

SAR Evaluation Report

FCC ID: SY6BPP-UP100

Project Reference No.: NK2FR181

Product Type: Dual-Mode GSM Mobile Phone

Brand Name: Bellwave

Model: BPP-UP100

Tested According to: IEEE Standard C95.1 / OET Bulletin 65 Supplement C

Tested Period: September. 21. 2005 to September. 26. 2005

Searly and date: September. 27. 2005
Searly Jin date: September. 27. 2005 Seonhyang Kim Tested by

Seonteag.Jin Verified by

This test results are only related to the item tested.

This test report is only limited to the client company and the product.

This report must not be used by the client to claim product endorsement by any agency of the U.S. Government.

Lab Address: Nemko Korea Co., Ltd

300-2, Osan-Ri, Mohyun-Myun, Yongin-City, Gyunggi-Do, Korea

Phone: 82-31-322-2333 Fax: 82-31-322-2332

Contents of This Report

1.	General Information	4
	1.1 Applicant	4
	1.2 Manufacturer	4
	1.3 Description of Device	4
2.	General Test Condition	5
	2.1 Location	5
	2.2 Operating Environment	5
	2.3 Test Frequency	5
	2.4 Support Equipment	5
3.	Description of Test Equipment	6
4.	SAR Measurement Procedure	10
5.	Definition of Reference Points	12
	5.1 Ear Reference Point	12
	5.2 Handset Reference Points	13
6.	Test Configuration Positions	14
	6.2 Cheek/Touch Position	14
	6.2 Ear/Tilt 15° Position	15
	6.3 Body-worn and Other Configurations	16
7.	Measurement Uncertainty	17
8.	System Verification	18
	8.1 Tissue Verification	18
	8.2 Test System Validation	19
	8.3 Measurement Result of Test Data (GSM 850MHz Head Validation)	20
	8.4 Measurement Result of Test Data (GSM 850MHz Muscle Validation)	21
	8.5 Measurement Result of Test Data (GSM 1900MHz Head Validation)	22
	8.6 Measurement Result of Test Data (GSM 1900MHz Muscle Validation)	23
9.	SAR Measurement Results	24
	9.1 SAR Measurement Result(GSM 850MHz Right Head Touch Position)	26
	9.2 SAR Measurement Result (GSM 850MHz Right Head Tilt Position)	30
	9.3 SAR Measurement Result (GSM 850MHz Left Head Touch Position)	32
	9.4 SAR Measurement Result (GSM 850MHz Left Head Tilt Position)	36
	9.5 SAR Measurement Result (GSM 850MHz Muscle–15mm Distance- Position)	38
	9.6 SAR Measurement Result (GSM 850MHz Muscle–15mm Distance- with Headset)	42
	9.7 SAR Measurement Result (GSM 1900MHz Right Head Touch Position)	44
	9.8 SAR Measurement Result (GSM 1900MHz Right Head Tilt Position)	48
	9.9 SAR Measurement Result (GSM 1900MHz Left Head Touch Position)	50
	9.10 SAR Measurement Result (GSM 1900MHz Left Head Tilt Position)	54
	9.11 SAR Measurement Result (GSM 1900MHz Muscle–15mm Distance-Position)	56
	9.12 SAR Measurement Result (GSM 1900MHz Muscle–15mm Distance-with Headset)	60
10.	SAR Test Equipment	62
11.	References	63

SAR Report Reference No.: NK2FR181

Appendix A	64
Appendix B	66
Appendix C	75
Appendix D	76

Reference No.: NK2FR181

1.General Information

1.1 Applicant

Company Name: Bellwave Co., Ltd

6th FL. Kamco Yangjae Tower 949-3, Dogok-Dong, Gangnam-Gu, Company Address:

Seoul 135-270. Korea

Phone/Fax: Phone: +82-2-3460-9785 / +82-2-3460-9736

Contact Name: Ju-Won, Seol

1.2 Manufacturer

Company Name: Shin-Oh Electronics Co., Ltd

729-5 Bonoh-dong, Sangrok-Gu, Ansan-shi, Gyunggi-Do, 426-180 Company Address:

Korea (730-2 : 2'nd FA)

Phone: +86-2-3460-9785 / +82-2-3460-9736 Phone/Fax:

Contact Name: Tae-Hyoung Ko

1.3 Description of Device

Category: Dual-Mode GSM Mobile Phone

BPP-UP100 Model Name: **Brand Name:** Bellwave Serial Number: 0000001

Tx: 824MHz ~ 849MHz, Rx: 869MHz ~ 894MHz Frequency of Operation Tx: 1850MHz ~ 1910MHz, Rx: 1930MHz ~ 1990MHz

Power Output GSM850: 32.5dBm (Level 5) (Conducted) PCS1900: 29.5dBm (Level 0)

Operating Condition -30to +60 ℃

Power Supply Li-ion Battery: 3.8V DC, 720mAh

Antenna Type Internal

105 X 40 X 15.8mm **Dimensions** Weight 67g(with Battery)

Remarks:

2. General Test Condition

2.1 Location

Nemko Korea

300-2, Osan-Ri, Mohyun-Myun, Yongin-City, Gyunggi-Do

Phone: 82-31-322-2333, Fax: 82-31-322-2332

2.2 Operating Environment

Parameters	Recording during test	Accepted deviation	
Ambient temperature	20 - 22℃	15 - 30 ℃	
Relative humidity	30 - 60%	20 - 75%	

2.3 Test Frequency

GSI	1850	GSM	1900
Test Channel Test Frequency (MHz)		Test Channel	Test Frequency (MHz)
128	824.26	512	1850.26
190	836.53	661	1880.06
251	848.87	810	1909.86

2.4 Support Equipment

Equipment	Manufacturer	Model Name	Serial Number
-	-	-	-

3. Description of Test Equipment

3.1 SAR Measurement Setup

Robotic System

Measurements are performed using the DASY4 automated dosimetric assessment system. Which is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Stäubli), robot controller, measurement server, H/P computer, nearfield probe, probe alignment sensor, and the SAM twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 3.1).

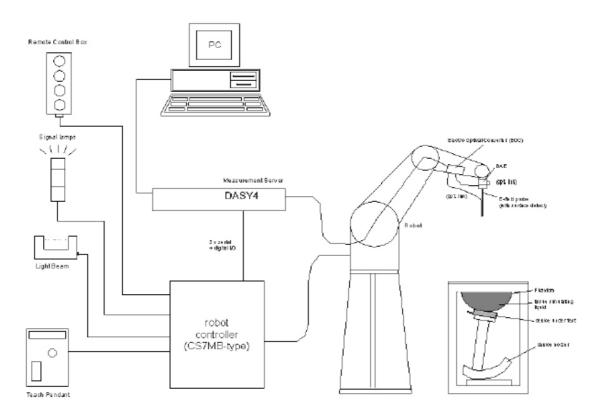


Figure 3.1 SAR Measurement System Setup

System Hardware

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and a remote control is used to drive the robot motors. The PC consists of the H/P computer with Windows XP system and SAR Measurement Software DASY4, LCD monitor, mouse and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A Data Acquisition Electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. Is connected to the Electro-Optical Coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the measurement server.

System Electronics

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with autozeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

3.2 E-field Probe

The SAR measurement were conducted with the dosimetric probe ES3DV3, designed in the classical triangular configuration (see Fig.3.3) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates.

The probe is equipped with an optical multi-fiber line ending at the front of the probe tip (see Fig.3.4). It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface.

Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches a System maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent

of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 softwarereads the reflection during a software approach and looks for the maximum using a 2nd order fitting (see Fig.3.2). The approach is stopped at reaching the maximum.

Figure 3.2 DAE System

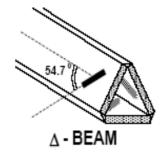


Figure 3.4 Probe Thick-Film Technique

Frequency:

Probe Specifications

Construction: Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic DGBE)

Calibration: Basic Broad Band Calibration In air from 10 MHz to 3.0 GHz

In brain and muscle simulating tissue at Frequencies of HSL900, HSL1800 MHz, Calibration certificates please find attached.

10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz)

Directivity ± 0.2 dB in HSL (rotation around probe axis)

 ± 0.3 dB in HSL (rotation normal to probe axis)

Dynamic Range 5μ W/g to > 100mW/g; Linearity: \pm 0.2dB

Dimensions Overall length: 330mm (Tip: 20mm)

Tip diameter: 4.0mm (Body: 12mm)

Distance from probe tip to dipole centers: 2.0mm

Application General dosimetry up to 3 GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

Optical Surface Detection

± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces

3.3 SAM Phantom

(See Figure 3.5)

The SAM Twin Phantom V4.0C is constructed of a fiberglass shell Integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users.

It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region.

A cover prevents the evaporation of the liquid Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Figure 3.5 SAM Twin Phantom

Phantom Specification

Construction : The shell corresponds to the specifications of the Specific Anthropomorphic

Mannequin (SAM) phantom defined in IEEE 1528-200X, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions

and measurement grids by teaching three points with the robot.

Shell Thickness $2 \pm 0.2 \text{ mm}$ Filling Volume Approx. 25 liters

Dimensions Height; 830 mm; Length: 1000 mm; Width: 500 mm

3.4 Head & Muscle Simulating Mixture Characterization

The head and muscle mixture consist of a viscous gel using hydroxethyl-cellullose (HEC) gelling agent and saline solution(see Table 3.1). Preservation with a bacteriacide is added and visual inspection is made to make sure air Bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in the following table.

Table 3.1 Composition of the Head & Muscle Tissue Equivalent Matter

		SIMULATIN	NG TISSUE	
INGREDIENTS	835MHz Head	835MHz Muscle	1900MHz Head	1900MHz Muscle
De-ionised water	41.45%	52.40%	55.24%	70.17%
Sugar	56.00%	45.00%	0.00%	0.00%
Salt	1.45%	1.40%	0.31%	0.39%
Hydroxyethyl Cellulose	1.00%	1.00%	0.00%	0.00%
DGBE	-	-	44.45%	29.44%
Bacteriacide	0.10%	0.10%	0.00%	0.00%
Dielectric Constant Target	41.50	55.20	40.00	53.30
Conductivity Target (S/M)	0.90	0.97	1.40	1.52

3.5 Device Holder for Transmitters

In combination with the SAM Twin Phantom V4.0, the Mounting Device (see Fig. 3.6) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening.

The device holder can be locked at different phantom locations (left head, right head, flat phantom).

* Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations.

To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Figure 3.6Device Holder

3.6 Dipole Validation

The reference dipole should have a return loss better than –20dB(measured in the setup) at the resonant frequency to reduce the uncertainty in the power measurement.

835MHz dipole

Frequency 835MHz

Return Loss < -20 dB at specified validation position

Dimensions D835V2: dipole length: 161 mm; overall height: 330 mm

1900MHz dipole

Frequency 1900MHz

Return Loss < -20 dB at specified validation position

Dimensions D1900V2: dipole length: 68 mm; overall height: 300 mm

4. Measurement Procedure

The mobile phone operating at the maximum power level is placed by a non metallic device holder in the above described positions at a shell phantom of a human being.

The distribution of the electric field strength E is measured in the tissue simulating liquid within the shell phantom.

For this miniaturized field probes with high sensitivity and low field disturbance are used.

Afterwards the corresponding SAR values are calculated with the known electrical conductivity σ and the mass density p of the tissue in the SEMCAD software.

The software is able to determine the averaged SAR values(averaging region 1g or 10g) for compliance testing.

The measurements are done by two scans: first a coarse scan determines the region of the maximum SAR, afterwards the averaged SAR is measured in a second scan within the sharp of a cube. The measurement times takes about 15 minutes.

The following steps are used for each test position:

STEP1

Establish a call with the maximum output power with a base station simulator.

The connection between the mobile phone and the base station simulator is established via air interface.

STEP2

Measurement of the local E-Field value at a fixed location.

This value serves as a reference value for calculating a possible power drift.

STEP3

Measurement of the SAR distribution with a grid spacing of 15mm \times 15mm and a constant distance to the inner surface of the phantom.

Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With this values the area of the maximum SAR is calculated by a interpolation scheme (combination of a least-square fitted function and a weighted average method). Additional peaks within 3dB of the maximum SAR are searched.

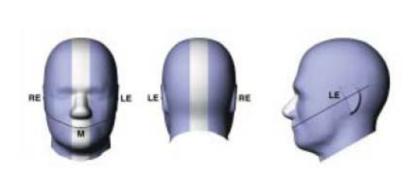
STEP4

Around this points, a cube of $32\text{mm}\times32\text{mm}\times30\text{mm}$ is assessed by measuring $5\times5\times7$ points. With these data, the peak spatial-average SAR value can be calculated with the SEMCAD software.

STEP 5

The used extrapolation and interpolation routines are all based on the modified Quadratic Shepard's method [DASY4].

STEP 6


Repetition of the E-Field measurement at the fixed location and repetition of the whole procedure if the two results differ by more than ± 0.21 dB.

5. Definition of Reference Points

5.1 EAR Reference Point

Figure 5.1 shows the front, back and side views of SAM. The point "M" is the reference point For the center of mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15 mm posterior to the entrance to ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5.2.

