:54:34

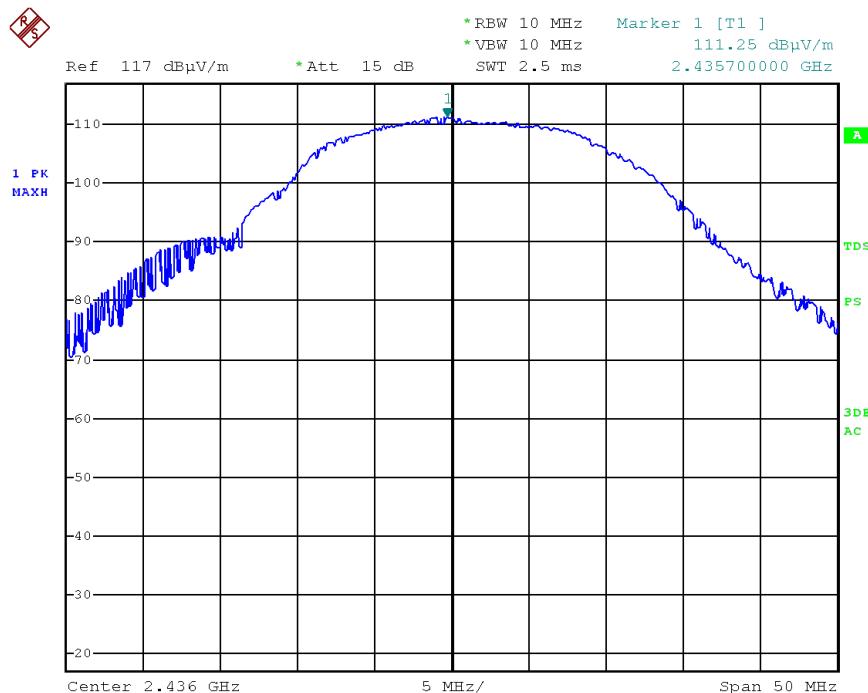
**Figure 35 2462.0 MHz – Vertical, CCK**




Date: 16.SEP.2015 15:03:14

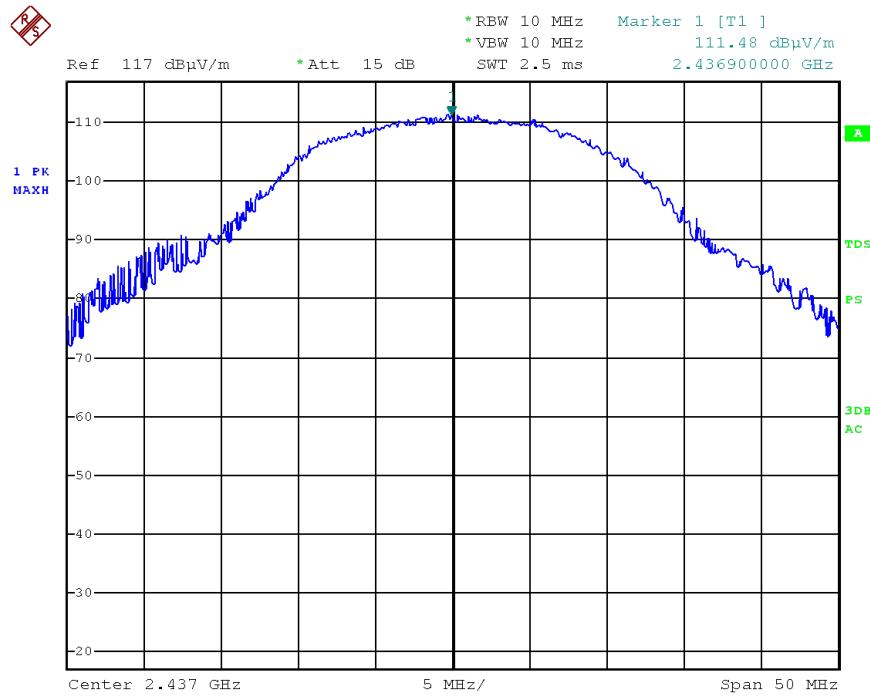
**Figure 36 2462.0 MHz – Horizontal, CCK**




Date: 16.SEP.2015 15:18:01

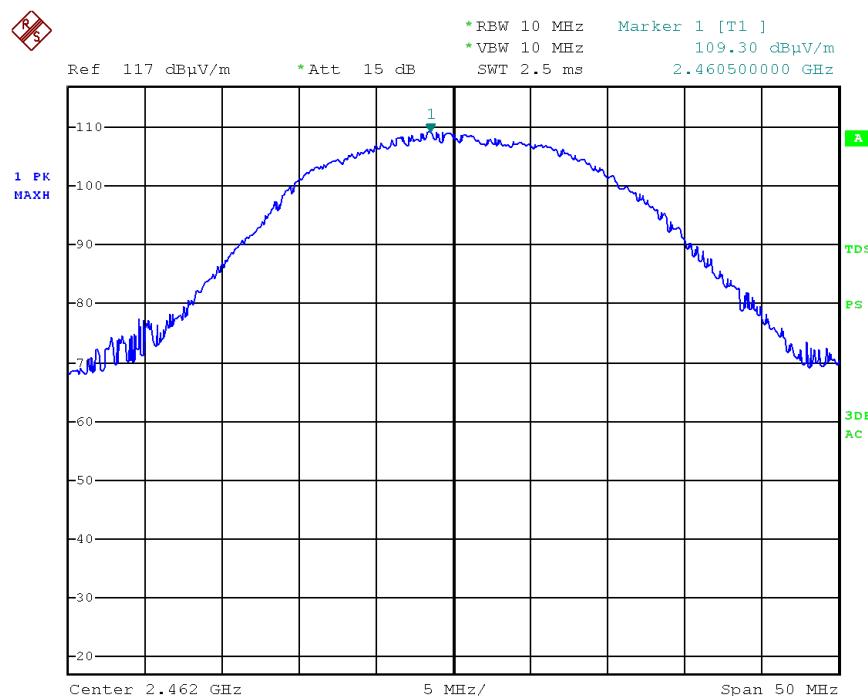
**Figure 37 2412.0 MHz – Vertical, OFDM**




Date: 16.SEP.2015 16:18:03

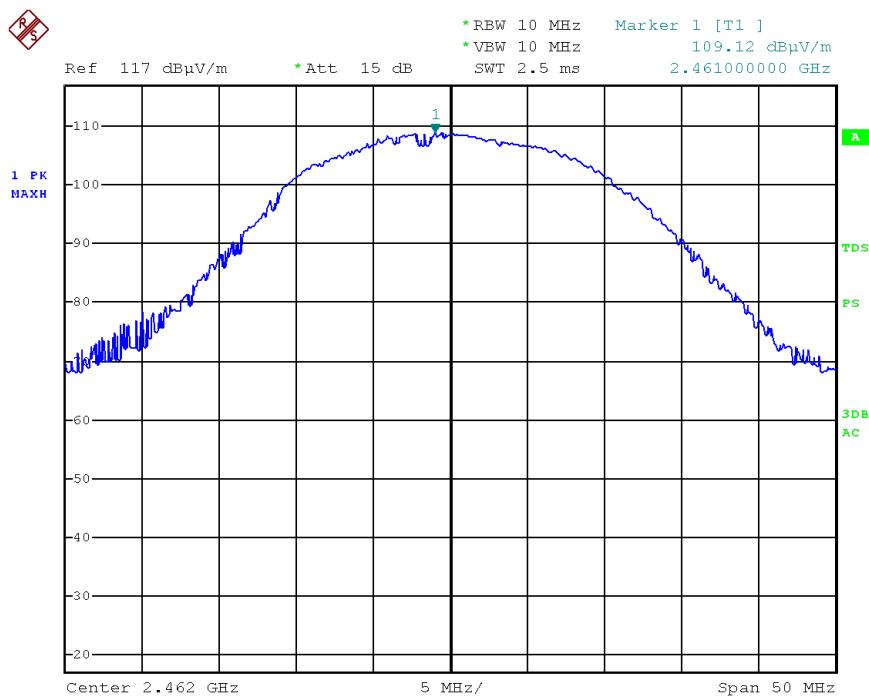
**Figure 38 2412.0 MHz – Horizontal, OFDM**




