

DATE: 26 December 2013

I.T.L. (PRODUCT TESTING) LTD.

FCC Radio Test Report
for

**Galcon Bakarim Agricultural
Cooperative Society Ltd.**

Equipment under test:

**Two Way Radio System (G2W)
Concentrator**

AMGR0C03A

Written by:

Ronit Pinchuck

R. Pinchuck, Documentation

Approved by:

A. Sharabi

A. Sharabi, Test Engineer

Approved by:

I. Raz

I. Raz, EMC Laboratory Manager

This report must not be reproduced, except in full, without the written permission of I.T.L. (Product Testing) Ltd.

This report relates only to items tested.

**Measurement/Technical Report for
Galcon Bakarim Agricultural Cooperative
Society Ltd.**

Two Way Radio System (G2W) Concentrator

AMGR0C03A

FCC ID: SZ8G2W3GA

This report concerns: Original Grant: X

Class I Change:

Class II Change:

Equipment type: Spread Spectrum Transmitter

Limits used: 47CFR15 Section 15.247

Measurement procedure used is Public Notice: DA 00-705 Filing and Measurement guidelines for Frequency Hopping spread spectrum Systems and ANSI C63.4-2003.

Application for Certification

prepared by:

R. Pinchuck

ITL (Product Testing) Ltd.

1 Bat-Sheva Street

Lod, 7116002

Israel

e-mail Rpinchuck@itl.co.il

Applicant for this device:

(different from "prepared by")

Yaniv Garti

Galcon Bakarim Agricultural

Cooperative Society Ltd.

Kibbutz Kfar Blum

Israel

Tel: +972-4-690-0222

Fax: +972-4-690-2727

e-mail: yanivg@galcon.co.il

TABLE OF CONTENTS

1. GENERAL INFORMATION -----	5
1.1 Administrative Information.....	5
1.2 List of Accreditations	6
1.3 Product Description	7
1.4 Test Methodology	7
1.5 Test Facility	7
1.6 Measurement Uncertainty	7
2. SYSTEM TEST CONFIGURATION-----	8
2.1 Justification.....	8
2.2 Special Accessories	8
2.3 Equipment Modifications	8
2.4 Configuration of Tested System	8
3. CONDUCTED AND RADIATED MEASUREMENT TEST SET-UP PHOTO-----	9
4. CONDUCTED EMISSION-----	12
4.1 Test Specification	12
4.2 Test Procedure	12
4.3 Test Results.....	12
4.4 Test Instrumentation Used, Conducted Measurement.....	17
5. 20DB MINIMUM BANDWIDTH -----	18
5.1 Test Specification	18
5.2 Test procedure	18
5.3 Test Results.....	20
5.4 Test Equipment Used.....	20
7. CHANNEL FREQUENCY SEPARATION -----	30
7.1 Test Specification	30
8. RADIATED POWER OUTPUT -----	33
8.1 Test Specification	33
8.2 Test procedure	33
8.3 Results Calculation.....	35
8.4 Test Equipment Used.....	36
9. DWELL TIME ON EACH CHANNEL -----	37
9.1 Test Specification	37
9.2 Test Procedure	37
9.3 Test Results.....	37
9.4 Test Equipment Used.....	38
10. BAND EDGE-----	39
10.1 Test procedure	39
10.2 Results table.....	41
10.3 Test Equipment Used.....	42
11. RADIATED EMISSION, 9 KHZ – 30 MHZ-----	43
11.1 Test Specification	43
11.2 Test Procedure	43
11.3 Measured Data	43
11.4 Test Instrumentation Used, Radiated Measurements.....	44
11.5 Field Strength Calculation	45
12. SPURIOUS RADIATED EMISSION 30 – 10000MHZ-----	46
12.1 Test Specification	46
12.2 Test Procedure	46
12.3 Test Data.....	47
12.4 Test Instrumentation Used, Radiated Measurements.....	50

13. ANTENNA GAIN/INFORMATION	51
14. R.F EXPOSURE/SAFETY	52
15. APPENDIX B - CORRECTION FACTORS	53
15.1 Correction factors for CABLE	53
15.2 Correction factors for CABLE	54
15.3 Correction factors for CABLE	55
15.4 Correction factors for CABLE	56
12.6 Correction factors for LOG PERIODIC ANTENNA	57
15.5 Correction factors for LOG PERIODIC ANTENNA	58
15.6 Correction factors for BICONICAL ANTENNA	59
15.7 Correction factors for BICONICAL ANTENNA	60
15.8 Correction factors for Double-Ridged Waveguide Horn.....	61
15.9 Correction factors for Horn Antenna.....	62
15.10 Correction factors for Horn Antenna.....	63
15.11 Correction factors for ACTIVE LOOP ANTENNA	64

1. General Information

1.1 Administrative Information

Manufacturer: Galcon Bakarim Agricultural Cooperative Society Ltd.

Manufacturer's Address: Kibbutz Kfar Blum
Upper Galilee
D.N. 12150
Israel
Tel:+972-4-690-0222
Tel: +972-4-690-2727

Manufacturer's Representative: Amir Eisen

Equipment Under Test (E.U.T): Two Way Radio System (G2W)
Concentrator

Equipment Model No.: AMGR0C03A

Equipment Serial No.: Not Designated

Date of Receipt of E.U.T: 10.06.2012

Start of Test: 10.06.2012

End of Test: 02.04.2013

Test Laboratory Location: I.T.L (Product Testing) Ltd.
Kfar Bin Nun,
ISRAEL 99780

Test Specifications: FCC Part 15 Subpart C

1.2 ***List of Accreditations***

The EMC laboratory of I.T.L. is accredited by the following bodies:

1. The American Association for Laboratory Accreditation (A2LA) (U.S.A.), Certificate No. 1152.01.
2. The Federal Communications Commission (FCC) (U.S.A.), Registration No. 90715.
3. The Israel Ministry of the Environment (Israel), Registration No. 1104/01.
4. The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) (Japan), Registration Numbers: C-1350, R-1285.
5. Industry Canada (Canada), IC File No.: 46405-4025; Site No. IC 4025B-1.

I.T.L. Product Testing Ltd. is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with I.T.L.'s terms of accreditation unless stated otherwise in the report.

1.3 Product Description

AMGR0C03 is a radio concentrator unit, it connects to Galcon controller on the one side and transmit command to the G2W units and transmit status and signals from the units to the controller.

Concentrator:

The concentrator acts as the system manager. The concentrator transmits, via radio communication, the controller's commands to all the field units, and returns the various inputs of the field units to the controller. The concentrator is connected to RF antennas and cables. The concentrator is equipped with a backup battery which lasts for at least 24 hours.

The concentrator can be installed in one of two ways:

Installed close to the controller, at a distance of not more than 10 meters, using direct communication (RS-232).

Installed at a distance of not more than 30 meters, using an RS-485 adaptor.

Concentrator Connections:

Connect the concentrator to two FG9023 antennas with RF cables. Do not bend the cables below a radius of 30 cm. Always keep 60 cm distances between antennas.

1.4 Test Methodology

Both conducted and radiated testing were performed according to the procedures in Public Notice: DA 00-705 Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems and ANSI C63.4: 2003. Radiated testing was performed at an antenna to EUT distance of 3 meters.

1.5 Test Facility

The radiated emissions tests were performed at I.T.L.'s testing facility at Kfar Bin-Nun, Israel. This site is a FCC listed test laboratory (FCC Registration No. 90715, date of listing September 3, 2009).

I.T.L.'s EMC Laboratory is also accredited by A2LA, certificate No. 1152.01.

1.6 Measurement Uncertainty

Conducted Emission

Conducted Emission (CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4) 0.15 – 30 MHz:

Expanded Uncertainty (95% Confidence, K=2):

± 3.6 dB

Note: See ITL Procedure No. PM 198.

Radiated Emission

Radiated Emission (CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4) for open site 30-1000MHz:

Expanded Uncertainty (95% Confidence, K=2):

± 5.2 dB

Note: See ITL Procedure No. PM 198.

2. System Test Configuration

2.1 ***Justification***

Unit was tested on the table connected to 2 antennas at installation position. Both antennas working in diversity mode, not transmitting at the same time, and both connected to the same RF chain.

2.2 ***Special Accessories***

No special accessories were needed in order to achieve compliance.

