

OET 65

TEST REPORT

Product Name	Handheld Rugged Terminal
Model Name	HRT300
Brand Name	PRADOTEC
FCC ID	SX3-HRT300
Client	PRADOTEC CORPORATION SDN. BHD. (807780-P)
Manufacturer	OPTIMA KLASIK Sdn. Bhd. (807783-T)
Date of issue	July 4, 2013

TA Technology (Shanghai) Co., Ltd.

TA Technology (Shanghai) Co., Ltd.
Test Report

GENERAL SUMMARY

Reference Standard(s)	<p>FCC 47CFR §2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices</p> <p>ANSI C95.1, 1992: Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.(IEEE Std C95.1-1991)</p> <p>SUPPLEMENT C Edition 01-01 to OET BULLETIN 65 Edition 97-01 June 2001 including DA 02-1438, published June 2002: Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields Additional Information for Evaluation Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radio frequency Emissions.</p> <p>KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r01: SAR Measurement Requirements for 100 MHz to 6 GHz</p> <p>KDB 447498 D01 General RF Exposure Guidance v05r01: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies</p> <p>KDB 941225 D01 SAR test for 3G devices v02: SAR Measurement Procedures CDMA 20001x RTT, 1x Ev-Do, WCDMA, HSDPA/HSPA</p> <p>KDB 941225 D03 SAR Test Reduction GSM/GPRS/EDGE v01: Recommended SAR Test Reduction Procedures for GSM/GPRS/EDGE</p> <p>KDB 248227 D01 SAR meas for 802 11 a b g v01r02: SAR Measurement Procedures for 802.11a/b/g Transmitters.</p> <p>KDB 941225 D07 UMPC Mini Tablet v01r01 SAR Evaluation Procedures for UMPC Mini-Tablet Devices</p> <p>Tracking Number 462726</p>
Conclusion	<p>This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in Chapter 7 of this test report are below limits specified in the relevant standards for the tested bands only.</p> <p>General Judgment: Pass</p>
Comment	The test result only responds to the measured sample.

Approved by

初伟中

Director

Revised by

凌敏宝

SAR Manager

Performed by

许红梅

SAR Engineer

TA Technology (Shanghai) Co., Ltd.
Test Report

TABLE OF CONTENT

1. General Information	5
1.1. Notes of the Test Report.....	5
1.2. Testing Laboratory.....	5
1.3. Applicant Information	6
1.4. Manufacturer Information.....	6
1.5. Information of EUT.....	7
1.6. The Maximum Reported SAR _{1g}	8
1.7. Test Date	8
2. SAR Measurements System Configuration.....	9
2.1. SAR Measurement Set-up	9
2.2. DASY5 E-field Probe System	10
2.2.1. EX3DV4 Probe Specification	10
2.2.2. E-field Probe Calibration	11
2.3. Other Test Equipment	11
2.3.1. Device Holder for Transmitters	11
2.3.2. Phantom	12
2.4. Scanning Procedure	12
2.5. Data Storage and Evaluation	14
2.5.1. Data Storage.....	14
2.5.2. Data Evaluation by SEMCAD	14
3. Laboratory Environment.....	16
4. Tissue-equivalent Liquid	17
4.1. Tissue-equivalent Liquid Ingredients.....	17
4.2. Tissue-equivalent Liquid Properties	18
5. System Check.....	19
5.1. Description of System Check	19
5.2. System Check Results.....	20
6. Operational Conditions during Test	21
6.1. General Description of Test Procedures	21
6.2. Test Configuration	21
6.2.1. GSM Test Configuration.....	21
6.2.2. UMTS Test Configuration.....	22
6.2.3. HSDPA Test Configuration	22
6.2.4. HSUPA Test Configuration	24
6.2.5. WIFI Test Configuration	26
6.3. Measurement Variability.....	27
6.4. Test Positions.....	28
6.4.1. Test Positions Requirements	28
7. Test Results	30
7.1. Conducted Power Results	30
7.2. Standalone SAR Test Exclusion Considerations	33
7.3. SAR Test Results	34
7.3.1. GSM 850 (GPRS/EGPRS).....	34

TA Technology (Shanghai) Co., Ltd.

Test Report

1.1.1. GSM 1900 (GPRS/EGPRS).....	35
1.1.2. UMTS Band V (WCDMA/HSDPA/HSUPA)	36
1.1.3. WIFI (802.11b).....	37
7.4. Simultaneous Transmission Conditions	38
2. 700MHz to 3GHz Measurement Uncertainty.....	40
3. Main Test Instruments	42
ANNEX A: Test Layout	43
ANNEX B: System Check Results	45
ANNEX C: Graph Results	48
ANNEX D: Probe Calibration Certificate	69
ANNEX E: D835V2 Dipole Calibration Certificate	80
ANNEX F: D1900V2 Dipole Calibration Certificate	88
ANNEX G: D2450V2 Dipole Calibration Certificate.....	96
ANNEX H: DAE4 Calibration Certificate.....	104
ANNEX I: The EUT Appearances and Test Configuration	110

TA Technology (Shanghai) Co., Ltd.

