
Test Report No.: NK2FR206

APPENDIX G - OPERATIONAL DESCRIPTION

REVISED HISTORY

DATE	ISSUE	CONTENTS OF CHANGES	S/W VERSION
September / 2005	ISSUE 1.0	Initial Release	

Bellwave. Inc 2/27

* The information in this manual commitment by BELLWAVE Incommake changes to equipment designate the second	c. Furthermore, BELLWAVE		notice, to
* This manual provides the inform NEO200_850T.	mation necessary to install, pr	rogram, operate and maintain the	

SECTION 1. PERFORMANCE

1.1 H/W Feature

Item	Feature	Comment
Standard Battery	Li-ion, 720mAh Size: 4.45(T)x31.5(W)x52.3(L) mm Weight: 16g	
AVG TCVR Current	GSM850: 230mA, DCS1800/PCS1900: 180mA	
Standby Current	< 4.0mA	
Talk time	< 4 hours (GSM TX Level 7)	
Standby time	200 hours (Paging Period:2, RSSI: -85dBm)	
Charging time	2.5 hours	
RX Sensitivity	GSM850 : -108dBm, DCS/PCS : -106dBm	
TX output power	GSM850: 32.2dBm (Level 5) DCS1800/PCS1900: 29.3dBm (Level 0)	
GPRS compatibility	Class 10	
SIM card type	1.8V/3V Small	
Display	128 × 160 dots main LCD, 96 × 96 sub LCD	
Status Indicator	2 color LED	
ANT	Internal Antenna	
EAR Phone Jack	8 pole earphone jack	
PC Synchronization	Yes	
Speech coding	EFR/FR	
Data and Fax	Yes	
Vibrator	Yes	
Buzzer	Yes	
Voice Recoding	Yes	
C-Mike	Yes	
Receiver	Yes	
Travel Adapter	Yes	
Options	No	

Bellwave. Inc 4/27

1.2 Technical Specification

Item	Description	Specifica	tion				
1	Frequency Band	GSM 85 DCS 180 DCS 180 PCS 190	GSM 850 TX : 824– 849 MHz GSM 850 RX : 869 – 894 MHz DCS 1800 TX : 1710 – 1785 MHz DCS 1800 RX : 1805 – 1880 MHz PCS 1900 TX : 1850 – 1910 MHz PCS 1900 RX : 1930 – 1990 MHz				
2	Phase Error		5 degrees 20 degrees				
3	Frequency Error	< 0.1ppi	m				
		GSM85 Level 5	Power 33 dBm 31 dBm	Toler. ±2dB ±3dB	Level 13 14	Power 17 dBm 15 dBm	Toler. ±3dB ±3dB
		7 8 9	29 dBm 27 dBm 25 dBm	±3dB ±3dB ±3dB	15 16 17	13 dBm 11 dBm 9 dBm	±3dB ±5dB ±5dB
		10 11 12	23 dBm 21 dBm 19 dBm	±3dB ±3dB ±3dB	18 19	7 dBm 5 dBm	±5dB ±5dB
4	Power Level	DCS180				L	
		Level 0 1	Power 30 dBm 28 dBm	Toler. ±2dB ±3dB	Level 8 9	Power 14 dBm 12 dBm	Toler. ±3dB ±4dB
		3 4	26 dBm 24 dBm 22 dBm	±3dB ±3dB ±3dB	10 11 12	10 dBm 8 dBm 6 dBm	±4dB ±4dB ±4dB
		5 6 7	20 dBm 18 dBm 16 dBm	±3dB ±3dB ±3dB	13 14 15	4 dBm 2 dBm 0 dBm	±4dB ±5dB ±5dB

Bellwave. Inc 5/27

		GSM850			
		Offset from Carrier (kHz).	Max. dBc		
		100	+0.5		
		200	-30		
		250	-33		
		400	-60		
		600 ~ 1,200	-60		
		1,200 ~ 1,800	-60		
		1,800 ~ 3,000	-63		
		3,000 ~ 6,000	-65		
	Output RF Spectrum	6,000	-71		
5	(due to modulation)	DCS1800/PCS1900			
		Offset from Carrier (kHz).	Max. dBc		
		100	+0.5		
		200	-30		
		250	-33		
		400	-60		
		600 ~ 1,200	-60		
		1,200 ~ 1,800	-60		
		1,800 ~ 3,000	-65		
		3,000 ~ 6,000	-65		
		6,000	-73		
		GSM850			
		Offset from Carrier (kHz)	Max. (dBm)		
		400	-19		
		600	-21		
		1,200	-21		
	Output RF Spectrum	1,800	-24		
6	(due to switching transient)	DCS	·		
		Offset from Carrier (kHz)	Max. (dBm)		
		400	-22		
		600	-24		
		1,200	-24		
		1,800	-27		
7	Spurious Emissions	Conduction, Emission Status Conduction, Emission Status			