EEC N

ERP - ear reference point
EEC - entrance to ear canal

Figure 5.1 Front, back and side view of SAM

Figure 5.2 Close up side view

The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front)perpendicular to the reference plane and passing through the RE(or LE) is called the Reference Pivoting Line (see Figure 5.3). Line B-M is perpendicular to the N-F line. Both N-F and B-M Lines should be marked on the external phantom shell to Facilitate handset positioning. Posterior to the N-F line, the thickness of the phantom shell with the shape of an ear is a flat surface 6 mm thick at the ERPs.

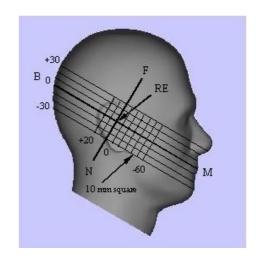


Figure 5.3 Side view of the phantom showing relevant markings

5.2 Handset Reference Points

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (see Fig. 5.4).

The "test device reference point" was than located at the same level as the center of the eat reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at it's tip and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

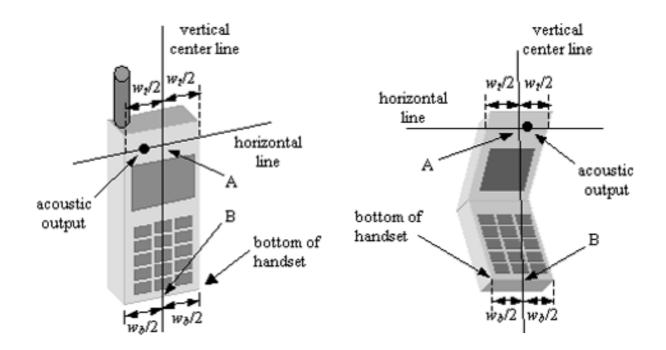


Figure 5.4 Handset vertical and horizontal reference lines

6. Test Configuration Positions

6.1 Cheek/Touch Position

Step 1

The test device was positioned with the handset close to the surface of the phantom such that point. A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6.1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

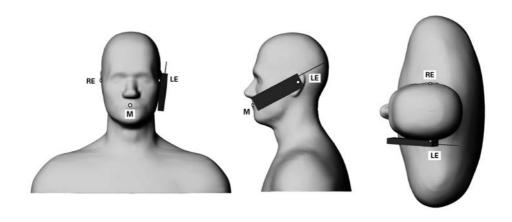


Figure 6.1 Front, Side and Top View of Cheek/Touch Position

Step 2

The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear.

Step 3

While maintaining the handset in this plane, the handset was rotated around the LE-RE line Until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane).

Step 4

Rotate the handset around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.

Step 5

While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, the handset was rotated about the line NF until any point on the handset made contact with a phantom point below the ear cheek. (See Figure 5.2)

6.2 EAR/Tilt 15° Position

With the test device aligned in the "Cheek/Touch Position":

Step 1

Repeat steps 1 to 5 of 5.2 to place the device in the "Cheek/Touch Position"

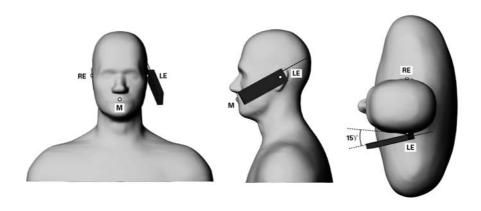


Figure 6.2 Front, side and Top View of Ear/Tilt 15° Position

Step 2

While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15 degree.

Step 3

The phone was then rotated around the horizontal line by 15 degree.

Step 4

While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the phone touches the head.

(In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced.

The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head. (See Figure 6.2)

6.3 Body-worn and Other Configurations

6.3.1 Phantom Requirement

For body-worn and other configurations a flat phantom shall be used which is comprised of material with electrical properties similar to the corresponding tissues.

6.3.2 Test Position

The body-worn configurations shall be tested with the supplied accessories (belt-clips, holsters, etc.) attached to the device in normal use configuration. Devices with a headset output shall be tested with a connected headset. Since the Supplement C to OET Bulletin 65 was mainly issued for mobile phones it is only a guideline and therefore some requirements are not usable or practical for devices other than mobile phones.

6.3.3 Test to be Performed

For purpose of determining test requirements, accessories may be divided into two categories: those that do not contain metallic components and those that do. For multiple accessories that do not contain metallic components, the device may be tested only with that accessory which provides the closet spacing to the body.

For multiple accessories that contain metallic components, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component, only the accessory that provides the closet spacing to the body must be tested.

If the manufacturer provides none body accessories, a separation distance of 1.5 cm between the back of the device and the flat phantom is recommended. Other separation distances may be used, but they shall not exceed 2.5cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

For devices with retractable antenna, the SAR test shall be performed with the antenna fully extended and fully retracted. Other factors that may affect the exposure shall also be tested. For example, optional antennas or optional battery packs which may significantly change the volume, lengths, flip open/closed, etc. of the device or any other accessories which might have the potential to considerably increase the peak spatial-average SAR value.

The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at the middle channel for each test configuration is at least 3.0dB lower than the SAR limit, testing at the high and low channel is optional.

Reference No.: NK2FR181

7. Measurement Uncertainty

DASY4 Uncertainty Budget According to IEEE 1528 [1]								
	Uncertainty	Prob.	Div.	(c_i)	(c_i)	Std. Unc.	Std. Unc.	(v_i)
Error Description	value	Dist.		1g	10g	(1g)	(10g)	v_{eff}
Measurement System								
Probe Calibration	±5.9 %	N	1	1	1	±5.9 %	$\pm 5.9 \%$	∞
Axial Isotropy	$\pm 4.7 \%$	R	$\sqrt{3}$	0.7	0.7	$\pm 1.9 \%$	$\pm 1.9 \%$	∞
Hemispherical Isotropy	$\pm 9.6\%$	R	$\sqrt{3}$	0.7	0.7	$\pm 3.9~\%$	$\pm 3.9\%$	∞
Boundary Effects	±1.0 %	R	$\sqrt{3}$	1	1	$\pm 0.6 \%$	$\pm 0.6 \%$	∞
Linearity	$\pm 4.7 \%$	R	$\sqrt{3}$	1	1	$\pm 2.7 \%$	$\pm 2.7 \%$	∞
System Detection Limits	±1.0 %	R	$\sqrt{3}$	1	1	$\pm 0.6 \%$	$\pm 0.6 \%$	∞
Readout Electronics	±0.3 %	N	1	1	1	±0.3 %	$\pm 0.3 \%$	∞
Response Time	±0.8 %	R	$\sqrt{3}$	1	1	$\pm 0.5 \%$	$\pm 0.5 \%$	∞
Integration Time	$\pm 2.6 \%$	R	$\sqrt{3}$	1	1	±1.5 %	$\pm 1.5 \%$	∞
RF Ambient Conditions	±3.0 %	R	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	∞
Probe Positioner	±0.4 %	R	$\sqrt{3}$	1	1	$\pm 0.2 \%$	$\pm 0.2 \%$	∞
Probe Positioning	$\pm 2.9 \%$	R	$\sqrt{3}$	1	1	±1.7 %	$\pm 1.7 \%$	∞
Max. SAR Eval.	±1.0 %	R	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	∞
Test Sample Related								
Device Positioning	±2.9 %	N	1	1	1	$\pm 2.9 \%$	$\pm 2.9 \%$	145
Device Holder	$\pm 3.6 \%$	N	1	1	1	$\pm 3.6\%$	$\pm 3.6\%$	5
Power Drift	$\pm 5.0 \%$	R	$\sqrt{3}$	1	1	$\pm 2.9\%$	$\pm 2.9 \%$	∞
Phantom and Setup								
Phantom Uncertainty	$\pm 4.0 \%$	R	$\sqrt{3}$	1	1	$\pm 2.3 \%$	$\pm 2.3 \%$	∞
Liquid Conductivity (target)	±5.0 %	R	$\sqrt{3}$	0.64	0.43	±1.8 %	$\pm 1.2 \%$	∞
Liquid Conductivity (meas.)	±2.5 %	N	1	0.64	0.43	±1.6 %	±1.1%	∞
Liquid Permittivity (target)	±5.0 %	R	$\sqrt{3}$	0.6	0.49	±1.7 %	$\pm 1.4 \%$	∞
Liquid Permittivity (meas.) ±2.5 %		N	1	0.6	0.49	$\pm 1.5 \%$	$\pm 1.2 \%$	∞
Combined Std. Uncertainty						$\pm 10.8 \%$	$\pm 10.6 \%$	330
Expanded STD Uncertain	ty					$\pm 21.6\%$	$\pm 21.1\%$	

Table 21.6: Worst-Case uncertainty budget for DASY4 assessed according to IEEE 1528 [1]. The budget is valid for the frequency range 300 MHz - 3 GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerable smaller.

8. System Verification

8.1 Tissue Verification

For the measurement of the following parameters the HP 85070E dielectric probe kit is used, representing the open-ended slim form probe measurement procedure. The measured values should be within $\pm 5\%$ of the recommended values given by the IEEE Standard C95.1 / OET Bulletin 65 Supplement C.

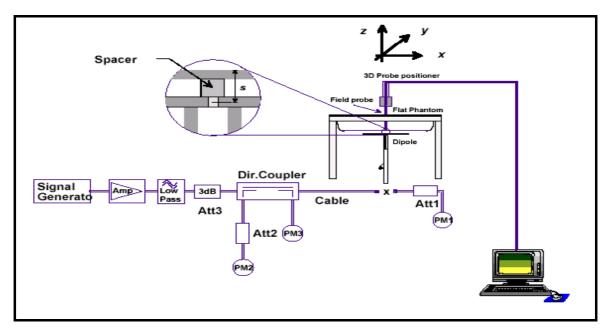
Table 8.1 Measured Tissue Parameters

	835MH	z Head	835MHz Muscle		
Date	Septembe	r 22, 2005	September 26, 2005		
Liquid Temperature(°C)	21.3	3°C	20.7°C		
	Recommended Value	Measured Value	Recommended Value	Measured Value	
Dielectric Constant (ε)	41.50±2.075 43.2		55.20±2.760	57.0	
Conductivity(σ)	0.90 ±0.045	0.909	0.97 ±0.049	0.990	

Table 8.2 Measured Tissue Parameters of 1900MHz

	1900MF	Iz Head	1900MHz Muscle		
Date	Septembe	r 24, 2005	September 26, 2005		
Liquid Temperature(°C)	21.	1°C	20.2°C		
	Recommended Value	Measured Value	Recommended Value	Measured Value	
Dielectric Constant (ε)	40.00±2.000	40.3	53.30 ± 2.665	54.4	
Conductivity(σ)	1.40 ±0.070	1.440	1.52 ±0.076	1.530	

8.2 Test System Validation


The simplified performance check was realized using the dipole validation kits.

The input power of the dipole antennas were 250mW and they were placed under the flat Part of the SAM phantoms.

The target and measured results are listed in the table 8.2

Table 8.2 System Validation Results

Tissue	Date	Liquid Temperature(°C)	Targeted SAR (mW/g)	Measured SAR	Deviation (%)
		remperature(O)	1g	1g	1g
835MHz Head	September 22, 2005	21.3°C	2.375	2.45	3.16
835MHz Muscle	September 26, 2005	20.7°C	2.375	2.45	3.16
1900MHz Head	September 24, 2005	21.1°C	9.925	10.00	0.76
1900MHz Muscle	September 26, 2005	20.2°C	9.925	9.54	3.88

Dipole Validation Test Setup

8.3 Measurement Result of Test Data(GSM850 Head Validation)

Date/Time: 2005-09-22 9:38:47

Test Laboratory: Nemko Korea File Name: Validation.da4

DUT: Dipole 835 MHz Type: D835V2 Serial: D835V2 - SN:4d017 Applicant Name: Bellwave

Communication System: CW Frequency: 835 MHz

Duty Cycle: 1:1 Phantom section: Flat Section

Medium parameters used: f = 835.156 MHz; σ = 0.909 mho/m; ε_r = 43.2; ρ = 1000 kg/m³

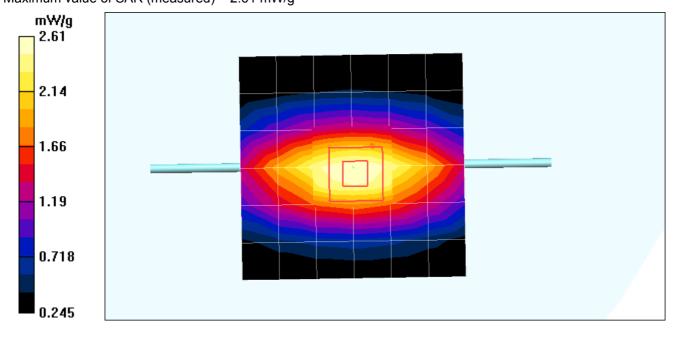
DASY4 Configuration:

Probe: ES3DV3 - SN3068; ConvF(5.91, 5.91, 5.91); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

Validation/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 2.62 mW/g

Validation/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 54.3 V/m; Power Drift = -0.009 dB

Peak SAR (extrapolated) = 3.60 W/kg

SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.63 mW/g Maximum value of SAR (measured) = 2.61 mW/g

8.4 Measurement Result of Test Data (GSM850 Muscle Validation)

Date/Time: 2005-09-26 8:20:16

Test Laboratory: Nemko Korea File Name: Validation.da4

DUT: Dipole 835 MHz Type: D835V2 Serial: D835V2 - SN:4d017 Applicant Name : Bellwave

Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Phantom section: Flat Section

Medium parameters used: f = 835 MHz; σ = 0.99 mho/m; ε_r = 57; ρ = 1000 kg/m³

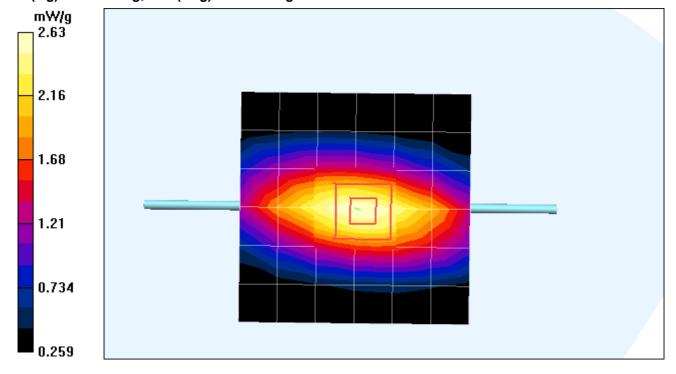
DASY4 Configuration:

Probe: ES3DV3 - SN3068; ConvF(5.9, 5.9, 5.9); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

Validation/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 2.63 mW/g

Validation/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 52.3 V/m; Power Drift = -0.014 dB

Peak SAR (extrapolated) = 3.57 W/kg

SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.62 mW/g

8.5 Measurement Result of Test Data(GSM1900 Head Validation)

Date/Time: 2005-09-24 8:58:04

Test Laboratory: Nemko Korea File Name: <u>Validation.da4</u>

DUT: Dipole 1900 MHz Type: D1900V2 Serial: D1900V2 - SN:5d059 Applicant Name : Bellwave

Communication System: CW Frequency: 1900 MHz

Duty Cycle: 1:1 Phantom section: Flat Section

Medium parameters used: f = 1900 MHz; σ = 1.44 mho/m; ε_r = 40.3; ρ = 1000 kg/m³

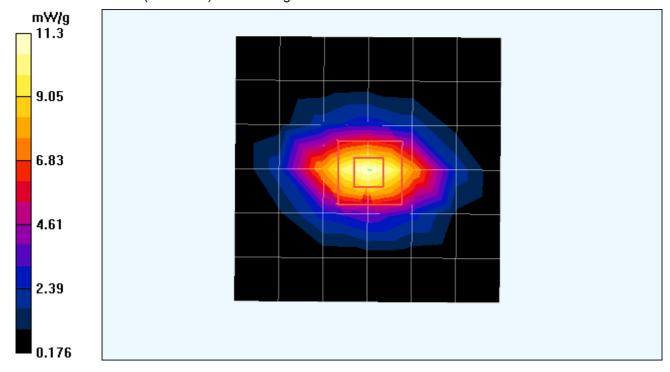
DASY4 Configuration:

Probe: ES3DV3 - SN3068; ConvF(4.88, 4.88, 4.88); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

Validation/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 11.4 mW/g

Validation/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 91.5 V/m; Power Drift = -0.092 dB

Peak SAR (extrapolated) = 18.2 W/kg

SAR(1 g) = 10 mW/g; SAR(10 g) = 5.18 mW/g Maximum value of SAR (measured) = 11.3 mW/g

8.6 Measurement Result of Test Data (GSM1900 Muscle Validation)

Date/Time: 2005-09-26 3:53:09

Test Laboratory: Nemko Korea File Name: <u>Validation.da4</u>

DUT: Dipole 1900 MHz Type: D1900V2 Serial: D1900V2 - SN:5d059 Applicant Name : Bellwave

Communication System: CW Frequency: 1900 MHz

Duty Cycle: 1:1 Phantom section: Flat Section

Medium parameters used: f = 1900 MHz; σ = 1.53 mho/m; ε_r = 54.4; ρ = 1000 kg/m³

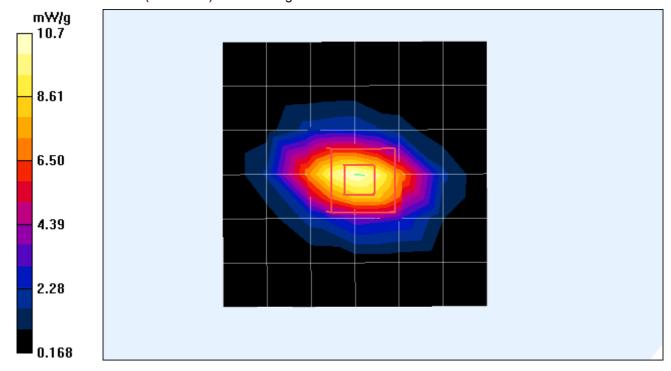
DASY4 Configuration:

Probe: ES3DV3 - SN3068; ConvF(4.57, 4.57, 4.57); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

Validation/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 10.6 mW/g

Validation/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 86.4 V/m; Power Drift = -0.009 dB

Peak SAR (extrapolated) = 16.7 W/kg

SAR(1 g) = 9.54 mW/g; SAR(10 g) = 4.95 mW/g Maximum value of SAR (measured) = 10.7 mW/g

9. SAR Measurement Results

Procedures Used To Establish Test Signal

The handset was placed into simulated call mode (GSM) using manufacturers test codes. Such test signals offer a consistent means for testing SAR and are recommended for evaluating SAR.

Output Power

	FREQUENCY		Power	Power
	СН	MHz	(dBm)	(mW)
	128	824.26	31.90	1548
GSM850	190	836.53	32.06	1607
	251	848.87	31.96	1570
	512	1850.26	28.84	766
GSM1900	661	1880.06	28.51	710
	810	1909.86	28.44	698

Maximum SAR

1g

Mode	СН	Frequency	Position	Antenna	SAR Limit W/kg	Measured SAR W/kg	Result
850MHz Head	128	824.26	Left/ Touch	Intenna	1.6	0.521	Passed
850MHz Muscle	128	824.26	Flat/ 15mm	Intenna	1.6	0.781	Passed
1900MHz Head	661	1880.06	Right/ Touch	Intenna	1.6	0.547	Passed
1900MHz Muscle	810	1909.86	Flat/ 15mm Headset	Intenna	1.6	0.132	Passed

Device Test Conditions

The handset is battery operated. Each SAR measurement was taken with a fully charged battery. In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power.

If a conducted power deviation of more than 5% occurred, the test was repeated.

EUT Handset Reference Points

Figure 9.1 Handset Reference Points

9.1 SAR Measurement Result (GSM850 Right Head Touch Position)

Date of Test: September. 22. 2005

Mixture Type: Head Tissue Depth: 15.0 cm

Modulation	FREQUENCY		Power	Device Test	Antenna	SAR (W/kg)
	СН	MHz	Drift(dB)	Position	Position	1g
GSM850	128	824.26	0.064	Cheek / Touch	Intenna	0.502
	190	836.53	0.082	Cheek / Touch	Intenna	0.337
	251	848.87	0.017	Cheek / Touch	Intenna	0.250

Notes:

- 1. The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings.
- 4. SAR Measurement System
- 5. Phantom Configuration
- 6. SAR Configuration
- 7. Test Signal Call Mode
- 8. Battery Option

- DASY4
- ☐ Left Head
- ☐ Flat Phantom
- Right Head

- Head
- ☐ Body
- ☐ Hand
- ☐ Manu. Test Codes
- Base Station Simulator
- Standard Type
- ☐ Slim Type

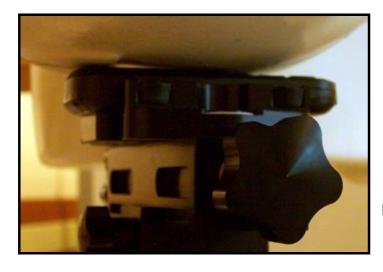


Figure 9.1 Right Head SAR Test Setup -- Cheek / Touch Position --

Measurement Result of Test Data (GSM850 Right Head Touch Position)

Date/Time: 2005-09-22 3:03:03

Test Laboratory: Nemko Korea File Name: RH Touch CH 128.da4

DUT: BPP-UP100 Type: Bar Serial: 0000001 Applicant Name: Bellwave

Communication System: GSM 850 Frequency: 824.2 MHz

Duty Cycle: 1:8.3 Phantom section: Right Section

Medium parameters used: f = 824.406 MHz; σ = 0.897 mho/m; ε_r = 43.5; ρ = 1000 kg/m³

DASY4 Configuration:

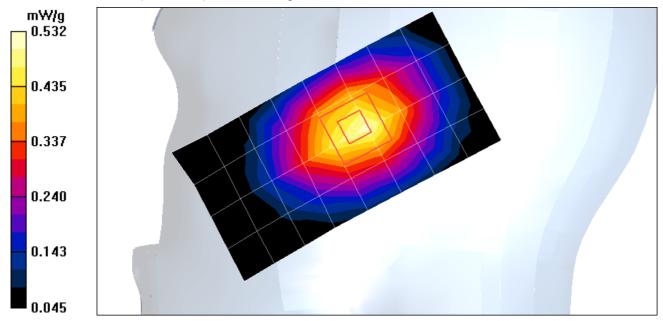
Probe: ES3DV3 - SN3068; ConvF(5.91, 5.91, 5.91); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

RH Touch CH 128/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.517 mW/g


RH Touch CH 128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.3 V/m; Power Drift = 0.064 dB

Peak SAR (extrapolated) = 0.720 W/kg

SAR(1 g) = 0.502 mW/g; SAR(10 g) = 0.336 mW/g

Maximum value of SAR (measured) = 0.532 mW/g

Date/Time: 2005-09-22 1:43:34

Test Laboratory: Nemko Korea File Name: RH Touch CH 190.da4

DUT: BPP-UP100 Type: Bar Serial: 0000001 Applicant Name: Bellwave

Communication System: GSM 850 Frequency: 836.6 MHz

Duty Cycle: 1:8.3 Phantom section: Right Section

Medium parameters used: f = 836.629 MHz; σ = 0.911 mho/m; ϵ_r = 43.2; ρ = 1000 kg/m³

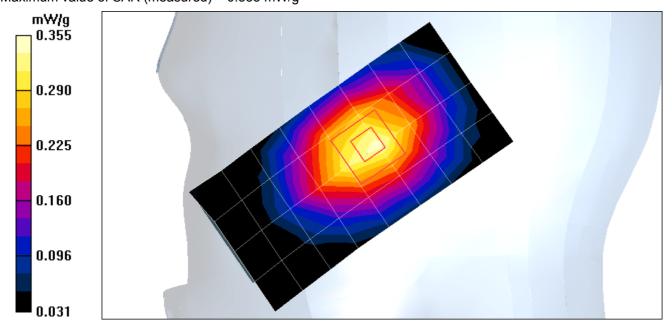
DASY4 Configuration:

Probe: ES3DV3 - SN3068; ConvF(5.91, 5.91, 5.91); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

RH Touch CH 190/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.349 mW/g

RH Touch CH 190/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.0 V/m; Power Drift = 0.082 dB

Peak SAR (extrapolated) = 0.467 W/kg

SAR(1 g) = 0.337 mW/g; SAR(10 g) = 0.228 mW/g Maximum value of SAR (measured) = 0.355 mW/g

Date/Time: 2005-09-22 3:14:02

Test Laboratory: Nemko Korea File Name: RH Touch CH 251.da4

DUT: BPP-UP100 Type: Bar Serial: 0000001 Applicant Name: Bellwave

Communication System: GSM 850 Frequency: 848.8 MHz

Duty Cycle: 1:8.3 Phantom section: Right Section

Medium parameters used: f = 850.036 MHz; σ = 0.927 mho/m; ε_r = 42.8; ρ = 1000 kg/m³

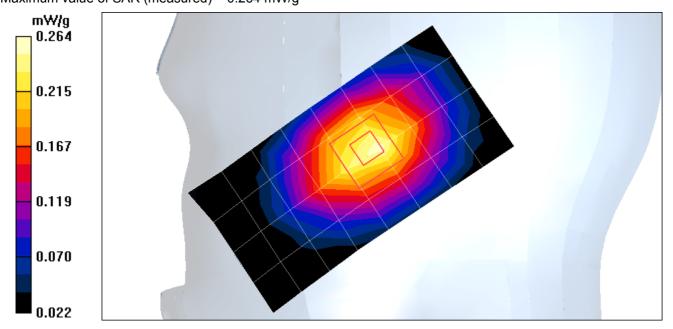
DASY4 Configuration:

Probe: ES3DV3 - SN3068; ConvF(5.91, 5.91, 5.91); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

RH Touch CH 251/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.259 mW/g

RH Touch CH 251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.0 V/m; Power Drift = 0.017 dB

Peak SAR (extrapolated) = 0.349 W/kg

SAR(1 g) = 0.250 mW/g; SAR(10 g) = 0.169 mW/gMaximum value of SAR (measured) = 0.264 mW/g

9.2 SAR Measurement Result (GSM850 Right Head Tilted Position)

Date of Test: September. 22. 2005

Mixture Type: Head Tissue Depth: 15.0 cm

Modulation	FREQUENCY		Power	Device Test	Antenna	SAR (W/kg)
	СН	MHz	Drift(dB)	Position	Position	1g
GSM850	190	836.53	0.077	Cheek / Tilted	Intenna	0.156