Test Report

1. General Information

1.1. Notes of the Test Report

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS), and accreditation number: L2264.

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

If the electrical report is inconsistent with the printed one, it should be subject to the latter.

1.2. Testing Laboratory

Company: TA Technology (Shanghai) Co., Ltd.
Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China
City: Shanghai
Post code: 201201
Country: P. R. China
Contact: Yang Weizhong
Telephone: +86-021-50791141/2/3
Fax: +86-021-50791141/2/3-8000
Website: <http://www.ta-shanghai.com>
E-mail: yangweizhong@ta-shanghai.com

TA Technology (Shanghai) Co., Ltd.
Test Report

1.3. Applicant Information

Company: PRADOTEC CORPORATION SDN. BHD. (807780-P)
Address: 4th Floor IRIS Smart Complex, Technology Park Malaysia, Bukit Jalil,
City: Kuala Lumpur
Postal Code: 57000
Country: Malaysia

1.4. Manufacturer Information

Company: OPTIMA KLASIK Sdn. Bhd. (807783-T)
Address: 4th Floor IRIS Smart Complex, Technology Park Malaysia, Bukit Jalil,
City: Kuala Lumpur
Postal Code: 57000
Country: Malaysia

TA Technology (Shanghai) Co., Ltd.
Test Report

1.5. Information of EUT

General Information

Device Type:	Portable Device		
Exposure Category:	Uncontrolled Environment / General Population		
State of Sample:	Prototype Unit		
S/N:	1302-P0001		
Hardware Version:	HW-HRT300_V1.0		
Software Version:	SW-HRT300_V1.0		
Antenna Type:	Internal Antenna		
Device Operating Configurations:			
Operating Mode(s):	GSM 850/ GSM 1900; (tested) UMTS Band V; (tested) 802.11b (tested) 802.11g (untested) UMTS Band I/VIII; (untested) BT(untested)		
Test Modulation:	(GSM)GMSK; (UMTS)QPSK		
Device Class:	B		
HSDPA UE Category:	8		
HSUPA UE Category:	6		
GPRS Multislot Class(12):	Max Number of Timeslots in Uplink		4
	Max Number of Timeslots in Downlink		4
	Max Total Timeslot		5
EGPRS Multislot Class(12):	Max Number of Timeslots in Uplink		4
	Max Number of Timeslots in Downlink		4
	Max Total Timeslot		5
Power Class:	GSM 850: 4		
	GSM 1900: 1		
	UMTS Band V: 3		
Power Level:	GSM 850: tested with power level 5		
	GSM 1900: tested with power level 0		
	UMTS Band V: tested with power control all up bits		
Test Channel: (Low - Middle - High)	128 -190 - 251	(GSM 850) (tested)	
	512 - 661 - 810	(GSM 1900) (tested)	
	4132 - 4183 - 4233	(UMTS Band V) (tested)	
	1 - 6 - 11	(802.11b) (tested)	
Operating Frequency Range(s):	Mode	Tx (MHz)	Rx (MHz)
	GSM 850	824.2 ~ 848.8	869.2 ~ 893.8
	GSM 1900	1850.2 ~ 1909.8	1930.2 ~ 1989.8
	UMTS Band V	826.4 ~ 846.6	871.4 ~ 891.6

TA Technology (Shanghai) Co., Ltd.
Test Report

Equipment Under Test (EUT) has a GSM/UMTS antenna that is used for Tx/Rx, the second BT antenna that is used for Tx/Rx, the third WIFI antenna that is used for Tx/Rx.

The sample undergoing test was selected by the Client.

Components list please refer to documents of the manufacturer.

1.6. The Maximum Reported SAR_{1g}

Body Worn Configuration

Mode	Test Position	Channel /Frequency(MHz)	Limit SAR_{1g} 1.6 W/kg	
			Measured SAR_{1g} (W/kg)	Reported SAR_{1g} (W/kg)
GSM850	Left Edge	190/836.6	0.069	0.078
GSM1900	Left Edge	661/1880	0.201	0.396
UMTS Band V	Left Edge	4183/836.6	0.130	0.155
802.11b	Right Edge	6/2437	0.328	0.336

1.7. Test Date

The test performed from July 1, 2013 to July 3, 2013.

