

FCC TEST REPORT

FCC ID: SY4-A02053

On Behalf of

Shanghai Huace Navigation Technology Ltd. Surveying System

Model No.: RS10 (32-lines)

Prepared for : Shanghai Huace Navigation Technology Ltd.

Address : 577 Songying Road, Qingpu District, 201706 Shanghai, China

Prepared By : Shenzhen Alpha Product Testing Co., Ltd.

Address Building i, No.2, Lixin Road, Fuyong Street, Bao'an District,

518103, Shenzhen, Guangdong, China

Report Number : A2405204-C02-R02

Date of Receipt : July 4, 2024

Date of Test : July 4, 2024 – July 25, 2024

Date of Report : July 25, 2024

Version Number : V0

Result Pass

TABLE OF CONTENTS

	Description	Page
1	TEST SUMMARY	5
1.1	1 Measurement Uncertainty	5
2	GENERAL INFORMATION	6
2.1	1 GENERAL DESCRIPTION OF EUT	6
2.2	2 Test mode	7
2.3	3 TEST FACILITY	7
2.4	4 DESCRIPTION OF SUPPORT UNITS	7
2.5		
2.6	6 ABNORMALITIES FROM STANDARD CONDITIONS	7
2.7	7 OTHER INFORMATION REQUESTED BY THE CUSTOMER	7
2.8	8 ADDITIONAL INSTRUCTIONS	7
3	TEST INSTRUMENTS LIST	8
4	TEST RESULTS AND MEASUREMENT DATA	9
4.1	1 ANTENNA REQUIREMENT:	9
4.2	2 CONDUCTED EMISSIONS	10
4.3		
4.4	4 AVERAGE TRANSMIT POWER	13
4.5		
4.6	2, = 2 = 2	
4.7		
4.8		
4.9		
4.1	10 PHOTOS OF EUT	28

Report No.: A2405204-C02-R02

James

TEST REPORT DECLARATION

Applicant : Shanghai Huace Navigation Technology Ltd.

Address : 577 Songying Road, Qingpu District, 201706 Shanghai, China

Manufacturer : Shanghai Huace Navigation Technology Ltd.

Address : 577 Songying Road, Qingpu District, 201706 Shanghai, China

EUT Description : Surveying System

(A) Model No. : RS10 (32-lines)

(B) Trademark :

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart E ANSI C63.4:2014, ANSI C63.10:2013

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart E limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature).....:

Yannis Wen

Project Engineer

Approved by (name + signature)......:

Jack Xu

Project Manager

Date of issue...... July 25, 2024

Revision History

Revision Issue Date		Revisions	Revised By
V0	July 24, 2024	Initial released Issue	Yannis Wen

1 Test Summary

Test Item	Section in CFR 47	Result	
Antenna requirement	Section 15.203 Section 7.1.4 RSS-Gen Issue 5	PASS	
AC Power Line Conducted Emission	Section 15.207 Section 7.2.4 RSS-Gen Issue 5, ANSI C63.10	PASS	
Peak Transmit Power	Power Section 15.407(a), RSS-247 Issue 2		
Power Spectral Density	Section 15.407(a), RSS-247 Issue 2		
Undesirable Emission	Section 15.407(b), RSS-247 Issue 2	PASS	
26dB/6dB&99% Bandwidth	Section 15.407, RSS-Gen Issue 5	PASS	
Radiated Emission	Section 15.407(b)&15.209 Section 5.5 RSS-Gen Issue 5, RSS-247 Issue 2, ANSI C63.10	PASS	
Band Edge	15.205, RSS-247 Issue 2,, ANSI C63.10	PASS	
Frequency Stability	15.407(f), RSS-GEN(6.11)	PASS	

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Frequency Stability: The manufacturer stated in the user's manual.
- 3. The conclusion of this test report is judged by actual test data without considering measurement uncertainty.

1.1 Measurement Uncertainty

Item	Uncertainty	
Uncertainty for Power point Conducted Emissions Test	1.63dB	
Uncertainty for Radiation Emission test in 3m chamber (below 30MHz)	3.5dB	
Uncertainty for Radiation Emission test in 3m chamber	3.74dB(Polarize: V)	
(30MHz to 1GHz)	3.76dB(Polarize: H)	
Uncertainty for Radiation Emission test in 3m chamber	3.77dB(Polarize: V)	
(1GHz to 25GHz)	3.80dB(Polarize: H)	
Uncertainty for radio frequency	5.06×10 ⁻⁸ GHz	
Uncertainty for conducted RF Power	0.40dB	
Uncertainty for temperature	0.2℃	
Uncertainty for humidity	1%	
Uncertainty for DC and low frequency voltages	0.06%	

2 General Information

2.1 General Description of EUT

EUT Name : Surveying System Model No. : RS10 (32-lines)

DIFF. : N/A

Power supply : DC 7.2V from battery.

Radio Technology : 5G WIFI

Operation Frequency : 802.11ac80: 5210MHz
Channel separation : 80MHz for 802.11ac80

Modulation technology : IEEE 802.11ac: OFDM (64QAM, 16QAM,QPSK,BPSK)

Antenna Type : Internal antenna, Maximum Gain is 4.46dBi.

(Antenna information is provided by applicant.)

Coaxial cable loss

Max coaxial cable loss:0.5dB

(Cable loss value is provided by applicant.)

Software version : V1.0.20 Hardware version : V1.0

Intend use environment: Residential, commercial and light industrial environment

Page 7 of 46 Report No.: A2405204-C02-R02

2.2 Test mode

Transmitting mode Keep the EUT in transmitting with modulation.

