

FCC TEST REPORT FCC ID: SY4-A02065

On Behalf of

Shanghai Huace Navigation Technology Ltd. Geodetic GNSS Receiver Model No.: i85

Prepared for : Shanghai Huace Navigation Technology Ltd.

Address : 577 Songying Road, Qingpu District, 201706 Shanghai, China

Prepared By : Shenzhen Alpha Product Testing Co., Ltd.

Address : Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103,

Shenzhen, Guangdong, China

Report Number : A2507136-C09-R03

Date of Receipt : July 9, 2025

Date of Test : July 9, 2025 – August 14, 2025

Date of Report : August 15, 2025

Version Number : V0

Test Result : Pass

TABLE OF CONTENTS

<u>D</u>	Description	Page
1 T	EST SUMMARY	5
1.1	MEASUREMENT UNCERTAINTY	5
2 G	GENERAL INFORMATION	6
2.1	GENERAL DESCRIPTION OF EUT	
2.2	Test mode	7
2.3	TEST FACILITY	7
2.4	DESCRIPTION OF SUPPORT UNITS	
2.5	DEVIATION FROM STANDARDS	
2.6	ABNORMALITIES FROM STANDARD CONDITIONS	
2.7	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
2.8	ADDITIONAL INSTRUCTIONS	7
3 T	EST INSTRUMENTS LIST	8
4 T	EST RESULTS AND MEASUREMENT DATA	10
4.1	ANTENNA REQUIREMENT:	10
4.2	CONDUCTED EMISSIONS	11
4.3	EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH	
4.4	DUTY CYCLE	
4.5	MAXIMUM CONDUCTED OUTPUT POWER	
4.6	POWER SPECTRAL DENSITY	
4.7	RADIATED BAND EDGE	
4.8	CONDUCTED BAND EDGE	
4.9	RADIATED EMISSION	
4.10	CONDUCTED SPURIOUS EMISSION	39

Report No.: A2507136-C09-R03

TEST REPORT DECLARATION

Applicant : Shanghai Huace Navigation Technology Ltd.

Address : 577 Songying Road, Qingpu District, 201706 Shanghai, China

Manufacturer : Shanghai Huace Navigation Technology Ltd.

Address : 577 Songying Road, Qingpu District, 201706 Shanghai, China

EUT Description : Geodetic GNSS Receiver

(A) Model No. : i85

(B) Trademark :

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart E, ANSI C63.10:2013 KDB 789033 D02 General U-NII Test Procedures New Rules v02r01

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart E limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature)......

Project Engineer

Jack Xu Approved by (name + signature)......:

Project Manager

Date of issue...... August 15, 2025

Revision History

Revision	Issue Date	Revisions	Revised By
V0	August 15, 2025	Initial released Issue	Yannis Wen

1 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	Section 15.203	PASS
AC Power Line Conducted Emission	Section 15.207(a)	PASS
Maximum Conducted Output Power	Section 15.407(a) (c) (g)	PASS
Power Spectral Density	Section 15.407(a) (c) (g)	PASS
Undesirable Emission	Section 15.407(b) (c) (g)	PASS
Conducted Spurious Emission	Section 15.407(b) (c) (g)	PASS
Radiated Emission	15.205&15.209 (a)	PASS
Conducted Band Edge	Section 15.407(b) (c) (g)	PASS
Radiated Band Edge	15.205&15.209 (a)	PASS

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Frequency Stability: The manufacturer stated in the user's manual.
- 3. The conclusion of this test report is judged by actual test data without considering measurement uncertainty.

1.1 Measurement Uncertainty

Item	Uncertainty
Uncertainty for Power point Conducted Emissions Test	1.63dB
Uncertainty for Radiation Emission test in 3m chamber (below 30MHz)	3.5dB
Uncertainty for Radiation Emission test in 3m chamber	3.74dB(Polarize: V)
(30MHz to 1GHz)	3.76dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	3.77dB(Polarize: V)
(1GHz to 25GHz)	3.80dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	4.31 dB(Polarize: V)
(18GHz to 40GHz)	4.30 dB(Polarize: H)
Uncertainty for radio frequency	5.06×10 ⁻⁸ GHz
Uncertainty for conducted RF Power	0.40dB
Uncertainty for temperature	0.2℃
Uncertainty for humidity	1%
Uncertainty for DC and low frequency voltages	0.06%

Report No.: A2507136-C09-R03

2 General Information

2.1 General Description of EUT

EUT Name : Geodetic GNSS Receiver

Model No. : i85 DIFF. : N/A

Power supply : DC 7.2V from battery and DC 5V form adapter

Radio Technology : 5G WIFI

Operation Frequency : 802.11ac(VHT80): 5210MHz, 5775MHz

Channel separation : 80MHz for 802.11ac(VHT80)

Modulation technology: : IEEE 802.11ac: OFDM (64QAM, 16QAM, 256QAM, QPSK, BPSK)

Antenna Type : PCB antenna, Maximum Gain is 3.89dBi

(Antenna information is provided by applicant.)