Date: 16.SEP.2015 15:35:25

**Figure 39 2437.0 MHz – Vertical, OFDM**




Date: 16.SEP.2015 16:04:52

**Figure 40 2437.0 MHz – Horizontal, OFDM**



Date: 16.SEP.2015 15:50:07

**Figure 41 2462.0 MHz – Vertical, OFDM**



Date: 16.SEP.2015 15:55:40

**Figure 42 2462.0 MHz – Horizontal, OFDM**



#### 6.4 **Test Equipment Used; Maximum Peak Power Output**

| Instrument                  | Manufacturer | Model | Serial No. | Last Calibration Date | Last Calibration Date |
|-----------------------------|--------------|-------|------------|-----------------------|-----------------------|
| EMI Receiver                | R&S          | ESCI7 | 100724     | January 4, 2015       | January 31, 2016      |
| Horn Antenna                | ETS          | 3115  | 29845      | May 19, 2015          | May 19, 2018          |
| Semi Anechoic Civil Chamber | ETS          | S81   | SL 11643   | N/A                   | N/A                   |

**Figure 43 Test Equipment Used**

## 7. Band Edge Spectrum

### 7.1 Test Specification

FCC, Part 15, Subpart C, Section 247(d)

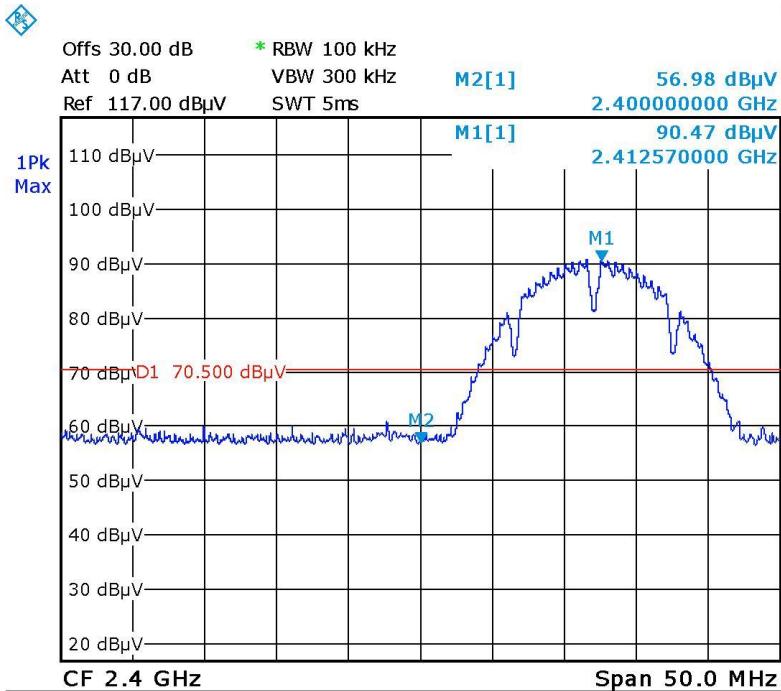
### 7.2 Test Procedure

The E.U.T operation mode and test set-up are as described in Section 2 of this report.

The E.U.T was tested in the chamber, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The configuration tested is shown in *Figure 2*.

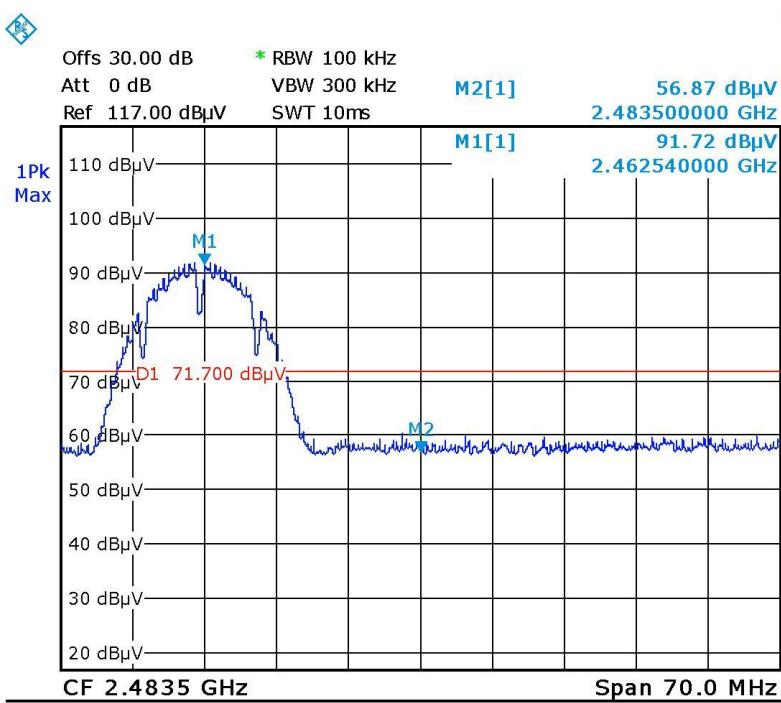
The E.U.T was evaluated in 2 channels: Low and High each in 3 modulations.

The RBW was set to 100 kHz.


### 7.3 Test Results

| Modulation | Operation Frequency (MHz) | Band Edge Frequency (MHz) | Spectrum Level (dBm) | Specification (dBm) | Margin (dB) |
|------------|---------------------------|---------------------------|----------------------|---------------------|-------------|
| DSSS       | Low                       | 2400.0                    | 57.0                 | 70.5                | -13.5       |
|            | High                      | 2483.5                    | 56.9                 | 71.7                | -14.8       |
| CCK        | Low                       | 2400.0                    | 57.1                 | 71.0                | -13.9       |
|            | High                      | 2483.5                    | 58.2                 | 73.2                | -15.0       |
| OFDM       | Low                       | 2400.0                    | 58.5                 | 68.1                | -9.6        |
|            | High                      | 2483.5                    | 57.2                 | 68.5                | -11.3       |

**Figure 44 Band Edge Spectrum**


JUDGEMENT: Passed by 9.6 dB

For additional information see *Figure 45* to *Figure 50*.