EUT was test with 99% duty cycle at its maximum power control level.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

2.3 Test Facility

Shenzhen Alpha Product Testing Co., Ltd Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

June 21, 2018 File on Federal Communication Commission

Registration Number: 293961

July 25, 2017 Certificated by IC Registration Number: 12135A

2.4 Description of Support Units

Accessories 1 : /
Manufacturer : /
Model : /
Ratings : /

2.5 Deviation from Standards

None.

2.6 Abnormalities from Standard Conditions

None.

2.7 Other Information Requested by the Customer

None.

2.8 Additional instructions

Software (Used for test) from client

Channel	Power level		
Lowest	Default		
Middle	Default		
Highest	Default		

3 Test Instruments list

Equipment	Manufacture	Model No.	Firmware version	Serial No.	Last cal.	Cal Interval
9*6*6 anechoic chamber	(HENVII		1	N/A	2022.05.17	3Year
Spectrum analyzer	ROHDE&SCHWARZ	FSV40-N	2.3	102137	2023.08.16	1Year
Spectrum analyzer	Agilent	N9020A	A.14.16	MY499100060	2023.08.16	1Year
Receiver	ROHDE&SCHWARZ	ESR	2.28 SP1	1316.3003K03- 102082-Wa	2023.08.16	1Year
Receiver	R&S	ESCI	4.42 SP1	101165	2023.08.16	1Year
Bilog Antenna	Schwarzbeck	VULB 9168	1	VULB 9168#627	2023.08.28	1Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	1	2106	2023.08.19	1Year
Loop Antenna	SCHWARZBECK	FMZB 1519B	1	00128	2023.08.19	1Year
RF Cable	Resenberger	Cable 1	/ RE1		2023.08.16	1Year
RF Cable	Resenberger	Cable 2	1	RE2	2023.08.16	1Year
RF Cable	Resenberger	Cable 3	1	CE1	2023.08.16	1Year
Pre-amplifier	HP	HP8347A	1	2834A00455	2023.08.16	1Year
Pre-amplifier	Agilent	8449B	1	3008A02664	2023.08.16	1Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	1	8126-466	2023.08.16	1Year
L.I.S.N.#2	ROHDE&SCHWARZ	ENV216	1	101043	2023.08.16	1Year
Horn Antenna	SCHWARZBECK	BBHA 9170	1	00946	2023.08.19	1Year
Preamplifier	SKET	LNPA_1840 -50	1	SK2018101801	2023.08.16	1 Year
Power Meter	er Agilent E93		1	MY41496628	2023.08.16	1 Year
Power Sensor	DARE	RPR3006W	1	15100041SNO91	2023.08.16	1 Year
Temp. & Humid. Chamber	Teelong	TL-HW408S	1	TL-20191205-01	2023.07.25	1 Year
Switching Mode Power Supply	JUNKE	JK12010S	1	20140927-6	2023.08.16	1 Year
Adjustable attenuator	Adjustable MM/PEtest		1	N/A	N/A	N/A
10dB Attenuator	Mini-Circuits	DC-6G	1	N/A	N/A	N/A

Software Information						
Test Item	Software Name	Manufacturer	Version			
RE	EZ-EMC	EZ	Alpha-3A1			
CE	EZ-EMC	EZ	Alpha-3A1			
RF-CE	MTS 8310	MW	V2.0.0.0			

Test results and Measurement Data 4

4.1 Antenna requirement:

Standard requirement:	FCC Part15 C Section 15.203
15.203 requirement:	

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna: The antenna is Internal antenna. The best case gain of the antenna is 4.46dBi, for 5180~5240MHz.

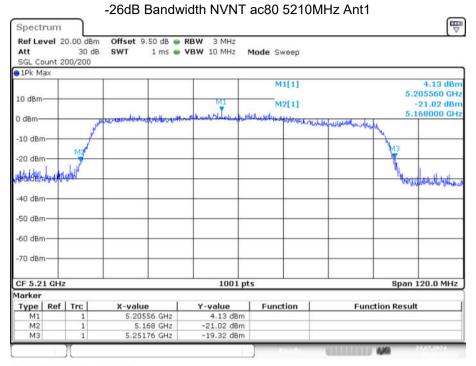
4.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	/ Class B					
Class B	RBW=9KHz, VBW=30KHz					
Receiver setup: Limit:	RBVV=9KHZ, VBVV=3UKHZ	l inn it / a	ID. AA			
LITTIIL.	Frequency range (MHz)	Limit (d Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithm	n of the frequency.				
Test procedure	The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.					
Test setup:	LISN A	nce Plane LISN 80cm				
	AUX Equipment E.U.T EMI Receiver					
	E.U.T: Equipment Under Test LISN: Line Impedence Stabilizatio Test table height=0.8m	0.000000000000000000000000000000000000				
Test Instruments:	Refer to section 5.10 for detail	S				
Test mode:	Refer to section 5.3 for details					
Test results:	N/A					

Measurement Data

Not applicable for equipment operated with battery.

4.3 Emission Bandwidth and 99% Occupied Bandwidth


Test Requirement:	FCC Part15 E Section 15.407			
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v02r01			
Limit:	N/A			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test procedure:	According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01.			
Test Instruments:	Refer to section 5.10 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Pass			

Measurement Data:

Band 1 (5150-5250 MHz):

-26dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-26 dB Bandwidth (MHz)	
NVNT	ac80	5210	Ant1	83.76	

Date: 24.JUL.2024 20:26:57

Condition

Occupied Channel Bandwidth

Antenna

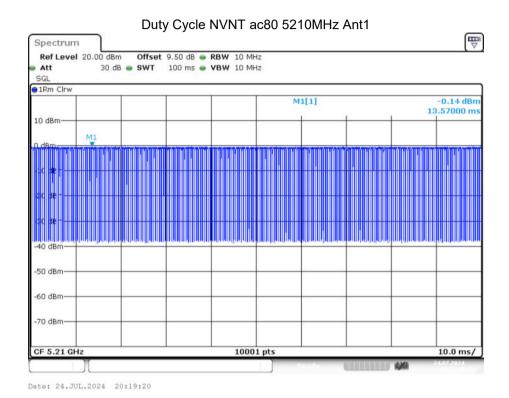
99% OBW (MHz)