Notes:

- 1. The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings.
- 4. SAR Measurement System DASY4
- 5. Phantom Configuration ☐ Left Head ☐ Flat Phantom Right Head
- 6. SAR Configuration Head □ Body □ Hand
- 7. Test Signal Call Mode ☐ Manu. Test Codes Base Station Simulator
- 8. Battery Option Standard Type □ Slim Type

Figure 9.2 Right Head SAR Test Setup
-- Ear / Tilted Position --

Measurement Result of Test Data (GSM850 Right Head Tilted Position)

Date/Time: 2005-09-22 2:17:22

Test Laboratory: Nemko Korea File Name: RH Tilt CH 190.da4

DUT: BPP-UP100 Type: Bar Serial: 0000001 Applicant Name: Bellwave

Communication System: GSM 850 Frequency: 836.6 MHz

Duty Cycle: 1:8.3 Phantom section: Right Section

Medium parameters used: f = 836.629 MHz; σ = 0.911 mho/m; ϵ_r = 43.2; ρ = 1000 kg/m³

DASY4 Configuration:

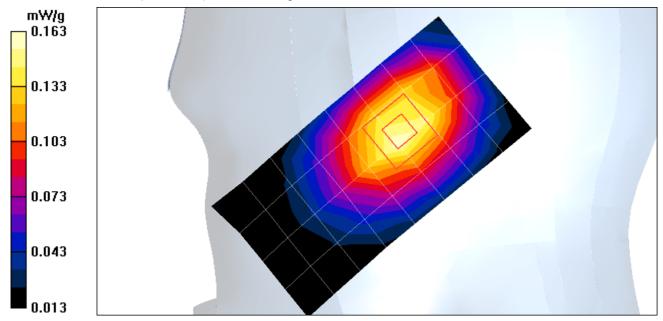
Probe: ES3DV3 - SN3068; ConvF(5.91, 5.91, 5.91); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

RH Tilt CH 190/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.160 mW/g


RH Tilt CH 190/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.4 V/m; Power Drift = 0.077 dB

Peak SAR (extrapolated) = 0.218 W/kg

SAR(1 g) = 0.156 mW/g; SAR(10 g) = 0.107 mW/g

Maximum value of SAR (measured) = 0.163 mW/g

Reference No.: NK2FR181

9.3 SAR Measurement Result (GSM850 Left Head Touch Position)

Date of Test: September. 22. 2005

Mixture Type: Head Tissue Depth: 15.0 cm

Modulation	FREQUENCY		Power	Device Test	Antenna	SAR (W/kg)
	СН	MHz	Drift(dB)	Position	Position	1g
GSM850	128	824.26	0.022	Cheek / Touch	Intenna	0.521
	190	836.53	0.077	Cheek / Touch	Intenna	0.354
	251	848.87	0.083	Cheek / Touch	Intenna	0.258

Notes:

- 1. The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings.
- 4. SAR Measurement System
- 5. Phantom Configuration
- 6. SAR Configuration
- 7. Test Signal Call Mode
- 8. Battery Option

- DASY4
- Left Head
 - ☐ Flat Phantom
- ☐ Right Head

- Head
- ☐ Body
- ☐ Hand
- ☐ Manu. Test Codes
- Base Station Simulator
- Standard Type
- ☐ Slim Type

Figure 9.3 Left Head SAR Test Setup
-- Cheek / Touch Position --

Measurement Result of Test Data (GSM850 Left Head Touch Position)

Date/Time: 2005-09-22 3:43:16

Test Laboratory: Nemko Korea File Name: LH Touch CH 128.da4

DUT: BPP-UP100 Type: Bar Serial: 0000001 Applicant Name: Bellwave

Communication System: GSM 850 Frequency: 824.2 MHz

Duty Cycle: 1:8.3 Phantom section: Left Section

Medium parameters used: f = 824.406 MHz; σ = 0.897 mho/m; ε_r = 43.5; ρ = 1000 kg/m³

DASY4 Configuration:

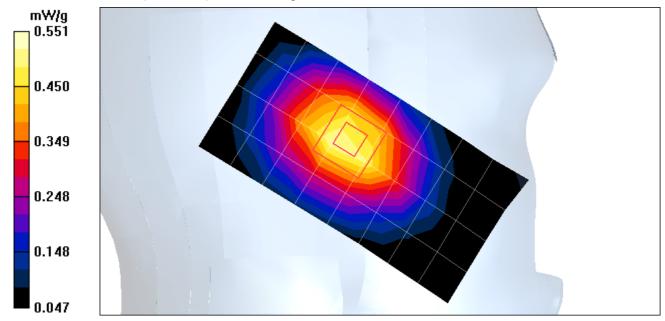
Probe: ES3DV3 - SN3068; ConvF(5.91, 5.91, 5.91); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

LH Touch CH 128/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.522 mW/g


LH Touch CH 128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.5 V/m; Power Drift = 0.022 dB

Peak SAR (extrapolated) = 0.730 W/kg

SAR(1 g) = 0.521 mW/g; SAR(10 g) = 0.351 mW/g

Maximum value of SAR (measured) = 0.551 mW/g

Date/Time: 2005-09-22 3:30:19

Test Laboratory: Nemko Korea File Name: LH Touch CH 190.da4

DUT: BPP-UP100 Type: Bar Serial: 0000001 Applicant Name: Bellwave

Communication System: GSM 850 Frequency: 836.6 MHz

Duty Cycle: 1:8.3 Phantom section: Left Section

Medium parameters used: f = 836.629 MHz; σ = 0.911 mho/m; ϵ_r = 43.2; ρ = 1000 kg/m³

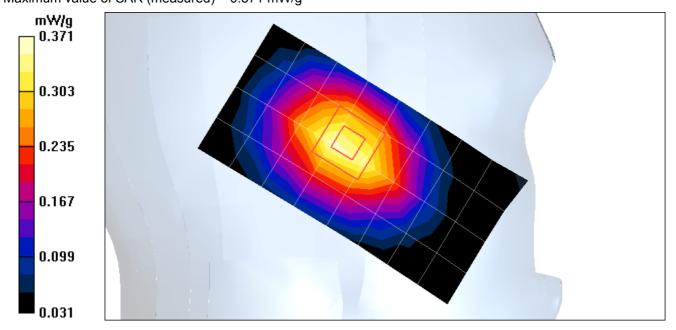
DASY4 Configuration:

Probe: ES3DV3 - SN3068; ConvF(5.91, 5.91, 5.91); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

LH Touch CH 190/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.361 mW/g

LH Touch CH 190/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.1 V/m; Power Drift = 0.077 dB

Peak SAR (extrapolated) = 0.494 W/kg

SAR(1 g) = 0.354 mW/g; SAR(10 g) = 0.239 mW/g Maximum value of SAR (measured) = 0.371 mW/g

Date/Time: 2005-09-22 3:55:20

Test Laboratory: Nemko Korea File Name: LH Touch CH 251.da4

DUT: BPP-UP100 Type: Bar Serial: 0000001 Applicant Name: Bellwave

Communication System: GSM 850 Frequency: 848.8 MHz

Duty Cycle: 1:8.3 Phantom section: Left Section

Medium parameters used: f = 850.036 MHz; σ = 0.927 mho/m; ε_r = 42.8; ρ = 1000 kg/m³

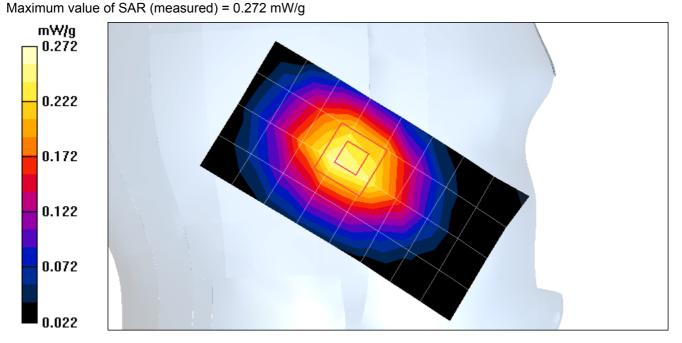
DASY4 Configuration:

Probe: ES3DV3 - SN3068; ConvF(5.91, 5.91, 5.91); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

LH Touch CH 251/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.260 mW/g

LH Touch CH 251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.9 V/m; Power Drift = 0.083 dB

Peak SAR (extrapolated) = 0.360 W/kg

SAR(1 g) = 0.258 mW/g; SAR(10 g) = 0.174 mW/g

9.4 SAR Measurement Result (GSM850 Left Head Tilted Position)

Date of Test: September. 22. 2005

Head Mixture Type: Tissue Depth: 15.0 cm

Modulation	FREQUENCY		Power	Device Test	Antenna	SAR (W/kg)
	СН	MHz	Drift(dB)	Position	Position	1g
GSM850	190	836.53	0.038	Cheek / Tilted	Intenna	0.159

Notes:

- 1. The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings.
- 4. SAR Measurement System
- 5. Phantom Configuration
- 6. SAR Configuration
- 7. Test Signal Call Mode
- 8. Battery Option

- DASY4
- Left Head ☐ Flat Phantom
- ☐ Right Head

- Head
- ☐ Body ☐ Manu. Test Codes
- ☐ Hand ■ Base Station Simulator
- Standard Type
- ☐ Slim Type

Figure 9.4 Left Head SAR Test Setup -- Ear / Tilted Position --

Measurement Result of Test Data (GSM850 Left Head Tilted Position)

Date/Time: 2005-09-22 4:06:51

Test Laboratory: Nemko Korea File Name: LH Tilt CH 190.da4

DUT: BPP-UP100 Type: Bar Serial: 0000001 Applicant Name: Bellwave

Communication System: GSM 850 Frequency: 836.6 MHz

Duty Cycle: 1:8.3 Phantom section: Left Section

Medium parameters used: f = 836.629 MHz; σ = 0.911 mho/m; ε_r = 43.2; ρ = 1000 kg/m³

DASY4 Configuration:

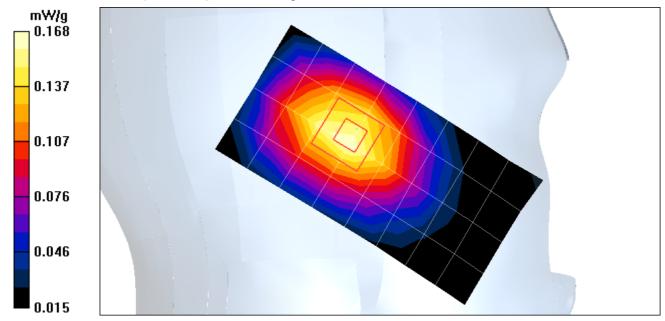
Probe: ES3DV3 - SN3068; ConvF(5.91, 5.91, 5.91); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

LH Tilt CH 190/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.167 mW/g


LH Tilt CH 190/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.8 V/m; Power Drift = 0.038 dB

Peak SAR (extrapolated) = 0.218 W/kg

SAR(1 g) = 0.159 mW/g; SAR(10 g) = 0.110 mW/g

Maximum value of SAR (measured) = 0.168 mW/g

9.5 SAR Measurement Result (GSM850 Muscle -15mm Distance- Position)

Date of Test: September. 26. 2005

Mixture Type: Muscle Tissue Depth: 15.1cm

Modulation	FREQUENCY		Power	Device Test	Antenna	SAR (W/kg)
Wodulation	СН	MHz	Drift(dB)	Position	Position	1g
	128	824.26	-0.081	Cheek / Touch	Intenna	0.781
GSM850	190	836.53	0.013	Cheek / Touch	Intenna	0.526
	251	848.87	-0.007	Cheek / Touch	Intenna	0.314

Notes:

- 1. The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings.