2.3 ***Equipment Modifications***

No modifications were needed in order to achieve compliance

2.4 ***Configuration of Tested System***

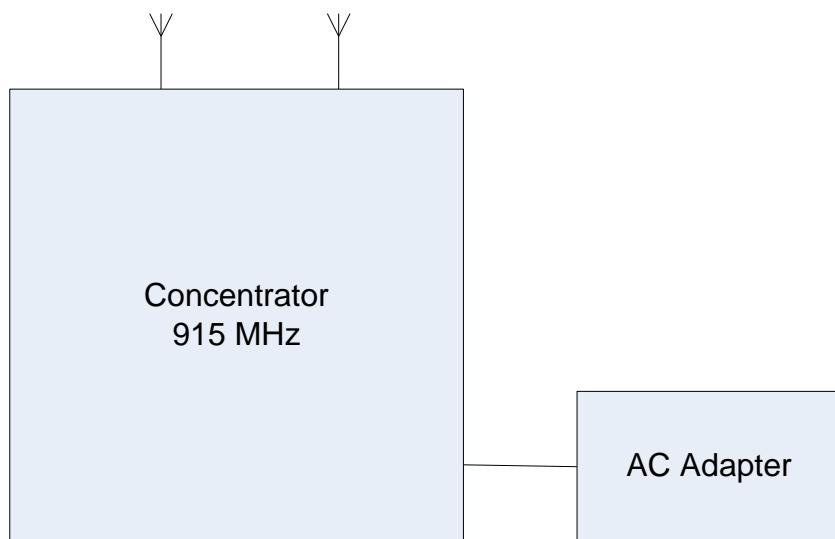


Figure 1. Configuration of Tested System

3. Conducted and Radiated Measurement Test Set-up Photo

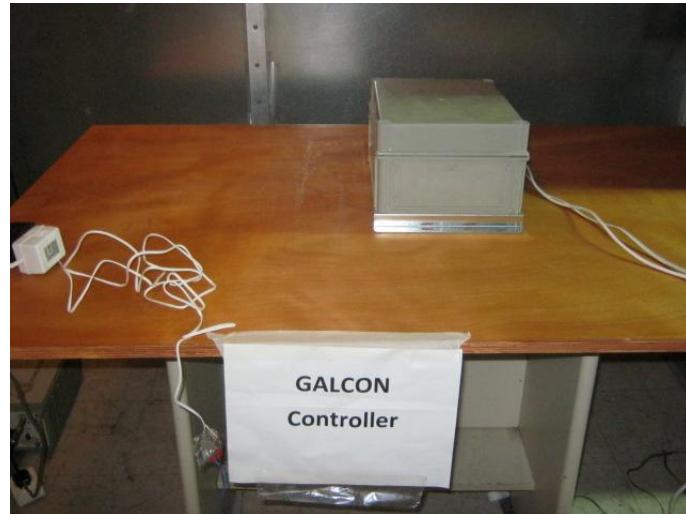


Figure 2. Conducted Emission Test

Figure 3. Radiated Emission Test

Figure 4. Radiated Emission Test

Figure 5. Radiated Emission Test

Figure 6. Radiated Emission Test

4. Conducted Emission

4.1 Test Specification

F.C.C., Part 15, Subpart C

4.2 Test Procedure

The E.U.T operation mode and test set-up are as described in Section 3.1. In order to minimize background noise interference, the conducted emission testing was performed inside a shielded room, with the E.U.T placed on an 0.8 meter high wooden table, 0.4 meter from the room's vertical wall.

The E.U.T was powered from 115 V AC / 60 Hz via a 50 Ohm / 50 μ Hn Line Impedance Stabilization Network (LISN) on the phase and neutral lines. The LISN's were grounded to the shielded room ground plane (floor), and were kept at least 0.8 meters from the nearest boundary of the E.U.T

The center of the E.U.T AC cable was folded back and forth, in order to form a bundle less than 0.40 meters and a total cable length of 1 meter.

The emission voltages at the LISN's outputs were measured using a computerized receiver, complying with CISPR 16 requirements. The specification limits are loaded to the receiver via a 3.5" floppy disk and are displayed on the receiver's spectrum display.

A frequency scan between 0.15 and 30 MHz was performed at 9 kHz I.F. band width, and using peak detection.

The spectral components having the highest level on each line were measured using a quasi-peak and average detector.

4.3 Test Results

JUDGEMENT: Passed by 30.26 dB

The EUT met the F.C.C. Part 15, Subpart C specification requirements.

The details of the highest emissions are given in

Figure 7 to Figure 10.

TEST PERSONNEL:

Tester Signature:

Date: 02.01.14

Typed/Printed Name: A. Sharabi

Conducted Emission

E.U.T Description Two Way Radio System
(G2W) Concentrator

Type AMGR0C03A

Serial Number: Not Designated

Specification: F.C.C., Part 15, Subpart C

Lead: Phase

Detectors: Peak, Quasi-peak, Average

EDIT PEAK LIST (Final Measurement Results)				
Trace1:	CE22BQP			
Trace2:	CE22BAP			
Trace3:	---			
TRACE	FREQUENCY	LEVEL dB μ V	DELTA	LIMIT dB
1	Quasi Peak 158 kHz	15.88	-	-49.68
2	Average 170 kHz	11.23	-	-43.72
2	Average 422 kHz	5.79	-	-41.61
1	Quasi Peak 426 kHz	8.80	-	-48.52
1	Quasi Peak 506 kHz	9.90	-	-46.09
2	Average 506 kHz	6.47	-	-39.52
1	Quasi Peak 926 kHz	8.50	-	-47.49
2	Average 1.15 MHz	5.77	-	-40.22
1	Quasi Peak 1.446 MHz	8.69	-	-47.30
2	Average 1.61 MHz	5.83	-	-40.17
2	Average 3.058 MHz	4.86	-	-41.13
1	Quasi Peak 3.566 MHz	9.57	-	-46.42
2	Average 4.686 MHz	5.35	-	-40.64
1	Quasi Peak 4.882 MHz	9.47	-	-46.52
1	Quasi Peak 8.666 MHz	15.74	-	-44.25
2	Average 8.85 MHz	8.27	-	-41.72
1	Quasi Peak 10.726 MHz	29.54	-	-30.46
2	Average 15.382 MHz	12.57	-	-37.42
2	Average 17.706 MHz	9.26	-	-40.73
1	Quasi Peak 26.434 MHz	11.76	-	-48.23

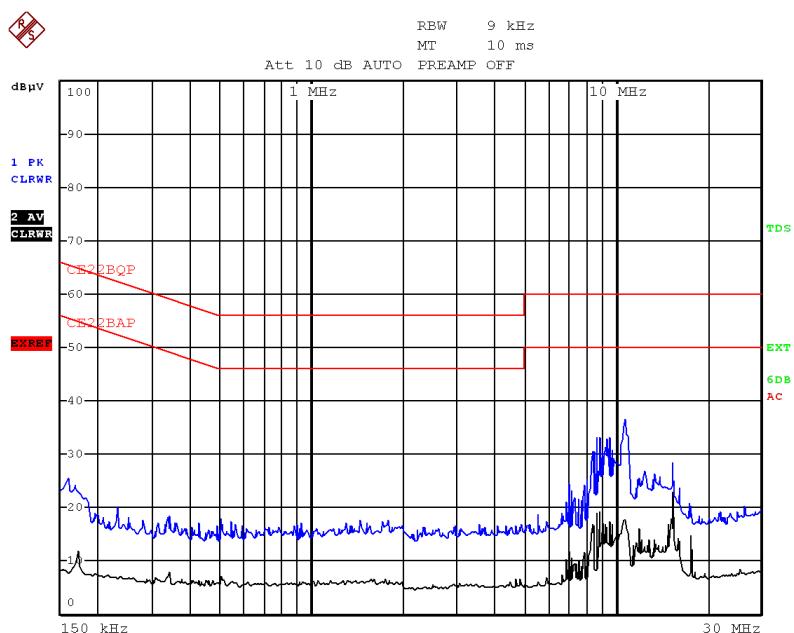
Date: 2.APR.2013 16:04:17

Figure 7. Detectors: Peak, Quasi-peak, Average

Note: *QP Delta/Av Delta refer to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.*

Conducted Emission

E.U.T Description Two Way Radio System
(G2W) Concentrator


Type AMGR0C03A

Serial Number: Not Designated

Specification: F.C.C., Part 15, Subpart C

Lead: Phase

Detectors: Peak, Quasi-peak, Average

Date: 2.APR.2013 16:02:57

Figure 8. Detectors: Peak, Quasi-peak, Average

Conducted Emission

E.U.T Description Two Way Radio System (G2W)
Concentrator

Type AMGR0C03A

Serial Number: Not Designated

Specification: F.C.C., Part 15, Subpart C

Lead: Neutral

Detectors: Peak, Quasi-peak, Average

EDIT PEAK LIST (Final Measurement Results)					
Trace1:	CE22BQP	Trace2:	CE22BAP	Trace3:	---
	TRACE	FREQUENCY	LEVEL dB μ V	DELTA	LIMIT dB
1	Quasi Peak	162 kHz	14.94	-50.41	
2	Average	170 kHz	10.55	-44.40	
1	Quasi Peak	382 kHz	8.91	-49.32	
2	Average	414 kHz	5.86	-41.70	
1	Quasi Peak	494 kHz	8.95	-47.14	
2	Average	638 kHz	5.66	-40.33	
1	Quasi Peak	826 kHz	8.56	-47.43	
2	Average	1.234 MHz	5.70	-40.29	
2	Average	1.622 MHz	6.08	-39.91	
1	Quasi Peak	1.814 MHz	8.75	-47.24	
2	Average	2.502 MHz	4.68	-41.31	
1	Quasi Peak	2.598 MHz	9.17	-46.82	
1	Quasi Peak	4.342 MHz	12.52	-43.47	
2	Average	4.346 MHz	6.21	-39.78	
1	Quasi Peak	8.818 MHz	29.73	-30.26	
2	Average	8.822 MHz	18.41	-31.58	
1	Quasi Peak	10.782 MHz	29.11	-30.88	
2	Average	10.794 MHz	18.37	-31.63	
2	Average	17.706 MHz	7.62	-42.37	
1	Quasi Peak	28.078 MHz	11.91	-48.08	

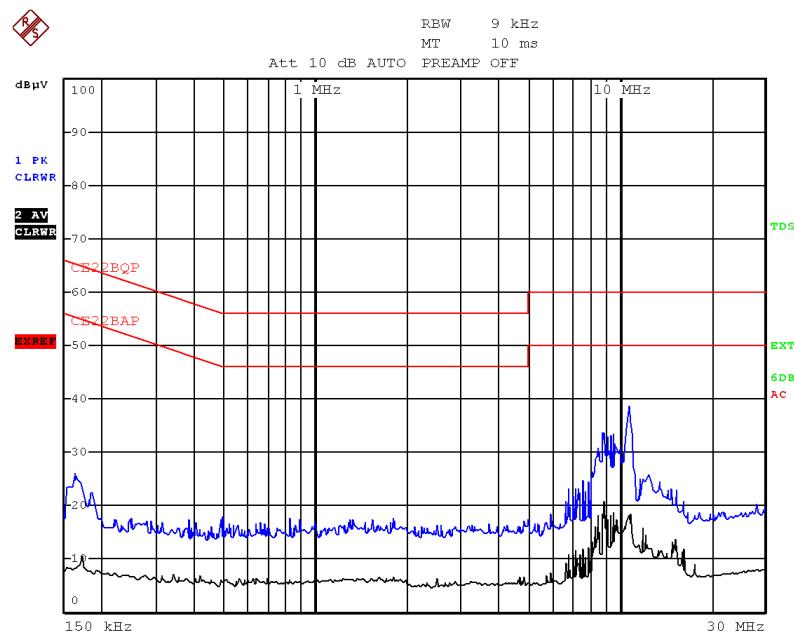
Date: 2.APR.2013 16:09:13

Figure 9. Detectors: Peak, Quasi-peak, AVERAGE .