Mode Frequency (MHz)

		ILIOIT	Mode	1164	uency (winz) Antenna	a 3370 ODVV (IVII IZ)
	NV	NT	ac80		5210	Ant1	76.124
			C	BW N	VNT ac80 5	210MHz Ar	nt1
0 .					4555 6		
Spect							▽
	evel 30	0.00 dBm			RBW 1 MHz	10-20-103-103-103-103-103-103-103-103-103-10	
Att	10	35 dB	SWT	1 ms 👄	VBW 3 MHz Mo	de Sweep	
1Pk M	ount 10	00/100					
JAPK II	iun		1			M1[1]	-24.26 dBn
00 10							5.270000 GH
20 dBm	,					Occ Bw	76.123876124 MH
10 dBm							
0 dBm-	_	T1		1000 CO. C.	mentalentalenten hall	NA HARLES 1	T0
		Y.	Allertangeneral	Healhatha	- Harris	the many and productions of the	appropriate the state of the st
-10 dBr	m-	- 1					
-20 dBr	m	1					
	printers the same	marke					Under the rest of the state of
-30 dBr	n	<u> </u>	-		+		
-40 dBr	n —		1		1		
-50 dBr							
-30 GBI	"						
-60 dBr	n—		-				+ + + + + + + + + + + + + + + + + + + +
CF 5.2	1 GHz				1001 pts	I	Span 120.0 MHz
Marker							
Туре		Trc	X-value		Y-value		
M1		1		27 GHz	-24.26 dBm		75 100075101111
T1 T2		1	5.1718 5.2480		-7.35 dBm -7.41 dBm	Occ Bw	76.123876124 MHz
12		4	5.2480	JE GITE	-(.41 npm		

Date: 24.JUL.2024 20:19:46

4.4 Average Transmit Power

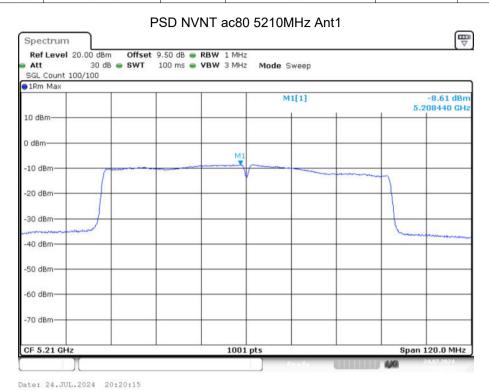

Test Requirement:	FCC Part15 E Section 15.407
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v02r01
Limit:	For the band 5.15-5.25GHz, 5.25-5.35GHz, 5.47-5.725GHz, the maximum conducted output power over the frequency bands of operation shall not exceed 250mW. For the band 5.725-5.85GHz, the maximum conducted output power over the frequency bands of operation shall not exceed 1W.
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane
Test procedure:	 Measurement using an RF average power meter (i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied a) The EUT is configured to transmit continuously or to transmit with a constant duty cycle. b) At all times when the EUT is transmitting, it must be transmitting at its maximum power control level. c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five. (ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section B). (iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter. (iv) Adjust the measurement in dBm by adding 10 log(1/x) where x is the duty cycle (e.g., 10log(1/0.25) if the duty cycle is 25 percent).
Test Instruments:	Refer to section 5.10 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement Data Band 1 (5150-5250 MHz)

Condition	Mode	Frequency	Antenna	Conducted Power	EIRP	Limit	Verdict
		(MHz)		(dBm)	(dBm)	(dBm)	
NVNT	ac80	5210	Ant1	11.709	17.229	24	Pass

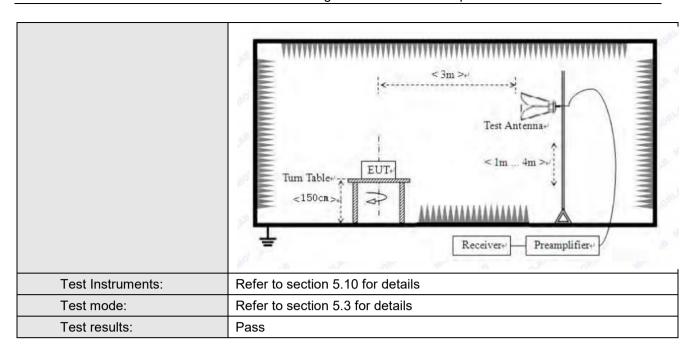
Duty Cycle

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)
NVNT	ac80	5210	Ant1	78.33	1.06



4.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407					
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v02r01					
Limit:	≤11.00dBm/MHz for 5150MHz-5250MHz, 5250-5350MHz and 5470-5725 MHz ≤30.00dBm/500KHz for 5725MHz-5850MHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table					
	Ground Reference Plane					
Test procedure:	 Create an average power spectrum for the EUT operating mode being tested by following the instructions in section E)2) for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power". Use the peak search function on the instrument to find the peak of the spectrum. Make the following adjustments to the peak value of the spectrum, if applicable: If Method SA-2 or SA-2 Alternative was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum. If Method SA-3 Alternative was used and the linear mode was used in step E)2)g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging. The result is the PSD. 					
Test Instruments:	Refer to section 5.10 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					


Measurement Data Band 1 (5150-5250 MHz)

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	ac80	5210	Ant1	-8.614	11	Pass