4. SAR Measurement System	DASY4		
5. Phantom Configuration	□ Left Head	■ Flat Phantom	☐ Right Head
6. SAR Configuration	☐ Head	Muscle	☐ Hand
7. Test Signal Call Mode	☐ Manu. Test	Codes ■ Base S	Station Simulator

8. Battery Option ■ Standard Type □ Slim Type

Figure 9.5 Muscle SAR Test Setup
-- 15mm Distance Position --

Measurement Result of Test Data (GSM850 Muscle -15mm Distance- Position)

Date/Time: 2005-09-26 8:49:19

Test Laboratory: Nemko Korea

File Name: 15mm distance CH128.da4

DUT: BPP-UP100 Type: Bar Serial: 0000001 Applicant Name : Bellwave

Communication System: GSM835 Frequency: 824.2 MHz

Duty Cycle: 1:8.3 Phantom section: Flat Section

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.975 \text{ mho/m}$; $\varepsilon_r = 57.2$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

Probe: ES3DV3 - SN3068; ConvF(5.9, 5.9, 5.9); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

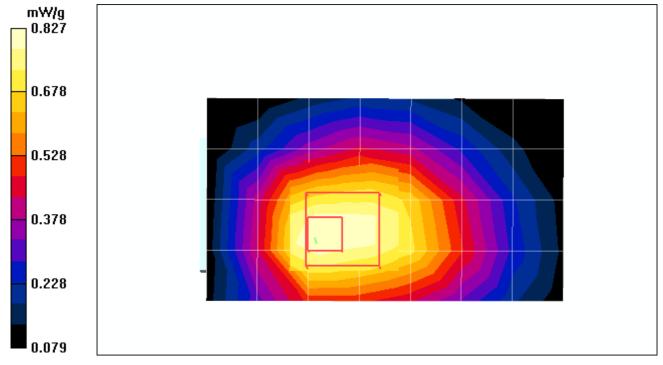
Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

15mm CH128/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.821 mW/g

15mm CH128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 27.6 V/m; Power Drift = -0.081 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.781 mW/g; SAR(10 g) = 0.559 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.827 mW/g

Date/Time: 2005-09-26 9:08:28

Test Laboratory: Nemko Korea

File Name: 15mm distance CH190.da4

DUT: BPP-UP100 Type: Bar Serial: 0000001 Applicant Name : Bellwave

Communication System: GSM850 Frequency: 836.6 MHz

Duty Cycle: 1:8.3 Phantom section: Flat Section

Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.991 mho/m; ϵ_r = 57; ρ = 1000 kg/m³

DASY4 Configuration:

Probe: ES3DV3 - SN3068; ConvF(5.9, 5.9, 5.9); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

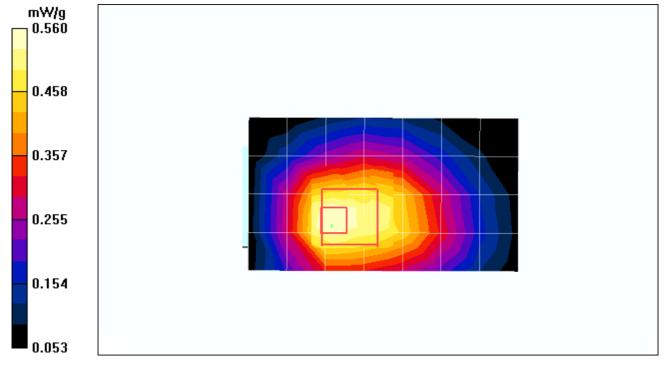
Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

15mm CH190/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.549 mW/g

15mm CH190/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 22.1 V/m; Power Drift = 0.013 dB

Peak SAR (extrapolated) = 0.727 W/kg

SAR(1 g) = 0.526 mW/g; SAR(10 g) = 0.371 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.560 mW/g

Date/Time: 2005-09-26 9:18:41

Test Laboratory: Nemko Korea

File Name: 15mm distance CH251.da4

DUT: BPP-UP100 Type: Bar Serial: 0000001 Applicant Name : Bellwave

Communication System: GSM850 Frequency: 848.8 MHz

Duty Cycle: 1:8.3 Phantom section: Flat Section

Medium parameters used: f = 850 MHz; σ = 1 mho/m; ε_r = 56.8; ρ = 1000 kg/m³

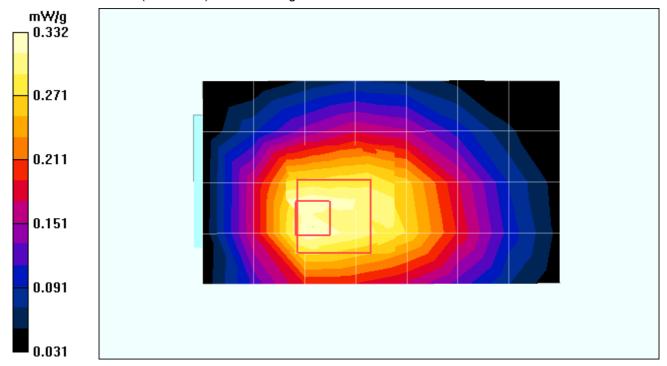
DASY4 Configuration:

Probe: ES3DV3 - SN3068; ConvF(5.9, 5.9, 5.9); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

15mm CH251/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.328 mW/g

15mm CH251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.0 V/m; Power Drift = -0.007 dB

Peak SAR (extrapolated) = 0.434 W/kg

SAR(1 g) = 0.314 mW/g; SAR(10 g) = 0.222 mW/gMaximum value of SAR (measured) = 0.332 mW/g

9.6 SAR Measurement Result (GSM850 Muscle -15mm Distance- with headset)

Date of Test: September. 26. 2005

Mixture Type: Muscle Tissue Depth: 15.1 cm

Modulation	FREQUENCY		Power	Device Test	Antenna	SAR (W/kg)
Wodulation	СН	MHz	Drift(dB)	Position	Position	1g
GSM850	128	824.26	0.021	15mm Distance with Headset	Intenna	0.387

Notes:

- 1. The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings.

4. SAR Measurement System	■ DASY4		
5. Phantom Configuration	☐ Left Head	■ Flat Phantom	☐ Right Head
6. SAR Configuration	☐ Head	■ Muscle	☐ Hand
7. Test Signal Call Mode	☐ Manu. Test C	Codes ■ Base S	Station Simulator
	- ~ · · · -		

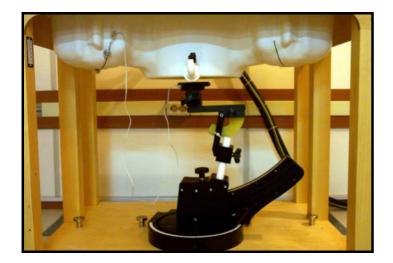


Figure 9.6 Muscle SAR Test Setup
-- 15mm Distance with headset Position --

Measurement Result of Test Data (GSM850 Muscle -15mm Distance- with headset)

Date/Time: 2005-09-26 9:48:02

Test Laboratory: Nemko Korea

File Name: 15mm distance CH128 with headset.da4

DUT: BPP-UP100 Type: Bar Serial: 0000001 Applicant Name : Bellwave

Communication System: GSM850 Frequency: 824.2 MHz

Duty Cycle: 1:8.3 Phantom section: Flat Section

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.975 \text{ mho/m}$; $\varepsilon_r = 57.2$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

Probe: ES3DV3 - SN3068; ConvF(5.9, 5.9, 5.9); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

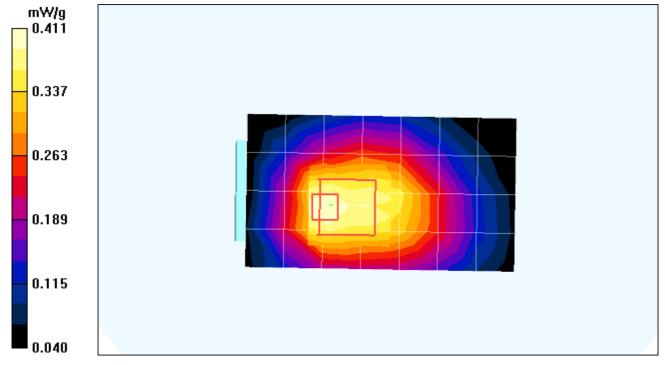
Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

15mm CH128 with headset/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.397 mW/g

15mm CH128 with headset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 19.9 V/m; Power Drift = 0.021 dB

Peak SAR (extrapolated) = 0.541 W/kg

SAR(1 g) = 0.387 mW/g; SAR(10 g) = 0.273 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.411 mW/g

9.7 SAR Measurement Result (GSM1900 Right Head Touch Position)

Date of Test: September. 24. 2005

Mixture Type: Head Tissue Depth: 15.3 cm

Modulation	FREQUENCY		Power	Device Test Position	Antenna Position	SAR (W/kg)
	СН	MHz	Drift(dB)	i osition	1 OSITION	1g
	512	1850.26	-0.161	Cheek / Touch	Intenna	0.551
PCS1900	661	1880.06	-0.086	Cheek / Touch	Intenna	0.547
	810	1909.86	-0.085	Cheek / Touch	Intenna	0.537

Notes:

- 1. The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings.
- 4. SAR Measurement System ■ DASY4
- 5. Phantom Configuration
- 6. SAR Configuration
- 7. Test Signal Call Mode
- 8. Battery Option

- ☐ Left Head
 - ☐ Flat Phantom
- Right Head

- Head
- □ Body ☐ Manu. Test Codes ■ Base Station Simulator
- ☐ Hand

- Standard Type
- □ Slim Type

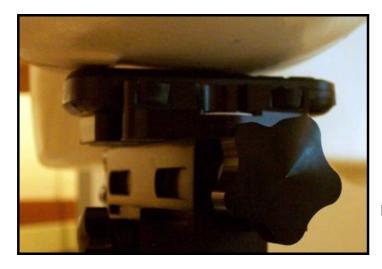


Figure 9.7 Right Head SAR Test Setup -- Cheek / Touch Position --

Measurement Result of Test Data (GSM1900 Right Head Touch Position)

Date/Time: 2005-09-24 10:00:24

Test Laboratory: Nemko Korea File Name: RH Touch CH512.da4

DUT: BPP-UP100 Type: Bar Serial: 0000001 Applicant Name : Bellwave

Communication System: PCS1900 Frequency: 1850.2 MHz

Duty Cycle: 1:8.3 Phantom section: Right Section

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.38$ mho/m; $\epsilon_r = 40.6$; $\rho = 1000$ kg/m³

DASY4 Configuration:

Probe: ES3DV3 - SN3068; ConvF(4.88, 4.88, 4.88); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

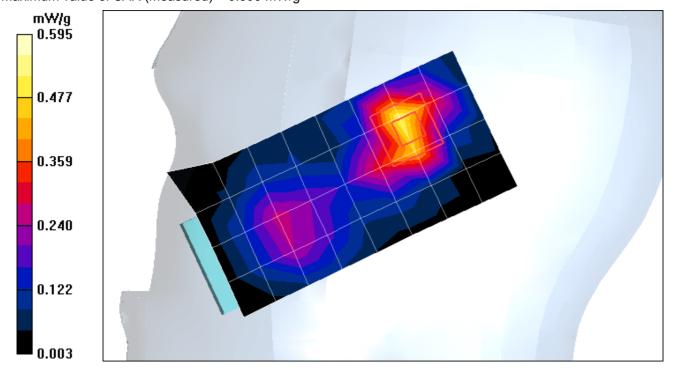
Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

RH Touch CH512/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.523 mW/g

RH Touch CH512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 12.8 V/m; Power Drift = -0.161 dB

Peak SAR (extrapolated) = 0.991 W/kg

SAR(1 g) = 0.551 mW/g; SAR(10 g) = 0.282 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.595 mW/g

Date/Time: 2005-09-24 10:49:05

Test Laboratory: Nemko Korea File Name: RH Touch CH661.da4

DUT: BPP-UP100 Type: Bar Serial: 0000001 Applicant Name : Bellwave

Communication System: PCS1900 Frequency: 1880 MHz

Duty Cycle: 1:8.3 Phantom section: Right Section

Medium parameters used: f = 1880 MHz; σ = 1.43 mho/m; ε_r = 40.2; ρ = 1000 kg/m³

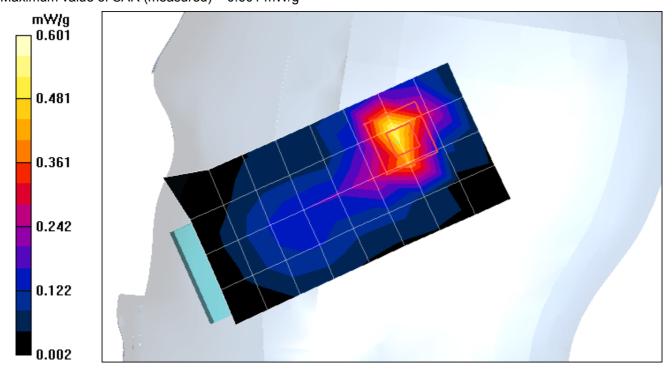
DASY4 Configuration:

Probe: ES3DV3 - SN3068; ConvF(4.88, 4.88, 4.88); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

RH Touch CH661/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.535 mW/g

RH Touch CH661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.2 V/m; Power Drift = -0.086 dB

Peak SAR (extrapolated) = 1.01 W/kg

SAR(1 g) = 0.547 mW/g; SAR(10 g) = 0.270 mW/g Maximum value of SAR (measured) = 0.601 mW/g

Date/Time: 2005-09-24 11:01:40

Test Laboratory: Nemko Korea File Name: RH Touch CH810.da4

DUT: BPP-UP100 Type: Bar Serial: 0000001 Applicant Name : Bellwave

Communication System: PCS1900 Frequency: 1909.8 MHz

Duty Cycle: 1:8.3 Phantom section: Right Section

Medium parameters used: f = 1910 MHz; σ = 1.46 mho/m; ε_r = 40.4; ρ = 1000 kg/m³

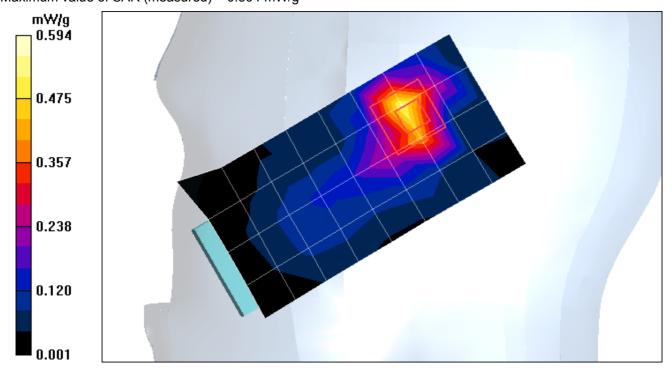
DASY4 Configuration:

Probe: ES3DV3 - SN3068; ConvF(4.88, 4.88, 4.88); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

RH Touch CH810/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.529 mW/g

RH Touch CH810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.1 V/m; Power Drift = -0.085 dB

Peak SAR (extrapolated) = 1.01 W/kg

SAR(1 g) = 0.537 mW/g; SAR(10 g) = 0.261 mW/g Maximum value of SAR (measured) = 0.594 mW/g

9.8 SAR Measurement Result (GSM1900 Right Head Tilted Position)

Date of Test: September. 24. 2005

Mixture Type: Head Tissue Depth: 15.3 cm

Modulation	FREC	UENCY	Power	Device Test	Antenna	SAR (W/kg)
Wodulation	СН	MHz	Drift(dB)	Position	Position	1g
PCS1900	661	1880.06	0.016	Cheek / Tilted	Intenna	0.542

Notes:

- 1. The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings.
- 4. SAR Measurement System DASY4
- 5. Phantom Configuration ☐ Left Head ☐ Flat Phantom Right Head
- 6. SAR Configuration Head □ Body □ Hand
- 7. Test Signal Call Mode ☐ Manu. Test Codes Base Station Simulator
- 8. Battery Option Standard Type □ Slim Type

Figure 9.8 Right Head SAR Test Setup
-- Ear / Tilted Position --

Measurement Result of Test Data (GSM1900 Right Head Tilted Position)

Date/Time: 2005-09-24 11:27:44

Test Laboratory: Nemko Korea File Name: RH Tilt CH661.da4

DUT: BPP-UP100 Type: Bar Serial: 0000001 Applicant Name : Bellwave

Communication System: PCS1900 Frequency: 1880 MHz

Duty Cycle: 1:8.3 Phantom section: Right Section

Medium parameters used: f = 1880 MHz; σ = 1.43 mho/m; ε_r = 40.2; ρ = 1000 kg/m³

DASY4 Configuration:

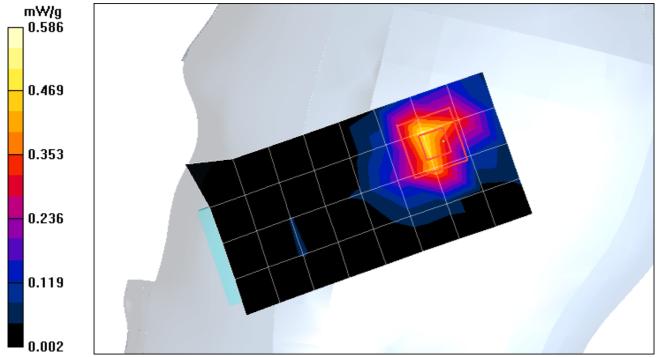
Probe: ES3DV3 - SN3068; ConvF(4.88, 4.88, 4.88); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

RH Tilt CH661/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.484 mW/g


RH Tilt CH661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.6 V/m; Power Drift = 0.016 dB

Peak SAR (extrapolated) = 1.01 W/kg

SAR(1 g) = 0.542 mW/g; SAR(10 g) = 0.265 mW/g

Maximum value of SAR (measured) = 0.586 mW/g

9.9 SAR Measurement Result (GSM1900 Left Head Touch Position)

Date of Test: September. 24. 2005

Mixture Type: Head Tissue Depth: 15.3 cm

Modulation -	FREQUENCY		Power	Device Test	Antenna	SAR (W/kg)
Wiodulation	СН	MHz	Drift(dB)	Position	Position	1g
	512	1850.26	0.102	Cheek / Touch	Intenna	0.396
PCS1900	661	1880.06	0.181	Cheek / Touch	Intenna	0.402
	810	1909.86	-0.101	Cheek / Touch	Intenna	0.356

Notes:

- 1. The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings.
- 4. SAR Measurement System
- 5. Phantom Configuration
- 6. SAR Configuration
- 7. Test Signal Call Mode
- 8. Battery Option

- DASY4
- Left Head ☐ Flat Phantom
- ☐ Right Head

- Head
- ☐ Body
- ☐ Hand
- ☐ Manu. Test Codes

- Base Station Simulator
- Standard Type ☐ Slim Type

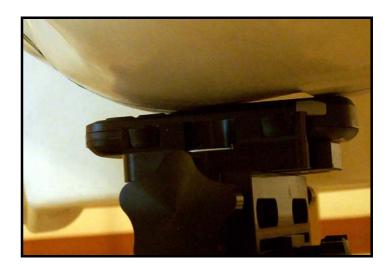


Figure 9.9 Left Head SAR Test Setup -- Cheek / Touch Position --

Measurement Result of Test Data (GSM1900 Left Head Touch Position)

Date/Time: 2005-09-24 12:03:35

Test Laboratory: Nemko Korea File Name: LH Touch CH512.da4

DUT: BPP-UP100 Type: Bar Serial: 0000001 Applicant Name : Bellwave

Communication System: PCS1900 Frequency: 1850.2 MHz

Duty Cycle: 1:8.3 Phantom section: Left Section

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.38 \text{ mho/m}$; $\varepsilon_r = 40.6$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

Probe: ES3DV3 - SN3068; ConvF(4.88, 4.88, 4.88); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

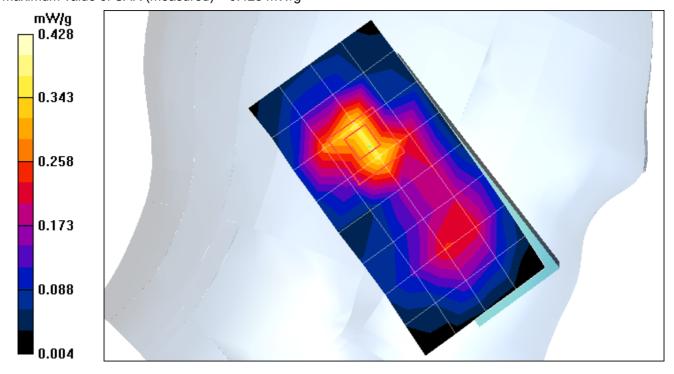
Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

LH Touch CH512/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.363 mW/g

LH Touch CH512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 11.4 V/m; Power Drift = 0.102 dB

Peak SAR (extrapolated) = 0.695 W/kg

SAR(1 g) = 0.396 mW/g; SAR(10 g) = 0.212 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.428 mW/g

Date/Time: 2005-09-24 11:42:52

Test Laboratory: Nemko Korea File Name: LH Touch CH661.da4

DUT: BPP-UP100 Type: Bar Serial: 0000001 Applicant Name : Bellwave

Communication System: PCS1900 Frequency: 1880 MHz

Duty Cycle: 1:8.3 Phantom section: Left Section

Medium parameters used: f = 1880 MHz; σ = 1.43 mho/m; ε_r = 40.2; ρ = 1000 kg/m³

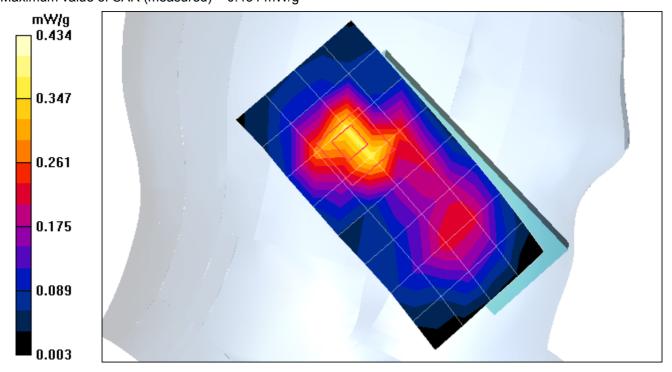
DASY4 Configuration:

Probe: ES3DV3 - SN3068; ConvF(4.88, 4.88, 4.88); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

LH Touch CH661/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.368 mW/g

LH Touch CH661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.5 V/m; Power Drift = 0.181 dB

Peak SAR (extrapolated) = 0.720 W/kg

SAR(1 g) = 0.402 mW/g; SAR(10 g) = 0.214 mW/gMaximum value of SAR (measured) = 0.434 mW/g

Date/Time: 2005-09-24 12:15:59

Test Laboratory: Nemko Korea File Name: LH Touch CH810.da4

DUT: BPP-UP100 Type: Bar Serial: 0000001 Applicant Name : Bellwave

Communication System: PCS1900 Frequency: 1909.8 MHz

Duty Cycle: 1:8.3 Phantom section: Left Section

Medium parameters used: f = 1910 MHz; σ = 1.46 mho/m; ε_r = 40.4; ρ = 1000 kg/m³

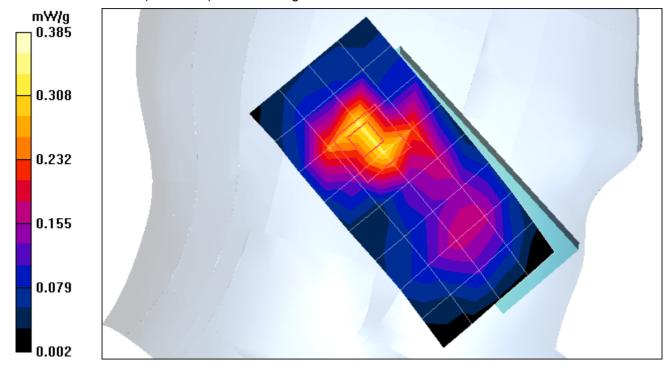
DASY4 Configuration:

Probe: ES3DV3 - SN3068; ConvF(4.88, 4.88, 4.88); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

LH Touch CH810/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.321 mW/g

LH Touch CH810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.88 V/m; Power Drift = -0.101 dB

Peak SAR (extrapolated) = 0.638 W/kg

SAR(1 g) = 0.356 mW/g; SAR(10 g) = 0.187 mW/gMaximum value of SAR (measured) = 0.385 mW/g

9.10 SAR Measurement Result (GSM1900 Left Head Tilted Position)

Date of Test: September. 24. 2005

Mixture Type: Head Tissue Depth: 15.3 cm

Modulation	FREC	UENCY	Power	Device Test	Antenna	SAR (W/kg)
Wiodulation	СН	MHz	Drift(dB) Posit	Position	Position	1g
PCS1900	661	1880.06	0.039	Cheek / Tilted	Intenna	0.329

Notes:

- 1. The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings.
- 4. SAR Measurement System
- 5. Phantom Configuration
- 6. SAR Configuration
- 7. Test Signal Call Mode
- 8. Battery Option

- DASY4
- Left Head □ Flat Phantom
- ☐ Right Head

- Head
- ☐ Body
- ☐ Hand
- ☐ Manu. Test Codes
- Base Station Simulator
- Standard Type
- ☐ Slim Type

Figure 9.10 Left Head SAR Test Setup
-- Ear / Tilted Position --

Measurement Result of Test Data (GSM1900 Left Head Tilted Position)

Date/Time: 2005-09-24 2:47:54

Test Laboratory: Nemko Korea File Name: LH Tilt CH661.da4

DUT: BPP-UP100 Type: Bar Serial: 0000001 Applicant Name : Bellwave

Communication System: PCS1900 Frequency: 1880 MHz

Duty Cycle: 1:8.3 Phantom section: Left Section

Medium parameters used: f = 1880 MHz; σ = 1.43 mho/m; ε_r = 40.2; ρ = 1000 kg/m³

DASY4 Configuration:

Probe: ES3DV3 - SN3068; ConvF(4.88, 4.88, 4.88); Calibrated: 2005-04-11

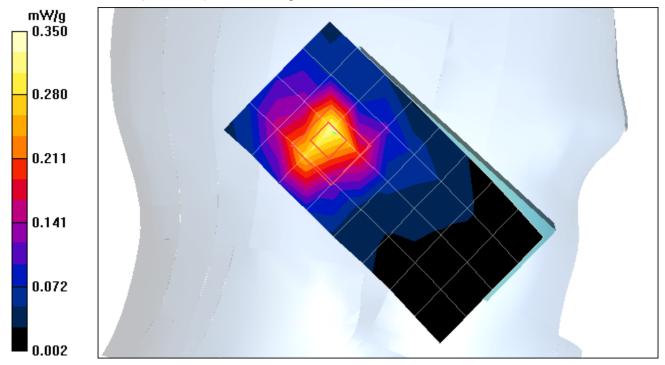
Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

LH Tilt CH661/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.327 mW/g

LH Tilt CH661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 10.4 V/m; Power Drift = 0.039 dB

Peak SAR (extrapolated) = 0.588 W/kg

SAR(1 g) = 0.329 mW/g; SAR(10 g) = 0.170 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.350 mW/g

Reference No.: NK2FR181

☐ Right Head

9.11 SAR Measurement Result (GSM19000 Muscle -15mm Distance- Position)

Date of Test: September. 26. 2005

Mixture Type: Muscle Tissue Depth: 15.0 cm

Modulation	FREQUENCY		Power	Device Test	Antenna	SAR (W/kg)
Wodulation	СН	MHz	Drift(dB)	Position	Position	1g
	512	1850.26	-0.025	15mm Distance	Intenna	0.108
PCS1900	661	1880.06	0.047	15mm Distance	Intenna	0.110
	810	1909.86	0.052	15mm Distance	Intenna	0.128

Notes:

1. The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration.

Flat Phantom

- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings.