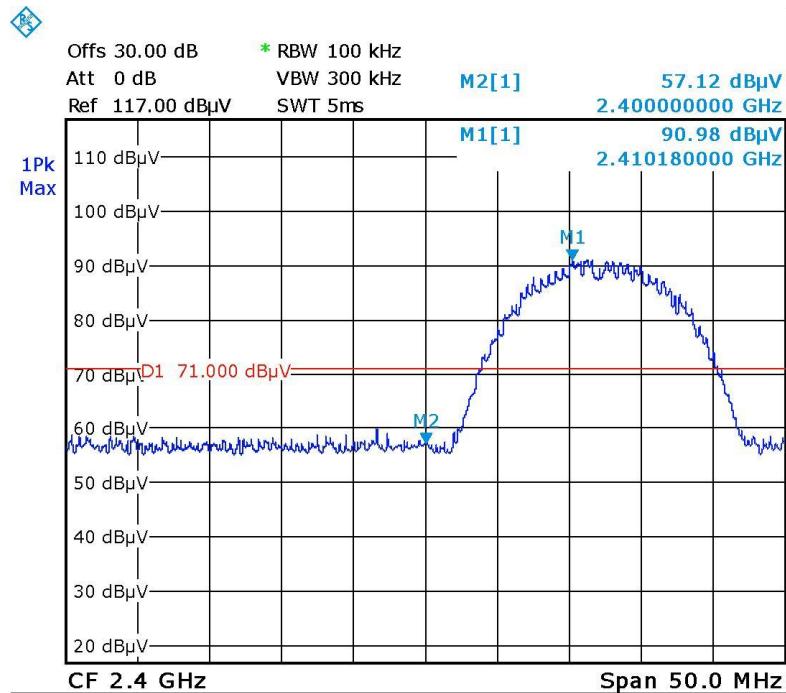

Date: 17.SEP.2015 11:23:49

Figure 45 —Lower Band Edge, DSSS



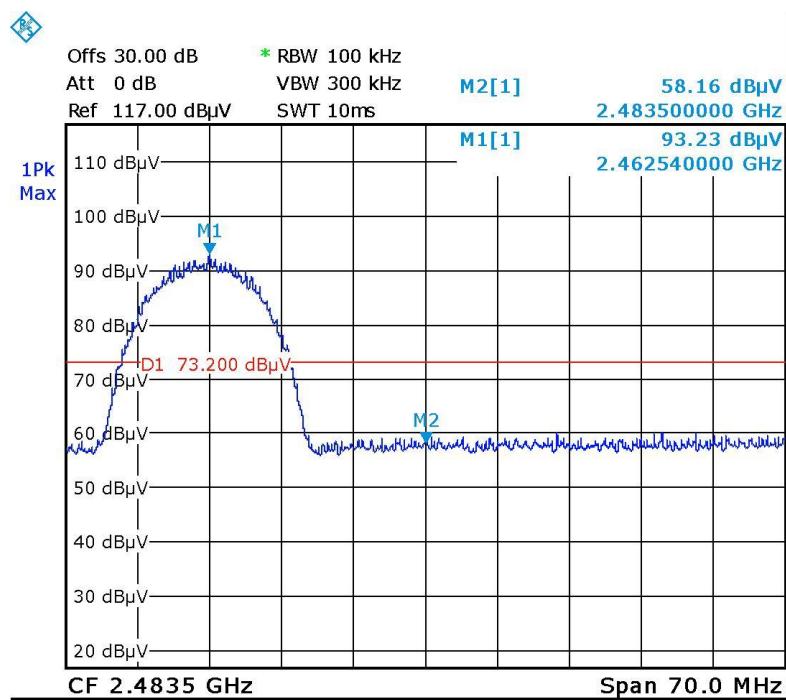

Date: 17.SEP.2015 11:16:17

Figure 46 —Upper Band Edge, DSSS



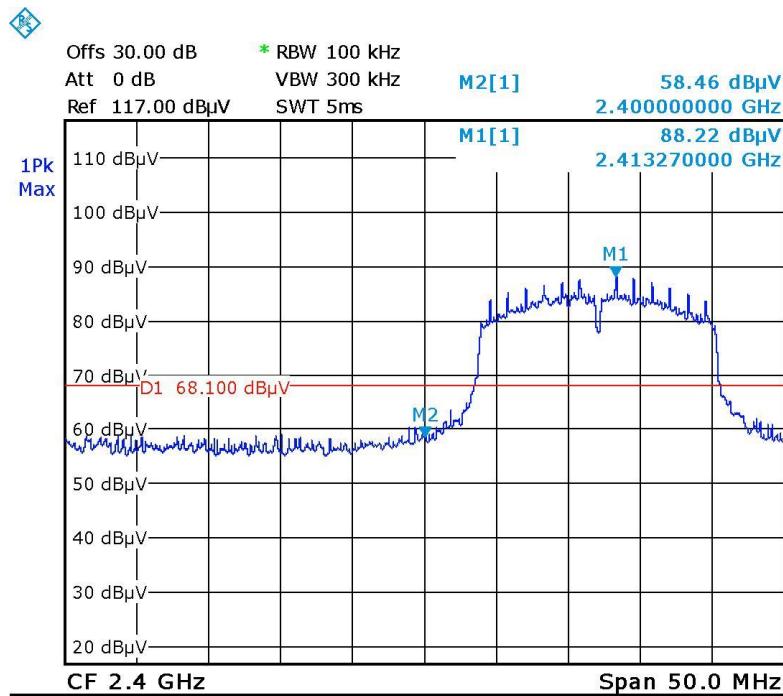

Date: 17.SEP.2015 11:25:42

Figure 47 —Lower Band Edge, CCK



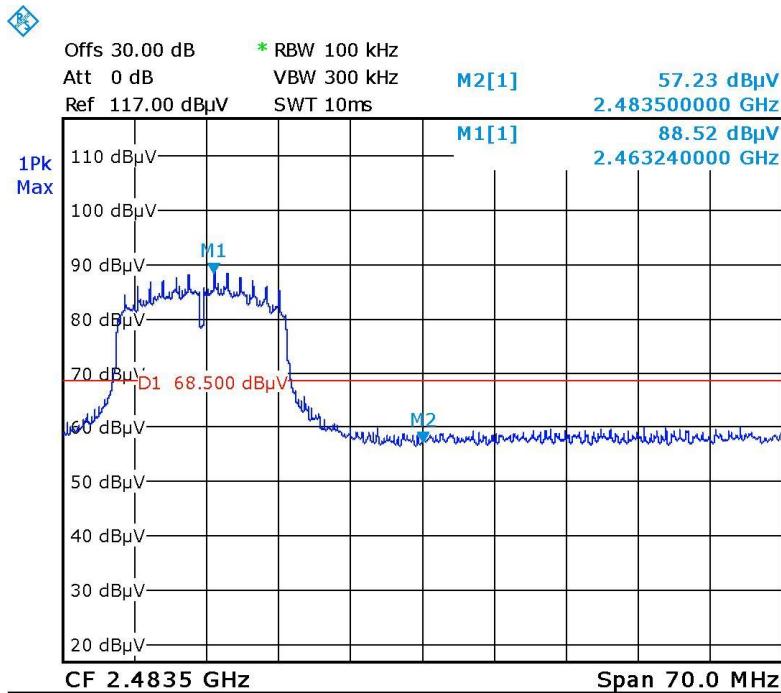

Date: 17.SEP.2015 11:14:10

Figure 48 —Upper Band Edge, CCK



Date: 17.SEP.2015 11:27:20

Figure 49 —Lower Band Edge, OFDM



Date: 17.SEP.2015 11:08:42

Figure 50 —Upper Band Edge, OFDM



#### 7.4 Test Equipment Used; Band Edge Spectrum

| Instrument                  | Manufacturer | Model | Serial No. | Last Calibration Date | Last Calibration Date |
|-----------------------------|--------------|-------|------------|-----------------------|-----------------------|
| EMI Receiver                | R&S          | FSL6  | 100194     | January 1, 2015       | January 1, 2016       |
| Horn Antenna                | ETS          | 3115  | 29845      | May 19, 2015          | May 19, 2018          |
| Semi Anechoic Civil Chamber | ETS          | S81   | SL 11643   | N/A                   | N/A                   |

Figure 51 Test Equipment Used



## 8. Emissions in Non-Restricted Frequency Bands

### 8.1 Test Specification

FCC, Part 15, Subpart C, Section 247(d)

### 8.2 Test Procedure

The E.U.T.'s operation mode and test set-up are as described in Section 2 of this report.

#### **For 0.009MHz-1000MHz range:**

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and loop/broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The configuration tested is shown in Figure 2.

The frequency range 0.009 MHz-1000 MHz was scanned.

RBW was set to 100 kHz.

The emissions were measured using a computerized EMI receiver complying with CISPR 16 requirements.

In the frequency range of 9kHz-30MHz, the center of the loop antenna height was one meter above the ground.

In the frequency range of 30MHz-1000MHz, the readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization.

#### **For 1000MHz-25000MHz range:**

The E.U.T was placed in the chamber and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The configuration tested is shown in Figure 2.

The frequency range 1000 MHz-25000 MHz was scanned.

RBW was set to 1000 kHz.

In the frequency range 30-7000MHz, a computerized EMI receiver complying with CISPR 16 requirements was used.

In the frequency range 7000MHz-25000 MHz, a spectrum analyzer including a low noise amplifier was used.

The readings were maximized by adjusting the turntable azimuth between 0-360°, and the antenna polarization.

For all final evaluations the distance was 3 meters.

The E.U.T. was operated at the low, mid and high channels (2412.0 MHz, 2437 MHz and 2462.0 MHz).

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.



### 8.3 ***Test Results***

JUDGEMENT: Passed

All detected emission levels were more than 20dBc below the fundamental level.

The EUT met the requirements of the F.C.C. Part 15, Subpart C, 247(d) specification.



#### 8.4 **Test Instrumentation Used, Emissions in Non-Restricted Frequency Bands**

| Instrument                  | Manufacturer    | Model        | Serial No.     | Last Calibration Date | Next Calibration Date |
|-----------------------------|-----------------|--------------|----------------|-----------------------|-----------------------|
| EMI Receiver                | R&S             | ESCI7        | 100724         | January 4, 2015       | January 31, 2016      |
| Spectrum Analyzer           | HP              | 8592L        | 3826A01204     | March 4, 2015         | March 3, 2016         |
| EMI Receiver                | HP              | 8542E        | 3906A00276     | March 11, 2015        | March 31, 2016        |
| RF Filter Section           | HP              | 85420E       | 3705A00248     | March 19, 2015        | March 31, 2016        |
| Spectrum Analyzer           | HP              | 8564E        | 3442A00275     | March 11, 2015        | March 31, 2016        |
| Biconical Antenna           | EMCO            | 3104         | 2606           | December 28, 2014     | December 28, 2015     |
| Active Loop Antenna         | EMCO            | 6502         | 9506-2950      | November 4, 2014      | November 5, 2015      |
| Log Periodic Antenna        | EMCO            | 3146         | 9505-4081      | December 28, 2014     | December 28, 2015     |
| Horn Antenna                | ETS             | 3115         | 29845          | May 19, 2015          | May 19, 2018          |
| Horn Antenna                | ARA             | SWH-28       | 1007           | March 3, 2014         | March 30, 2016        |
| Low Noise Amplifier         | Narda           | DBS-0411N313 | 13             | March 1, 2015         | March 1, 2016         |
| Low Noise Amplifier         | Sophia Wireless | LNA28-B      | 232            | March 1, 2015         | March 1, 2016         |
| Spectrum Analyzer           | HP              | 8593EM       | 3536A00120A DI | February 24, 2015     | February 28, 2016     |
| Semi Anechoic Civil Chamber | ETS             | S81          | SL 11643       | N/A                   | N/A                   |
| Antenna Mast                | ETS             | 2070-2       | 9608-1497      | N/A                   | N/A                   |
| Turntable                   | ETS             | 2087         | -              | N/A                   | N/A                   |
| Mast & Table Controller     | ETS/EMCO        | 2090         | 9608-1456      | N/A                   | N/A                   |