4.6 Band Edge

Test Requirement:	FCC Part15 E Section 15.407 and 15.205						
Test Method:	ANSI C63.10:2013						
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)						
Receiver setup:							
·	Frequency	Detector	RBW	VBW	Remark		
	30MHz-1GHz	Quasi-peak		300KHz	Quasi-peak Value		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
	1	AV	1MHz	3MHz	Average Value		
Limit:	Fraguer	101/	Limit /dDu\/	/m @2m)	Remark		
	Frequen 30MHz-88		Limit (dBuV) 40.0		Quasi-peak Value		
	88MHz-216		43.5		Quasi-peak Value		
	216MHz-96		46.0		Quasi-peak Value		
	960MHz-1		54.0		Quasi-peak Value		
			54.0		Average Value		
	Above 10	iHz –	68.2		Peak Value		
Test Procedure:	 Undesirable emission limits: (1) For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5.25-5.35 GHz band that generate emissions in the 5.15-5.25 GHz band must meet all applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band. (3) For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz. 						
restriocedure.	 a. The EUT was placed on the top of a rotating table 1.5 m above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 						
Test setup:	sheet. Above 1GHz						
	7.0000 10112						

Remark:

According to KDB 789033 D02 v02r01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2,

For example, if EIRP = -27dBm

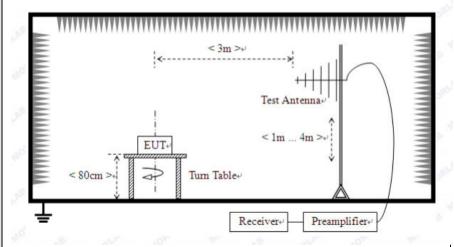
E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

Measurement Data:

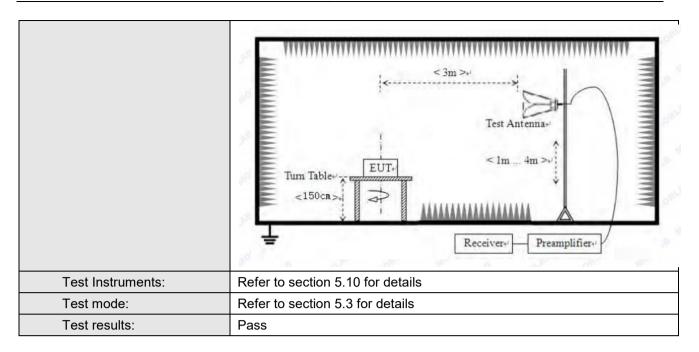
Band1

Me	ode:	802.11a	c(HT80)	Frequ	Frequency:		5210MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector	
Н	5150.00	38.64	17.21	55.85	68.20	-12.35	PK	
V	5150.00	36.17	17.21	53.38	68.20	-14.82	PK	
Me	ode:	802.11a	c(HT80)	Frequ	iency:	5210	MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector	
Н	5150.00	23.47	17.18	40.65	54.00	-13.35	AV	
V	5150.00	26.83	17.18	44.01	54.00	-9.99	AV	
Me	ode:	802.11a	c(HT80)	Frequ	iency:	5210MHz		
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector	
Н	5350.00	38.86	17.21	56.07	68.20	-12.13	PK	
V	5350.00	36.93	17.21	54.14	68.20	-14.06	PK	
Me	ode:	802.11a	c(HT80)	Frequ	iency:	5210	MHz	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector	
Н	5350.00	22.45	17.18	39.63	54.00	-14.37	AV	
V	5350.00	26.42	17.18	43.60	54.00	-10.40	AV	

4.7 Radiated Emission

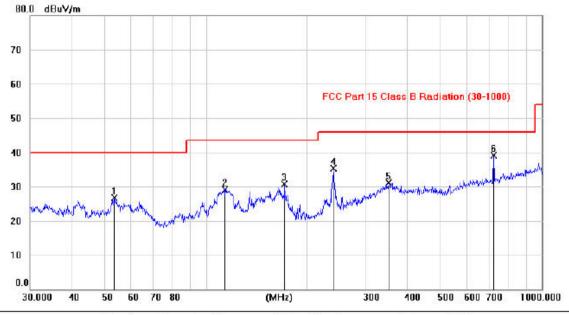

4./ Radia	Radiated Emission							
Test	Requirement:	FCC Part15 C S	Section 15.209 a	and 15.205				
Test	Method:	ANSI C63.10:20)13					
Test	Frequency Range:	30MHz to 40GH	lz					
Test	. , ,	Measurement D	istance: 3m (Se	emi-Anecho	ic Chambe	r)		
	eiver setup:	Frequency	Detector	RBW	VBW	Value		
T C C C	ivoi setup.	30MHz- 1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value		
		Above 1GHz	Peak	1MHz	3MHz	Peak Value		
			AV	1MHz	3MHz	Average Value		
Limit		Freque		_imit (dBuV/		Remark		
		30MHz-8		40.0		Quasi-peak Value		
		88MHz-2 ² 216MHz-9		43.5 46.0		Quasi-peak Value		
		960MHz-		54.0 54.0		Quasi-peak Value Quasi-peak Value		
		9001011 12-	TGHZ	74.0		Peak Value		
		Above 1	GHz	54.0		Average Value		
Test	Procedure:	Substitution me	thad was perfor					
		1GHz and meter cambro position of the position of the strength of the ground Both horized make the result of the each of the ground Both horized make the result of the ground Both horized make the ground Both horized	test procedure as placed on the 1.5 meters for a per. The table with highest radiovas set 3 meter which was mour ower. It to determine the portal and vertical and vertical and vertical and vertical and vertical and the rotable table find the maximum eceiver system with the son level of the pecified, then test procedure the EUT would be to 10dB margin in the sign peak or average the step poort on the turning ed by the provious shall be original shall be original.	e top of a robove 1GHz vas rotated 3 ation. Is away from the don the the defrom one maximum all polarizations was turn um reading was set to P Maximum Per EUT in peasing could be reported. Would be reigned method in the free dinitial dot the free down the free dinitial dot dot the free dinitial dot dot dot do dinitial dot dot dot do	above the 360 degrees of the interferop of a variate meter to find a value of the constant of the angle of the constant of the angle of the constant of the co	rence-receiving able-height our meters above he field strength. Intenna are set to higher to 4 degrees to 360. Function and he says the emissions that he by one using d and then reported half polarization and he transmitter. The		
		receiver. 3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.						