Software version : V1.0 Hardware version : V1.1.0

Intend use environment

: Residential, commercial and light industrial environment

2.2 Test mode

U-NII-1:			
Mode	data rate (Mbps)(see Note)	Channel	Frequency (MHz)
IEEE 802.11ac VHT80	433.3	CH42	5210
U-NII-3:			
Mode	data rate (Mbps)(see Note)	Channel	Frequency
IEEE 802.11ac VHT80	433.3	CH155	5775

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

2.3 Test Facility

Shenzhen Alpha Product Testing Co., Ltd Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

2.4 Description of Support Units

Accessories AC Adapter

Manufacturer Yisheng Electronics Co., LTD

EA1012AVRU-050

Model :

AC Input: 100-240Vac, 1.0A, 50~60Hz

Ratings : DC Output: 5.0V=2.4A 12.0W

2.5 Deviation from Standards

None.

2.6 Abnormalities from Standard Conditions

None.

2.7 Other Information Requested by the Customer

None.

2.8 Additional instructions

Software (Used for test) from client

Channel	Power level
5210MHz	Default
5775MHz	Default

Note: Using SecureCRT testing software to control EUT work in Continuous TX mode, and select test channel, wireless mode, the power level of the test is set to default.

3 **Test Instruments list**

Equipment			Firmware version	Serial No.	Last Cal.	Cal. Due day
9*6*6 anechoic chamber	CHENYU	9*6*6	1	N/A	2025.03.09	4Year
4*4*3 Shielded room	CHENYU	4*4*3	1	N/A	2025.03.09	4Year
Spectrum analyzer	ROHDE&SCHWARZ	FSV40-N	2.3	102137	2025.08.04	1Year
Spectrum analyzer	Agilent	N9020A	A.14.16	MY499100060	2025.08.04	1Year
Test Receiver	ROHDE&SCHWARZ	ESR	2.28 SP1	1316.3003K03 -102082-Wa	2025.08.04	1Year
Test Receiver	ROHDE&SCHWARZ	ESCI	4.42 SP1	101165	2025.08.04	1Year
Bilog Antenna	SCHWARZBECK	VULB 9168	1	VULB 9168#627	2023.08.28	2Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	/	2106	2023.08.19	2Year
Loop Antenna	SCHWARZBECK	FMZB 1519B	/	00128	2023.08.19	2Year
RF Cable	Resenberger	Cable 1	/	RE1	2025.08.04	1Year
RF Cable	Resenberger	Cable 2	/	RE2	2025.08.04	1Year
RF Cable	Resenberger	Cable 3	/	CE1	2025.08.04	1Year
Amplifier	HP	HP8347A	/	2834A00455	2025.08.04	1Year
Amplifier	Agilent	8449B	/	3008A02664	2025.08.04	1Year
L.I.S.N.#1	SCHWARZBECK	NSLK8126	/	8126-466	2025.08.04	1Year
L.I.S.N.#2	ROHDE&SCHWARZ	ENV216	/	101043	2025.08.04	1Year
Horn Antenna	SCHWARZBECK	BBHA 9170	/	00946	2023.08.19	2Year
Preamplifier	SKET	LNPA_1840- 50	1	SK201810180 1	2025.08.04	1 Year
Power Meter	Agilent	E4419B	/	GB40202122	2025.08.04	1 Year
Power Sensor	Agilent	E9300A	/	MY41496628	2025.08.04	1 Year
Power Sensor	Agilent	E9304A	/	MY41496815	2025.08.04	1 Year
Temp. & Humid. Chamber	Teelong	TL-HW408S	/	TL-20191205- 01	2025.07.14	1 Year
Electronic Thermo- Hygrometer	S.H.Qixiang	HTC-1	1	N/A	2025.08.04	1 Year
Switching Mode Power Supply	JUNKE	JK12010S	1	20140927-6	2025.08.04	1 Year
Adjustable attenuator	MWRFtest	N/A	1	N/A	N/A	N/A
10dB Attenuator	Mini-Circuits	DC-6G	/	N/A	N/A	N/A

	Software Information								
Test Item	Software Name	Manufacturer	Version						
RE	EZ-EMC	Farad	Alpha-3A1						
CE	EZ-EMC	Farad	Alpha-3A1						
RF-CE	MTS 8310	MWRFtest	V2.0.0.0						

4 **Test results and Measurement Data**

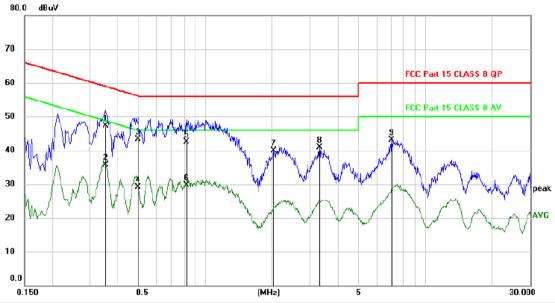
4.1 Antenna requirement:

Standard requirement:	FCC Part15 C Section 15.203
15 203 requirement:	

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is PCB antenna. The best case gain of the antenna is 3.89dBi for 5.15~5.25GHz, 5.725~5.85GHz