Note: QP Delta/Av Delta refer to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

Conducted Emission

E.U.T Description Two Way Radio System (G2W)
Concentrator


Type AMGR0C03A

Serial Number: Not Designated

Specification: F.C.C., Part 15, Subpart C

Lead: Neutral

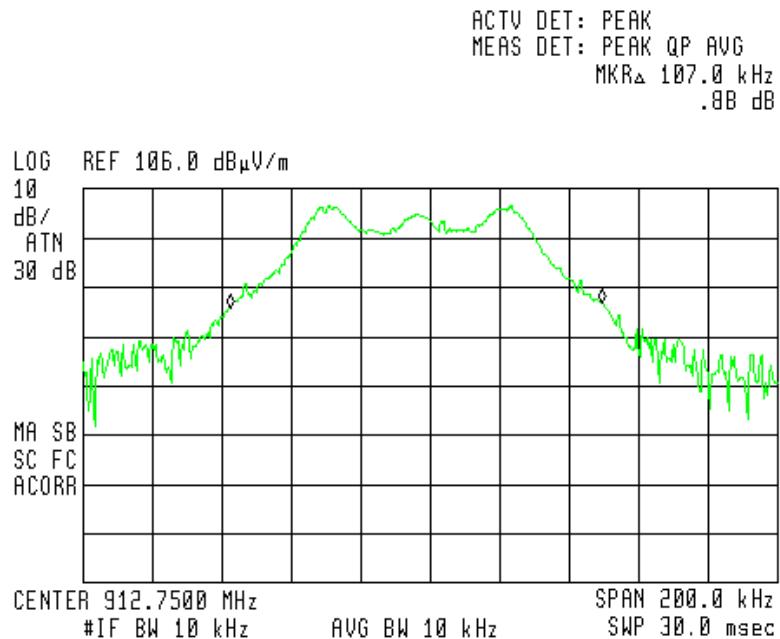
Detectors: Peak, Quasi-peak, Average

Figure 10. Detectors: Peak, Quasi-peak, AVERAGE .

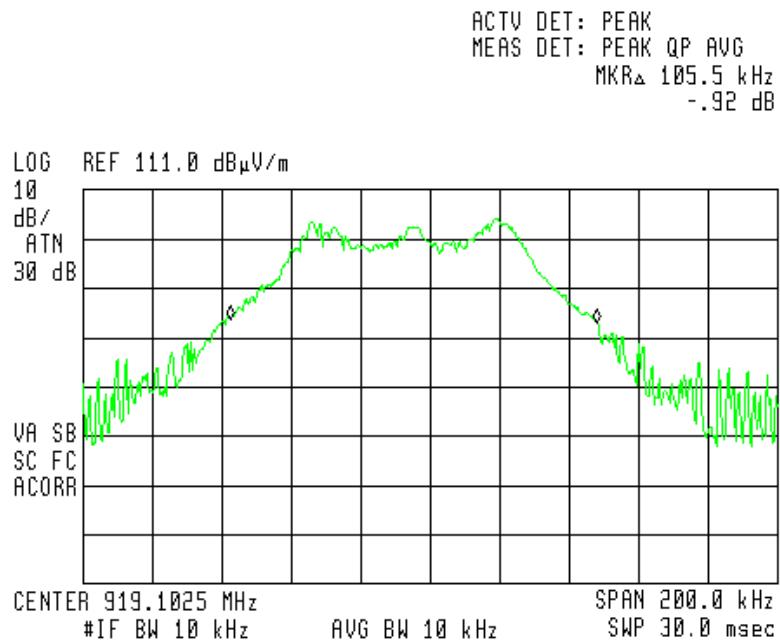
4.4 Test Instrumentation Used, Conducted Measurement

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Period
LISN	EMCO	3810/2BR	1297	December 16, 2012	1 Year
Transient Limiter	HP	11947A	3107A03041	February 25, 2013	1 Year
EMI Receiver	Rohde & Schwarz	ESCI7	100724	December 27, 2012	1 Year

5. 20dB Minimum Bandwidth


5.1 *Test Specification*

F.C.C. Part 15, Subpart C: 15.247(a)(2)


5.2 *Test procedure*

The E.U.T was placed on a non-metallic table, 0.8 meters above the ground plane, on a remote-controlled turntable in the OATS. The test distance was 3 meters. The transmitter unit operated with normal modulation. The EMI receiver was set to 10 kHz resolution BW. The spectrum bandwidth of the transmitter unit was measured and recorded. The test was performed to measure the transmitter occupied bandwidth. The EUT was set up as shown in Figure 3, and its proper operation was checked. The transmitter occupied bandwidth was measured with the EMI receiver as frequency delta between reference points on modulation envelope. The E.U.T. was tested at Low and High channels.

hp

Figure 11. 912.750 MHz

hp

Figure 12. 919.103 MHz

5.3 Test Results

E.U.T Description: Two Way Radio System (G2W) Concentrator

Model: AMGR0C03A

Serial Number: Not Designated

Operation Frequency (MHz)	Bandwidth Reading (kHz)	Specification (kHz)
Low	107.0	<250
High	105.5	<250

Figure 13 Test Results

JUDGEMENT: Passed

TEST PERSONNEL:

Tester Signature:

Date: 02.01.14

Typed/Printed Name: A. Sharabi

5.4 Test Equipment Used.

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	HP	85422E	3906A00276	February 26, 2013	1 year
RF Section	HP	85420E	3705A00248	February 26, 2013	1 year
Antenna Log Periodic	A.H. Systems	SAS-200/511	809	April 2, 2013	1 year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	HP	LaserJet 2200	JPKGC19982	N/A	N/A

Figure 14 Test Equipment Used

6. Number of Hopping Frequencies

Section 15.247(a)(1)(i)

6.1 ***Test Specification***

F.C.C., Part 15, Subpart C

6.2 ***Test Procedure***

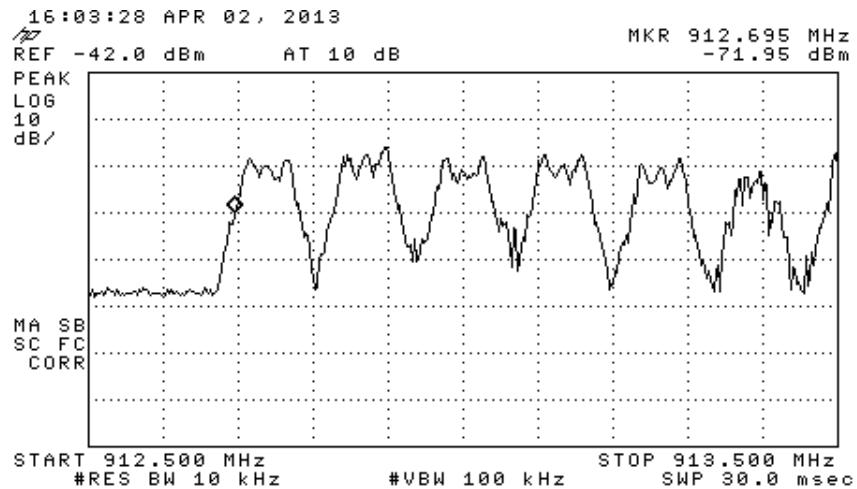
The E.U.T. was set to hopping mode.

The spectrum analyzer was set to the following parameters:

Band of Operation: 912-920 MHz

RBW: 30kHz

VBW: 3MHz


Detector Function: Peak

Trace: Maximum Hold

The number of hopping frequencies is 50 (See plots).