- 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 5. Repeat step 4 for test frequency with the test antenna polarized horizontally.
- 6. Remove the transmitter and replace it with a substitution antenna
- 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- 8. Repeat step 7 with both antennas horizontally polarized for each test frequency.
- 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula: EIRP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBi) where:


Pg is the generator output power into the substitution antenna.

Test setup:

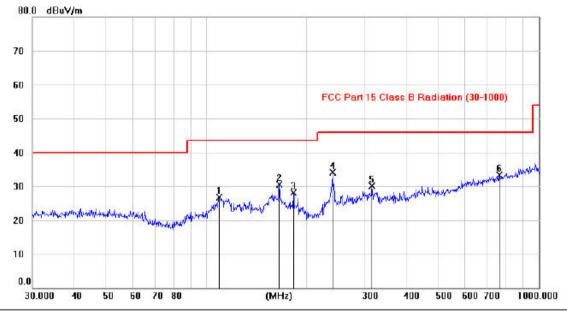
Below 1GHz


Above 1GHz

Measurement Data:

Below 1GHz

Antenna polarity: Vertical



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		53.6555	13.03	13.72	26.75	40.00	-13.25	peak			
2	Ì	113.8207	16.74	12.29	29.03	43.50	-14.47	peak			
3		171.4524	16.87	13.87	30.74	43.50	-12.76	peak			
4		240.4084	22.72	12.55	35.27	46.00	-10.73	peak			
5		350.8865	15.93	15.25	31.18	46.00	-14.82	peak			
6	*	720.0406	17.06	22.02	39.08	46.00	-6.92	peak			

Note:1. *: Maximum data; x: Over limit; !: over margin.

^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Antenna polarity: Horizontal

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		109.6419	14.84	11.79	26.63	43.50	-16.87	peak			
2		165.6802	15.97	14.49	30.46	43.50	-13.04	peak			
3		183.1362	15.74	12.30	28.04	43.50	-15.46	peak			
4	*	239.9873	21.49	12.55	34.04	46.00	-11.96	peak			
5		314.5232	15.70	14.47	30.17	46.00	-15.83	peak			
6		763.1970	10.59	22.62	33.21	46.00	-12.79	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.
2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Above 1GHz:

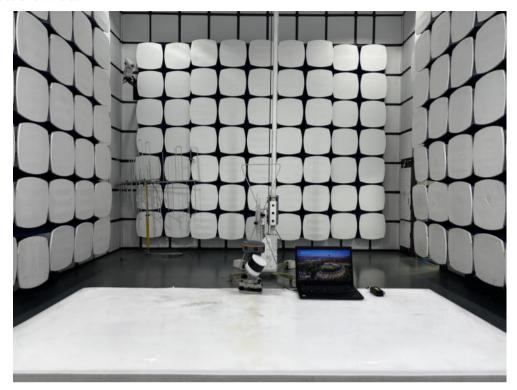
802.11ac(HT80) 5210MHz

				1 - 1					
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over		
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	polarization	
, ,	(dBuV)	(dB/m)	(dB)	(dB)	,	,	(dB)		
10420.04	50.77	11.25	14.62	32.65	43.99	68.20	-24.21	Vertical	
15630.08	49.96	11.93	17.66	34.46	45.09	74.00	-28.91	Vertical	
10420.06	52.94	9.4	14.62	32.65	44.31	68.20	-23.89	Horizontal	
10420.04	50.77	11.25	14.62	32.65	43.99	68.20	-24.21	Horizontal	

Note:

- 1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

4.8 Frequency stability

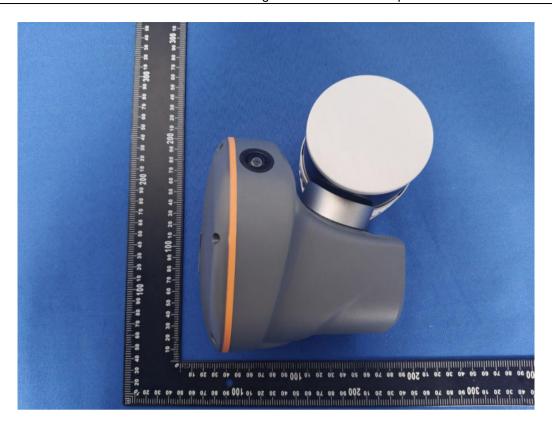

Test limit	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.
Test results:	Pass

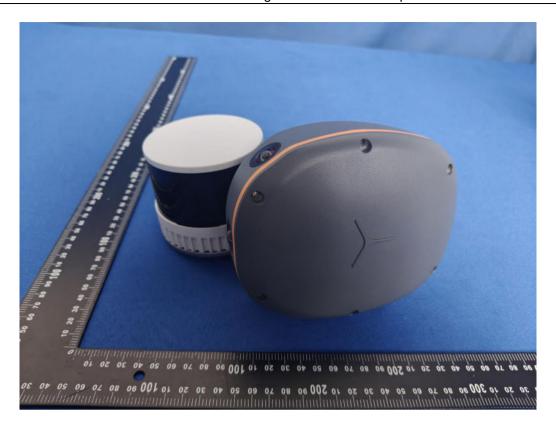
Measurement Data:

Mode	Voltage	FHL	Deviation
	(V)	(5210MHz)	(KHz)
Band 1	DC 6.48V	5209.993	7
(5150-5250	DC 7.2V	5209.987	13
MHz)	DC 7.92V	5209.989	11