2. SAR Measurements System Configuration

2.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

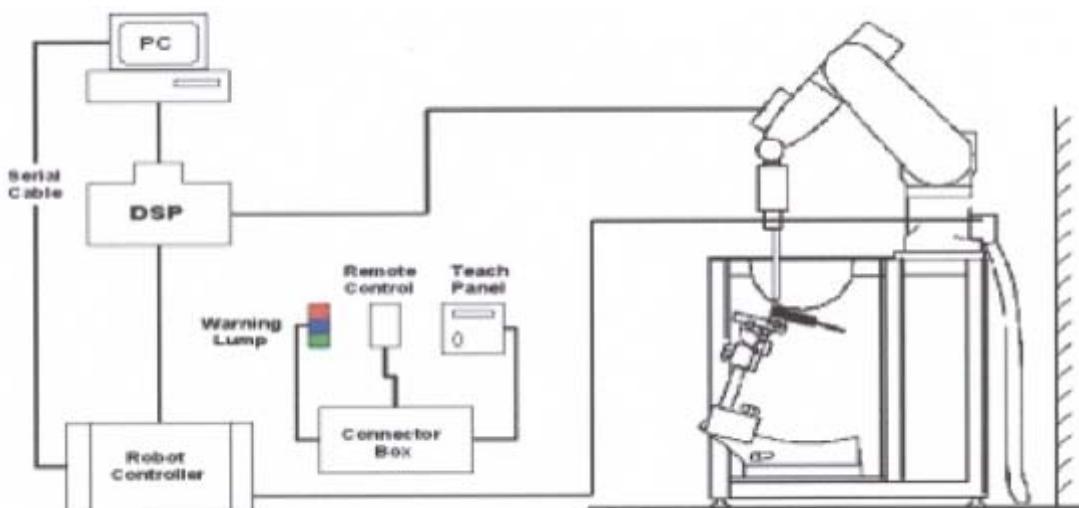


Figure 1. SAR Lab Test Measurement Set-up

2.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

2.2.1. EX3DV4 Probe Specification

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

Figure 2. EX3DV4 E-field Probe

Figure 3. EX3DV4 E-field probe

2.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy was evaluated and found to be better than $\pm 0.25\text{dB}$. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\text{SAR} = C \frac{\Delta T}{\Delta t}$$

Where: Δt = Exposure time (30 seconds),
 C = Heat capacity of tissue (brain or muscle),
 ΔT = Temperature increase due to RF exposure.

Or

$$\text{SAR} = \frac{|E|^2 \sigma}{\rho}$$

Where:
 σ = Simulated tissue conductivity,
 ρ = Tissue density (kg/m^3).

2.3. Other Test Equipment

2.3.1. Device Holder for Transmitters

Construction: Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.) It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin SAM, ELI4 and SAM v6.0 Phantoms.

Material: POM, Acrylic glass, Foam

2.3.2. Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden Figure. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness 2 ± 0.1 mm

Filling Volume Approx. 20 liters

Dimensions 810 x 1000 x 500 mm (H x L x W) Available Special

Figure 4 Generic Twin Phantom

2.4. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The “reference” and “drift” measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT’s output power and should vary max. $\pm 5\%$.
- The “surface check” measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1 mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^\circ$.)
- Area Scan
The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing is set according to FCC KDB Publication 865664. During scan the distance of the probe to the

TA Technology (Shanghai) Co., Ltd.

Test Report

phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

- **Zoom Scan**

After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the “Not a knot” condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm.

- **Spatial Peak Detection**

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space.

They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation.

- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

Table 1: Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01

Frequency	Maximum Area Scan Resolution (mm) ($\Delta x_{area}, \Delta y_{area}$)	Maximum Zoom Scan Resolution (mm) ($\Delta x_{zoom}, \Delta y_{zoom}$)	Maximum Zoom Scan Spatial Resolution (mm) $\Delta z_{zoom}(n)$	Minimum Zoom Scan Volume (mm) (x,y,z)
≤ 2 GHz	≤ 15	≤ 8	≤ 5	≥ 30
2-3 GHz	≤ 12	≤ 5	≤ 5	≥ 30
3-4 GHz	≤ 12	≤ 5	≤ 4	≥ 28
4-5 GHz	≤ 10	≤ 4	≤ 3	≥ 25
5-6 GHz	≤ 10	≤ 4	≤ 2	≥ 22

2.5. Data Storage and Evaluation

2.5.1. Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

2.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Norm _i , a _{i0} , a _{i1} , a _{i2}
	- Conversion factor	ConvF _i
	- Diode compression point	Dcp _i

Device parameters:	- Frequency	f
	- Crest factor	cf

Media parameters:	- Conductivity	
	- Density	

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

TA Technology (Shanghai) Co., Ltd.

Test Report

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c_f / d_c p_i$$

With V_i = compensated signal of channel i (i = x, y, z)

U_i = input signal of channel i (i = x, y, z)

c_f = crest factor of exciting field (DASY parameter)

$d_c p_i$ = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1} f + a_{i2} f^2) / f$

With V_i = compensated signal of channel i (i = x, y, z)

$Norm_i$ = sensor sensitivity of channel i (i = x, y, z)
[mV/(V/m)²] for E-field Probes

$ConvF$ = sensitivity enhancement in solution

a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m

H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot})^2 \cdot \sigma / (\rho \cdot 1000)$$

with SAR = local specific absorption rate in mW/g

TA Technology (Shanghai) Co., Ltd.