Number of Hopping Frequencies

E.U.T Description Two Way Radio System (G2W) Concentrator
Type AMGR0C03A
Serial Number: Not Designated

Figure 15. Number Of Channels

Number of Hopping Frequencies

E.U.T Description Two Way Radio System (G2W) Concentrator
Type AMGR0C03A
Serial Number: Not Designated

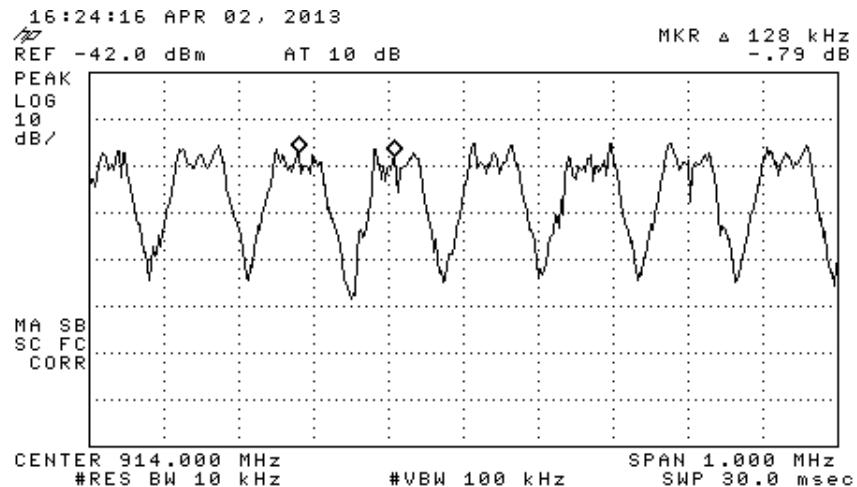


Figure 16. Number Of Channels

Number of Hopping Frequencies

E.U.T Description Two Way Radio System (G2W)
Concentrator
Type AMGR0C03A
Serial Number: Not Designated

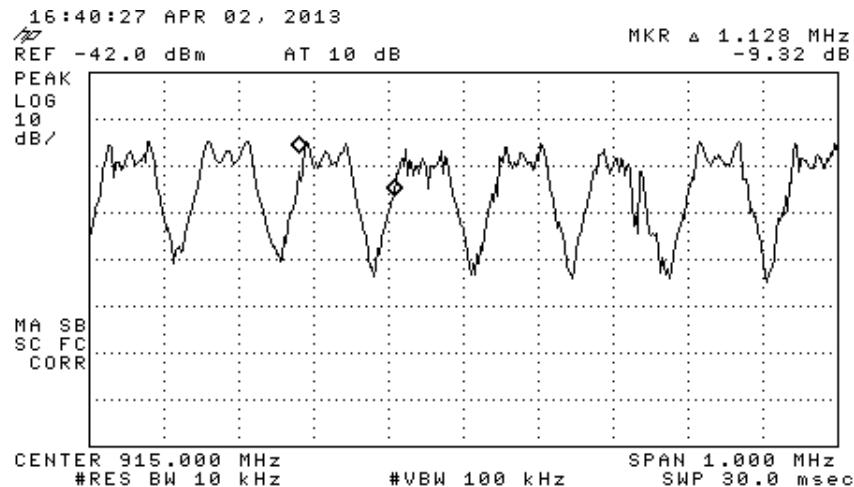
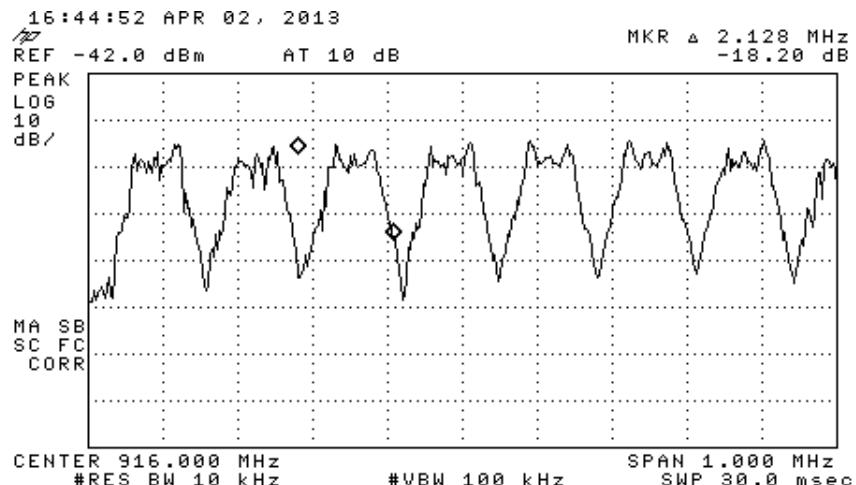


Figure 17. Number Of Channels


Number of Hopping Frequencies

E.U.T Description Two Way Radio System (G2W)

Concentrator

Type AMGR0C03A

Serial Number: Not Designated

Figure 18. Number Of Channels

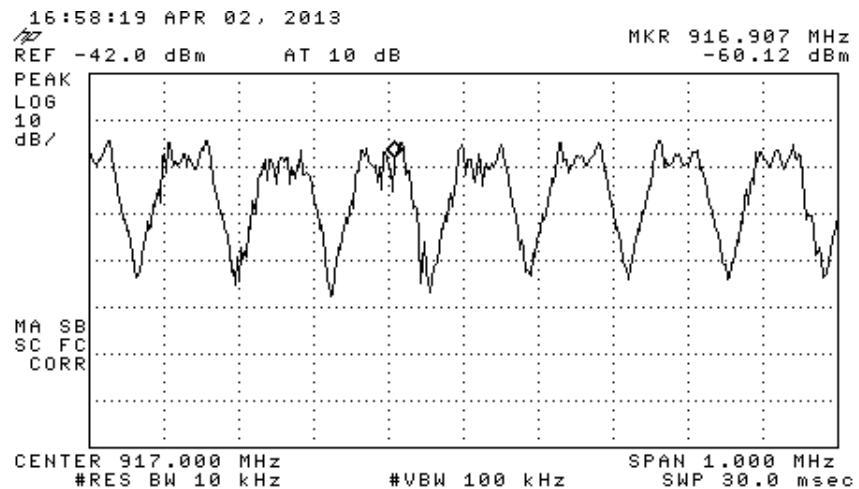


Figure 19. Number Of Channels

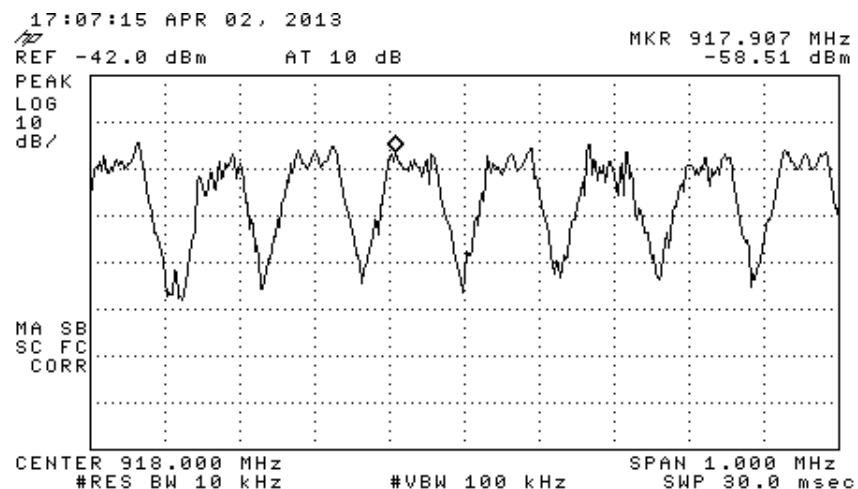
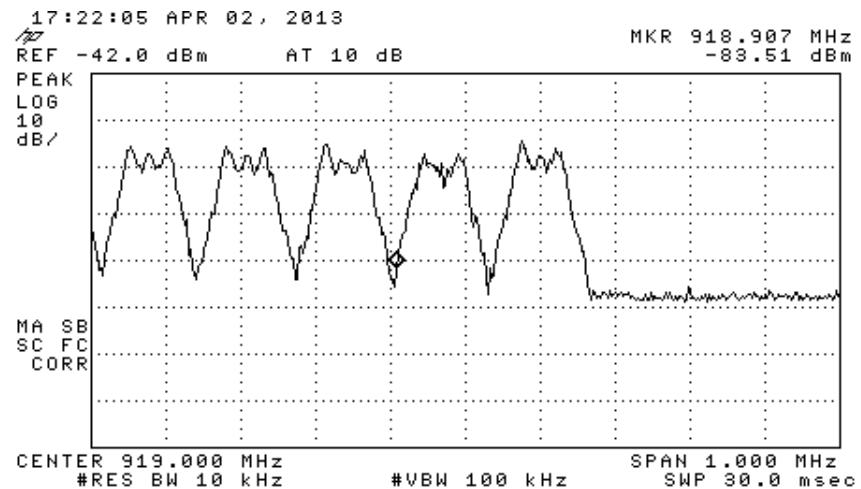



Figure 20. Number Of Channels

Figure 21. Number Of Channels

6.3 **Results table**

E.U.T. Description: Two Way Radio System (G2W) Concentrator

Model No.: AMGR0C03A

Serial Number: Not Designated

Specification: FCC Part 15, Subpart C, 15.247(a)(1)(i)

Number of Hopping Frequencies	Specification
50	>=50

Figure 22 Number of Hopping Frequencies

TEST PERSONNEL:

Tester Signature: Date: 02.01.14
Typed/Printed Name: A. Sharabi

6.4 **Test Instrumentation Used**

Instrument	Manufacturer	Model	Serial Number	Calibration	
				Last Calibration Date.	Period
Spectrum Analyzer	HP	8564E	3442A00275	February 28, 2013	1 year
Cable	Rhophase	KPS-5000-KPS	A1674	April 2, 2013	1 year

7. Channel Frequency Separation

7.1 Test Specification

Specification: FCC Part 15, Subpart C, 15.247(a) (1)

7.2 Test procedure

The E.U.T. was set to hopping mode.