**Figure 52 Test Equipment Used**



## 8.5 **Field Strength Calculation**

The field strength is calculated directly by the EMI Receiver software, and a "Correction Factors", using the following equation:

$$FS = RA + AF + CF$$

FS: Field Strength [dB $\mu$ V/m]  
RA: Receiver Amplitude [dB $\mu$ V]  
AF: Receiving Antenna Correction Factor [dB/m]  
CF: Cable Attenuation Factor [dB]

Example:  $FS = 30.7 \text{ dB}\mu\text{V (RA)} + 14.0 \text{ dB (AF)} + 0.9 \text{ dB (CF)} = 45.6 \text{ dB}\mu\text{V}$

No external pre-amplifiers are used.

## 9. Emissions in Restricted Frequency Bands

### 9.1 ***Test Specification***

FCC, Part 15, Subpart C, Sections 15.247(d), 15.205, 15.209

### 9.2 ***Test Procedure***

The E.U.T operation mode and test set-up are as described in Section 2 of this report.

#### **For 0.009MHz-1000M range:**

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and loop/broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The configuration tested is shown in Figure 2. The frequency range 0.009 MHz-1000 MHz was scanned.

The emissions were measured using a computerized EMI receiver complying with CISPR 16 requirements.

In the frequency range of 9 kHz-30MHz, the center of the loop antenna height was one meter above the ground.

In the frequency range of 30MHz-1000 MHz, the readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization.

#### **For 1000M-25000M range:**

The E.U.T was placed in the chamber and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The configuration tested is shown in Figure 2.

The frequency range 1000 MHz-25000 MHz was scanned.

The readings were maximized by adjusting the turntable azimuth between 0-360°, and the antenna polarization.

During average measurements, the IF bandwidth was 1 MHz and the video bandwidth was 100Hz. During peak measurements, the IF bandwidth was 1 MHz and the video bandwidth was 3 MHz.

In the frequency range 30-7000MHz, a computerized EMI receiver complying with CISPR 16 requirements was used.

In the frequency range 7000M-25000 MHz, a spectrum analyzer including a low noise amplifier was used.

For all final evaluations, the distance was 3 meters.

The E.U.T. was operated at the low, mid and high channels. (2412, 2437, 2462 MHz).

The levels of the emissions within the frequency ranges of the restricted bands (Section 15.205 of FCC Part 15) were compared to the limits of the table in Section 15.209 (a), General Requirements.



Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

| Frequency (MHz) | Field strength (microvolts/meter) | Measurement distance (meters) | Field strength* (dB $\mu$ V/m) | Field strength* (dB $\mu$ V/m)@3m |
|-----------------|-----------------------------------|-------------------------------|--------------------------------|-----------------------------------|
| 0.009-0.490     | 2400/F(kHz)                       | 300                           | 48.5-13.8                      | 128.5-73.8                        |
| 0.490-1.705     | 24000/F(kHz)                      | 30                            | 33.8-23.0                      | 73.8-63.0                         |
| 1.705-30.0      | 30                                | 30                            | 29.5                           | 69.5                              |
| 30-88           | 100                               | 3                             | 40.0                           | 40.0                              |
| 88-216          | 150                               | 3                             | 43.5                           | 43.5                              |
| 216-960         | 200                               | 3                             | 46.0                           | 46.0                              |
| Above 960       | 500                               | 3                             | 54.0                           | 54.0                              |

\*The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. For average radiated emission measurements above 1000 MHz, there is also a limit corresponding to 20 dB above the indicated values in the table is specified when measuring with peak detector function.

**Figure 53 Table of Limits**

### **9.3 Test Results**

JUDGEMENT: Passed by 4.4 dB

The EUT met the requirements of the F.C.C. Part 15, Subpart C specification.

The details of the highest emissions are given in *Figure 54* to *Figure 55*.



## Radiated Emission

E.U.T Description: Irrigation Controller  
Type: XCI16-WiFi  
Serial Number: Not designated

Specification: FCC, Part 15, Subpart C

Antenna Polarization: Horizontal/Vertical      Frequency range: 0.009MHz to 25.0 GHz  
Test Distance: 3 meters      Detector: Peak

| Operation Frequency<br>(MHz) | Freq.<br>(MHz) | Polarity<br>(H/V) | Peak Reading<br>(dB $\mu$ V/m) | Peak Specification<br>(dB $\mu$ V/m) | Peak Margin<br>(dB) |
|------------------------------|----------------|-------------------|--------------------------------|--------------------------------------|---------------------|
| 2412.0                       | 2390.0         | H                 | 61.6                           | 74.0                                 | -12.4               |
| 2412.0                       | 2390.0         | V                 | 60.4                           | 74.0                                 | -13.4               |
| 2412.0                       | 4824.0         | H                 | 56.5                           | 74.0                                 | -17.5               |
| 2412.0                       | 4824.0         | V                 | 58.8                           | 74.0                                 | -15.2               |
| 2437.0                       | 4874.0         | H                 | 56.9                           | 74.0                                 | -17.1               |
| 2437.0                       | 4874.0         | V                 | 56.4                           | 74.0                                 | -17.6               |
| 2462.0                       | 4924.0         | H                 | 56.0                           | 74.0                                 | -18.0               |
| 2462.0                       | 4924.0         | V                 | 56.6                           | 74.0                                 | -17.4               |
| 2462.0                       | 2483.5         | H                 | 54.5                           | 74.0                                 | -19.5               |
| 2462.0                       | 2483.5         | V                 | 57.2                           | 74.0                                 | -16.8               |

**Figure 54. Radiated Emission. Antenna Polarization: HORIZONTAL / VERTICAL.  
Detector: Peak**

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

“Peak Amp” includes correction factor.

\* “Correction Factor” = Antenna Factor + Cable Loss- Low Noise Amplifier Gain



## Radiated Emission

E.U.T Description      Irrigation Controller  
Type                      XCI16-WiFi  
Serial Number:           Not designated

Specification: FCC, Part 15, Subpart C

Antenna Polarization: Horizontal/Vertical      Frequency range: 0.009MHz to 25.0 GHz  
Test Distance: 3 meters                              Detector: Average

| Operation Frequency<br>(MHz) | Freq.<br>(MHz) | Polarity<br>(H/V) | Average Reading<br>(dB $\mu$ V/m) | Average Specification<br>(dB $\mu$ V/m) | Average Margin<br>(dB) |
|------------------------------|----------------|-------------------|-----------------------------------|-----------------------------------------|------------------------|
| 2412.0                       | 2390.0         | H                 | 49.6                              | 54.0                                    | -4.4                   |
| 2412.0                       | 2390.0         | V                 | 49.2                              | 54.0                                    | -4.8                   |
| 2412.0                       | 4824.0         | H                 | 39.9                              | 54.0                                    | -14.1                  |
| 2412.0                       | 4824.0         | V                 | 41.0                              | 54.0                                    | -13.0                  |
| 2437.0                       | 4874.0         | H                 | 45.3                              | 54.0                                    | -8.7                   |
| 2437.0                       | 4874.0         | V                 | 45.0                              | 54.0                                    | -9.0                   |
| 2462.0                       | 4924.0         | H                 | 44.4                              | 54.0                                    | -9.6                   |
| 2462.0                       | 4924.0         | V                 | 43.1                              | 54.0                                    | -10.9                  |
| 2462.0                       | 2483.5         | H                 | 42.0                              | 54.0                                    | -12.0                  |
| 2462.0                       | 2483.5         | V                 | 42.1                              | 54.0                                    | -11.9                  |

**Figure 55. Radiated Emission. Antenna Polarization: HORIZONTAL / VERTICAL.  
Detector: Average**

Notes:

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

“Average Amp” includes correction factor.