Test Report

E_{tot} = total field strength in V/m

σ = conductivity in [mho/m] or [Siemens/m]

ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770 \quad \text{or} \quad P_{pwe} = H_{tot}^2 \cdot 37.7$$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

E_{tot} = total electric field strength in V/m

H_{tot} = total magnetic field strength in A/m

3. Laboratory Environment

Table 2: The Requirements of the Ambient Conditions

Temperature	Min. = 18°C, Max. = 25 °C
Relative humidity	Min. = 30%, Max. = 70%
Ground system resistance	< 0.5 Ω
Ambient noise is checked and found very low and in compliance with requirement of standards.	
Reflection of surrounding objects is minimized and in compliance with requirement of standards.	

4. Tissue-equivalent Liquid

4.1. Tissue-equivalent Liquid Ingredients

The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. Table 3 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the OET 65.

Table 3: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Body) 835MHz
Water	52.5
Sugar	45
Salt	1.4
Preventol	0.1
Cellulose	1.0
Dielectric Parameters Target Value	f=835MHz $\epsilon=55.2$ $\sigma=0.97$

MIXTURE%	FREQUENCY (Body) 1900MHz
Water	69.91
Glycol monobutyl	29.96
Salt	0.13
Dielectric Parameters Target Value	f=1900MHz $\epsilon=53.3$ $\sigma=1.52$

MIXTURE%	FREQUENCY(Body) 2450MHz
Water	73.2
Glycol	26.7
Salt	0.1
Dielectric Parameters Target Value	f=2450MHz $\epsilon=52.70$ $\sigma=1.95$

TA Technology (Shanghai) Co., Ltd.
Test Report

4.2. Tissue-equivalent Liquid Properties

Table 4: Dielectric Performance of Tissue Simulating Liquid

Frequency	Test Date	Temp °C	Measured Dielectric Parameters		Target Dielectric Parameters		Limit (Within ±5%)	
			ϵ_r	$\sigma(\text{s/m})$	ϵ_r	$\sigma(\text{s/m})$	Dev $\epsilon_r(\%)$	Dev $\sigma(\%)$
835MHz (body)	2013-07-01	21.5	54.35	1.01	55.20	0.97	-1.54	4.12
1900MHz (body)	2013-07-03	21.5	52.56	1.524	53.30	1.52	-1.39	0.26
2450MHz (body)	2013-07-02	21.5	51.69	1.903	52.70	1.95	-1.92	2.41

5. System Check

5.1. Description of System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 5.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system ($\pm 10\%$).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