The spectrum analyzer was set to the following parameters:

RBW: 30kHz

VBW: 3MHz

Detector Function: Peak

Trace: Maximum Hold

The marker delta function to determine the separation between the peaks of the adjacent channels was used.

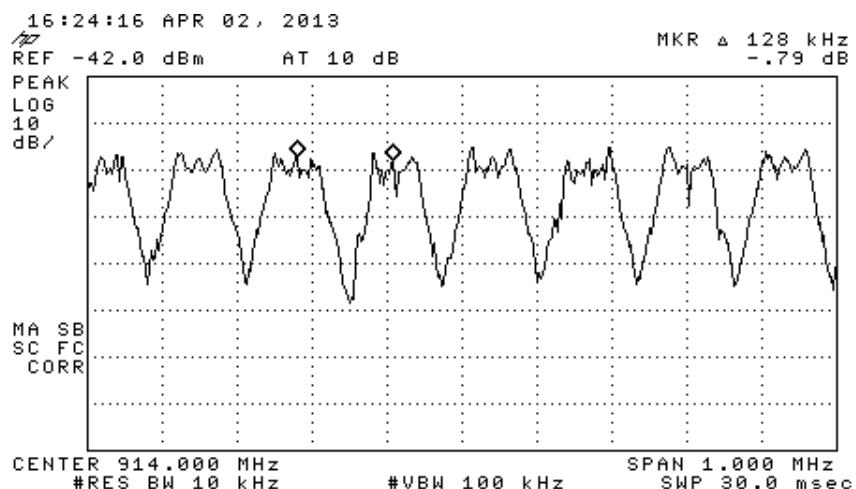


Figure 23. Separation

7.3 **Results table**

E.U.T. Description: Two Way Radio System (G2W) Concentrator

Model No.: AMGR0C03A

Serial Number: Not Designated

Specification: FCC Part 15, Subpart C, 15.247(a) (1)

Channel Frequency Separation (kHz)	Specification (kHz)	Margin (kHz)
128	>100	28

Figure 24 Channel Frequency Separation

JUDGEMENT: Passed by 28 kHz

TEST PERSONNEL:

Tester Signature:
Typed/Printed Name: A. Sharabi

Date: 02.01.14

7.4 **Test Instrumentation Used**

Instrument	Manufacturer	Model	Serial Number	Calibration	
				Last Calibration Date.	Period
Spectrum Analyzer	HP	8564E	3442A00275	February 28, 2013	1 year
Cable	Rhophase	KPS-5000-KPS	A1674	April 2, 2013	1 year

8. Radiated Power Output

8.1 Test Specification

F.C.C. Part 15, Subpart C: 15.247(b)(2)

8.2 Test procedure

The E.U.T was placed on a non-metallic table, 0.8 meters above the ground plane, on a remote-controlled turntable in the OATS. The test distance was 3 meters.

The transmitter unit operated with normal modulation. The EMI receiver was set to 120KHz resolution BW. The EUT was set up as shown in Figure 3, and its proper operation was checked.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization/

The worst case emissions were measured vertically.

The E.U.T. was tested at the Low and High channels with modulation.

Radiated output power levels were measured at selected operation frequencies and the results were converted to power level according to the formula as shown below:

$$P = \frac{(E_{V/m} \times d)^2}{(30 \times G)} \text{ [W]}$$

E - Field Strength (V/m)

d – Distance from transmitter (m)

G – Antenna gain

P – Peak power (W)

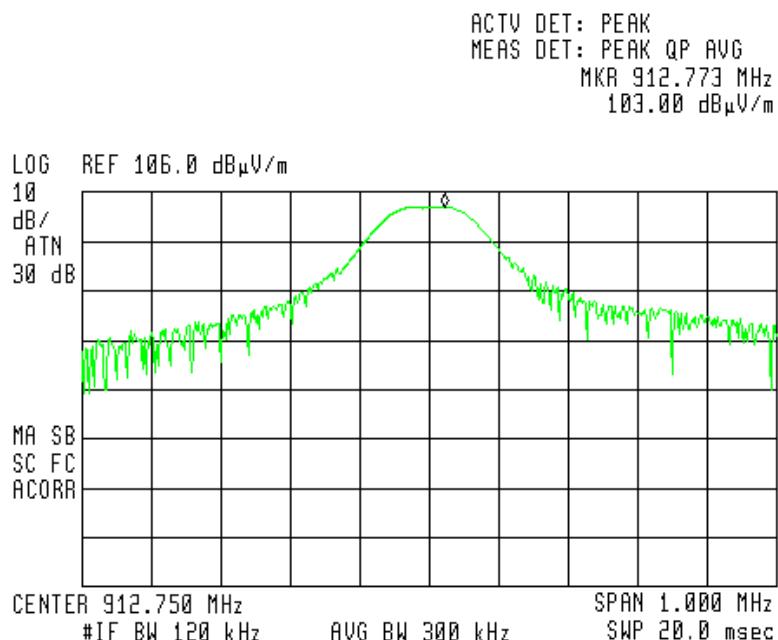


Figure 25 912.750 MHz

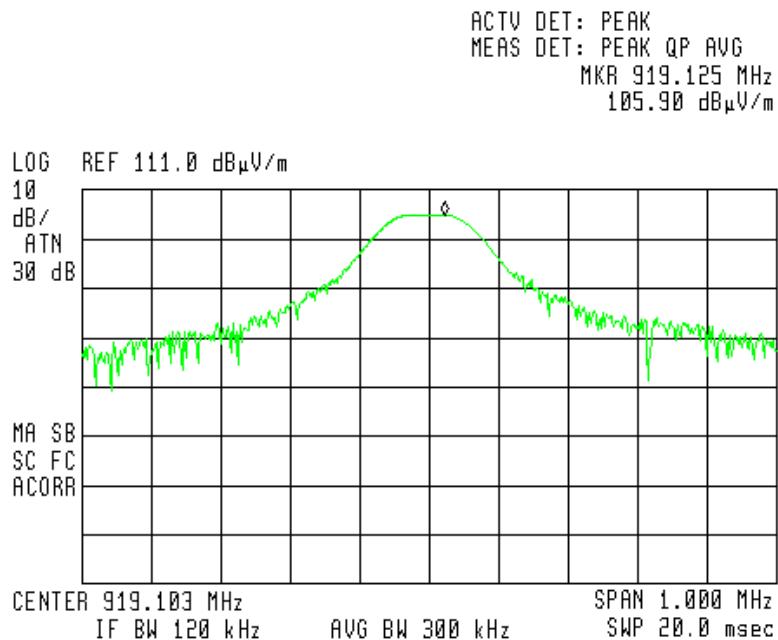


Figure 26 919.103 MHz

8.3 Results Calculation

E.U.T. Description: Two Way Radio System (G2W) Concentrator

Model No.: AMGR0C03A

Serial Number: Not Designated

Specification: F.C.C. Part 15, Subpart C

Frequency (MHz)	E (db μ V/m)	E (V/m)	Antenna Gain (dBi)	Antenna Distance (m)	Calculated Results (mW)	Limit (mW)	Margin (mW)
912.773	103.00	0.141	1.995	3	2.98	1000	-997.02
919.125	105.90	0.197	1.995	3	5.83	1000	-994.17

Figure 27 Radiated Power Output Test Results Table

JUDGEMENT: Passed

TEST PERSONNEL:

Tester Signature: A. Sharabi

Date: 02.01.14

Typed/Printed Name: A. Sharabi

8.4 **Test Equipment Used.**

Radiated Maximum Power Output

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	HP	85422E	3906A00276	February 26, 2013	1 year
RF Section	HP	85420E	3705A00248	February 26, 2013	1 year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	HP	LaserJet 2200	JPKGC19982	N/A	N/A
Antenna-Log Periodic	A.H.System	SAS-200/511	809	April 2, 2013	1 year

Figure 28 Test Equipment Used

9. Dwell Time on Each Channel

9.1 Test Specification

FCC Part 15, Section 15.247(a)(1)(i)

9.2 Test Procedure

The E.U.T. was tested in radiated mode using the substitution antenna. The spectrum analyzer was set to 100 kHz RBW .

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 20 seconds

9.3 Test Results

The E.U.T met the requirements of the FCC Part 15, Section 15.247(a)(1)(i).

Additional information of the results is given in *Figure 29 to Figure 30*.