\*      Correction Factor = Antenna Factor + Cable Loss- Low Noise Amplifier Gain



#### 9.4 **Test Instrumentation Used, Emissions in Restricted Frequency Bands**

| Instrument                  | Manufacturer    | Model        | Serial No.    | Last Calibration Date | Next Calibration Date |
|-----------------------------|-----------------|--------------|---------------|-----------------------|-----------------------|
| EMI Receiver                | R&S             | ESCI7        | 100724        | January 4, 2015       | January 31, 2016      |
| Spectrum Analyzer           | HP              | 8592L        | 3826A01204    | March 4, 2015         | March 3, 2016         |
| EMI Receiver                | HP              | 8542E        | 3906A00276    | March 11, 2015        | March 31, 2016        |
| RF Filter Section           | HP              | 85420E       | 3705A00248    | March 19, 2015        | March 31, 2016        |
| Spectrum Analyzer           | HP              | 8564E        | 3442A00275    | March 11, 2015        | March 31, 2016        |
| Biconical Antenna           | EMCO            | 3104         | 2606          | December 28, 2014     | December 28, 2015     |
| Active Loop Antenna         | EMCO            | 6502         | 9506-2950     | November 4, 2014      | November 5, 2015      |
| Log Periodic Antenna        | EMCO            | 3146         | 9505-4081     | December 28, 2014     | December 28, 2015     |
| Horn Antenna                | ETS             | 3115         | 29845         | May 19, 2015          | May 19, 2018          |
| Horn Antenna                | ARA             | SWH-28       | 1007          | March 3, 2014         | March 30, 2016        |
| Low Noise Amplifier         | Narda           | DBS-0411N313 | 13            | March 1, 2015         | March 1, 2016         |
| Low Noise Amplifier         | Sophia Wireless | LNA28-B      | 232           | March 1, 2015         | March 1, 2016         |
| Spectrum Analyzer           | HP              | 8593EM       | 3536A00120ADI | February 24, 2015     | February 28, 2016     |
| Semi Anechoic Civil Chamber | ETS             | S81          | SL 11643      | N/A                   | N/A                   |
| Antenna Mast                | ETS             | 2070-2       | 9608-1497     | N/A                   | N/A                   |
| Turntable                   | ETS             | 2087         | -             | N/A                   | N/A                   |
| Mast & Table Controller     | ETS/EMCO        | 2090         | 9608-1456     | N/A                   | N/A                   |

**Figure 56 Test Equipment Used**



## 10. Transmitted Power Density

### 10.1 ***Test Specification***

FCC, Part 15, Subpart C, Section 247(e)

### 10.2 ***Test Procedure***

The E.U.T operation mode and test set-up are as described in Section 2 of this report.

The E.U.T was tested in the chamber, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The configuration tested is shown in *Figure 2*.

The spectrum analyzer was set to 3 kHz RBW.

The E.U.T was evaluated in 3 channels: Low (2412 MHz), Mid (2437 MHz) and High (2462 MHz) each in 3 modulations: DSS, CCK and OFDM.

Radiated output power levels were measured at selected operation frequencies and the results were converted to power level according to the formula as shown below:

$$P = \frac{(E_{V/m} \times d)^2}{(30 \times G)} \quad [W]$$

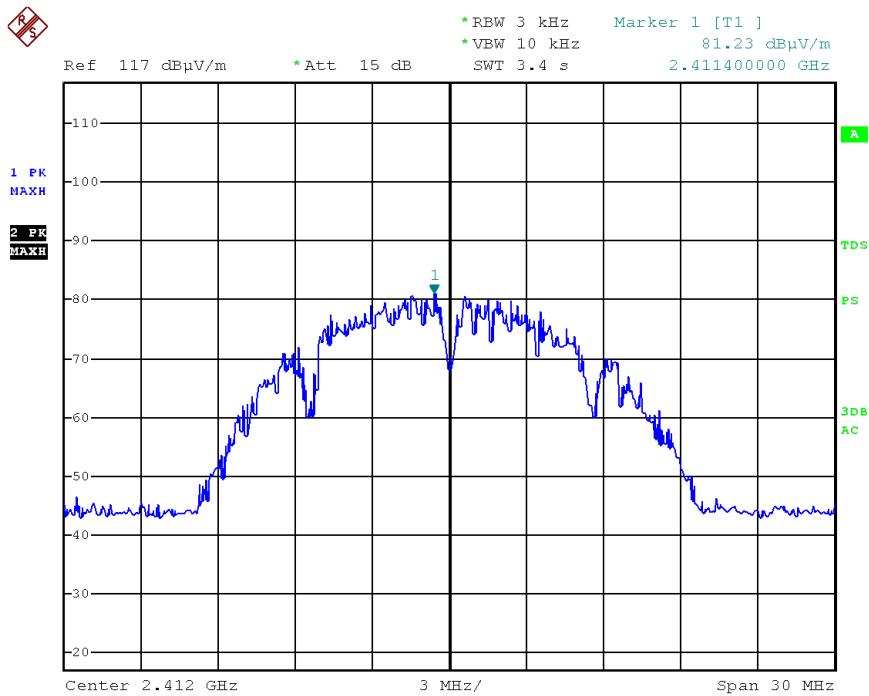
E - Field Strength (V/m)

d – Distance from transmitter (m)

G – Antenna gain

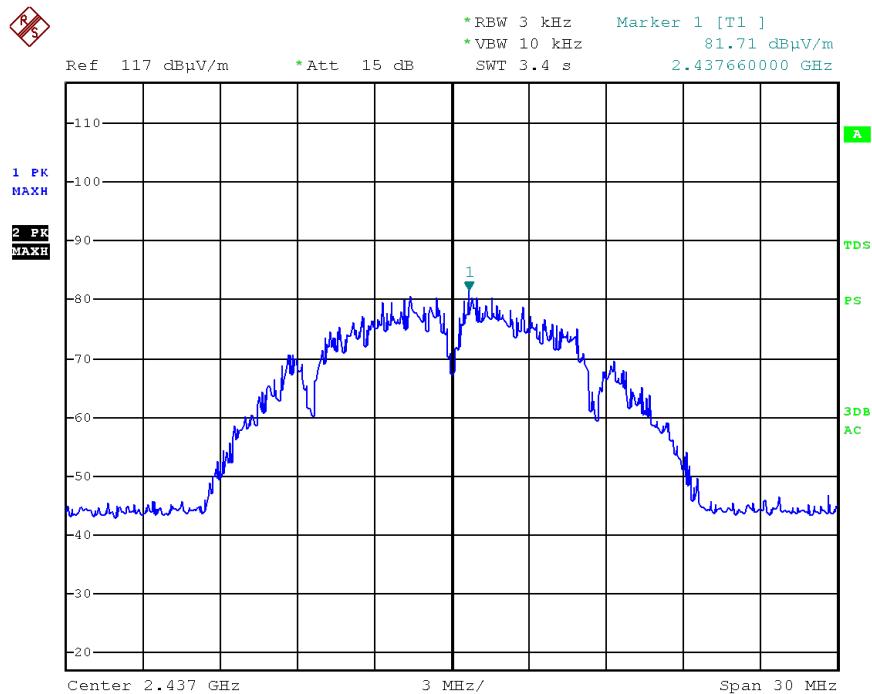
P – Peak power (W)