4. SAR Measurement System	■ DASY4
5. Phantom Configuration	☐ Left Head

- 6. SAR Configuration ☐ Head ☐ Muscle ☐ Hand
 7. Test Signal Call Mode ☐ Manu. Test Codes ☐ Base Station Simulator
- 8. Battery Option Standard Type □ Slim Type

Figure 9.11 Muscle SAR Test Setup
-- 15mm Distance Position --

Measurement Result of Test Data (GSM19000 Muscle -15mm Distance- Position)

Date/Time: 2005-09-26 5:26:24

Test Laboratory: Nemko Korea

File Name: 15mm distance CH512.da4

DUT: BPP-UP100 Type: Bar Serial: 0000001 Applicant Name : Bellwave

Communication System: PCS1900 Frequency: 1850.2 MHz

Duty Cycle: 1:8.3 Phantom section: Flat Section

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.47 \text{ mho/m}$; $\varepsilon_r = 54.7$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

Probe: ES3DV3 - SN3068; ConvF(4.57, 4.57, 4.57); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

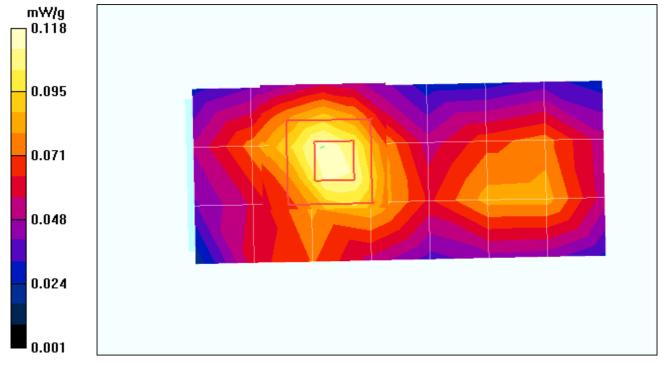
Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

RH 15mm CH512/Area Scan (4x8x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.111 mW/g

RH 15mm CH512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 7.08 V/m; Power Drift = -0.025 dB

Peak SAR (extrapolated) = 0.176 W/kg

SAR(1 g) = 0.108 mW/g; SAR(10 g) = 0.061 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.118 mW/g

Date/Time: 2005-09-26 6:19:27

Test Laboratory: Nemko Korea

File Name: 15mm distance CH661.da4

DUT: BPP-UP100 Type: Bar Serial: 0000001 Applicant Name : Bellwave

Communication System: PCS1900 Frequency: 1880 MHz

Duty Cycle: 1:8.3 Phantom section: Flat Section

Medium parameters used: f = 1880 MHz; σ = 1.51 mho/m; ε_r = 54.5; ρ = 1000 kg/m³

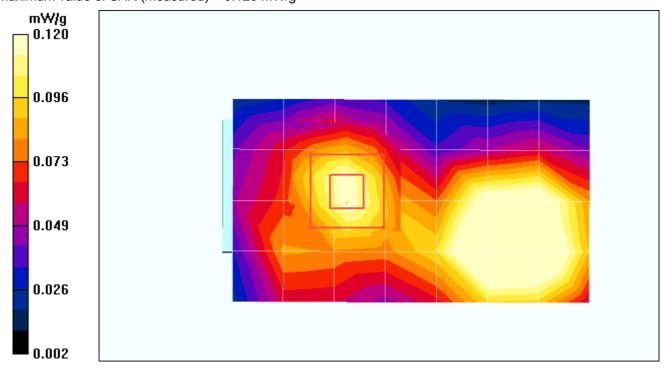
DASY4 Configuration:

Probe: ES3DV3 - SN3068; ConvF(4.57, 4.57, 4.57); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

RH 15mm CH661/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.160 mW/g

RH 15mm CH661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.51 V/m; Power Drift = 0.047 dB

Peak SAR (extrapolated) = 0.181 W/kg

SAR(1 g) = 0.110 mW/g; SAR(10 g) = 0.063 mW/g Maximum value of SAR (measured) = 0.120 mW/g

Date/Time: 2005-09-26 6:44:33

Test Laboratory: Nemko Korea

File Name: 15mm distance CH810.da4

DUT: BPP-UP100 Type: Bar Serial: 0000001 Applicant Name : Bellwave

Communication System: PCS1900 Frequency: 1909.8 MHz

Duty Cycle: 1:8.3 Phantom section: Flat Section

Medium parameters used: f = 1909.8 MHz; σ = 1.56 mho/m; ε_r = 54.2; ρ = 1000 kg/m³

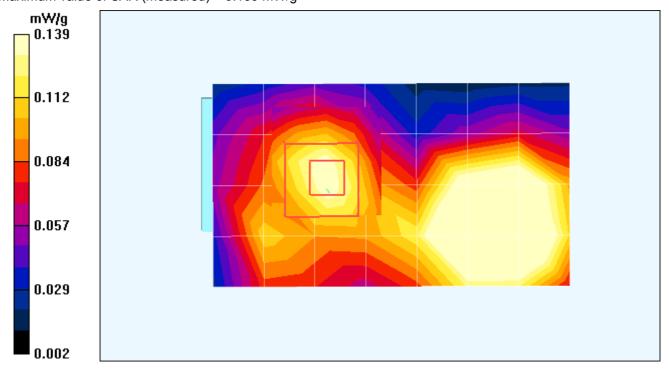
DASY4 Configuration:

Probe: ES3DV3 - SN3068; ConvF(4.57, 4.57, 4.57); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

15mm CH810/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.200 mW/g

15mm CH810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.53 V/m; Power Drift = 0.052 dB

Peak SAR (extrapolated) = 0.215 W/kg

SAR(1 g) = 0.128 mW/g; SAR(10 g) = 0.073 mW/g Maximum value of SAR (measured) = 0.139 mW/g

9.12 SAR Measurement Result (GSM1900 Muscle -15mm Distance- with headset)

Date of Test: September. 26. 2005

Mixture Type: Muscle Tissue Depth: 15.0 cm

Modulation	FREQUENCY		Power	Device Test	Antenna	SAR (W/kg)
Wodulation	СН	MHz	Drift(dB)	Position	Position	1g
PCS1900	810	1909.86	0.046	15mm Distance with Headset	Intenna	0.132

Notes:

- 1. The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration.
- 2. All modes of operation were investigated, and worst-case results are reported.
- 3. Battery is fully charged for all readings.

4. SAR Measurement System	■ DASY4		
5. Phantom Configuration	☐ Left Head	■ Flat Phantom	☐ Right Head
6. SAR Configuration	☐ Head	■ Muscle	☐ Hand
7. Test Signal Call Mode	☐ Manu. Test	Codes ■ Base S	Station Simulator

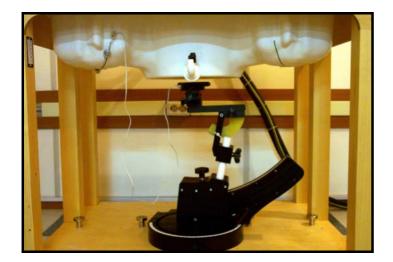


Figure 9.12 Muscle SAR Test Setup
-- 15mm Distance with headset Position --

Measurement Result of Test Data (GSM1900 Muscle -15mm Distance- with headset)

Date/Time: 2005-09-26 7:00:17

Test Laboratory: Nemko Korea

File Name: 15mm distance CH810 with headset.da4

DUT: BPP-UP100 Type: Bar Serial: 0000001 Applicant Name : Bellwave

Communication System: PCS1900 Frequency: 1909.8 MHz

Duty Cycle: 1:8.3 Phantom section: Flat Section

Medium parameters used: f = 1909.8 MHz; σ = 1.56 mho/m; ϵ_r = 54.2; ρ = 1000 kg/m³

DASY4 Configuration:

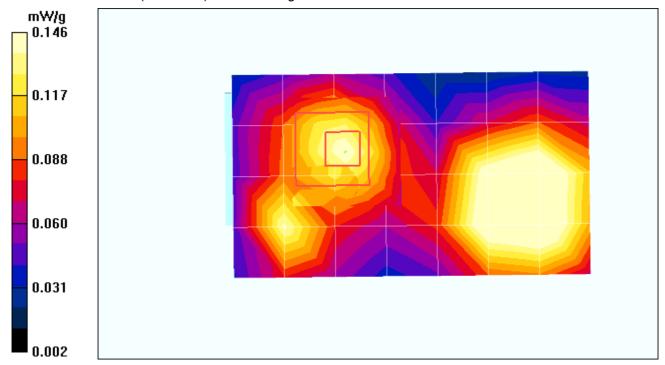
Probe: ES3DV3 - SN3068; ConvF(4.57, 4.57, 4.57); Calibrated: 2005-04-11

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn672; Calibrated: 2005-03-02 Phantom: SAM Phantom; Type: SAM; Serial: TP-1358

Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

RH 15mm CH810 with headset/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.176 mW/g


RH 15mm CH810 with headset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.43 V/m; Power Drift = 0.046 dB

Peak SAR (extrapolated) = 0.224 W/kg

SAR(1 g) = 0.132 mW/g; SAR(10 g) = 0.075 mW/g

Maximum value of SAR (measured) = 0.146 mW/g

10. SAR Test Equipment

Equipment Calibration

Table 10.1 Test Equipment Calibration

Table 10.1 Test Equipment Calibration						
Description	Model	Serial No.	Calibration Date			
Staubli Robot Unit	RX60L	F05/51E1A1/A/01	Mar. 2005			
Data Acquisition Electronics	DAE4	672	Mar. 2005			
E-Field Probe	ES3DV3	3068	Apr. 2005			
Electro-Optical Converter	EOC3	398	Mar. 2005			
SAM Twin Phantom V4.0C	TP-1358	SM 00 T02 DA	Mar. 2005			
Validation Dipole Antenna	D450V2	1022	Mar. 2005			
Validation Dipole Antenna	D835V2	4d017	Apr. 2005			
Validation Dipole Antenna	D900V2	1d016	Apr. 2005			
Validation Dipole Antenna	D1800V2	2d111	Apr. 2005			
Validation Dipole Antenna	D1900V2	5d059	Apr. 2005			
Validation Dipole Antenna	D2450V2	774	Apr. 2005			
Wireless Communications Test Set	8960 Series 10	GB43193659	Jun. 2005			
Dielectric Probe Kit	85070E	MY44300121	Apr. 2005			
Network Analyzer	8753ES	US39171172	Mar. 2005			
Power Amplifier	NKRFSPA	NK00SP18	Jun. 2005			
Power Meter	437B	2912U01687	Dec. 2004			
Power Sensor	8481A	836019/028	Aug. 2004			
Power Meter	NRVS	835360/002	Dec. 2004			
Power Sensor	NRV-Z32	836019/028	Dec. 2004			
Series Signal Generator	E4436B	US39260598	Jan. 2005			

Note:

The E-field probe was calibrated by SPEAG, by waveguide technique procedure. Dipole Validation measurement is performed by Nemkokorea Lab. before each test. The brain simulating material is calibrated by Nemkokorea using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain-equivalent material.

11. References

- [1] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003 (Draft 6.1 July 2001), *IEE* Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [2] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, July 2001.
- [3] ANSI/IEEE C95.3 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992.
- [4] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [5] ANSI/IEEE C95.1 1991, American National Standard Safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: : IEEE, Aug. 1992.
- [6] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [7] NCRP, National Council on Radiation Protection and Measurements, *Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields,* NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [8] T. Schmid, O. Egger, N. Kuster, *Automated E-field scanning system for dosimetric assessments,* IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [9] K. Pokovic, T.Schmid, N. Kuster, *Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies*, ICECOM97, Oct. 1997, pp. 120-124.
- [10] G.Hartsgrove, A. raszewski, A. Surowiec, *Simulated Biological Materials for Electromagnetic Radiation Absorption Studies*, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36
- [11] Q. Balzano, O. Garay, T. Manning Jr,. *Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones*, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [12] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, *Numerical Recepies in C,* The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [13] K. Pokovic, T.Schmid, N. Kuster, *E-field Probe with improved isotropy in brain simulating liquids*, Proceedings of the ELMAR, Zadar, June 23-25, 1996, pp. 172-175.
- [14] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [15] V. Hombach, K.Meier, M. Burkhardt, E. Kuhn, N. Kuster, *The Dependence of EM Energy Absorption upon Human Head Modeling at 900MHz*, IEEE Transaction on Microwave Theory and Techniques, vol 44 no. 10, Oct. 1996, pp. 1865-1873.
- [16] N. Kuster and Q. Balzano, *Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz*, IEEE Transaction on Vehicular Technology, vol. 41, no.1, Feb.1992, pp. 17-23.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp.645-652.

APPENDIX A

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (p). It is also defined as the rate of RF energy absorption pet unit mass at a point in an absorbing body (see Fig. A.1).

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{pdv} \right)$$

Figure A.1 SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \sigma E^{2}/p$$

Where:

 σ = conductivity of the tissue-simulant material (S/m)

p = mass density of the tissue-simulant material (kg/m3)

E = Total RMS electric field strength (V/m)

Note:

The primary factors that control rate or energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

SAR Limit

In this report the comparison between the measured data and exposure limits defined in the ICNIRP Guidelines is made using the spatial peak SAR: the power level of the device under test guarantees that the whole body averaged SAR is not exceeded

Having in mind a worst-case consideration, the SAR limit is valid for general public exposure and for exposure times longer than 6 minutes [ICNIRP 1998].