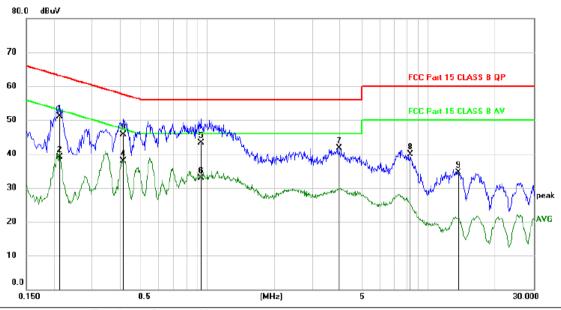

4.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	150KHz to 30MHz								
Class	Class B								
Severity:									
,									
Class B									
Receiver setup:	RBW=9KHz, VBW=30KHz								
Limit:	Frequency range (MHz)	Limit (d	lBuV)						
	1 requeries range (Wi12)	Quasi-peak	Average						
	0.15-0.5	66 to 56*	56 to 46*						
	0.5-5	56	46						
	5-30	60	50						
	* Decreases with the logarithm								
Test setup	The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.								
Test setup:	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m								
Test results:	Pass								

Measurement Data

An initial pre-scan was performed on the line and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Line:


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	n	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.3509	37.31	9.95	47.26	58.94	-11.68	QP	
2		0.3509	25.85	9.95	35.80	48.94	-13.14	AVG	
3		0.4950	33.38	9.96	43.34	56.08	-12.74	QP	
4		0.4950	19.10	9.96	29.06	46.08	-17.02	AVG	
5		0.8220	32.62	9.95	42.57	56.00	-13.43	QP	
6		0.8220	19.73	9.95	29.68	46.00	-16.32	AVG	
7		2.0520	30.08	9.88	39.96	56.00	-16.04	peak	
8		3.2970	31.05	9.95	41.00	56.00	-15.00	peak	
9		7.0560	32.94	10.12	43.06	60.00	-16.94	peak	

(Reference Only

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

^{*:}Maximum data x:Over limit !:over margin

Neutral:

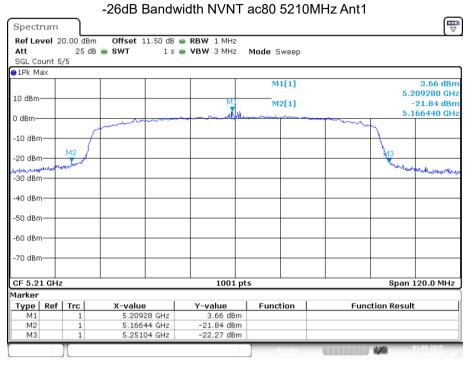
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	1	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2130	41.17	9.93	51.10	63.09	-11.99	QP	
2		0.2130	29.20	9.93	39.13	53.09	-13.96	AVG	
3		0.4140	35.73	9.94	45.67	57.57	-11.90	QP	
4	*	0.4140	28.04	9.94	37.98	47.57	-9.59	AVG	
5		0.9330	33.45	9.95	43.40	56.00	-12.60	QP	
6		0.9330	22.94	9.95	32.89	46.00	-13.11	AVG	
7		3.9270	31.68	9.96	41.64	56.00	-14.36	peak	
8		8.2890	29.69	10.16	39.85	60.00	-20.15	peak	
9		13.6500	24.29	10.30	34.59	60.00	-25.41	peak	

(Reference Only

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

Note: All modes and channels have been tested and only the ac 5210MHz mode with the worst data is listed.

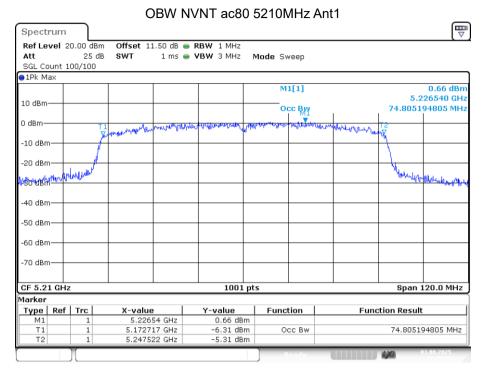
^{*:}Maximum data x:Over limit !:over margin


4.3 Emission Bandwidth and 99% Occupied Bandwidth

Test Requirement:	FCC Part15 E Section 15.407
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v02r01
Limit:	N/A
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test procedure:	 Set center frequency to the nominal EUT channel center frequency. Set span = 1.5 times to 5.0 times the OBW. Set RBW = 1% to 5% of the OBW Set VBW ≥ 3 RBW Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. Use the 99% power bandwidth function of the instrument (if available). If the instrument does not have a 99% power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.
Test results:	Pass

Measurement Data:

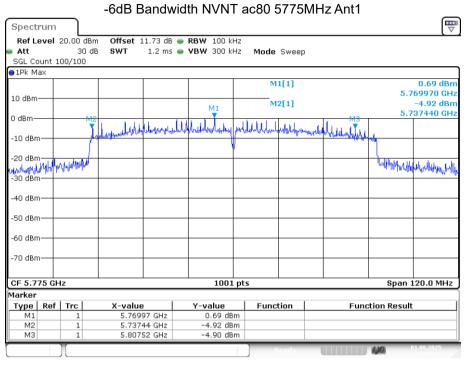
Band 1 (5150-5250 MHz): -26dB Bandwidth


Condition	Mode	Frequency	iency Antenna -26 dB Bandwidth		Limit -26 dB Bandwidth	Verdict
		(MHz)		(MHz)	(MHz)	
NVNT	ac80	5210	Ant1	84.6	N/A	Pass