### 10.3 Test Results

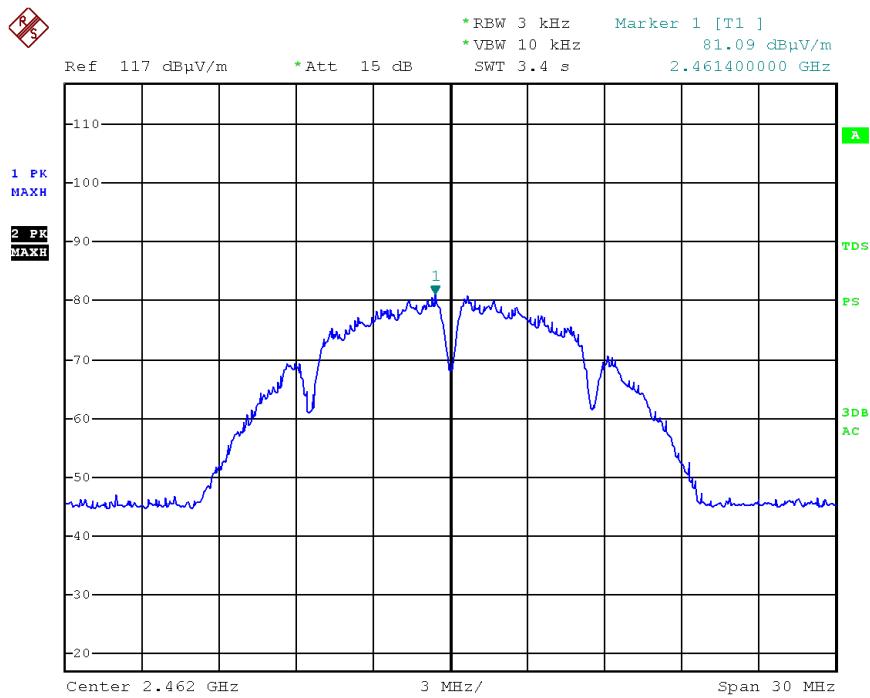
| Modulation | Operation Frequency (MHz) | Reading Spectrum Analyzer (dB $\mu$ V/m) | Reading Spectrum Analyzer (dBm) | Specification (dBm) | Margin (dB) |
|------------|---------------------------|------------------------------------------|---------------------------------|---------------------|-------------|
| DSSS       | Low                       | 81.2                                     | -14.0                           | 8.0                 | -22.0       |
|            | Mid                       | 81.7                                     | -13.5                           | 8.0                 | -21.5       |
|            | High                      | 81.1                                     | -14.1                           | 8.0                 | -22.1       |
| CCK        | Low                       | 81.7                                     | -13.5                           | 8.0                 | -21.5       |
|            | Mid                       | 81.5                                     | -13.7                           | 8.0                 | -21.7       |
|            | High                      | 81.1                                     | -14.1                           | 8.0                 | -22.1       |
| OFDM       | Low                       | 75.9                                     | -19.3                           | 8.0                 | -27.3       |
|            | Mid                       | 79.5                                     | -15.7                           | 8.0                 | -23.7       |
|            | High                      | 74.5                                     | -20.7                           | 8.0                 | -28.7       |

**Figure 57 Test Results**


JUDGEMENT: Passed by 21.5 dB

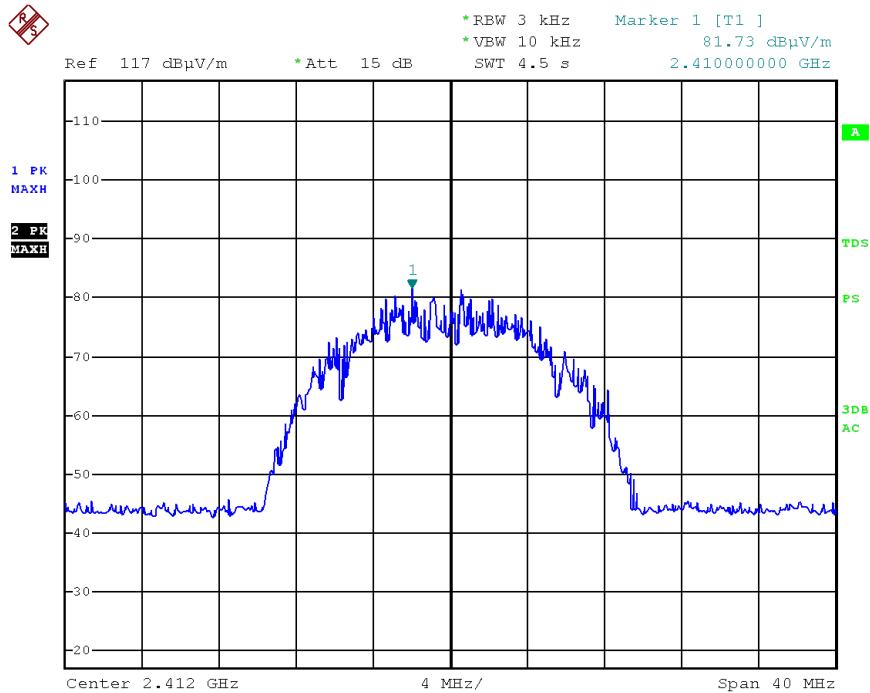
For additional information see *Figure 58* to *Figure 66*.