Bellwave. Inc 6/27

		GSM850				
			II) < 2.42	00/ @ 10/) dD _m	
8	Bit Error Ratio	BER (Class II) < 2.439% @-102dBm DCS1800/PCS1900				
	Dr. Laval Damart aggregat	BER (Class II) < 2.439% @-100dBm			Jabm	
9	Rx Level Report accuracy	± 3 dB				
10	SLR	8 ± 3 dB			1	
		Frequency (Hz)	Max.(d	lB)	Min.(dB)	
		100	-12		/	
		200	0		/	
		300	0		-12	
11	Sending Response	1,000	0		-6	
		2,000	4		-6	
		3,000	4		-6	
		3,400	4		-9	
		4,000	0		/	
12	RLR	$2 \pm 3 \text{ dB}$				
		Frequency (Hz)	Max.(d	lB)	Min.(dB)	
		100	-12		/	
	Receiving Response	200	0		/	
		300	2		-7	
		500	*		-5	
13		1,000	0		-5	
		3,000	2		-5	
		3,400	2		-10	
		4,000	2			
		* Mean that Adopt a straight line in between 300 Hz ar 1,000 Hz to be Max. level in the range.				
14	STMR	13 ± 5 dB	viax. ievei	in the ran	ge.	
15		> 6 dB				
13	Stability Margin				1 D ((1D)	
		dB to ARL (dB)		Leve	el Ratio (dB)	
		-35		17.5		
		-30		22.5		
	Distantion	-20		30.7		
16	Distortion	-10		33.3		
		0		33.7		
		7		31.7		
		10		25.5	25.5	
17	Side tone Distortion	Three stage disto	ortion < 10	0%		
18	< Change > System frequency (26 MHz)	≤ 2.5 ppm				
	tolerance					
19	<change>32.768KHz tolerance</change>	≤ 30ppm				

Bellwave. Inc 7/27

20	Power consumption	Standby - Normal Mode ≤ 4 - Using Test mode	< 250mA (GSM850) ; < 200mA (DCS/PCS)		
21	Talk Time	· ·	ttery Capacity720:250 Min		
22	Standby Time	Under conditions, at let 1. Brand new and full 2. Full charge, no rece mode. 3. Broadcast set off. 4. Signal strength disp	Under conditions, at least 200 hours: 1. Brand new and full 740mAh battery 2. Full charge, no receive/send and keep GSM in idle mode.		
23	Ringer Volume	At least 80 dB under be 1. Ringer set as ringer. 2. Test distance set as:			
24	Charge Voltage	Fast Charge : < 500 mA Slow Charge: < 60 mA			
25	Antenna Display	0 1 2 3 4 5	$Rx \le -103 dBm$ $Rx \le -95 dBm$ $Rx \le -91 dBm$ $Rx \le -86 dBm$ $Rx \le -81 dBm$ $Rx \ge -81 dBm$		
26	Battery Indicator	Battery Bar Number 0 1 2 3	Voltage 3.4~ 3.54 V 3.55 ~ 3.68 V 3.69 ~ 3.81 V 3.82 ~4.2V		
27	Low Voltage Warning	3.35~3.60 V (Call) 3.35~3.50V (Standby)			
28	Forced shut down Voltage	$3.35 \pm 0.03 \text{ V}$	` *		
29	Battery Type		Standard Voltage = 3.7 V Battery full charge voltage = 4.2 V		
30	Travel Charger		Switching-mode charger Input: 100 ~ 240 V, 50/60Hz		

Bellwave. Inc 8/27

SECTION 2. TECHNICAL BRIEF

2.1 General Description

RF part consists of a transmit part, a receive part, a voltage supply part. The RF main chipset SMARTi SD2 is a single-chip multi-band GSM850 and DCS/PCS (GPRS) wireless communication (voice and data applications). This device integrated a receive section based on a zero-IF receiver architecture and a transmit section based on an offset phase-locked loop (OPLL) with a fully integrated transmit VCO.

2.2 Receiver Part

A. RF Front End Demodulator

RF front end is consists of FEM(U100), Tri band LNAs integrated in transceiver.

The Received RF signals (GSM 925MHz \sim 960MHz, DCS 1805MHz \sim 1880MHz, PCS 1930MHz \sim 1990MHz) are fed into the antenna or FEM. An antenna matching circuit is between the antenna and the FEM.

The FEM control the Rx and Tx paths.

And, the input signals VC1 and VC2 of the FEM are directly connected to baseband control signals to switch either Tx or Rx path on. The FEM(U100) is Front End Module for Tri band.

The logic and current is given below The SMARTi SD2 RF front-end contains four integrated SNAs for GSM900/DCS1800/PCS1900 with balanced inputs. The amplified RF-signal is direct converted by a quadrature demodulator to the final output signals at the baseband frequency. The orthogonal LO signals are internally generated by a divider by four for GSM850 band and by two for the DCS/PCS band.