Date: 1.AUG.2025 12:36:07

Occupied Channel Bandwidth

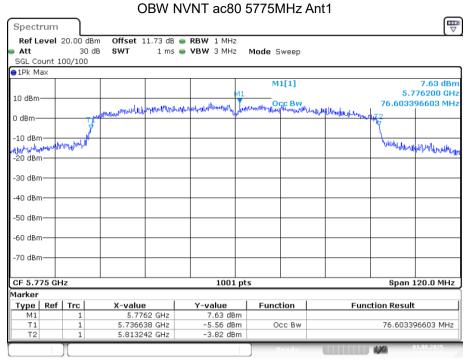
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	ac80	5210	Ant1	74.805


Date: 1.AUG.2025 12:35:55

Report No.: A2507136-C09-R03

Band 4 (5725-5850 MHz):

-6dB Bandwidth


Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	ac80	5775	Ant1	70.08	0.5	Pass

Date: 1.AUG.2025 12:46:42

Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	ac80	5775	Ant1	76.603

Date: 1.AUG.2025 12:46:35

4.4 Duty Cycle

Test Requirement:	FCC Part15 E Section 15.407				
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v02r01				
Limit:	1				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test procedure:	a) A diode detector and an oscilloscope that together have sufficiently short response time to permit accurate measurements of the on and off times of the transmitted signal. 789033 D02 General UNII Test Procedures New Rules v02r01 Page 3 b) Set the center frequency of the instrument to the center frequency of the transmission. Set RBW ≥ EBW if possible; otherwise, set RBW to the largest available value. Set VBW ≥ RBW. Set detector = peak				
Test results:	Pass				

U-NII 1

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)
NVNT	ac80	5210	Ant1	79.44	1

U-NII 3

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)
NVNT	ac80	5775	Ant1	67.96	1.68

4.5 Maximum Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v02r01
Limit:	For the band 5.15-5.25GHz, 5.25-5.35GHz, 5.47-5.725GHz, the maximum conducted output power over the frequency bands of operation shall not exceed 250mW. For the band 5.725-5.85GHz, the maximum conducted output power over the frequency bands of operation shall not exceed 1W.
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane
Test procedure:	 (i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied a) The EUT is configured to transmit continuously or to transmit with a constant duty cycle. b) At all times when the EUT is transmitting, it must be transmitting at its maximum power control level. c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five. (ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section B). (iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter. (iv) Adjust the measurement in dBm by adding 10 log(1/x) where x is
Test results:	the duty cycle (e.g., 10log(1/0.25) if the duty cycle is 25 percent). Pass
า ธอเ าธอนห้อ.	

Measurement Data

Band 1 (5150-5250 MHz)

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Cycle Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	ac80	5210	Ant1	7.145	1	8.145	24	Pass

Note: Total Power= Conducted Power+ Duty Cycle Factor

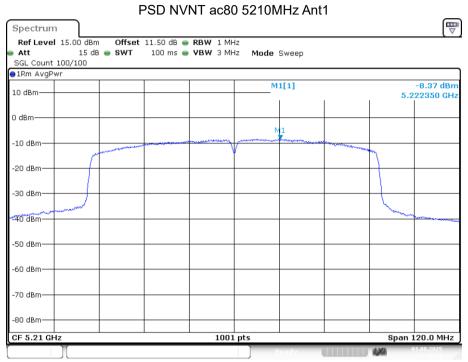
Band 4 (5725 - 5850 MHz)

Condition	Mode	Frequency (MHz)	Antenna	Conducte d Power (dBm)	Duty Cycle Factor	Total Power (dBm)	Limit (dBm)	Verdict
					(dB)			
NVNT	ac80	5775	Ant1	7.5	1.68	9.18	30	Pass

Note: Total Power= Conducted Power+ Duty Cycle Factor

4.6 Power Spectral Density

Test Requirement:	47-CFR-Part-15.407					
Test Method:	ANSI C63.10-2020, section 12.6					
Limit:	≤11.00dBm/MHz for 5150MHz-5250MHz, 5250-5350MHz and 5470-5725 MHz ≤30.00dBm/500KHz for 5725MHz-5850MHz					
Test setup:	Spectrum Analyzer Non-Conducted Table Ground Reference Plane					
Test procedure:	Refer-toANSI-C63.10-2020, section.12.6-					
Test results:	Pass					


Measurement Data

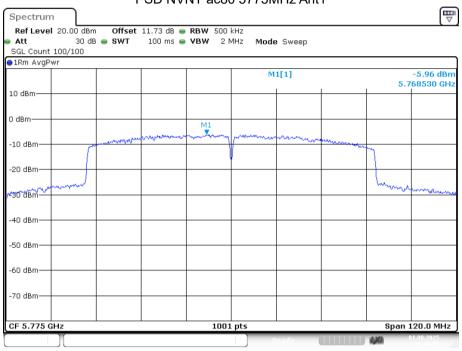
Band 1 (5150 - 5250 MHz)