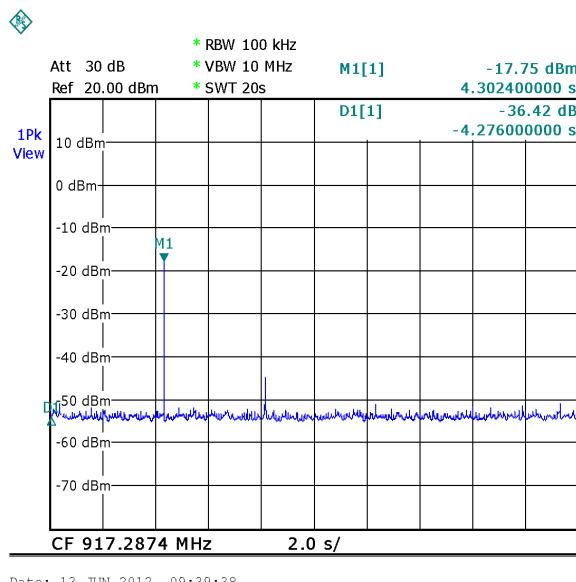
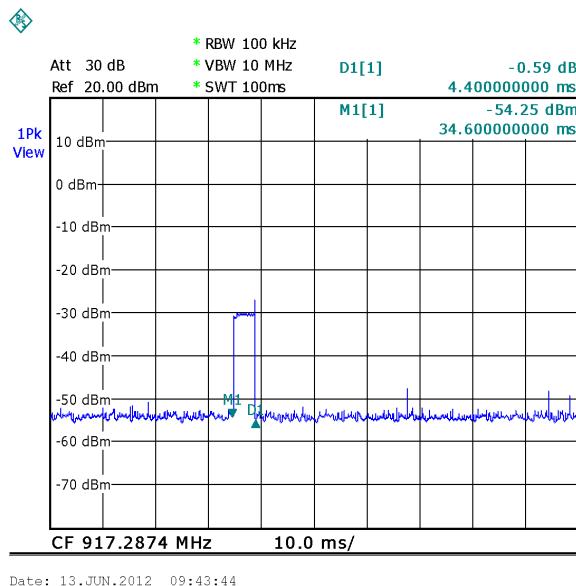



Figure 29 — Transmission within 20 sec

Figure 30 — Burst duration within 20sec

9.4 Test Equipment Used.

Instrument	Manufacturer	Model	Serial Number	Calibration	
				Last Calibration Date.	Period
Spectrum Analyzer	HP	8564E	3442A00275	January 19, 2012	1 year

10. Band Edge

[In Accordance with section 15.247(d)]

10.1 Test procedure

The E.U.T was placed on a non-metallic table, 0.8 meters above the ground plane, on a remote-controlled turntable in the OATS. The test distance was 3 meters.

The transmitter unit operated with normal modulation. The EMI receiver was set to 1 MHz resolution BW. The EUT was set up as shown in Figure 3, and its proper operation was checked.

The EMI receiver was adjusted to the transmission channel at the maximum radiated level. The display line was set to 20 dBc and the EMI receiver was set to the band edge frequencies.

The E.U.T. was tested at the lower and the upper channels.

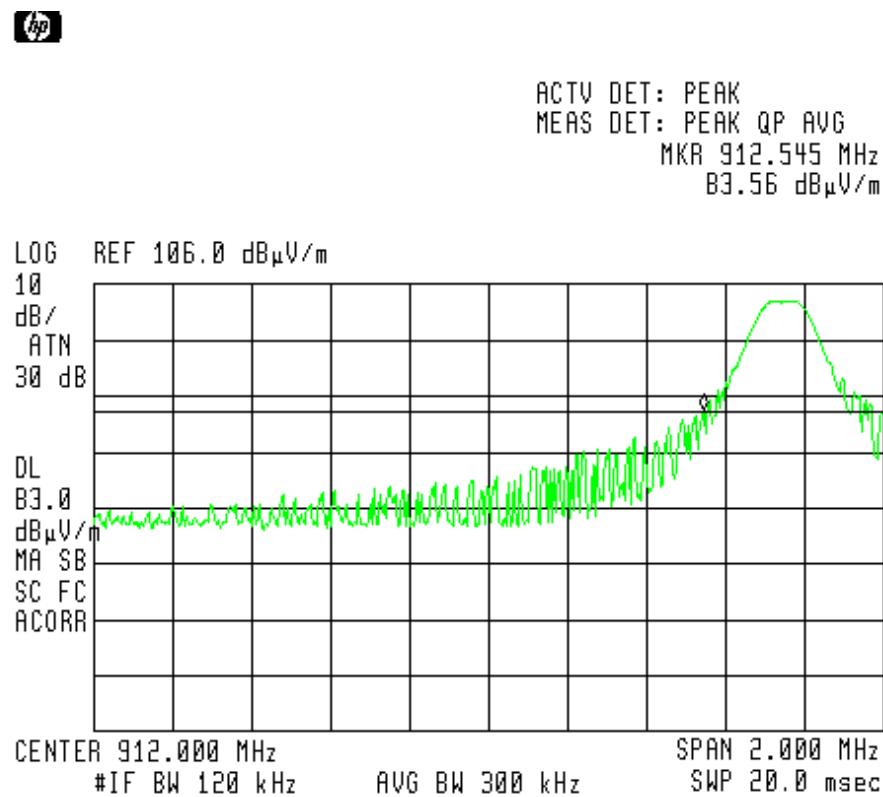


Figure 31 — 912.000 MHz

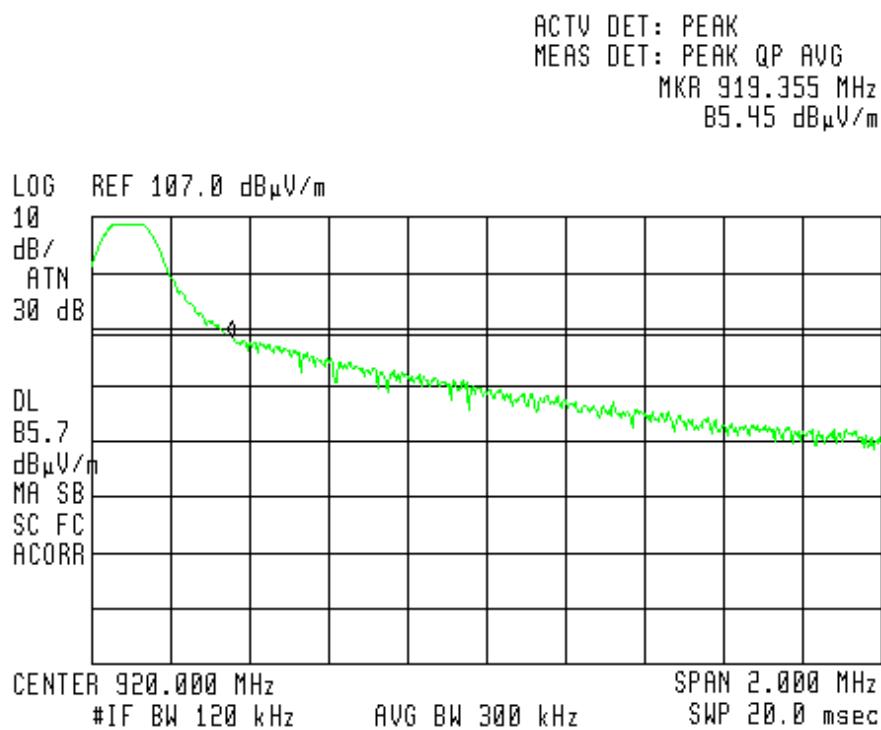


Figure 32 — 920.000 MHz

10.2 Results table

E.U.T. Description: Two Way Radio System (G2W) Concentrator

Model No.: AMGR0C03A

Serial Number: Not Designated

Specification: F.C.C. Part 15, Subpart C (15.247 (d))

Operation Frequency (MHz)	Specification (dB μ V/m)	Frequency Reading at amplitude limit (MHz)	Margin (MHz)
912.000	83.0	912.545	0.545
920.00	85.7	919.355	0.645

Figure 33 Band Edge

JUDGEMENT: Passed

TEST PERSONNEL:

Tester Signature: Date: 02.01.14

Typed/Printed Name: A. Sharabi

10.3 **Test Equipment Used.**

Band edge Spectrum

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	HP	85422E	3906A00276	February 26, 2013	1 year
RF Section	HP	85420E	3705A00248	February 26, 2013	1 year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	HP	LaserJet 2200	JPKGC19982	N/A	N/A
Antenna-Log Periodic	A.H.System	SAS-200/511	809	April 2, 2013	1 year

Figure 34 Test Equipment Used

11. Radiated Emission, 9 kHz – 30 MHz

11.1 *Test Specification*

9 kHz-30 MHz, FCC, Part 15, Subpart C, Section 209

11.2 *Test Procedure*

The E.U.T. operation mode and test set-up are as described in Section 3.

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground. The configuration tested is shown in Figure 3.1.

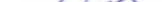
The frequency range 9 kHz-30 MHz was scanned.

The emissions were measured using a computerized EMI receiver complying to CISPR 16 requirements. The specification limits and applicable correction factors are loaded to the receiver via a 3.5" floppy disk.

In the frequency range 9 kHz-30MHz, the loop antenna was rotated on its vertical axis. The antenna height (center of loop) was 1 meter at a distance of 3 meters.

The E.U.T. was tested in two operating channels, lowest and highest.

11.3 *Measured Data*


JUDGEMENT: Passed

The EUT met the requirements of the F.C.C. Part 15, Subpart C, Section 209 specification.

The results for all two channels were the same.

No signals were detected in the frequency range of 9 kHz – 30 MHz.

TEST PERSONNEL:

Tester Signature:

Date: 02.01.14

Typed/Printed Name: A. Sharabi

11.4 ***Test Instrumentation Used, Radiated Measurements***

Instrument	Manufacturer	Model	Serial Number	Calibration	Period
EMI Receiver	HP	85422E	3906A00276	February 26, 2013	1 year
RF Section	HP	85420E	3705A00248	February 26, 2013	1 year
Active Loop Antenna	EMCO	6502	9506-2950	October 21, 2012	1 year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	HP	LaserJet 2200	JPKGC19982	N/A	N/A

11.5 **Field Strength Calculation**

The field strength is calculated directly by the EMI Receiver software, and a "Correction Factors" data disk, using the following equation:

$$FS = RA + AF + CF$$

FS: Field Strength [dB μ V/m]

RA: Receiver Amplitude [dB μ V]

AF: Receiving Antenna Correction Factor [dB/m]

CF: Cable Attenuation Factor [dB]

Example: $FS = 30.7 \text{ dB}\mu\text{V (RA)} + 14.0 \text{ dB (AF)} + 0.9 \text{ dB (CF)} = 45.6 \text{ dB}\mu\text{V}$

No external pre-amplifiers are used.