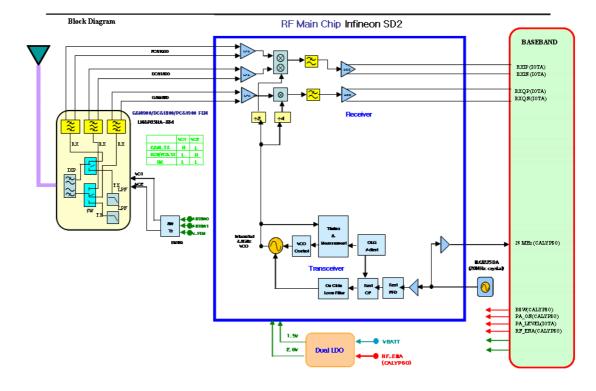
Table 1 The Logic and Current

Table 1.

	VC1	VC2	Current
GSM850 TX	2.4 ~ 2.8 V	.0 V	8.0 mA max
DCS1800/PCS1900 TX	0 V	2.4 ~ 2.8 V	8.0 mA max
GSM/DCS/PCS RX	0 V	0 V	< 0.1 mA

Bellwave. Inc 9/27

B. Transceiver


Receive section:

The SMARTi SD2 features a fully integrated quad-band constant gain direct conversion receiver, i.e. there is no interstage filter needed and the baseband level at the analog I/Q interface follows directly the RF input level. Dependent on the baseband ADC dynamic range single or multiple step gain switching schemes are applicable. An integrated self-aligning low-pass filter ensures the receivers functionality under blocking and reference interference conditions as well as avoids aliasing by baseband sampling. Furthermore an automatic DC offset compensation is implemented and can be switched on dependent on the gain setting. All receiver settings are programmed in the RXTX word.

- -- Constant gain direct conversion receiver with integrated blocking filter.
- -- Optimized for 72dB dynamic range ADC RX baseband interface.
- -- GPRS(class 1 to 12 / type1).
- -- Four integrated LNAs.
- -- No need of interstage and IF Filter.
- -- Highly linear RF quadrature demodulator.
- -- Programmable DC output level.
- -- Very low power budget.

Figure 1 Receiver Part Block Diagram

◆ RF Rx Block Diagram (GSM850+DCS1800/PCS1900)

Bellwave. Inc 10/27

2.3 Synthesizer Part

- -- $\Sigma\Delta$ Synthesizer for multi-slot operation supports GPRS class 12.
- -- Fast lock-in times(<150 μsec)
- -- Integrated loop filter

2.4 Transmitter Part

A. Transceiver

The digital transmitter architecture is based on a fractional-N sigma-delta symthesizer for constant envelope GMSK modulation. This configuration allows a very low power desing with a reduced count of external components.

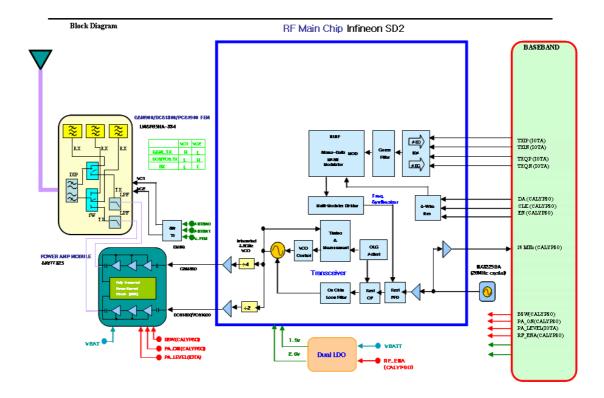
The modulation is transferred via the standard I/Q interface of the SMARTi SD2.

The analog I/Q signals are converted to digital using two ADCs to regenerate the digital data stream for the digital modulator.

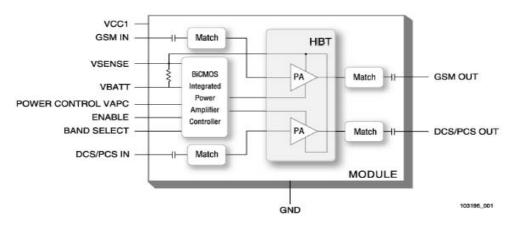
The following Gaussian filter shapes the digital data stream for the GMSK modulation. Additionally a predistortion filter compensates the attenuation of the PLL transfer function resulting in a very low distortion at the transmit output.

The filtered digital data stream is scaled appropriately and added to the channel word. Thins sum is fed into the MASH modulator. The output of the MASH modulator is a sequence of integer divider values representing the high resolution fractional input signal. This sequence controls the MMD(multi modulus divider) at a sample rate of 26MHz. Thus a tightly controlled frequency modulation of the VCO is achieved.

The output signal of the VCO is divided by four for GSM900 or by two for GSM1800 respectively. Finally the divided signal is amplified by a single ended output driver with 500hm output impedance to allow a direct connection to the PA.


The transmitter achieves a very low ou-of-band noise, typically -165.5dBc/Hz @ 20MHz offset, and a very low rms phase error of 0.7 degree typically in GSM900.

Transmit section:


- -- Digital Sigma-Delta modulator for GMSK modulation, typ. -163.5 dBc/Hz @ 20MHz
- -- Single ended outputs to PA, Pout =+ 3.5dBm
- -- Standard analog I/Q interface(IDA) for the digital modulator.
- -- Very low power budget.