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD(dBm)	Duty Cycle Factor (dB)	Total PSD (dBm)	Limit (dBm)	Verdict
NVNT	ac80	5210	Ant1	-8.372	1	-7.372	11	Pass

Note: 1. Total PSD= Conducted PSD+ Duty Cycle Factor,

2. Offset = Cable loss

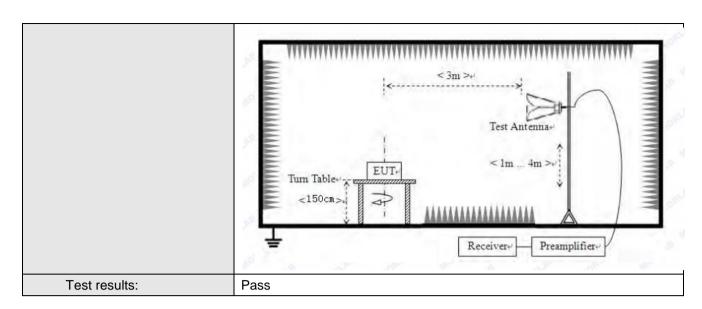
Date: 1.AUG.2025 12:36:25


Band 4 (5725 - 5850 MHz)

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD(dBm)	Duty Cycle Factor (dB)	Total PSD (dBm)	Limit (dBm)	Verdict
NVNT	ac80	5775	Ant1	-5.958	1.68	-4.278	30	Pass

Note: 1. Total PSD= Conducted PSD+ Duty Cycle Factor,

2. Offset = Cable loss


PSD NVNT ac80 5775MHz Ant1

Date: 1.AUG.2025 12:46:59

4.7 Radiated Band Edge

Test Requirement:	15.205&15.209									
Test Method:	ANSI C63.10:2013									
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)									
Receiver setup:				VBW						
	Frequency	Remark								
	30MHz-1GHz	Quasi-pea		300KHz	Quasi-peak Value					
	Above 1GHz	Peak AV	1MHz 1MHz	3MHz 3MHz	Peak Value					
1		Average Value								
Limit:	Frequer	iCV	Limit (dBu	//m @3m)	Remark					
	30MHz-88	-	40		Quasi-peak Value					
	88MHz-216		43		Quasi-peak Value					
	216MHz-960MHz 46.0 Quasi-p									
	960MHz-1	GHz	54	.0	Quasi-peak Value					
	Above 10	211-7	54	.0	Average Value					
	11 /\no\/\no\/\no\1/=H7									
Test Procedure:	Above 1GHz 54.0 Average V									
Test setup:	sheet.		·		eported in a data					
i esi selup.	Above 1GHz									

Remark:

According to KDB 789033 D02 v02r01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2,

For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

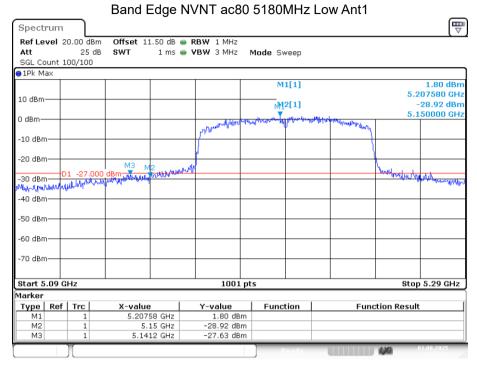
Measurement Data:

Band1

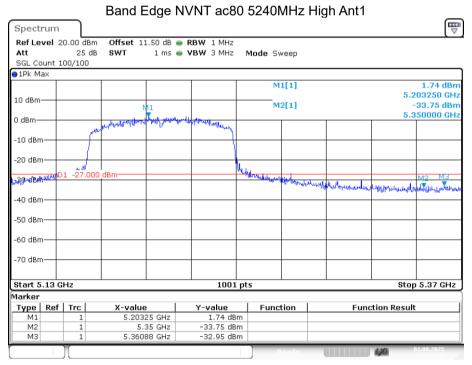
Mo	de:	802.	11ac	Frequ	iency:	5210MHz		
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector	
Н	5150.00	32.83	17.18	50.01	68.20	-18.19	PK	
V	5150.00	34.27	17.18	51.45	68.20	-16.75	PK	
Мо	de:	802.	11ac	Frequ	iency:	5210	MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector	
Н	5150.00	25.37	17.18	42.55	54.00	-11.45	AV	
V	5150.00	26.79	17.18	43.97	54.00	-10.03	AV	
Mo	de:	802.	11ac	Frequ	iency:	5210	MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector	
Н	5350.00	34.72	17.18	51.90	68.20	-16.30	PK	
V	5350.00	35.07	17.18	52.25	68.20	-15.95	PK	
Mo	de:	802.	11ac	Frequ	iency:	5210	MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector	
Н	5350.00	22.21	17.18	39.39	54.00	-14.61	AV	
V	5350.00	26.99	17.18	44.17	54.00	-9.83	AV	