12. Spurious Radiated Emission 30 – 10000MHz

12.1 ***Test Specification***

30 MHz-10000 MHz, F.C.C., Part 15, Subpart C

12.2 ***Test Procedure***

The E.U.T. operation mode and test set-up are as described in Section 3.

See Section 3.1 Justification of the System Test Configuration concerning the E.U.T. orientation for this test.

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 0.8 meters above the ground..

The frequency range 30 MHz-1000 MHz was scanned, and the list of the highest emissions was verified and updated accordingly.

The levels of the emissions within the frequency ranges of the restricted bands (Section 15.205 of FCC Part 15) were compared to the limits of the table in Section 15.209 (a), General Requirements.

The emissions were measured using a computerized EMI receiver complying to CISPR 16 requirements. The specification limits and applicable correction factors are loaded to the receiver via a 3.5" floppy disk.

In the frequency range 30-1000 MHz, the readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization.

In the frequency range 1-2.9 GHz, a computerized EMI receiver complying to CISPR 16 requirements was used.

In the frequency range 2.9-25.0 GHz, a spectrum analyzer including a low noise amplifier was used. During average measurements, the IF bandwidth was 1 MHz and the video bandwidth was 100Hz. During peak measurements, the IF bandwidth was 1 MHz and the video bandwidth was 3 MHz.

The test distance was 3 meters.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between 0-360°, and the antenna polarization. Verification of the E.U.T emissions was based on the following methods: turning the E.U.T on and off; using a frequency span less than 10 MHz; observation of the signal level during turntable rotation. (Background noise is not affected by the rotation of the E.U.T.)

The E.U.T. was tested in two operating channels: lowest and highest.

12.3 **Test Data**

JUDGEMENT: Passed

The EUT met the requirements of the F.C.C. Part 15, Subpart C, specification. The results for all three operation channels were the same.

For the operation 912.733 MHz, the margin between the emission level and the specification limit is 8.0 dB in the worst case at the frequency of 2738.1 MHz, horizontal polarization.

For the operation 919.165 MHz, the margin between the emission level and the specification limit is 0.0 dB in the worst case at the frequency of 1838.3 MHz, horizontal polarization.

TEST PERSONNEL:

Tester Signature:

Date: 02.01.14

Typed/Printed Name: A. Sharabi

Radiated Emission

E.U.T Description Two Way Radio System (G2W)
Concentrator
Type AMGR0C03A
Serial Number: Not Designated

Specification: FCC, Part 15, Subpart C

Antenna Polarization: Horizontal/Vertical Frequency range: 1.0 GHz to 10.0 GHz
Test Distance: 3 meters Detector: Peak

Operation Frequency (MHz)	Freq. (MHz)	Polarity (H/V)	Peak Reading (dB μ V/m)	Peak Specification (dB μ V/m)	Peak Margin (dB)
912.733	1825.4	H	63.5	74.0	-10.5
912.733	1825.4	V	60.4	74.0	-13.6
912.733	2738.1	H	66.0	74.0	-8.0
912.733	2738.1	V	58.6	74.0	-15.4
919.165	1838.3	H	65.0	74.0	-9.0
919.165	1838.3	V	64.7	74.0	-9.3
919.165	2757.5	H	61.3	74.0	-12.7
919.165	2757.5	V	64.0	74.0	-10.0

**Figure 35. Radiated Emission. Antenna Polarization: HORIZONTAL / VERTICAL.
Detector: Peak**

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

“Peak Amp” includes correction factor.

* “Correction Factor” = Antenna Factor + Cable Loss- Low Noise Amplifier Gain

Radiated Emission

E.U.T Description Two Way Radio System (G2W)
Concentrator

Type AMGR0C03A
Serial Number: Not Designated

Specification: FCC, Part 15, Subpart C

Antenna Polarization: Horizontal/Vertical Frequency range: 1.0 GHz to 25.0 GHz
Test Distance: 3 meters Detector: Average

Operation Frequency (MHz)	Freq. (MHz)	Polarity (H/V)	Duty Cycle Factor (dB)	Average /QP (dB μ V/m)	Average / QP Specification (dB μ V/m)	Average Margin (dB)
912.733	1825.4	H	-27.95	35.55	54.0	-18.45
912.733	1825.4	V	-27.95	32.45	54.0	-21.55
912.733	2738.1	H	-27.95	38.05	54.0	-15.95
912.733	2738.1	V	-27.95	30.65	54.0	-23.35
919.165	1838.3	H	-27.95	37.05	54.0	-16.95
919.165	1838.3	V	-27.95	36.75	54.0	-17.25
919.165	2757.5	H	-27.95	33.05	54.0	-20.95
919.165	2757.5	V	-27.95	36.05	54.0	-17.95

**Figure 36. Radiated Emission. Antenna Polarization: HORIZONTAL / VERTICAL.
Detector: Average**

Notes:

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

“Average Amp” includes correction factor.

* Correction Factor = Antenna Factor + Cable Loss- Low Noise Amplifier Gain

12.4 Test Instrumentation Used, Radiated Measurements

Instrument	Manufacturer	Model	Serial No.	Last Calibration Date	Period
EMI Receiver	HP	85422E	3906A00276	February 26, 2013	1 Year
RF Filter Section	HP	85420E	3705A00248	February 26, 2013	1 Year
Antenna Biconical	EMCO	3104	2606	August 30, 2012	1 Year
Antenna Log Periodic	ARA	LPD-2010/A	1038	April 2, 2013	1 Year
Antenna Log Periodic	A.H. Systems	SAS-200/511	809	April 2, 2013	1 Year
Double Ridged Waveguide Horn Antenna	A.H. Systems	SAS 200/571	199	March 14, 2012	2 Years
Horn Antenna	ETS	3115	29845	March 14, 2012	2 Years
Horn Antenna	ARA	SWH-28	1007	January 26, 2011	3 Years
Low Noise Amplifier	DBS MICROWAVE	LNA-DBS-0411N313	013	August 21, 2012	1 Year
Low Noise Amplifier	Sophia Wireless	LNA 28-B	232	August 28, 2012	1 Year
Spectrum Analyzer	HP	8592L	3826A01204	February 28, 2013	1 Year
Spectrum Analyzer	HP	8546E	3442A00275	February 28, 2013	1 Year
Antenna Mast	ARA	AAM-4A	1001	N/A	N/A
Turntable	ARA	ART-1001/4	1001	N/A	N/A
Mast & Table Controller	ARA	ACU-2/5	1001	N/A	N/A
Printer	HP	LaserJet 2200	JPKG19982	N/A	N/A

13. Antenna Gain/Information

The antenna gain is 5.15 dBi.

Laird Technologies – Base Station Antennas

FG9023

902-928 MHz

915 MHz

3 dBd

25"

200 Watts

14. R.F Exposure/Safety

Typical use of the E.U.T. is as a system manager. It transmits via radio communication the controller's commands to all field units and returns the various inputs of the field units to the controller. The typical placement of the E.U.T. is wall or ceiling mounted. The typical distance between the E.U.T. and the user in the worst case application, is 1 m.

Calculation of Maximum Permissible Exposure (MPE)

Based on Section 1.1310 Requirements

(a) FCC limits at 919.125 MHz is: $f/1500 = 0.6127 \frac{mW}{cm^2}$

(b) Using table 1 of Section 1.1310 limit for general population/uncontrolled exposures, the above level is an average over 30 minutes.

(c) The power density produced by the E.U.T. is

$$S = \frac{P_t G_t}{4\pi R^2}$$

P_t - Transmitted Power 105.90 dbuV/m (Peak) = 0.00583W

G_t - Antenna Gain, 5.15 dBi = 3.27 numeric

R- Distance from Transmitter using 1 m worst case

(d) The peak power density is :

$$S_p = \frac{0.00583 \times 3.27}{4\pi(100)^2} = 1.517 \times 10^{-7} \frac{mW}{cm^2}$$

(e) This is below the FCC limit.

15. APPENDIX B - CORRECTION FACTORS

15.1 Correction factors for CABLE

from EMI receiver
to test antenna
at 3 meter range.

FREQUENCY (MHz)	CORRECTION FACTOR (dB)	FREQUENCY (MHz)	CORRECTION FACTOR (dB)
10.0	0.3	1200.0	7.3
20.0	0.6	1400.0	7.8
30.0	0.8	1600.0	8.4
40.0	0.9	1800.0	9.1
50.0	1.1	2000.0	9.9
60.0	1.2	2300.0	11.2
70.0	1.3	2600.0	12.2
80.0	1.4	2900.0	13.0
90.0	1.6		
100.0	1.7		
150.0	2.0		
200.0	2.3		
250.0	2.7		
300.0	3.1		
350.0	3.4		
400.0	3.7		
450.0	4.0		
500.0	4.3		
600.0	4.7		
700.0	5.3		
800.0	5.9		
900.0	6.3		
1000.0	6.7		

NOTES:

1. The cable type is RG-214.
2. The overall length of the cable is 27 meters.
3. The above data is located in file 27MO3MO.CBL on the disk marked "Radiated Emission Tests EMI Receiver".

15.2 Correction factors for CABLE

from EMI receiver
to test antenna
at 3 meter range.