Bellwave. Inc 11/27

Figure 2 Transmitter Block Diagram

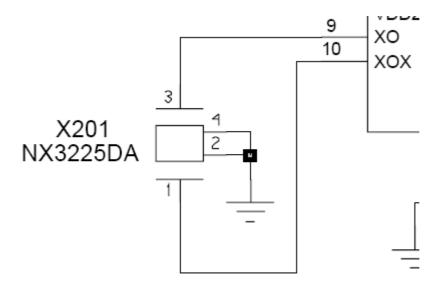
B. Power Amplifier

The SKY77325 Power Amplifier Module(PAM) is designed in a low profile (1.2mm), compact form factor for quad-band cellular handsets comprising GSM850/900, DCS1800 and PCS1900 operation. The PAM also supports Class 12 GPRS multi-slot operation.

The module consists of separate GSM900 PA and DCS1800 PA blocks, impedance matching circuitry for 500hm input and output impedances, and a Power Amplifier Control(PAC) block with an internal current-sense resistor. The custom BiCMOS integrated circuit provides the internal PAC function and interface circuitry.

Bellwave, Inc 12/27

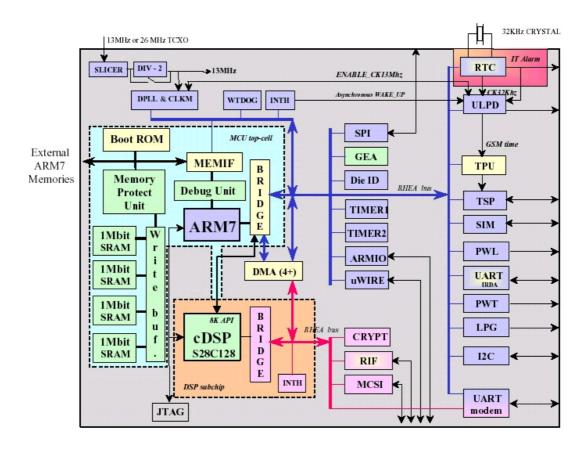
Fabricated onto a single Gallium Arsenide(GaAs) die, one Hetero junction Bipolar Transistor(HBT) PA block supports the GSM900 bands and the other supports the DCS1800 band. Both PA blocks share common power supply pins to distribute current. The GaAs die, the Silicon die, and the passive components are mounted on a multi-layer laminate substrate. The assembly is encapsulated with plastic overmold.


RF input and output ports of the SKY77325 are internally matched to a 500hm load to reduce the number of external components for a quad-band design. Extremely low leakage current (2.5Ua, typical) of the dual PA module maximizes handset standby time. The SKY77325 also contains band-select switching circuitry to select GSM(logic 0) or DCS/PCS(logic 1) as determined from the Band Select(BS) signal. The BS pin selects the PA output (DCS/PCS OUT or GSM850 OUT) and the Analog Power Control(VAPC) controls the level of output power.

The ENABLE input allows initial turn-on of PAM circuitry to minimize battery drain.

2.5 26 MHz Clock

The 26 MHz clock(X201) consists of a X-Tal which oscillates at a frequency of 13 MHz. It is used within the SMARTISD2 RF Main Chip, BB Analog chip-set(IOTA), Digital chip-set(Calypso Lite).


Figure 5 X-Tal Circuit

Bellwave. Inc 13/27

2.7 Digital Baseband(DBB) Processor

Figure 7 Top level block diagram of the Calypso G2(HERCROM400G2)

A. General Description

CALYPSO is a chip implementing the digital base-band processes of a GSM/GPRS mobile phone. This chip combines a DSP sub-chip (LEAD2 CPU) with its program and data memories, a Micro-Controller core with emulation facilities (ARM7TDMIE), internal 8Kb of Boot ROM memory, 4M bit SRAM memory, a clock squarer cell, several compiled single-port or 2-ports RAM and CMOS gates. The chip will fully support the Full-Rate, Enhanced Full-Rate and Half-Rate speech coding. CALYPSO implements all features for the structural test of the logic (full-SCAN, BIST, PMT, JTAG boundary-SCAN).

B. Block Description

CALYPSO architecture is based on two processor cores ARM7 and DSP using the generic RHEA bus standard as interface with their associated application peripherals.