Band 4

Мо	de:	802.	11ac	Frequ	iency:	5775	iMHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5725.00	31.74	17.18	48.92	68.20	-19.28	PK
V	5725.00	32.72	17.18	49.90	68.20	-18.30	PK
Мо	de:	802.	11ac	Frequ	iency:	5775	5MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5725.00	21.97	17.18	39.15	54.00	-14.85	AV
V	5725.00	24.81	17.18	41.99	54.00	-12.01	AV
Мо	de:	802.	11ac	Frequ	iency:	5775	5MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)
Н	5850.00	33.45	17.18	50.63	68.20	-17.57	PK
V	5850.00	33.59	17.18	50.77	68.20	-17.43	PK
Мо	de:	802.	11ac	Frequ	iency:	5775	iMHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)
Н	5850.00	22.12	17.18	39.30	54.00	-14.70	AV
V	5850.00	25.96	17.18	43.14	54.00	-10.86	AV


4.8 Conducted Band Edge

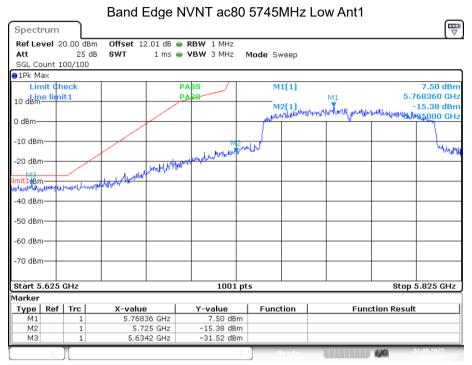
dBm/MHz. 2. For transmitters operating solely in the 5.725-5.850 GHz band All emissions shall be limited to a level of −27 dBm/MHz at 75	sions					
outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. dBm/MHz. 2. For transmitters operating solely in the 5.725-5.850 GHz band All emissions shall be limited to a level of −27 dBm/MHz at 75						
dBm/MHz at 25 MHz above or below the band edge, and from MHz above or below the band edge increasing linearly to a lev 15.6 dBm/MHz at 5 MHz above or below the band edge, and f	2. For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of					
Test setup: Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test procedure: The procedure for peak unwanted emissions measurements above MHz is as follows: a) Peak emission levels are measured by setting the instrument as follows: 1) RBW = 1 MHz. 2) VBW ≥ [3 × RBW]. 3) Detector = peak. 4) Sweep time = auto. 5) Trace mode = max hold. 6) Allow sweeps to continue until the trace stabilizes.						
Test results: Pass						


Band 1

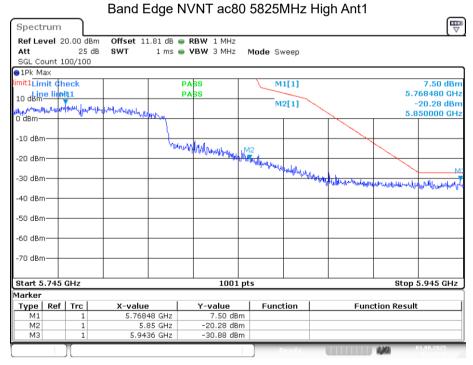
Condition	Mode	Band Edge Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	ac80	5180	Ant1	-27.63	-27	Pass
NVNT	ac80	5240	Ant1	-32.95	-27	Pass

Note: The margin is at least greater than the antenna gain plus the cable loss.

Date: 1.AUG.2025 12:37:35



Date: 1.AUG.2025 12:37:49


Band4

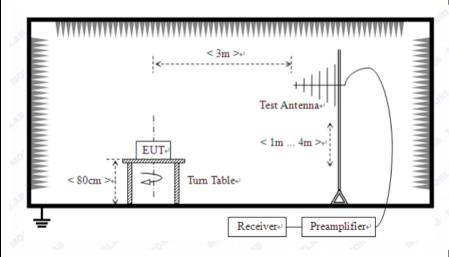
Condition	Mode	Band Edge Frequency (MHz)	Antenna	Max Value (dBm)	Limit (dBm)	Verdict
NVNT	ac80	5745	Ant1	-31.51	-27	Pass
NVNT	ac80	5825	Ant1	-30.88	-27	Pass

Note: The margin is at least greater than the antenna gain plus the cable loss.