FREQUENCY (GHz)	CORRECTION FACTOR (dB)
1.0	1.2
2.0	1.6
3.0	2.0
4.0	2.4
5.0	3.0
6.0	3.4
7.0	3.8
8.0	4.2
9.0	4.6
10.0	5.0
12.0	5.8

NOTES:

1. The cable type is RG-8.
2. The overall length of the cable is 10 meters.

15.3 Correction factors for CABLE

from spectrum analyzer
to test antenna above 2.9 GHz

FREQUENCY (GHz)	CORRECTION FACTOR (dB)	FREQUENCY (GHz)	CORRECTION FACTOR (dB)
1.0	1.9	14.0	9.1
2.0	2.7	15.0	9.5
3.0	3.5	16.0	9.9
4.0	4.2	17.0	10.2
5.0	4.9	18.0	10.4
6.0	5.5	19.0	10.7
7.0	6.0	20.0	10.9
8.0	6.5	21.0	11.2
9.0	7.0	22.0	11.6
10.0	7.5	23.0	11.9
11.0	7.9	24.0	12.3
12.0	8.3	25.0	12.6
13.0	8.7	26.0	13.0

NOTES:

1. The cable type is SUCOFLEX 104 E manufactured by SUHNER.
2. The cable is used for measurements above 2.9 GHz.
3. The overall length of the cable is 10 meters.

15.4 Correction factors for CABLE

from EMI receiver
to test antenna
at 10 meter range.

FREQUENCY (MHz)	CORRECTION FACTOR (dB)	FREQUENCY (MHz)	CORRECTION FACTOR (dB)
10.0	0.3	1200.0	9.8
20.0	0.8	1400.0	10.0
30.0	0.9	1600.0	11.3
40.0	1.2	1800.0	12.2
50.0	1.4	2000.0	13.1
60.0	1.6	2300.0	14.5
70.0	1.8	2600.0	15.9
80.0	1.9	2900.0	16.4
90.0	2.0		
100.0	2.1		
150.0	2.6		
200.0	3.2		
250.0	3.8		
300.0	4.2		
350.0	4.6		
400.0	5.1		
450.0	5.3		
500.0	5.6		
600.0	6.3		
700.0	7.0		
800.0	7.6		
900.0	8.0		
1000.0	8.7		

NOTES:

1. The cable type is RG-214.
2. The overall length of the cable is 34 meters.
3. The above data is located in file 34M10MO.CBL on the disk marked "Radiated Emissions Tests EMI Receiver".

12.6 Correction factors for LOG PERIODIC ANTENNA

Type LPD 2010/A
at 3 and 10 meter ranges.

Distance of 3 meters

FREQUENCY (MHz)	AFE (dB/m)
200.0	9.1
250.0	10.2
300.0	12.5
400.0	15.4
500.0	16.1
600.0	19.2
700.0	19.4
800.0	19.9
900.0	21.2
1000.0	23.5

Distance of 10 meters

FREQUENCY (MHz)	AFE (dB/m)
200.0	9.0
250.0	10.1
300.0	11.8
400.0	15.3
500.0	15.6
600.0	18.7
700.0	19.1
800.0	20.2
900.0	21.1
1000.0	23.2

NOTES:

1. Antenna serial number is 1038.
2. The above lists are located in file number 38M30.ANT for a 3 meter range, and file number 38M100.ANT for a 10 meter range.
3. The files mentioned above are located on the disk marked "Radiated Emission Test EMI Receiver".

**15.5 Correction factors for LOG PERIODIC ANTENNA
Type SAS-200/511
at 3 meter range.**

FREQUENCY (GHz)	ANTENNA FACTOR (dB)
1.0	24.9
1.5	27.8
2.0	29.9
2.5	31.2
3.0	32.8
3.5	33.6
4.0	34.3
4.5	35.2
5.0	36.2
5.5	36.7
6.0	37.2
6.5	38.1

FREQUENCY (GHz)	ANTENNA FACTOR (dB)
7.0	38.6
7.5	39.2
8.0	39.9
8.5	40.4
9.0	40.8
9.5	41.1
10.0	41.7
10.5	42.4
11.0	42.5
11.5	43.1
12.0	43.4
12.5	44.4
13.0	44.6

NOTES:

1. Antenna serial number is 253.
2. The above lists are located in file number SAS3M0.ANT for a 3 meter range.
3. The files mentioned above are located on the disk marked "Antenna Factors".

15.6 Correction factors for BICONICAL ANTENNA

Type BCD-235/B, at 3 meter range

FREQUENCY (MHz)	AFE (dB/m)
20.0	19.4
30.0	14.8
40.0	11.9
50.0	10.2
60.0	9.1
70.0	8.5
80.0	8.9
90.0	9.6
100.0	10.3
110.0	11.0
120.0	11.5
130.0	11.7
140.0	12.1
150.0	12.6
160.0	12.8
170.0	13.0
180.0	13.5
190.0	14.0
200.0	14.8
210.0	15.3
220.0	15.8
230.0	16.2
240.0	16.6
250.0	17.6
260.0	18.2
270.0	18.4
280.0	18.7
290.0	19.2
300.0	19.9
310	20.7
320	21.9
330	23.4
340	25.1
350	27.0

NOTES:

1. Antenna serial number is 1041.
2. The above list is located in file 19BC10M1.ANT on the disk marked "Radiated Emissions Tests EMI Receiver".

15.7 Correction factors for BICONICAL ANTENNA

Type BCD-235/B, 10 meter range

FREQUENCY (MHz)	AFE (dB/m)
30.0	12.1
40.0	10.6
50.0	10.6
60.0	8.9
70.0	8.5
80.0	9.6
90.0	9.4
100.0	9.6
110.0	10.3
120.0	10.7
130.0	12.6
140.0	12.7
150.0	12.7
160.0	13.8
170.0	13.7
180.0	14.9
190.0	13.4
200.0	13.1
210.0	14.0
220.0	14.5
230.0	15.8
240.0	16.0
250.0	16.6
260.0	16.7
270.0	18.3
280.0	18.5
290.0	19.3
300.0	20.9

NOTES:

1. Antenna serial number is 1041.
2. The above list is located in file 41BC10M1.ANT on the disk marked "Radiated Emissions Tests EMI Receiver".

15.8 Correction factors for

Double-Ridged Waveguide Horn

Model: 3115, S/N 29845

at 3 meter range.

FREQUENCY (GHz)	ANTENNA FACTOR (dB 1/m)	ANTENN A Gain (dBi)	FREQUENCY (GHz)	ANTENNA FACTOR (dB 1/m)	ANTENNA Gain (dBi)
1.0	24.8	5.4	10.0	38.8	11.4
1.5	26.1	7.6	10.5	38.9	11.8
2.0	28.6	7.7	11.0	39.0	12.1
2.5	29.8	8.4	11.5	39.6	11.8
3.0	31.4	8.4	12.0	39.8	12.0
3.5	32.4	8.7	12.5	39.6	12.5
4.0	33.7	8.6	13.0	40.0	12.5
4.5	33.4	9.9	13.5	39.8	13.0
5.0	34.5	9.7	14.0	40.2	13.0
5.5	35.1	9.9	14.5	40.6	12.9
6.0	35.4	10.4	15.0	41.3	12.4
6.5	35.6	10.8	15.5	39.5	14.6
7.0	36.2	10.9	16.0	38.8	15.5
7.5	37.3	10.4	16.5	40.0	14.6
8.0	37.7	10.6	17.0	41.4	13.4
8.5	38.3	10.5	17.5	44.8	10.3
9.0	38.5	10.8	18.0	47.2	8.1
9.5	38.7	11.1			

15.9 Correction factors for

Horn Antenna
Model: SWH-28
at 1 meter range.

FREQUENCY (GHz)	AFE (dB /m)	Gain (dB1)
18.0	40.3	16.1
19.0	40.3	16.3
20.0	40.3	16.1
21.0	40.3	16.3
22.0	40.4	16.8
23.0	40.5	16.4
24.0	40.5	16.6
25.0	40.5	16.7
26.0	40.6	16.4

15.10 Correction factors for

Horn Antenna

Model: V637

FREQUENCY (GHz)	AFE (dB /m)	Gain (dB1)
26.0	43.6	14.9
27.0	43.7	15.1
28.0	43.8	15.3
29.0	43.9	15.5
30.0	43.9	15.8
31.0	44.0	16.0
32.0	44.1	16.2
33.0	44.1	16.4
34.0	44.1	16.7
35.0	44.2	16.9
36.0	44.2	17.1
37.0	44.2	17.4
38.0	44.2	17.6
39.0	44.2	17.8
40.0	44.2	18.0

15.11 Correction factors for ACTIVE LOOP ANTENNA

**Model 6502
S/N 9506-2950**

FREQUENCY (MHz)	Magnetic Antenna Factor (dB)	Electric Antenna Factor (dB)
.009	-35.1	16.4
.010	-35.7	15.8
.020	-38.5	13.0
.050	-39.6	11.9
.075	-39.8	11.8
.100	-40.0	11.6
.150	-40.0	11.5
.250	-40.0	11.6
.500	-40.0	11.5
.750	-40.1	11.5
1.000	-39.9	11.7
2.000	-39.5	12.0
3.000	-39.4	12.1
4.000	-39.7	11.9
5.000	-39.7	11.8
10.000	40.2	11.3
15.000	-40.7	10.8
20.000	-40.5	11.0
25.000	-41.3	10.2
30.000	42.3	9.2