CALYPSO is composed from the following blocks:

- ARM7TDMIE: ARM7TDMI CPU core
- DSP subchip
- ARM peripherals:

Bellwave. Inc 14/27

General purpose peripherals

- ARM Memory Interface for external RAM, Flash or ROM
- 4 Mbit Static RAM with write-buffer

Application peripherals

- ARM General purposes I/O with keyboard interface and two PWM modulation signals
- UART 16C750 interface (UART_IRDA) with
 - IRDA control capabilities (SIR)
 - Software flow control (UART mode).
- UART 16C750 interface (UART_MODEM) with
 - hardware flow protocol (DCD, CTS/RTS)
 - autobaud function
- SIM Interface.
- TPU(Time Processing Unit): Processing for GSM time base
- TSP(Time Serial Port): GSM data interface with RF and ABB

Memory Interface : External/Internal Memory Interface

```
nCS0: FLASH1, 16bit access, 3 wait state
```

nCS1: FLAHS2, 16bit access, 3 wait state

nCS2: Ext SRAM, 16bit access, 3 wait state

nCS3: Main LCD(16bit access), OEL(8bit access) addressing, 3 wait state (See Fig 3-11)

nCS4: MIDI(8bit access), USB(8bit access) addressing, 3 wait state (See Fig 3-12)

nCS6: Int SRAM, 32bit access, 0 wait state

Bellwave, Inc 15/27

^{*} Calypso is internally 39MHz machine (25ns machine cycle), so it requires 3 wait-state for 80ns access(25*4 = 100 ns).

C. External Devices connected to memory interface

Table 2 External Device Spec. connected to memory interface

Interface SPEC					
Device	Name	Maker	Write Access Time	Read Access Time	
MCP	S99PL193JC0BAWUB0	SPANSION	70ns	70ns	
NAND FLASH	K9K1208D0C-D/JIB0	SAMSUNG	45ns	50ns	
LCD DRIVER IC	HD66773	HITACHI	50ns	50ns	
Melody IC	YMU787	Yamaha	50ns	80ns	

D. RF Interface (TPU, TSP block)

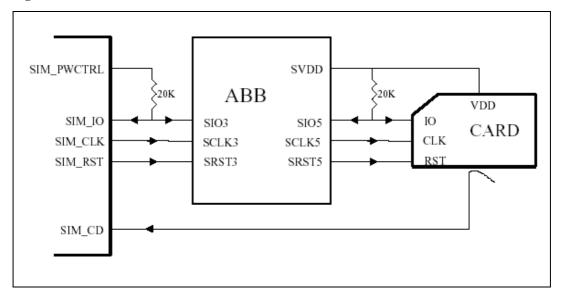
Calypso uses this interface to control Nausica_CS(ABB Processor) and Clara(RF Processor) with GSM Time Base

Table 3 RF Interface Spec.

TSP (Time Serial Port)					
Resource	Interconnection	Description			
TSPDO	ABB & RF main Chip	Control Data			
TSPEN0	ABB	ABB Control Data Enable Signal			
TSPEN1	RF main Chip	RF Control Data Enable Signal			
TPU (Time Processing Unit) Parallel Port					
TSPACT00	RESET_RF	RF main Chip Reset Signal			
TSPACT05	PA ON	Power Amp ON signal			

E. SIM interface

SIM interface scheme is shown in (Figure 10).


SIM_IO, SIM_CLK, SIM_RST ports are used to communicate DBB with ABB and the Charge Pump in ABB enables 1.8V/3V SIM operation

SIM Interface

SIM_CLK SIM card reference clock
SIM_RST SIM card async/sync reset
SIM_IO SIM card bidirectional data line
SIM_PWCTRL SIM card power activation
SIM_RnW SIM card data line direction
SIM_CD SIM card presence detection

Bellwave. Inc 16/27

Figure.10 SIM Interface

F. GPIO map

In total 16 allowable resources, NEO200_850TN is using 13 resources except 3 resources dedicated to SIM and Memory. NEO200_850TN GPIO(General Purpose Input/Output) Map, describing application, I/O state, and enable level, is shown in below table.

Table .4 GPIO Map Table

I/O #	Application	I/O	Resource	Inactive	Active
			State	State	State
I/O (0)	MELODY_IRQ	I	GPIO	LOW	HIGH
I/O (1)	MELODY_RST	О	GPIO	LOW	HIGH
I/O (2)	JACK_DET	I	GPIO	HIGH	LOW
I/O (3)	REED	О	GPIO	LOW	HIGH
I/O (4)	AIT_RST	О	GPIO	LOW	HIGH
I/O (5)	PHLCD_BY	О	GPIO	LOW	HIGH
I/O (6)	EAR_HOOK	I	GPIO	HIGH	LOW
I/O (7)	AIT_813_EN	О	GPIO	LOW	HIGH
I/O (8)	LCD_RST	О	GPIO	LOW	HIGH
I/O (9)	USB_EN	О	GPIO	LOW	HIGH
I/O (10)	RECEIVER_ON	О	GPIO	LOW	HIGH
I/O (11)	DSR	I	GPIO	LOW	HIGH
I/O (12)	V_BUS	О	GPIO	LOW	HIGH
I/O (13)	PHINT	О	GPIO	LOW	HIGH
I/O (14)	BHE	О	MEMORY	LOW	HIGH
I/O (15)	BLE	О	MEMORY	LOW	HIGH