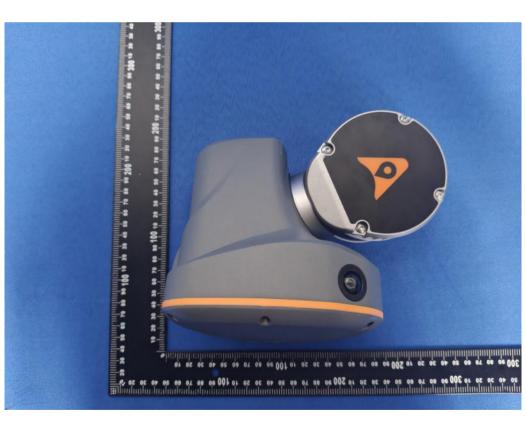
Mode	Temperature (°C)	FHL (5210MHz)	Deviation (KHz)
Band 1 (5150-5250 MHz)	0℃	5209.992	8
	+10℃	5209.987	13
	+20℃	5209.990	10
	+30℃	5209.991	9
	+40℃	5209.993	7
	+50℃	5209.992	8
	+60℃	5209.985	15
	+70℃	5209.986	14

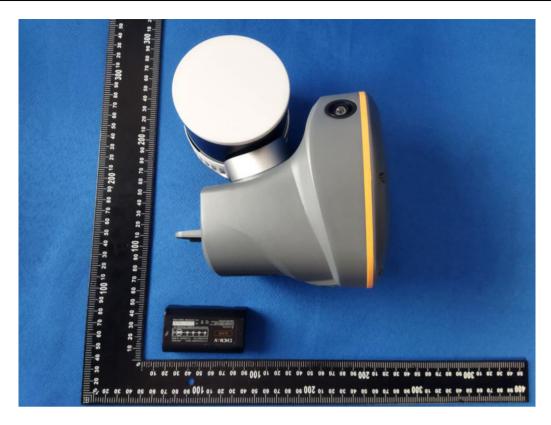

4.9 Photos of Test

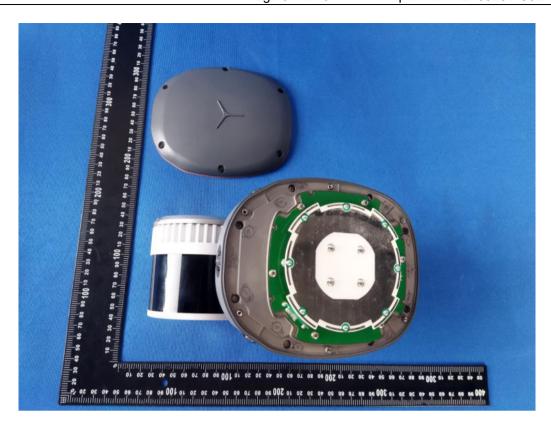


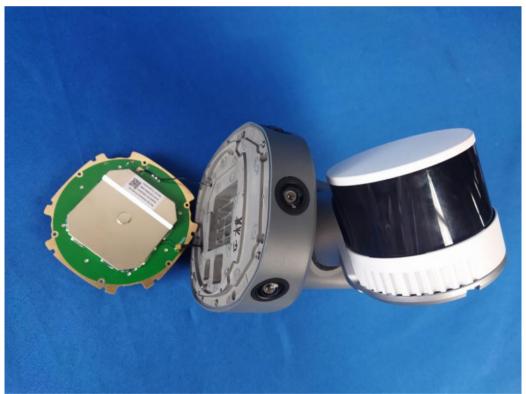