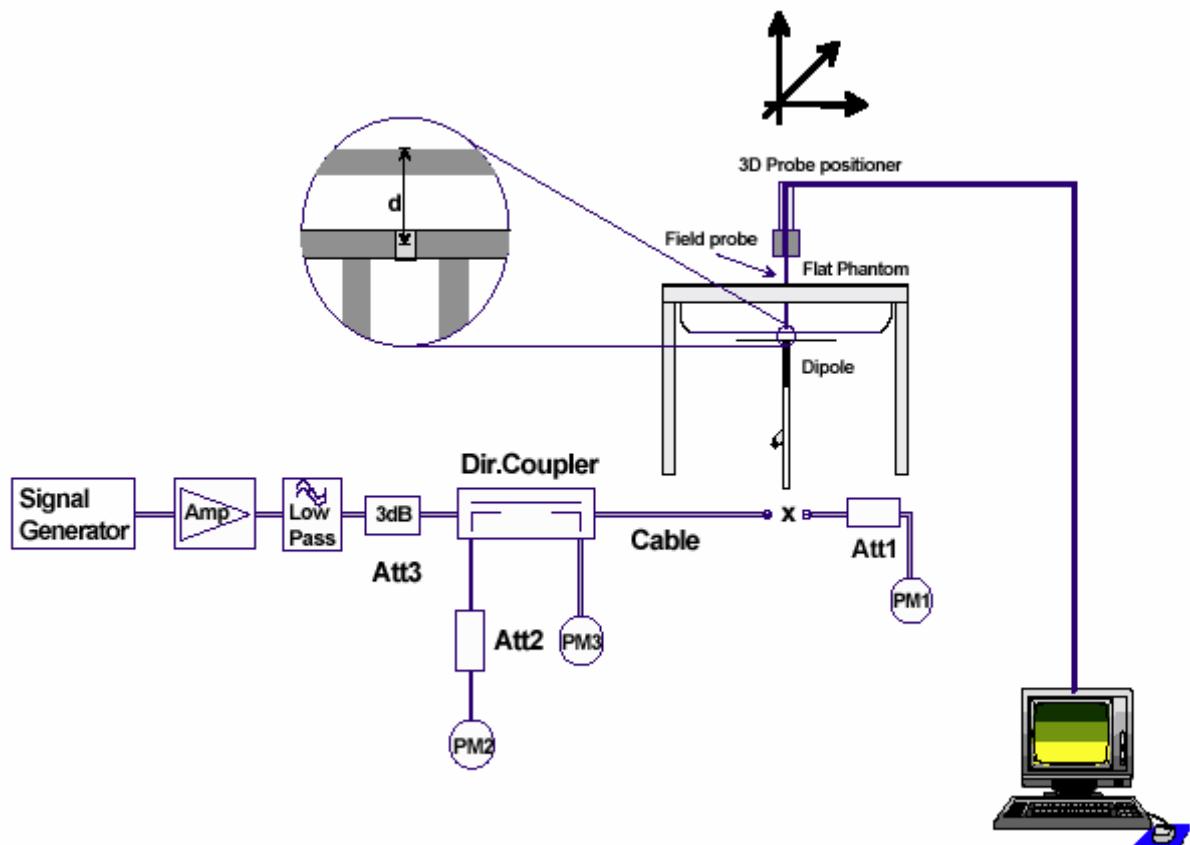


Figure 5. System Check Set-up

TA Technology (Shanghai) Co., Ltd.
Test Report

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< - 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 450824:

Dipole D835V2 SN: 4d020				
Body Liquid				
Date of Measurement	Return Loss(dB)	Δ %	Impedance (Ω)	ΔΩ
8/26/2011	-25.1	/	48.7	/
8/25/2012	-24.3	3.2%	50.6	1.9Ω

Dipole D1900V2 SN: 5d060				
Body Liquid				
Date of Measurement	Return Loss(dB)	Δ %	Impedance (Ω)	ΔΩ
8/31/2011	-21.3	/	47.3	/
8/30/2012	-20.9	1.9%	45.9	1.4Ω

Dipole D2450V2 SN: 786				
Body Liquid				
Date of Measurement	Return Loss(dB)	Δ %	Impedance (Ω)	ΔΩ
8/29/2011	-29.0	/	50.4	/
8/28/2012	-29.9	3.1%	52.1	1.7Ω

5.2. System Check Results

Table 5: System Check in Body Tissue Simulating Liquid

Frequency	Test Date	Dielectric Parameters		Temp	250mW Measured SAR _{1g}	1W Normalized SAR _{1g}	1W Target SAR _{1g}	Limit (±10% Deviation)
		ε _r	σ(s/m)					
835MHz	2013-07-01	54.35	1.01	21.5	2.52	10.08	9.46	6.55
1900MHz	2013-07-03	52.56	1.524	21.5	9.82	39.28	41.70	-5.80
2450MHz	2013-07-02	51.69	1.903	21.5	12.5	50.00	51.70	-3.29

Note: 1. The graph results see ANNEX B.

2. Target Values used derive from the calibration certificate

6. Operational Conditions during Test

6.1. General Description of Test Procedures

Connection to the EUT is established via air interface with E5515C, and the EUT is set to maximum output power by E5515C. Using E5515C the power lever is set to “5” in SAR of GSM 850, set to “0” in SAR of GSM 1900, power control is set “All Up Bits” of UMTS. The antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the EUT. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the EUT by at least 30 dB.

6.2. Test Configuration

6.2.1. GSM Test Configuration

For the body SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. The EUT is commanded to operate at maximum transmitting power. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslot is 5. Since the EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslot is 5.

When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot. The allowed power reduction in the multi-slot configuration is as following:

Table 6: The allowed power reduction in the multi-slot configuration

Number of timeslots in uplink assignment	Permissible nominal reduction of maximum output power,(dB)
1	0
2	0 to 3,0
3	1,8 to 4,8
4	3,0 to 6,0

6.2.2. UMTS Test Configuration

6.2.2.1. WCDMA Test Configuration

As the SAR body tests for WCDMA Band V, we established the radio link through call processing. The maximum output power were verified on high, middle and low channels for each test band according to 3GPP TS 34.121 with the following configuration:

- 1) 12.2kbps RMC, 64,144,384 kbps RMC with TPC set to all up bits
- 2) Test loop Mode 1

For the output power, the configurations for the DPCCH and DPDCH₁ are as followed (EUT do not support the DPDCH_{2-n})

Table 7: The configurations for the DPCCH and DPDCH₁

	Channel Bit Rate(kbps)	Channel Symbol Rate(kspS)	Spreading Factor	Spreading Code Number	Bits/Slot
DPCCH	15	15	256	0	10
DPDCH ₁	15	15	256	64	10
	30	30	128	32	20
	60	60	64	16	40
	120	120	32	8	80
	240	240	16	4	160
	480	480	8	2	320
	960	960	4	1	640

SAR is tested with 12.2kps RMC and not required for other spreading codes (64,144, and 384 kbps RMC) and multiple DPDCH_n, because the maximum output power for each of these other configurations<0.25dB higher than 12.2kbps RMC and the multiple DPDCH_n is not applicable for the EUT.