Bellwave. Inc 17/27

2.8 Analog Baseband(ABB) Processor

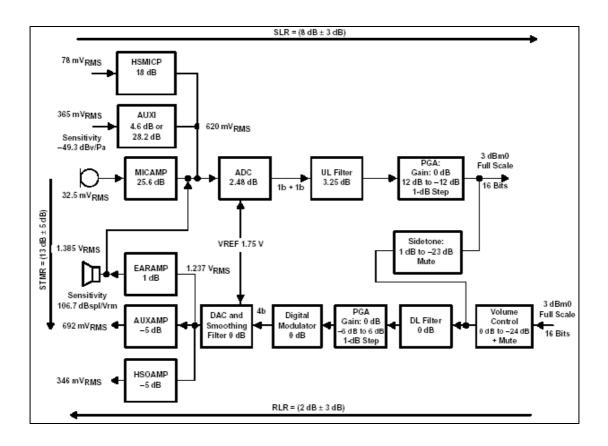
A. General Description

IOTA is Analog Baseband (ABB)Chip supports GSM900, DCS1800, DCS, GPRS Class 10 with Digital Basband Chip(Calypso G2).

IOTA processes GSM modulation/demodulation and power management operations.

Block Description

- Audio Signal Processing & Interface
- Baseband in-phase(I), quadrature(Q) Signal Processing
- RF interface with DBB (time serial port)
- Supply voltage regulation
- Battery charging control
- Switch ON/OFF
- 1.8V/3V SIM card Interface
- 4 internal & 4external ADC channels


B. Audio Signal Processing & Interface

Audio signal processing is divided Uplink path and downlink path...

The uplink path amplifies the audio signal from MIC and converts this analog signal to digital signal and then transmit it to DBB Chip. This transmitted signal is reformed to fit in GSM Frame format and delivered to RF Chip. MICBIAS is 2.0Vlevel.

The downlink path amplifies the signal from DBB chip and outputs it to Receiver(or Speaker).

Figure 11 Audio Interface Block Diagram

C. Baseband Codec(BBC)

Baseband codec is composed of baseband uplink path(BUL) and baseband downlink path(BDL). BUL makes GMSK(Gaussian Minimum Shift Keying) modulated signal which has In-phase(I) component and quadrature(Q) component with burst data from DBB. This modulated signal is transmitted through RF section via air.

BDL process is opposite procedure of BUL. Namely, it performs GMSK demodulation with input analog I&Q signal from RF section, and then transmit it to DSP of DBB chip with 270.833kHz data rate through BSP.

Bellwave. Inc 19/27

Offset DAC Register Timing From TSP Control BULIP Cosine 10-Bit Low-Pass Table Filter Burst Buffer 1 BULIM GMSK From BSP $16\times270\;kHz$ Modulator Burst Buffer 2 Sine Table Low-Pass Filter ▶ BULQP DAC BULQM Offset Register 6-Bit DAC

Figure 12 Baseband Codec Block Diagram

D. Voltage Regulation(VREG)

There are 7 LDO(Low Drop Output) regulators in ABB chip.

The output of these 7 LDOs are as following table. (Figure 13) shows the power supply related blocks of DBB/ABB and their interfaces in NEO200_850TN.

Table 5 LDO Output Table

	Output Voltage	Usage
V DBB	1.5V	Digital Core of DBB
V IO	2.8V	Calypso I/O
V FLASH	2.8V	External ROM
V SRAM	2.8V	External RAM
V ABB	2.8V	Analog Block of ABB
V SIM	2.85	SIM card driver
V RTC	1.5V	RTC

Bellwave. Inc 20/27

ABB RSIM .8/2.9 V VBAT SIM CARD $10 \, \mathrm{mA}$ ‡իսԲ RRAM .8/2.8 VCRAM Ext SRAM 50 mA 4.7uF RMEM 1,8/2.8 V VCMEM 1.8/2.8 60 mA FLASH VLMEM MEMORY INTERFACE, RDBB 8/1.4/1.8 VDD RDBB VDDPI VCDBE 120 mA AII ASIC modules ARM7, LMM, **I**l0uF VLRTC Internal SRAM VCIO1 PLL VDDS1 VCIO2 IOTA I/O, RF I/O, 13 MHz_IN ₹10uF ABB Digital 13MHz Out VBAT core io ABB malog co DBB split power RABBO RABB 2.8 V 80 mA VBACKUP BBS Power split domain BACKUP LRTC RTC XO32K RTC I/O (IT WAKEUP, nRESPWONZ; ON_nOFF) RRTC ABB VRPC cor VRRTO VDD-R1 8/1.4/1.8\ BK ^{10 uA} VDDS-RT : regulators ON in BACKUP/SLEEP / NORMAL mode : regulators ON in SLEEP / NORMAL mode : idem SL + reverse current protection : regulators ON in NORMAL mode : reserved for ABB private use only BK SL SLP NM ①

Figure 13 Power Supply Scheme

E. ADC Channels

ABB ADC block is composed of 4 internal ADC(Analog to Digital Converter) channels and 4 external ADC channel. This block operates charging process and other related process by reading battery voltage and other analog values.

Table 6 ADC Channel Spec.