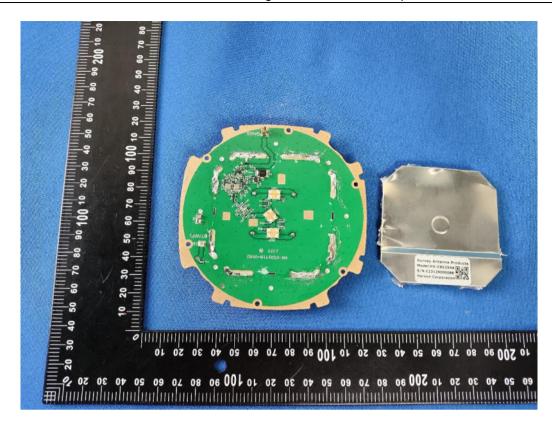
Page 28 of 46

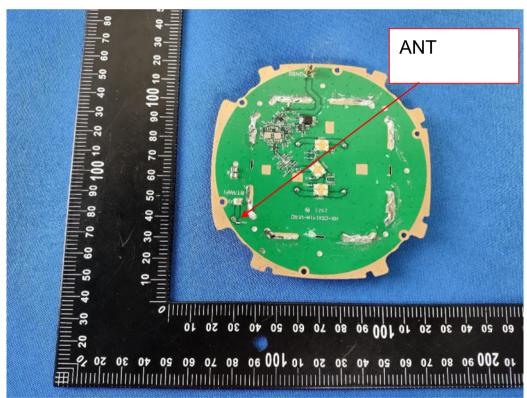


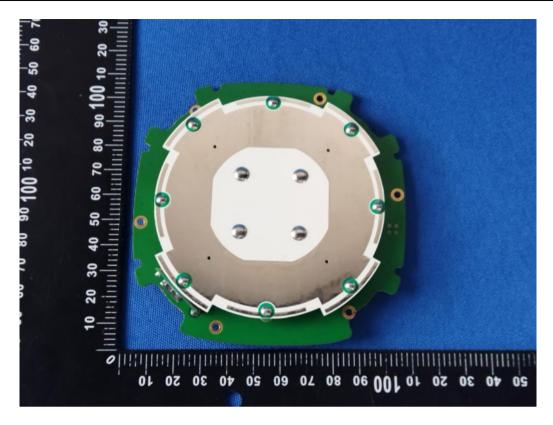


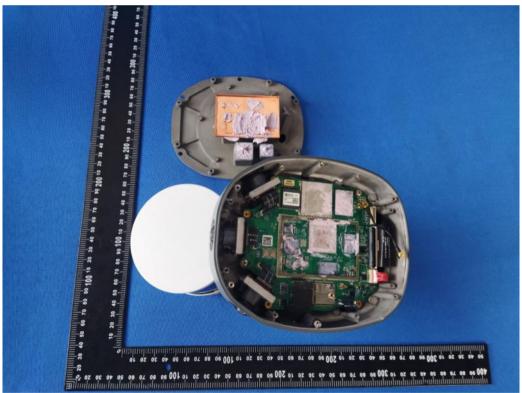


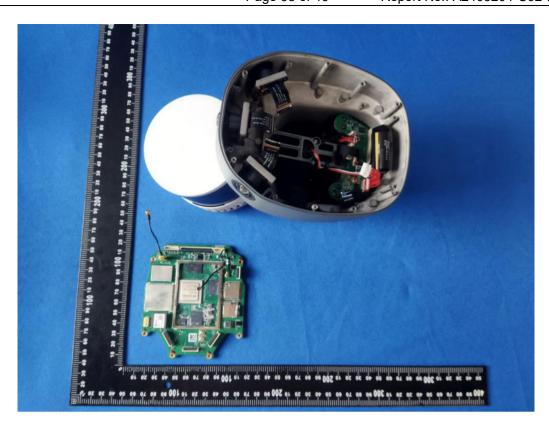


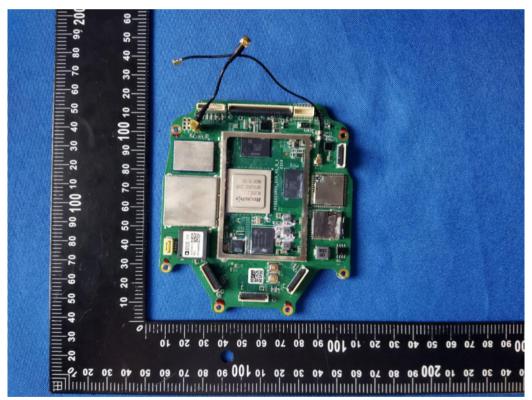


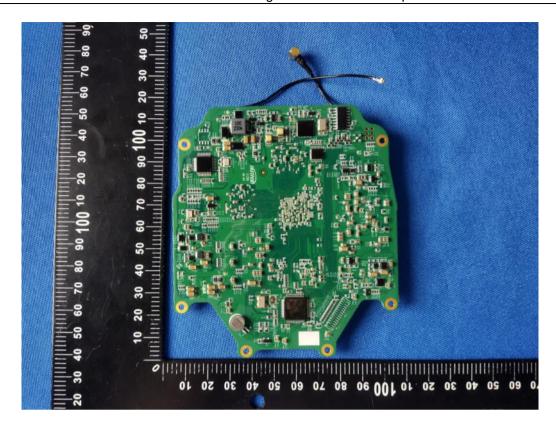


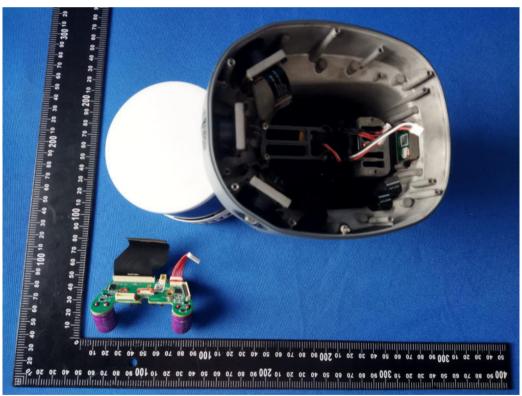


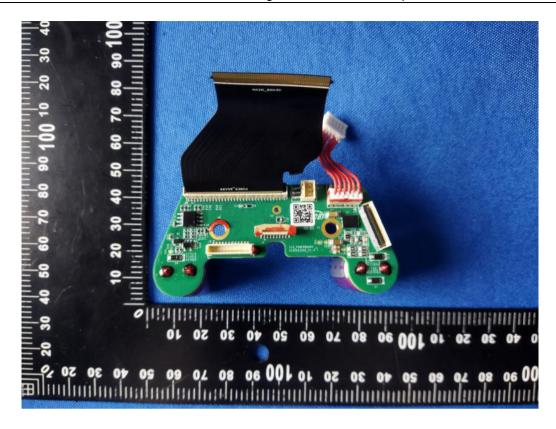