6.2.3. HSDPA Test Configuration

SAR for body exposure configurations is measured according to the “Body SAR Measurements” procedures of 3G device. In addition, body SAR is also measured for HSDPA when the maximum average output of each RF channel with HSDPA active is at least 1/4 dB higher than that measured without HSDPA using 12.2kbps RMC or the maximum SAR 12.2kbps RMC is above 75% of the SAR limit. Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA.

HSDPA should be configured according to the UE category of a test device. The number of HS-DSCH/HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission condition, QPSK is used in the H-set for SAR testing. HS-DPCCH should be

TA Technology (Shanghai) Co., Ltd.
Test Report

configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β_c, β_d), and HS-DPCCH power offset parameters($\Delta_{ACK}, \Delta_{NACK}, \Delta_{CQI}$)should be set according to values indicated in the Table below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Table 8: Subtests for UMTS Release 5 HSDPA

Sub-set	β_c	β_d	β_d (SF)	β_c/β_d	β_{hs} (note 1, note 2)	CM(dB) (note 3)	MPR(dB)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (note 4)	15/15 (note 4)	64	12/15 (note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note1: $\Delta_{ACK}, \Delta_{NACK}$ and $\Delta_{CQI}= 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$

Note2:For the HS-DPCCH power mask requirement test in clause 5.2C,5.7A, and the Error Vector Magnitude(EVM) with HS-DPCCH test in clause 5.13.1.A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, Δ_{ACK} and $\Delta_{NACK}= 8$ ($A_{hs}=30/15$) with $\beta_{hs}=30/15 * \beta_c$, and $\Delta_{CQI}= 7$ ($A_{hs}=24/15$) with $\beta_{hs}=24/15 * \beta_c$.

Note3: CM=1 for $\beta_c/\beta_d = 12/15, \beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4:For subtest 2 the $\beta_c\beta_d$ ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to $\beta_c=11/15$ and $\beta_d=15/15$.

Table 9: Settings of required H-Set 1 QPSK in HSDPA mode

Parameter	Unit	Value
Nominal Avg. Inf. Bit Rate	kbps	534
Inter-TTI Distance	TTI's	3
Number of HARQ Processes	Processes	2
Information Bit Payload (N_{INF})	Bits	3202
Number Code Blocks	Blocks	1
Binary Channel Bits Per TTI	Bits	4800
Total Available SML's in UE	SML's	19200
Number of SML's per HARQ Proc.	SML's	9600
Coding Rate	/	0.67
Number of Physical Channel Codes	Codes	5
Modulation	/	QPSK

TA Technology (Shanghai) Co., Ltd.
Test Report

Table 10: HSDPA UE category

HS-DSCH Category	Maximum HS-DSCH Codes Received	Minimum Inter-TTI Interval	Maximum Transport Bits/HS-DSCH	Total Channel
1	5	3	7298	19200
2	5	3	7298	28800
3	5	2	7298	28800
4	5	2	7298	38400
5	5	1	7298	57600
6	5	1	7298	67200
7	10	1	14411	115200
8	10	1	14411	134400
9	15	1	25251	172800
10	15	1	27952	172800
11	5	2	3630	14400
12	5	1	3630	28800
13	15	1	34800	259200
14	15	1	42196	259200
15	15	1	23370	345600
16	15	1	27952	345600

6.2.4. HSUPA Test Configuration

Body SAR is also measured for HSPA when the maximum average output of each RF channel with HSPA active is at least ¼ dB higher than that measured without HSPA using 12.2 kbps RMC or the maximum SAR for 12.2 kbps RMC is above 75% of the SAR limit. Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 with power control algorithm 2, according to the highest body SAR configuration in 12.2 kbps RMC without HSPA.

Due to inner loop power control requirements in HSPA, a commercial communication test set should be used for the output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA should be configured according to the β values indicated below as well as other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of 3 G device.

TA Technology (Shanghai) Co., Ltd.
Test Report

Table 11: Sub-Test 5 Setup for Release 6 HSUPA

Sub-set	β_c	β_d	β_d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	β_{ec}	β_{ed}	β_{ed} (SF)	β_{ed} (codes)	CM (2) (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E-TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	$\beta_{ed1} 47/15$ $\beta_{ed2} 47/15$	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$.

Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-

DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the

signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the

signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Figure 5.1g.

Note 6: β_{ed} can not be set directly; it is set by Absolute Grant Value.