Date: 16.SEP.2015 12:03:54

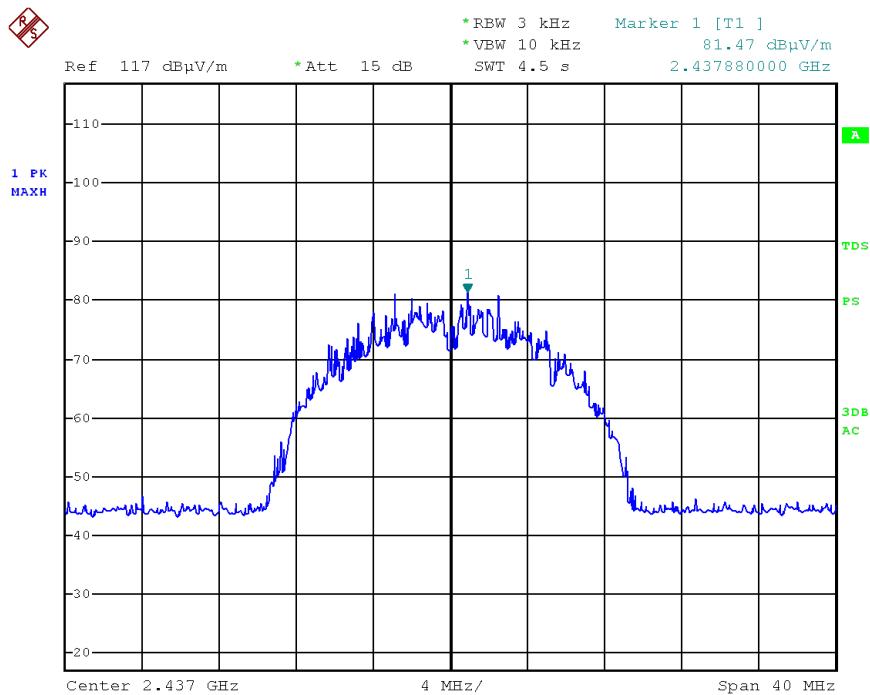
**Figure 58 — Low Channel, DSSS**




Date: 16.SEP.2015 11:58:08

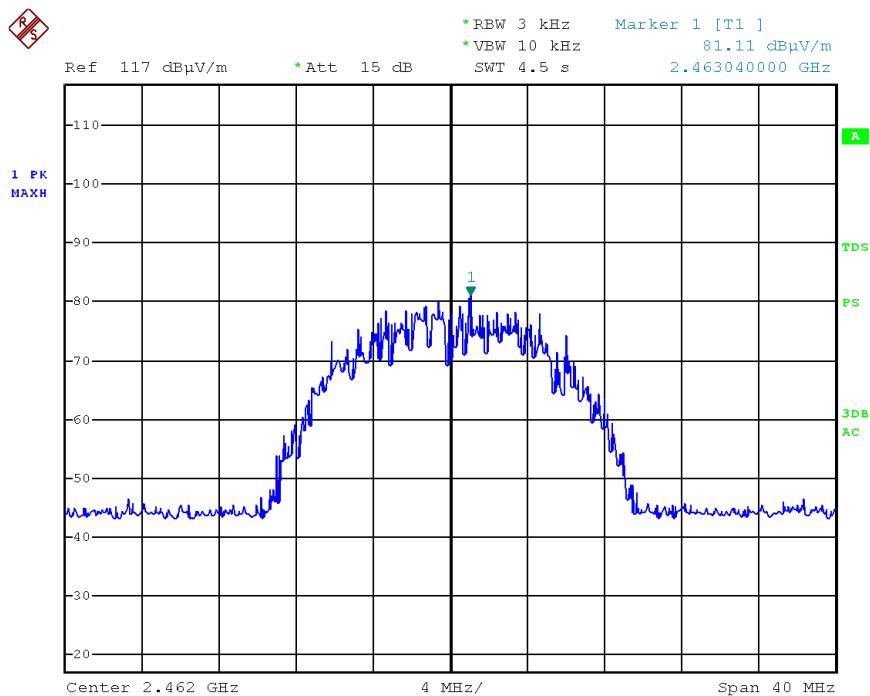
**Figure 59 — Mid Channel, DSSS**




Date: 16.SEP.2015 12:55:46

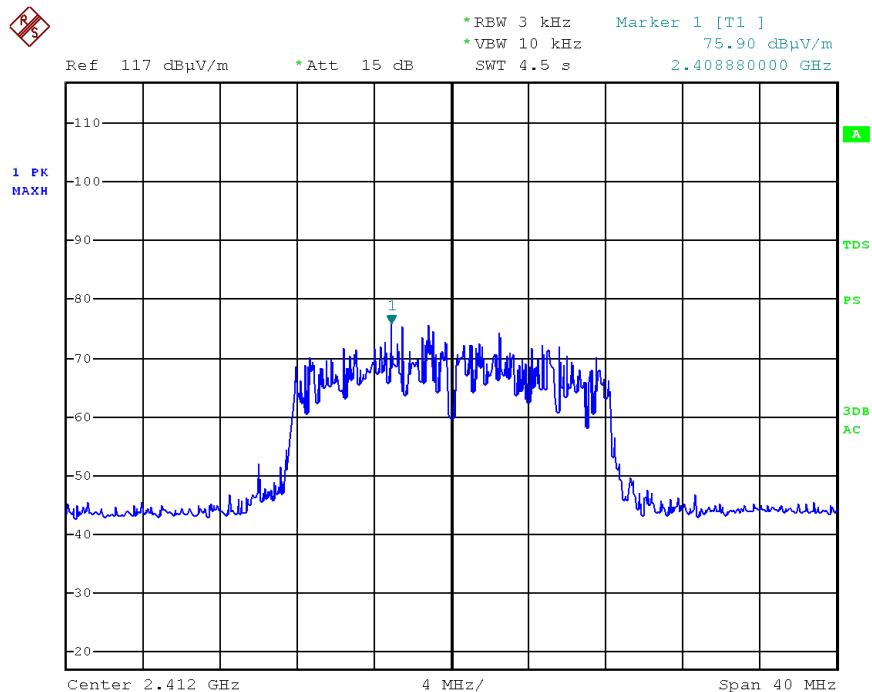
**Figure 60 — High Channel, DSSS**




Date: 16.SEP.2015 14:48:16

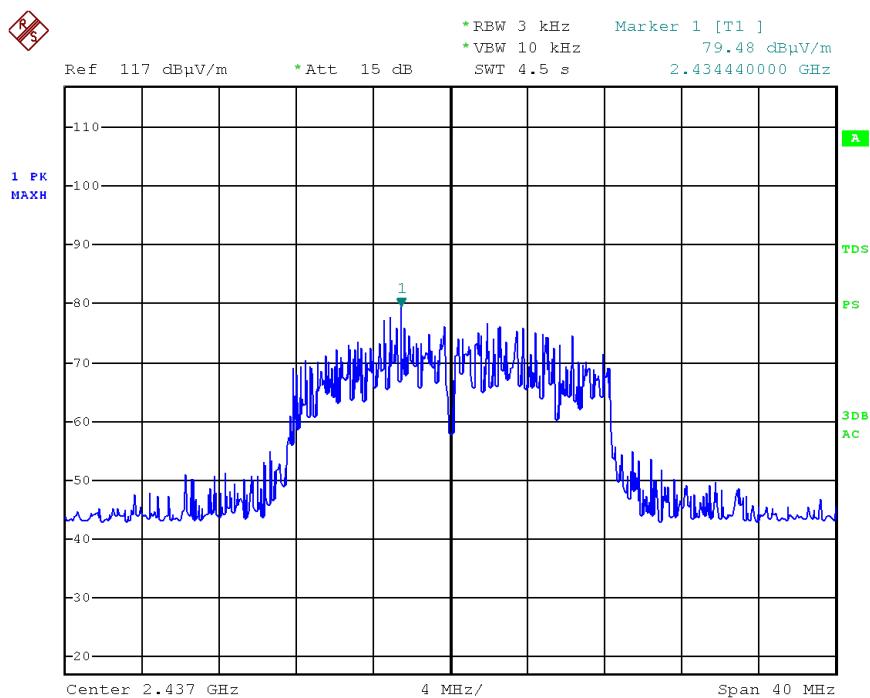
**Figure 61 — Low Channel, CCK**




Date: 16.SEP.2015 14:38:45

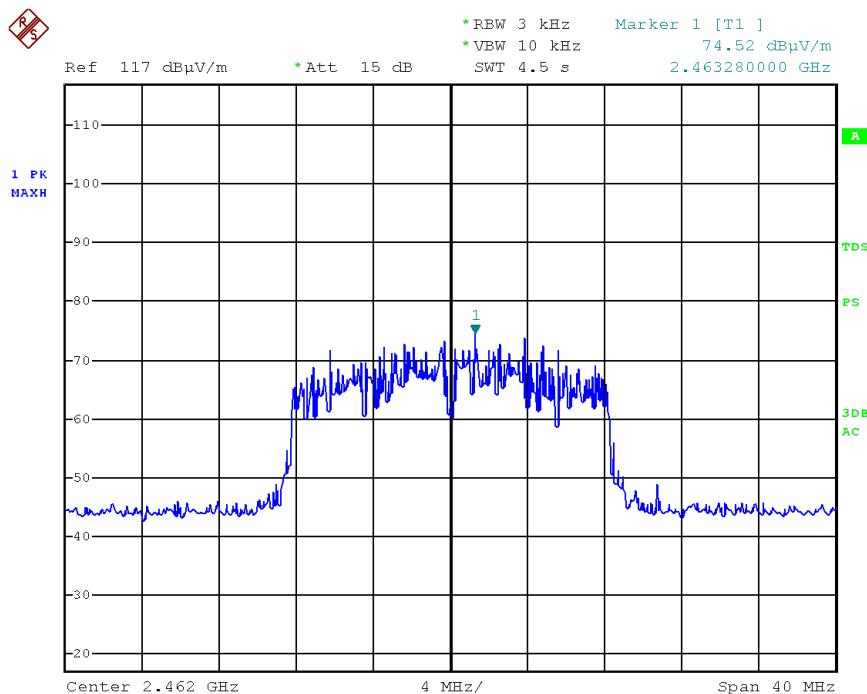
**Figure 62 — Mid Channel, CCK**




Date: 16.SEP.2015 14:57:51

**Figure 63 — High Channel, CCK**




Date: 16.SEP.2015 16:22:20

**Figure 64 — Low Channel, OFDM**



Date: 16.SEP.2015 16:07:18

**Figure 65 — Mid Channel, OFDM**



Date: 16.SEP.2015 16:00:13

**Figure 66 — High Channel, OFDM**

#### 10.4 Test Equipment Used; Transmitted Power Density

| Instrument                  | Manufacturer | Model | Serial No. | Last Calibration Date | Next Calibration Date |
|-----------------------------|--------------|-------|------------|-----------------------|-----------------------|
| EMI Receiver                | R&S          | ESCI7 | 100724     | January 4, 2015       | January 31, 2016      |
| Horn Antenna                | ETS          | 3115  | 29845      | May 19, 2015          | May 19, 2018          |
| Semi Anechoic Civil Chamber | ETS          | S81   | SL 11643   | N/A                   | N/A                   |

**Figure 67 Test Equipment Used**



## 11. Antenna Gain/Information

The antenna gain is 1.9 dBi, integral.



## 12. R.F Exposure/Safety

Typical use of the E.U.T. is as an irrigation controller.

The typical placement of the E.U.T. is in a greenhouse. The typical distance between the E.U.T. and the user is 20 cm.

### Calculation of Maximum Permissible Exposure (MPE)

Based on Section 1.1310 Requirements

(a) FCC limits at 2480 MHz is:

$$1 \frac{mW}{cm^2}$$

Using table 1 of Section 1.1310 limit for general population/uncontrolled exposures, the above level is an average over 30 minutes.

(b) The power density produced by the E.U.T. is

$$S = \frac{P_t G_t}{4\pi R^2}$$

P<sub>t</sub>- Transmitted Power 112.6 dBuV/m (Peak) = 55 mW (testing performed radiated; power result includes antenna gain)

G<sub>T</sub>- Antenna Gain = 1.9 dBi

R- Distance from Transmitter using 20cm worst case

(c) The peak power density is:

$$S = \frac{(55)}{4\pi(20)^2} = 0.011 \frac{mW}{cm^2}$$

(d) This is below the FCC limit.