ADC 8 channels					
Resource	Name	Description			
VCHG	VCHG				
VBAT	VBAT	Charging Management			
ICHG	ICHG				
VBACKUP	VBACKUP	Backup Battery			

Bellwave. Inc 21/27

ADIN1	JACK_DETECT	Jack plug-in detect
ADIN2	BATT_TEMP	Battery Detect
ADIN3	TEMPSENSE	Temperature Sensing
ADIN4	HOOK DETECT	HOOK DETECT

F. Charging

Charging block in ABB processes charging operation by using VBAT, ICHG value through ADC channel. Battery Block Indication and SPEC of NEO200 850TN is as follow.

1. Charging method : CC-CV

2. Charger detect voltage: 4.2V

3. Charging time : 2h30min

4. Charging current : 500mA

5. CV voltage: 4.2V

6. Cutoff current : 50mA

7. Recharge voltage: 4.15V

8. Low battery alarm

a. Idle: 3.62V

b. Dedicated: 3.50V

9. Low battery alarm interval:

a. Idle: 3min

b. Dedicated:1min

10. Switch-off voltage: 3.35V

G. Switch ON/OFF

NEO200_850TN Power State: Defined 4cases as follow

- Power-ON : mobile is powered by main battery or backup battery.

- Power-OFF: mobile isn't any battery.

- Switch-ON: mobile is powered and waken up from switch-off state.

- Switch-OFF: mobile is powered to maintain only the permanent function(ULPD).

To enter into Switch-ON state, one of followinf 4 condition is satisfied.

- **PWR-ON** pushed after a debouncing time of 30ms.
- **ON_REMOTE**: After debouncing, when a falling edge is detected on RPWON pin.
- **IT_WAKE_UP**: When a rising edge is detected on RTC_ALARM pin.
- **CHARGER_IC**: When a charger voltage is above VBAT+0.4V on VCHG.

Bellwave, Inc 22/27

H. Memories

192Mbit Flash + 64Mbit pSDRAM

16 bit parallel data bus

 $ADD01 \sim ADD22$

I. Display & FPCB Interface

LCD module include:

dual LCD : 128*160 dots Main LCD, 96*96 dots Sub LCD

LCD Backlight : white LED Backlight

LCD module is connected to main board with 64 pin.

Table 7 FPCB Interface Spec.

PIN No	Pin Name	Function	PIN No	Pin Name	Function
1	VBAT	DC VOLT	33	MIC-	Mic -
2	VBAT1	DC VOLT	34	MIC+	Mic +
3	BACKUP_BATT	Back up battery connect	35	SPK L-	Left speaker -
4	GND1	Ground	36	SPK L+	Left speaker +
5	DL(0)	LCD Data line	37	HPOUT_R	Earphone right
6	DL(2)	LCD Data line	38	GND5	Ground
7	DL(4)	LCD Data line	39	S_DATA_C	Sccb serial interface data IO
8	DL(6)	LCD Data line	40	PDCLK	Pixel clk output
9	DL(8)	LCD Data line	41	S_CLK_C	Sccb serial interface clk
10	DL(10)	LCD Data line	42	DC(4)	Camera Data line
11	DL(12)	LCD Data line	43	DC(3)	Camera Data line
12	DL(14)	LCD Data line	44	DC(2)	Camera Data line
13	LCD_A(1)	Address line	45	DC(1)	Camera Data line
14	LC_CS_SUB	Sub LCD chip select	46	DC(0)	Camera Data line
15	PSEN	Camera enable	47	LCD_TEMP	Temp sensor
16	EN_BLUE	Blue indicator enable	48	LCD_RD	LCD read
17	EN_AMBER	Amber indicator enable	49	LCD_WR	LCD write
18	DC(5)	Camera Data line	50	LCD_CS_MAIN	Main LCD chip select
19	DC(6)	Camera Data line	51	LCD_RST	LCD RESET
20	DC(7)	Camera Data line	52	AVDD	Analog VDD
21	DC(8)	Camera Data line	53	DL(15)	LCD Data line
22	DC(9)	Camera Data line	54	DL(13)	LCD Data line
23	C_RESET	Camera reset	55	DL(11)	LCD Data line
24	PPXL_CLK	Camera clock	56	DL(9)	LCD Data line
25	VS_C	Vertical sync	57	DL(7)	LCD Data line
26	HS_C	Horizontal sync	58	DL(5)	LCD Data line
27	GND2	Ground	59	DL(3)	LCD Data line
28	SPK R+	Right speaker +	60	DL(1)	LCD Data line
29	SPK R-	Right speaker -	61	DVDD	Digital VDD
30	HPOUT_GND	Ground	62	LCD_BACKLIGHT	LCD backlight control
31	HPOUT_L	Earphone left	63	LCD_VDD1	LCD VDD
32	JACK_IN	Ear mic detection	64	LCD_VDD	LCD VDD