Table 12: HSUPA UE category

UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E-DCH TTI (ms)	Minimum Spreading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)
1	1	4	10	4	7110	0.7296
2	2	8	2	4	2798	1.4592
	2	4	10	4	14484	
3	2	4	10	4	14484	1.4592
4	2	8	2	2	5772	2.9185
	2	4	10	2	20000	2.00
5	2	4	10	2	20000	2.00
6 (No DPDCH)	4	8	2	2 SF2 & 2 SF4	11484	5.76
	4	4	10		20000	2.00
7 (No DPDCH)	4	8	2	2 SF2 & 2 SF4	22996	?
	4	4	10		20000	

NOTE: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4.

UE Categories 1 to 6 supports QPSK only. UE Category 7 supports QPSK and 16QAM. (TS25.306-7.3.0)

6.2.5. WIFI Test Configuration

For WLAN SAR testing, WLAN engineering testing software installed on the DUT can provide continuous transmitting RF signal. The Tx power is set to 15 for 802.11 b mode, This RF signal utilized in SAR measurement has almost 100% duty cycle and its crest factor is 1.

For the 802.11b/g SAR tests, a communication link is set up with the test mode software for WIFI mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate. Testing at higher data rates is not required when the maximum average output power is less than 0.25dB higher than those measured at the lowest data rate.

802.11b/g operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel;

SAR is not required for 802.11g channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels.

6.3. Measurement Variability

Per FCC KDB Publication 865664 D01v01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 .
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

6.4. Test Positions

6.4.1. Test Positions Requirements

The overall diagonal dimension of the device is 17cm < 20 cm, Per FCC KDB 941225 D07,

The device must be tested for 1-g SAR on all surfaces and side edges with a transmitting antenna located at \leq 25 mm from that surface or edge, at 5 mm separation from a flat phantom.

The location of the antennas inside EUT is shown:

The EUT is tested at the following 6 test positions:

- Test Position 1: The back side of the EUT towards the bottom of the flat phantom. The distance between the back side of the EUT and the bottom of the flat phantom is 5mm. (ANNEX I Picture 6)
- Test Position 2: The front side of the EUT towards the bottom of the flat phantom. The distance between the front side of the EUT and the bottom of the flat phantom is 5mm. (ANNEX I Picture 7)
- Test Position 3: The left edge of the EUT towards the bottom of the flat phantom. The distance between the left edge of the EUT and the bottom of the flat phantom is 5mm. (ANNEX I Picture 8) WIFI SAR is not required for this position.
- Test Position 4: The right edge of the EUT towards the bottom of the flat phantom. The distance between the right edge of the EUT and the bottom of the flat phantom is 5mm. (ANNEX I Picture 9) GSM/UMTS SAR is not required for this position.

TA Technology (Shanghai) Co., Ltd.
Test Report

- Test Position 5: The top edge of the EUT towards the bottom of the flat phantom. WIFI and GSM/UMTS SAR is not required for this position.
- Test Position 6: The bottom edge of the EUT towards the bottom of the flat phantom. The distance between the bottom edge of the EUT and the bottom of the flat phantom is 5mm. (ANNEX I Picture 10) WIFI SAR is not required for this position.\

TA Technology (Shanghai) Co., Ltd.
Test Report

7. Test Results

7.1. Conducted Power Results

Table 13: Conducted Power Measurement Results

GSM 850		Burst Conducted Power(dBm)				Average power(dBm)		
		Channel 128	Channel 190	Channel 251		Channel 128	Channel 190	Channel 251
GRPS (GMSK)	1Txslot	32.44	32.48	32.19	-9.03dB	23.41	23.45	23.16
	2Txslots	29.29	29.25	29.1	-6.02dB	23.27	23.23	23.08
	3Txslots	27.38	27.32	27.15	-4.26dB	23.12	23.06	22.89
	4Txslots	25.24	25.2	25.03	-3.01dB	22.23	22.19	22.02
EGPRS (GMSK)	1Txslot	32.46	32.36	32.19	-9.03dB	23.43	23.33	23.16
	2Txslots	29.31	29.24	29.09	-6.02dB	23.29	23.22	23.07
	3Txslots	27.4	27.31	27.14	-4.26dB	23.14	23.05	22.88
	4Txslots	25.26	25.17	25.02	-3.01dB	22.25	22.16	22.01
EGPRS (8PSK)	1Txslot	26.27	26.1	25.83	-9.03dB	17.24	17.07	16.80
	2Txslots	24.32	24.15	23.89	-6.02dB	18.3	18.13	17.87
	3Txslots	22.28	22.15	21.91	-4.26dB	18.02	17.89	17.65
	4Txslots	20.28	20.15	20.88	-3.01dB	17.27	17.14	17.87
GSM 1900		Burst Conducted Power(dBm)				Average power(dBm)		
		Channel 512	Channel 661	Channel 810		Channel 512	Channel 661	Channel 810
GRPS (GMSK)	1Txslot	29.58	29.4	29.4	-9.03dB	20.55	20.37	20.37
	2Txslots	27.25	27.06	27.02	-6.02dB	21.23	21.04	21.00
	3Txslots	25.3	25.13	25.03	-4.26dB	21.04	20.87	20.77
	4Txslots	23.2	23.08	22.91	-3.01dB	20.19	20.07	19.90
EGPRS (GMSK)	1Txslot	29.58	29.38	29.17	-9.03dB	20.55	20.35	20.14
	2Txslots	27.25	27.05	26.77	-6.02dB	21.23	21.03	20.75
	3Txslots	26.3	25.12	24.85	-4.26dB	22.04	20.86	20.59
	4Txslots	23.21	23.07	22.82	-3.01dB	20.20	20.06	19.81
EGPRS (8PSK)	1Txslot	25.89	25.84	25.69	-9.03dB	16.86	16.81	16.66
	2Txslots	23.83	23.78	23.64	-6.02dB	17.81	17.76	17.62
	3Txslots	21.84	21.78	21.68	-4.26dB	17.58	17.52	17.42
	4Txslots	19.89	20	19.74	-3.01dB	16.88	16.99	16.73