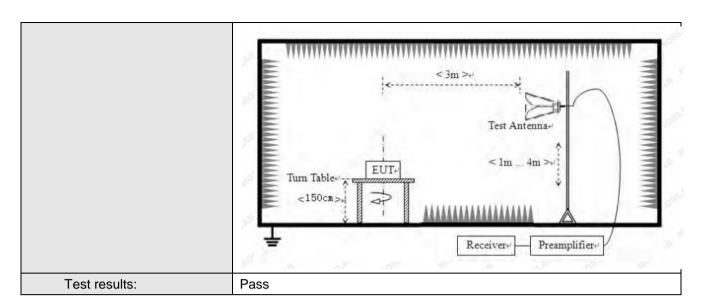
Date: 1.AUG.2025 12:47:42

Date: 1.AUG.2025 12:47:50

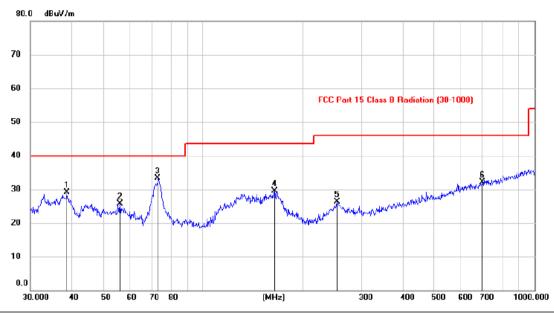
4.9 Radiated Emission


4.9	Radiated Emission									
	Test Requirement:	15.205&15.209)							
	Test Method:	ANSI C63.10:2	2013							
	Test Frequency Range:	30MHz to 40GHz								
	Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
	Receiver setup:	Frequency	Detector		RBW	VBW	Value			
	Trocolvoi dotap.	30MHz- 1GHz	Quasi-peak		100KHz	300KHz	Quasi-peak Value			
		Above 1GHz	Peak AV		1MHz 1MHz	3MHz 3MHz	Peak Value Average Value			
	Limit:	Freque	ency	L	.imit (dBuV	/m @3m)	Remark			
		30MHz-8	88MHz		40.0)	Quasi-peak Value			
		88MHz-2	16MHz		43.5		Quasi-peak Value			
		216MHz-9			46.0		Quasi-peak Value			
		960MHz-	-1GHz		54.0		Quasi-peak Value			
		Above 1	IGHz		74.0		Peak Value			
					54.0		Average Value			
	Test Procedure:	1GHz and meter cam position of 2. The EUT antenna, antenna to 3. The anter the groun Both horiz make the 4. For each case and meters ar degrees to 5. The test-respecified 6. If the emist the limit so values of did not hapeak, qual in a data so the 1.5m supuse as decla 2. The test anter shall be chost output of the receiver.	z test procedure z test procedure z test procedure vas placed or 1.5 meters for the highest r was set 3 me which was m ower. In a height is d to determin zontal and ve measuremer suspected er then the ante of find the ma receiver syste Bandwidth w ssion level of pecified, ther the EUT wou ave 10dB mar asi-peak or av sheet. z test proced site as test se oport on the to red by the pr enna shall be sen to corresp test antenna	e as ure thor a leading the termination of the term	e top of a rabove 1GHz vas rotated ation. s away from the don the died from on the maximum all polarizations was turn turn reading was set to form the meaning could be reported would be rage method at the fread of	otating table 2) above the 360 degree In the interfectop of a varie e meter to the Tons of the a JT was arrad to heights hed from 0 of peak Detected Hold Mode. ak mode we be stopped Otherwise e-tested on as specifie ve, the EUT the position lly for vertice quency of the ected to the	e (0.8m for below e ground at a 3 es to determine the erence-receiving riable-height four meters above the field strength, antenna are set to anged to its worst afrom 1 meter to 4 degrees to 360 et Function and as 10dB lower than I and the peak et the emissions that he by one using ed and then reported et al. polarization and the transmitter. The emeasuring			
		3. The transmit	suring receiv				ithout modulation equency of the			

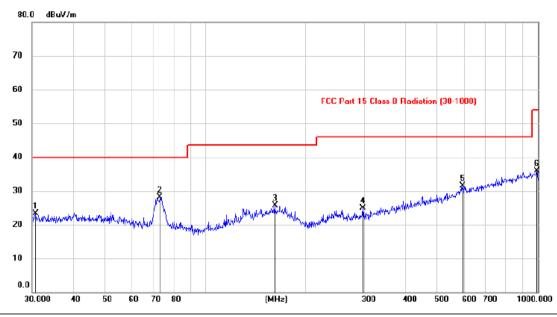
- Report No.: A2507136-C09-R03
- 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 5. Repeat step 4 for test frequency with the test antenna polarized horizontally.
- 6. Remove the transmitter and replace it with a substitution antenna
- 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- 8. Repeat step 7 with both antennas horizontally polarized for each test frequency.
- 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula: EIRP(dBm) = Pg(dBm) cable loss (dB) + antenna gain (dBi) where:


Pg is the generator output power into the substitution antenna.

Test setup:


Below 1GHz

Above 1GHz


Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		38.8152	14.62	14.40	29.02	40.00	-10.98	peak			
2		56.0990	12.19	13.55	25.74	40.00	-14.26	peak			
3	*	73.0940	22.50	10.81	33.31	40.00	-6.69	peak			
4		164.8689	15.02	14.57	29.59	43.50	-13.91	peak			
5		253.5105	13.51	12.84	26.35	46.00	-19.65	peak			
6		698.3244	10.46	21.70	32.16	46.00	-13.84	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.
2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Horizontal:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		30.7491	9.64	13.57	23.21	40.00	-16.79	peak			
2	*	72.6766	17.20	10.91	28.11	40.00	-11.89	peak			
3		161.6441	10.88	14.88	25.76	43.50	-17.74	peak			
4		297.7107	10.85	14.05	24.90	46.00	-21.10	peak			
5		595.0633	11.45	20.12	31.57	46.00	-14.43	peak			
6		993.2436	11.24	24.75	35.99	54.00	-18.01	peak			

Remark: All modes have been tested, and only worst data of 802.11ac mode, Channel 5210MHz was listed in this report.