According to Table 1 the SAR values have to be averaged over a mess of 10g with the shape of a cube

Table .1 Relevant spatial peak SAR limit averaged over a mass of 1g / 10g

Standard	SAR Limit [W/kg]	
OET Bulletin 65	1.6	
Supplement C	1.0	

Reference No.: NK2FR181

APPENDIX B: Probe Calibration

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Wiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Nemko (Dymstec) Certificate No: ES3-3068_Apr05 **CALIBRATION CERTIFICATE** Object ES3DV3 - SN:3068 Calibration procedure(s) QA CAL-01.v5 and QA CAL-12.v4 Calibration procedure for dosimetric E-field probes April 11, 2005 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certifi All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 5-May-04 (METAS, No. 251-00388) May-05 Power sensor E4412A MY41495277 5-May-04 (METAS, No. 251-00388) 10-Aug-04 (METAS, No. 251-00403) May-05 Reference 3 dB Attenuator SN: S5054 (3c) Aug-05 SN: S5086 (20b) Reference 20 dB Attenuator 3-May-04 (METAS, No. 251-00389) May-05 Reference 30 dB Attenuator SN: S5129 (30b) 10-Aug-04 (METAS, No. 251-00404) Aug-05 Reference Probe ES3DV2 SN: 3013 7-Jan-05 (SPEAG, No. ES3-3013 Jan05) Jan-06 SN: 617 19-Jan-05 (SPEAG, No. DAE4-617_Jan05) Jan-06 Secondary Standards Check Date (in house) Scheduled Check 18-Sep-02 (SPEAG, in house check Oct-03) 4-Aug-99 (SPEAG, in house check Dec-03) Power sensor HP 8481A MY41092180 In house check: Oct 05 RF generator HP 8648C US3642U01700 In house check: Dec-05 Network Analyzer HP 8753E US37390585 18-Oct-01 (SPEAG, in house check Nov-04) In house check: Nov 05 Function Calibrated by: Nico Vetterli Laboratory Technician Katja Pokovic Technical Manager

Certificate No: ES3-3068_Apr05

Page 1 of 9

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Issued: April 12, 2005

Reference No.: NK2FR181

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConF DCP

sensitivity in TSL / NORMx,y,z diode compression point

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below *ConvF*).
- $NORM(f)x, y, z = NORMx, y, z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3068 Apr05

Page 2 of 9

ES3DV3 SN:3068

April 11, 2005

Probe ES3DV3

SN:3068

Manufactured: Calibrated: December 14, 2004

April 11, 2005

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3068_Apr05

Page 3 of 9

Reference No.: NK2FR181

ES3DV3 SN:3068

April 11, 2005

DASY - Parameters of Probe: ES3DV3 SN:3068

Sensitivity in Free Space^A

Diode Compression^B

1.31 ± 10.1% $\mu V/(V/m)^2$ NormX DCP X 97 mV 1.18 \pm 10.1% μ V/(V/m)² NormY DCP Y 97 mV NormZ 1.19 ± 10.1% $\mu V/(V/m)^2$ DCP Z 97 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

900 MHz Typical SAR gradient: 5 % per mm

Sensor Cente	er to Phantom Surface Distance	3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	5.8	2.5
SAR _{be} [%]	With Correction Algorithm	0.0	0.2

TSL

1810 MHz Typical SAR gradient: 10 % per mm

Sensor Cente	er to Phantom Surface Distance	3.0 mm	4.0 mn
SAR _{be} [%]	Without Correction Algorithm	7.9	4.7
SAR _{be} [%]	With Correction Algorithm	0.1	0.3

Sensor Offset

Probe Tip to Sensor Center

2.0 mm

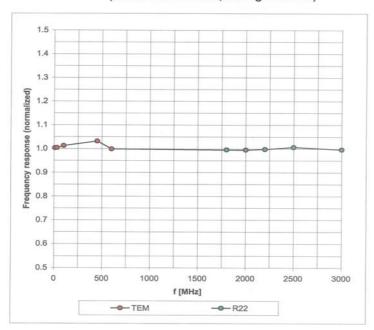
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3-3068 Apr05

Page 4 of 9

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

⁸ Numerical linearization parameter: uncertainty not required.

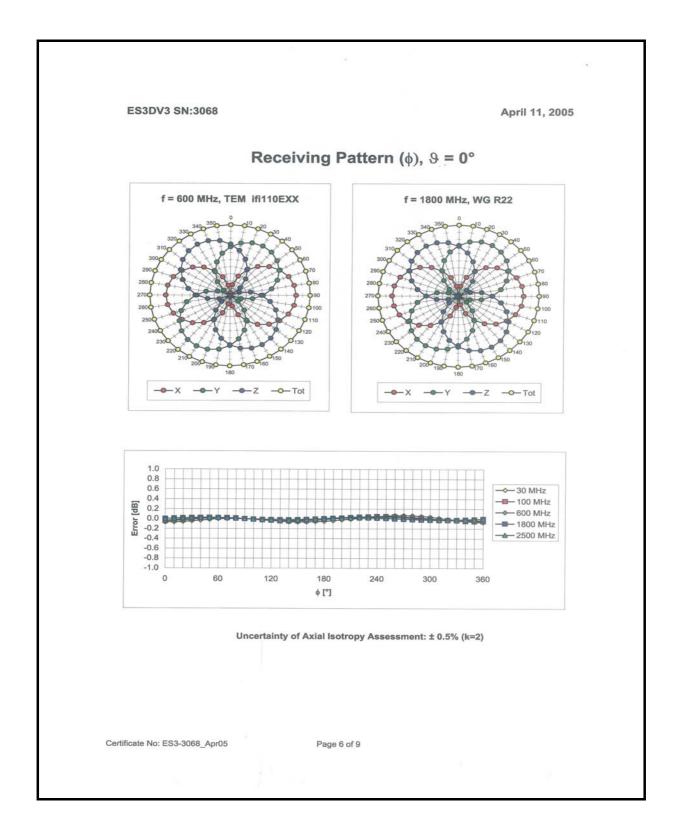


ES3DV3 SN:3068

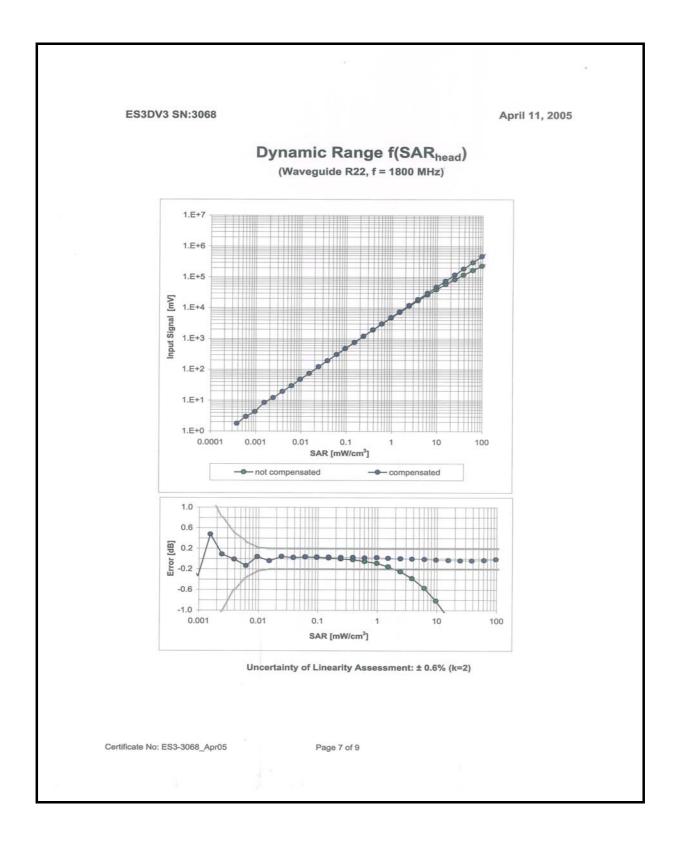
April 11, 2005

Frequency Response of E-Field

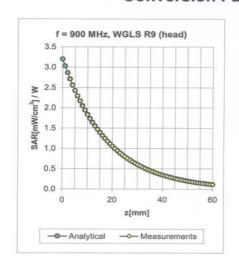
(TEM-Cell:ifi110 EXX, Waveguide: R22)

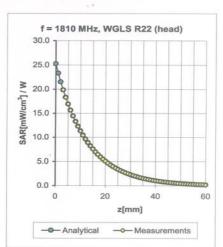


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: ES3-3068_Apr05

Page 5 of 9





April 11, 2005

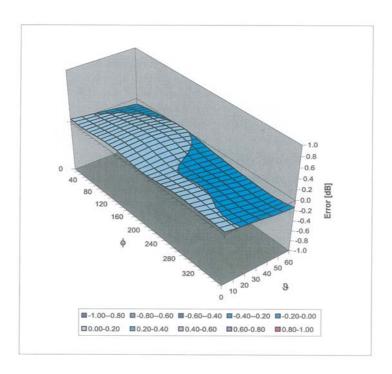
Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
450	± 50 / ± 100	Head	$43.5 \pm 5\%$	$0.87 \pm 5\%$	0.02	1.20	6.57 ± 13.3% (k=2)
900	± 50 / ± 100	Head	$41.5 \pm 5\%$	$0.97 \pm 5\%$	0.53	1.32	5.91 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	$40.0 \pm 5\%$	$1.40 \pm 5\%$	0.25	2.40	4.88 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	$40.0 \pm 5\%$	$1.40 \pm 5\%$	0.29	2.21	4.67 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.47	1.55	4.35 ± 11.8% (k=2)
450	± 50 / ± 100	Body	56.7 ± 5%	0.94 ± 5%	0.02	1.21	6.33 ± 13.3% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	$0.97 \pm 5\%$	0.51	1.39	5.90 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	$53.3 \pm 5\%$	1.52 ± 5%	0.23	3.29	4.57 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	$52.7 \pm 5\%$	$1.95 \pm 5\%$	0.71	1.24	4.07 ± 11.8% (k=2)

 $^{^{\}rm C}$ The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ES3-3068_Apr05

Page 8 of 9

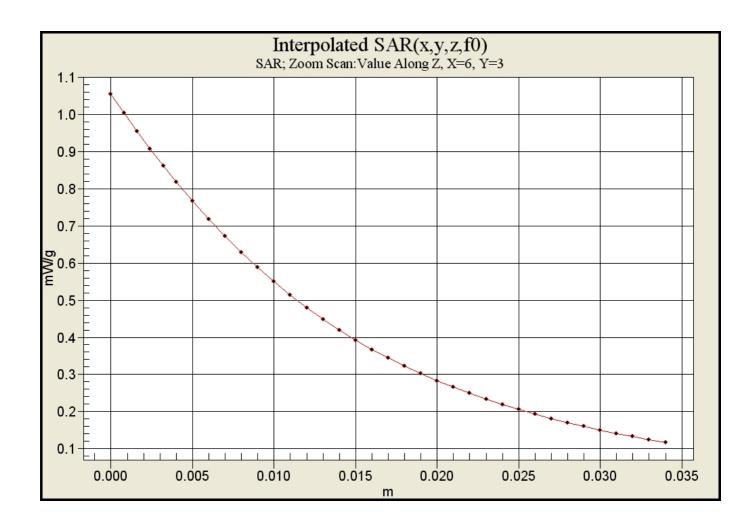


ES3DV3 SN:3068

April 11, 2005

Deviation from Isotropy in HSL

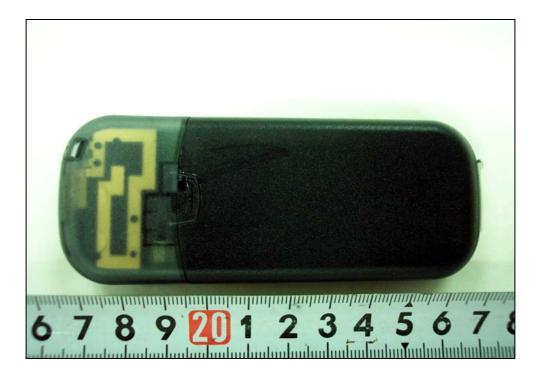
Error (¢, 9), f = 900 MHz


Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ES3-3068_Apr05

Page 9 of 9

APPENDIX C : Probe Interpolation



APPENDIX D: Photographs of EUT

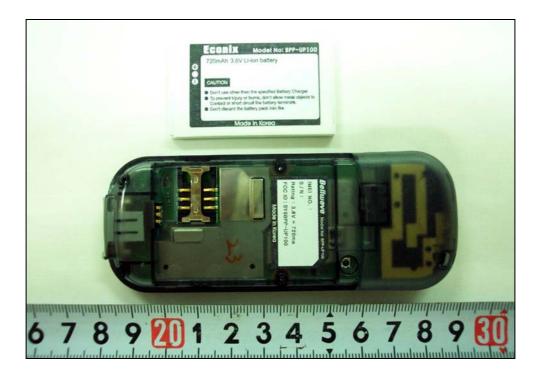
Front View Of EUT

Rear View Of EUT

Top View Of EUT

Base View Of EUT

Side View Of EUT



Side View Of EUT

Label View Of EUT