Bellwave. Inc 23/27

J. KeyPad Switching & Scanning

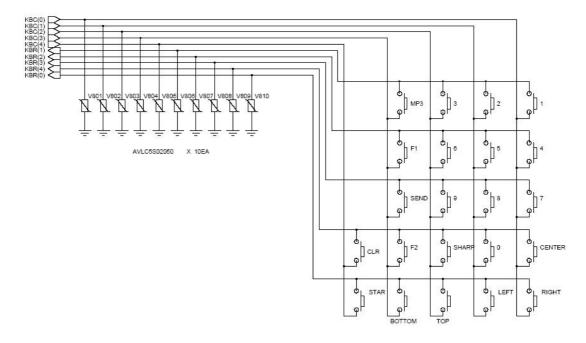

Keypad Map

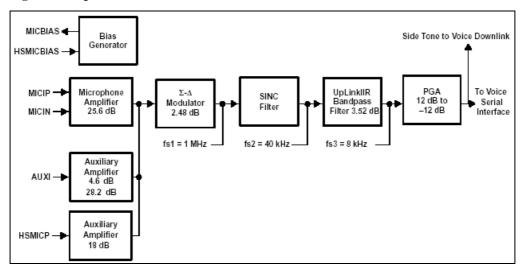
Table 8 Keypad Map

	KBC0	KBC1	KBC2	KBC3	KBC4
KBR0	[▶]	[◀]	[▲]	[▼]	[*]
KBR1	[1]	[2]	[3]	[MP3]	
KBR2	[4]	[5]	[6]	[F1]	
KBR3	[7]	[8]	[9]	[Send]	
KBR4	[CENTER]	[0]	[#]	[F2]	CLR

DBB supports 25 keymap and Switch-ON Key is connected directly to ABB as (Figure 15).

Figure 15 Keypad Scanning Scheme

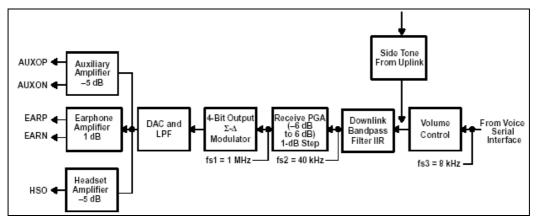
K. Audio


(Uplink)

The microphone is soldered to the main PCB. The uplink signal is passed to MICIP and MICIN pins of IOTA.

The MICBIAS voltage is supplied from IOTA(dedicated mode only). When the headset is inserted, ADC value of HOOK_DETECT(IO6) terminal is between 20 to 150 (decimal value). On detecting this, Calypso makes IOTA switches the MIC amplifier path from main to auxiliary.

Bellwave. Inc 24/27


Figure16 Uplink Path

(Downlink)

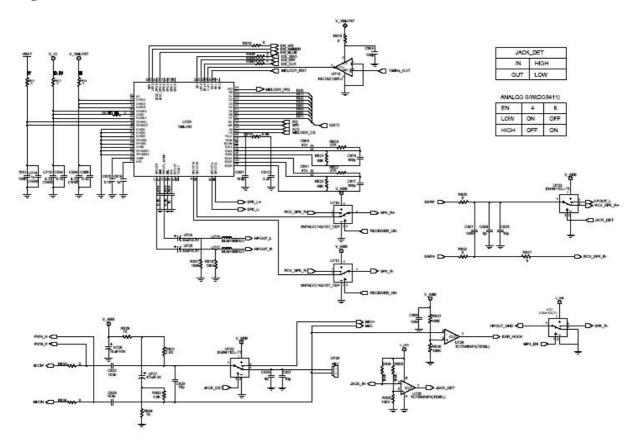
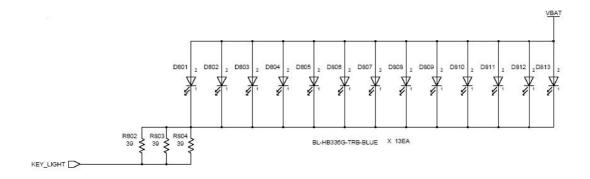

The downlink signal is passed from EARP and EARN pins of IOTA. When the headset is inserted and Calypso detects 'Jack pluged state' from HOOK_DETECT terminal, Calypso makes IOTA switches the downlink path from 'EARP' and 'EARN' to auxiliary outputs('AUXOP' and 'AUXON' or 'HSO').

Figure 17 Downlink Path

Bellwave. Inc 25/27

Figure 18 Audio Circuit

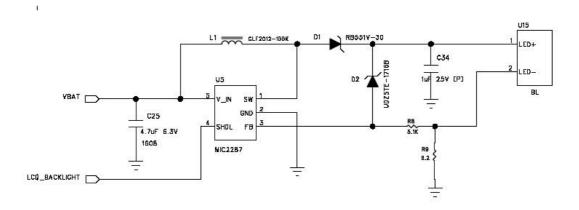


L. Keypad back-light Illumination

There are 6 Amber LEDs in Main Board for Keypad Backlight.

Keypad Back-light is driven by 'LEDB' line from IOTA.

Figure19 Keypad Back-light Scheme



Bellwave. Inc 26/27

M. Main_LCD Illumination

There is Backlight schematic in the LCD module for LCD backlighting. DC-DC converter is mounted in LCD module.

Figure 20 Main-LCD Back-light Scheme

Bellwave. Inc 27/27