## 13. APPENDIX A - CORRECTION FACTORS

### 13.1 *Correction factors for CABLE from EMI receiver*

**to test antenna  
at 3 meter range.**

| Frequency<br>(MHz) | Cable<br>Loss<br>(dB) |
|--------------------|-----------------------|
| 0.010              | 0.4                   |
| 0.015              | 0.2                   |
| 0.020              | 0.2                   |
| 0.030              | 0.3                   |
| 0.050              | 0.3                   |
| 0.075              | 0.3                   |
| 0.100              | 0.2                   |
| 0.150              | 0.2                   |
| 0.200              | 0.3                   |
| 0.500              | 0.4                   |
| 1.00               | 0.4                   |
| 1.50               | 0.5                   |
| 2.00               | 0.5                   |
| 5.00               | 0.6                   |
| 10.00              | 0.8                   |
| 15.00              | 0.9                   |
| 20.00              | 0.8                   |

| Frequency<br>(MHz) | Cable<br>Loss<br>(dB) |
|--------------------|-----------------------|
| 50.00              | 1.2                   |
| 100.00             | 0.7                   |
| 150.00             | 2.1                   |
| 200.00             | 2.3                   |
| 300.00             | 2.9                   |
| 500.00             | 3.8                   |
| 750.00             | 4.8                   |
| 1000.00            | 5.4                   |
| 1500.00            | 6.7                   |
| 2000.00            | 9.0                   |
| 2500.00            | 9.4                   |
| 3000.00            | 9.9                   |
| 3500.00            | 10.2                  |
| 4000.00            | 11.2                  |
| 4500.00            | 12.1                  |
| 5000.00            | 13.1                  |
| 5500.00            | 13.5                  |
| 6000.00            | 14.5                  |

#### NOTES:

1. The cable type is SPUMA400 RF-11N(X2) and 39m long
2. The cable is manufactured by Huber + Suhner



13.2

**Correction factors for log periodic antenna**  
**EMCO Model: 3146**  
**Serial number: 9505-4081**

**CALIBRATION DATA**

| Frequency, MHz | Antenna factor, dB/m <sup>1)</sup> |
|----------------|------------------------------------|
| 200            | 11.55                              |
| 250            | 11.60                              |
| 300            | 14.43                              |
| 400            | 15.38                              |
| 500            | 17.98                              |
| 600            | 18.78                              |
| 700            | 21.17                              |
| 800            | 21.16                              |
| 900            | 22.67                              |
| 1000           | 24.09                              |

<sup>1)</sup> The antenna factor shall be added to receiver reading in dB $\mu$ V to obtain field strength in dB $\mu$ V/m.



**13.3 Correction factors for biconical antenna**  
**EMCO Model: 3104**  
**Serial number: 2606**

**CALIBRATION DATA**

| Frequency, MHz | Near free space antenna factor, dB/m | Geometry specific correction factor, dB | Free space antenna factor, dB/m <sup>1)</sup> |
|----------------|--------------------------------------|-----------------------------------------|-----------------------------------------------|
| 30             | 12.97                                | 0.13                                    | 12.84                                         |
| 35             | 12.34                                | 0.09                                    | 12.25                                         |
| 40             | 12.03                                | 0.06                                    | 11.97                                         |
| 45             | 11.42                                | 0.02                                    | 11.40                                         |
| 50             | 11.91                                | 0.03                                    | 11.88                                         |
| 60             | 11.92                                | 0.37                                    | 11.55                                         |
| 70             | 9.60                                 | 0.25                                    | 9.35                                          |
| 80             | 6.99                                 | -0.45                                   | 7.44                                          |
| 90             | 10.87                                | -0.34                                   | 11.21                                         |
| 100            | 11.51                                | -0.06                                   | 11.57                                         |
| 120            | 13.30                                | 0.20                                    | 13.10                                         |
| 140            | 12.56                                | -0.01                                   | 12.57                                         |
| 160            | 14.49                                | -0.12                                   | 14.61                                         |
| 180            | 16.53                                | 0.05                                    | 16.48                                         |
| 200            | 15.30                                | 0.15                                    | 15.15                                         |

<sup>1)</sup> The antenna factor shall be added to receiver reading in dB $\mu$ V to obtain field strength in dB $\mu$ V/m.



13.4 **Correction factors for Bilog ANTENNA**

**Model: 3142**

**Antenna serial number: 1250**

**3 meter range**

| <b>FREQUENCY</b><br>(MHz) | <b>AFE</b><br>(dB/m) | <b>FREQUENCY</b><br>(MHz) | <b>AFE</b><br>(dB/m) |
|---------------------------|----------------------|---------------------------|----------------------|
| 30                        | 18.4                 | 1100                      | 25                   |
| 40                        | 13.7                 | 1200                      | 24.9                 |
| 50                        | 9.9                  | 1300                      | 26                   |
| 60                        | 8.1                  | 1400                      | 26.1                 |
| 70                        | 7.4                  | 1500                      | 27.1                 |
| 80                        | 7.2                  | 1600                      | 27.2                 |
| 90                        | 7.5                  | 1700                      | 28.3                 |
| 100                       | 8.5                  | 1800                      | 28.1                 |
| 120                       | 7.8                  | 1900                      | 28.5                 |
| 140                       | 8.5                  | 2000                      | 28.9                 |
| 160                       | 10.8                 |                           |                      |
| 180                       | 10.4                 |                           |                      |
| 200                       | 10.5                 |                           |                      |
| 250                       | 12.7                 |                           |                      |
| 300                       | 14.3                 |                           |                      |
| 400                       | 17                   |                           |                      |
|                           |                      |                           |                      |
| 600                       | 19.6                 |                           |                      |
| 700                       | 21.1                 |                           |                      |
| 800                       | 21.4                 |                           |                      |
| 900                       | 23.5                 |                           |                      |
| 1000                      | 24.3                 |                           |                      |



**13.5 Correction factors for**

**Horn Antenna  
Model: SWH-28  
at 1 meter range.**

| <b>FREQUENCY</b><br>(GHz) | <b>AFE</b><br>(dB /m) | <b>Gain</b><br>(dB1) |
|---------------------------|-----------------------|----------------------|
| 18.0                      | 40.3                  | 16.1                 |
| 19.0                      | 40.3                  | 16.3                 |
| 20.0                      | 40.3                  | 16.1                 |
| 21.0                      | 40.3                  | 16.3                 |
| 22.0                      | 40.4                  | 16.8                 |
| 23.0                      | 40.5                  | 16.4                 |
| 24.0                      | 40.5                  | 16.6                 |
| 25.0                      | 40.5                  | 16.7                 |
| 26.0                      | 40.6                  | 16.4                 |



**13.6 Correction factors for Horn ANTENNA.**

**Model: 3115**

**Antenna serial number: 29845**

**10 meter range**

| <b>FREQUENCY</b><br><b>(MHz)</b> | <b>AFE</b><br><b>(dB/m)</b> | <b>FREQUENCY</b><br><b>(MHz)</b> | <b>AFE</b><br><b>(dB/m)</b> |
|----------------------------------|-----------------------------|----------------------------------|-----------------------------|
| 1000                             | 22.4                        | 10000                            | 36.1                        |
| 2000                             | 25.2                        | 11000                            | 37.0                        |
| 3000                             | 31.1                        | 12000                            | 41.3                        |
| 4000                             | 30.2                        | 13000                            | 38.1                        |
| 5000                             | 34.2                        | 14000                            | 41.7                        |
| 6000                             | 31.6                        | 15000                            | 39.0                        |
| 7000                             | 34.7                        | 16000                            | 38.8                        |
| 8000                             | 34.8                        | 17000                            | 43.2                        |
| 9000                             | 36.2                        | 18000                            | 43.7                        |



**13.7 Correction factors for ACTIVE LOOP ANTENNA**  
**Model 6502**  
**S/N 9506-2950**

| FREQUENCY<br>(MHz) | Magnetic<br>Antenna<br>Factor<br>(dB) | Electric<br>Antenna<br>Factor<br>(dB) |
|--------------------|---------------------------------------|---------------------------------------|
| .009               | -35.1                                 | 16.4                                  |
| .010               | -35.7                                 | 15.8                                  |
| .020               | -38.5                                 | 13.0                                  |
| .050               | -39.6                                 | 11.9                                  |
| .075               | -39.8                                 | 11.8                                  |
| .100               | -40.0                                 | 11.6                                  |
| .150               | -40.0                                 | 11.5                                  |
| .250               | -40.0                                 | 11.6                                  |
| .500               | -40.0                                 | 11.5                                  |
| .750               | -40.1                                 | 11.5                                  |
| 1.000              | -39.9                                 | 11.7                                  |
| 2.000              | -39.5                                 | 12.0                                  |
| 3.000              | -39.4                                 | 12.1                                  |
| 4.000              | -39.7                                 | 11.9                                  |
| 5.000              | -39.7                                 | 11.8                                  |
| 10.000             | 40.2                                  | 11.3                                  |
| 15.000             | -40.7                                 | 10.8                                  |
| 20.000             | -40.5                                 | 11.0                                  |
| 25.000             | -41.3                                 | 10.2                                  |
| 30.000             | 42.3                                  | 9.2                                   |