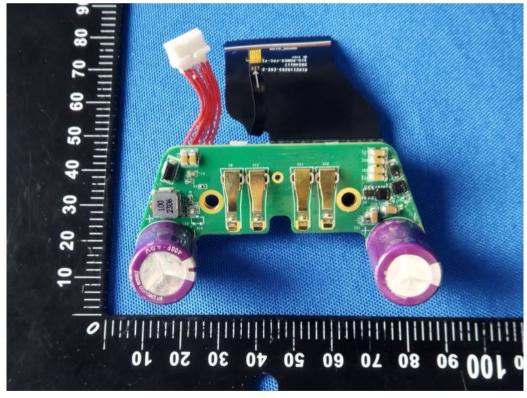


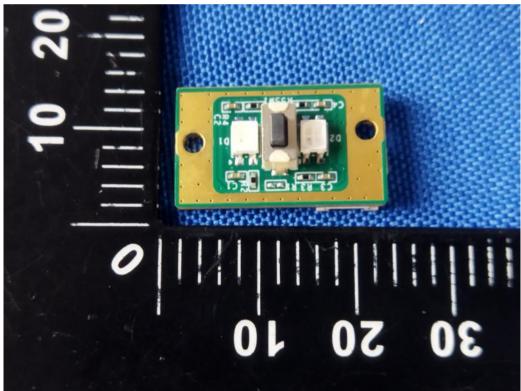


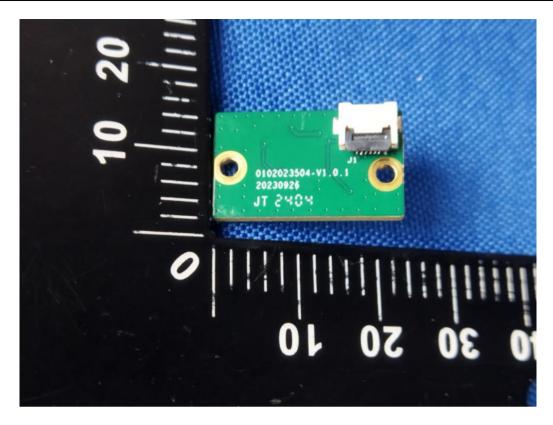


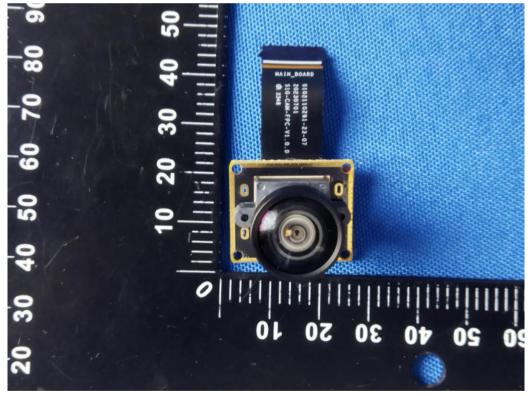


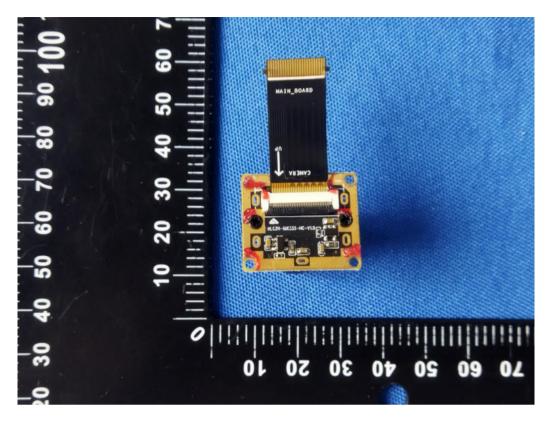


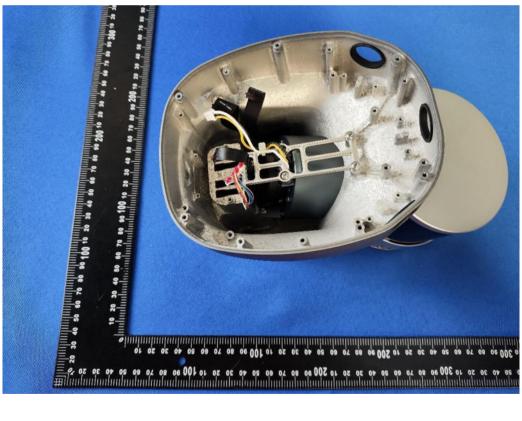


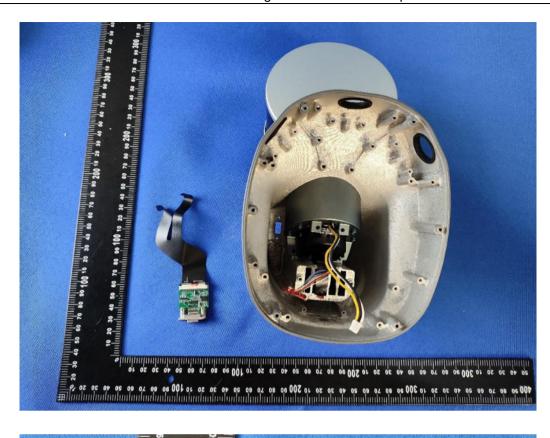


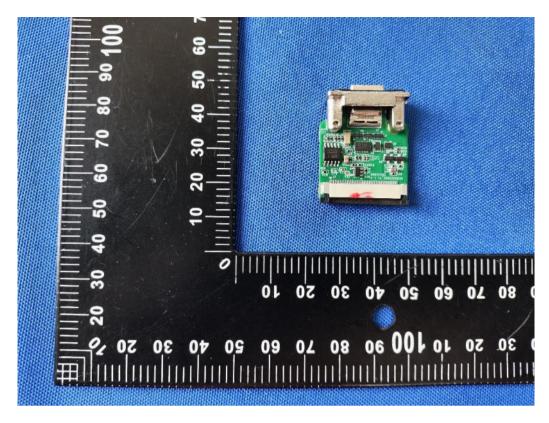


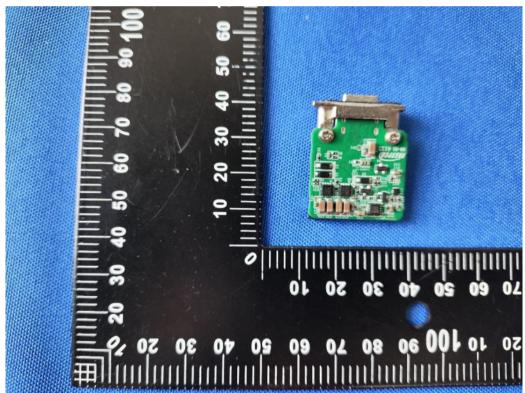












----END OF REPORT-----