Note:1. *:Maximum data; x:Over limit; !:over margin.
2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Above 1GHz (U-NII-1):

802.11ac 5210MHz

Detector: PK

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10420.19	47.03	16.29	14.62	32.65	45.29	74.00	-28.71	Vertical
15630.11	47.09	21.83	17.66	34.46	52.12	74.00	-21.88	Vertical
10420.01	50.90	8.73	14.62	32.65	41.60	74.00	-32.40	Horizontal
15630.04	52.20	11.73	17.66	34.46	47.13	74.00	-26.87	Horizontal

Detector: AV

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10420.27	39.61	16.29	14.62	32.65	37.87	54.00	-16.13	Vertical
15630.11	41.41	21.83	17.66	34.46	46.44	54.00	-7.56	Vertical
10420.03	41.67	8.73	14.62	32.65	32.37	54.00	-21.63	Horizontal
15630.24	42.51	11.73	17.66	34.46	37.44	54.00	-16.56	Horizontal

802.11ac 5775MHz

Detector: PK

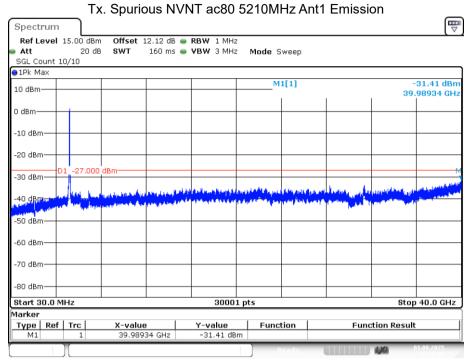
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11550.23	47.85	16.29	14.62	32.65	46.11	74.00	-27.89	Vertical
17325.32	48.90	21.83	17.66	34.46	53.93	74.00	-20.07	Vertical
11550.28	51.95	8.73	14.62	32.65	42.65	74.00	-31.35	Horizontal
17325.05	52.65	11.73	17.66	34.46	47.58	74.00	-26.42	Horizontal

Detector: AV

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11550.05	40.30	16.29	14.62	32.65	38.56	54.00	-15.44	Vertical
17325.25	39.51	21.83	17.66	34.46	44.54	54.00	-9.46	Vertical
11550.03	41.08	8.73	14.62	32.65	31.78	54.00	-22.22	Horizontal
17325.25	43.35	11.73	17.66	34.46	38.28	54.00	-15.72	Horizontal

Note:

- 1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

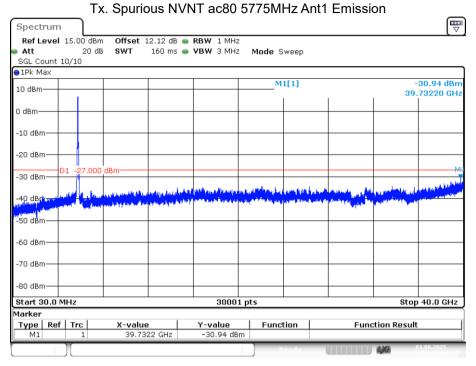

4.10 Conducted Spurious Emission

more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. Test setup: Spectrum Analyzer Fundamental Setup: The procedure for peak unwanted emissions measurements above 1000 MHz is as follows: a) Peak emission levels are measured by setting the instrument as follows: 1) RBW = 1 MHz. 2) VBW ≥ [3 × RBW]. 3) Detector = peak.	Test Requirement:	FCC Part15 E Section 15.407					
outside of the 5.15-5.35 ĜHz band shall not exceed an e.i.r.p. of −27 dBm/MHz. 2. For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz of more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. Test setup: Spectrum Analyzer Spectrum Analyzer The procedure for peak unwanted emissions measurements above 1000 MHz is as follows: a) Peak emission levels are measured by setting the instrument as follows: 1) RBW = 1 MHz. 2) VBW ≥ [3 × RBW]. 3) Detector = peak.	Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v02r01					
Test procedure: The procedure for peak unwanted emissions measurements above 1000 MHz is as follows: a) Peak emission levels are measured by setting the instrument as follows: 1) RBW = 1 MHz. 2) VBW ≥ [3 × RBW]. 3) Detector = peak.	Limit:	 outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz. 2. For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 					
MHz is as follows: a) Peak emission levels are measured by setting the instrument as follows: 1) RBW = 1 MHz. 2) VBW ≥ [3 × RBW]. 3) Detector = peak.	Test setup:	Non-Conducted Table					
5) Trace mode = max hold. 6) Allow sweeps to continue until the trace stabilizes.	Test procedure:	 MHz is as follows: a) Peak emission levels are measured by setting the instrument as follows: 1) RBW = 1 MHz. 2) VBW ≥ [3 × RBW]. 3) Detector = peak. 4) Sweep time = auto. 5) Trace mode = max hold. 					
Test results: Pass	Test results:	,					

U-NII 1

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	ac80	5210	Ant1	-31.4	-27	Pass

Note: The margin is at least greater than the antenna gain plus the cable loss.



Date: 1.AUG.2025 12:36:36

U-NII 3

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	ac80	5775	Ant1	-30.94	-27	Pass

Note: The margin is at least greater than the antenna gain plus the cable loss.

Date: 1.AUG.2025 12:47:09

-----END OF REPORT-----