Note:

1) Division Factors

TA Technology (Shanghai) Co., Ltd.
Test Report

To average the power, the division factor is as follows:

1Txslot = 1 transmit time slot out of 8 time slots

=> conducted power divided by (8/1) => -9.03 dB

2Txslots = 2 transmit time slots out of 8 time slots

=> conducted power divided by (8/2) => -6.02 dB

3Txslots = 3 transmit time slots out of 8 time slots

=> conducted power divided by (8/3) => -4.26 dB

4Txslots = 4 transmit time slots out of 8 time slots

=> conducted power divided by (8/4) => -3.01 dB

2) Average power numbers

The maximum power numbers are marks in bold.

UMTS Band V		Conducted Power (dBm)		
		Channel 4132	Channel 4183	Channel 4233
RMC	12.2kbps RMC	22.01	21.74	21.70
	64kbps RMC	21.98	21.72	21.67
	144kbps RMC	21.95	21.70	21.69
	384kbps RMC	21.00	21.71	21.66
HSDPA	Sub - Test 1	20.40	20.10	20.04
	Sub - Test 2	20.35	20.05	20.03
	Sub - Test 3	20.33	20.01	20.00
	Sub - Test 4	20.20	20.04	20.01
HSUPA	Sub - Test 1	20.43	20.21	20.05
	Sub - Test 2	19.89	19.90	19.75
	Sub - Test 3	20.24	20.13	20.06
	Sub - Test 4	20.01	19.76	19.54
	Sub - Test 5	20.44	20.14	20.12

BT Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz
GFSK 2.0(dBm)	3.16	2.94	2.70
EDR(dBm)	2.21	1.47	0.91

TA Technology (Shanghai) Co., Ltd.
Test Report

WIFI Mode	Channel	Data rate (Mbps)	AV Power (dBm)
11b	1	1	16.79
		2	16.58
		5.5	16.32
		11	16.72
	6	1	16.89
		2	16.36
		5.5	16.24
		11	16.54
	11	1	16.68
		2	16.56
		5.5	16.57
		11	16.59
11g	1	6	16.39
		9	16.13
		12	16.16
		18	15.73
		24	15.13
		36	15.82
		48	15.65
		54	15.31
	6	6	16.35
		9	16.24
		12	15.89
		18	15.94
		24	15.43
		36	15.26
		48	15.63
		54	15.28
	11	6	16.37
		9	16.25
		12	15.75
		18	15.98
		24	15.25
		36	15.46
		48	15.86
		54	15.09

7.2. Standalone SAR Test Exclusion Considerations

Per FCC KDB 447498 D01, the SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{(\text{max. power of channel, including tune-up tolerance, mW})}{(\text{min. test separation distance, mm})} * \sqrt{\text{Frequency (GHz)}} \leq 3.0$$

Based on the above equation, Bluetooth SAR was not required;

$$\text{Head Evaluation} = [10^{(3.5/10)/5}] * (2.480^{1/2}) = 0.7 \leq 3.0$$

$$\text{Body Evaluation} = [10^{(3.5/10)/10}] * (2.480^{1/2}) = 0.4 \leq 3.0$$

TA Technology (Shanghai) Co., Ltd. Test Report

7.3. SAR Test Results

7.3.1. GSM 850 (GPRS/EGPRS)

Table 14: SAR Values [GSM 850 (GPRS/EGPRS)]

Test Position	Channel/ Frequency (MHz)	Time slot	Duty Cycle	Maximum Allowed Power (dBm)	Conducted Power (dBm)	Drift $\pm 0.21\text{dB}$	Limit SAR_{1g} 1.6 W/kg			
							Drift (dB)	Measured SAR_{1g} (W/kg)	Scaling Factor	Reported SAR_{1g} (W/kg)
Test Position 1	190/836.6	1Txslot	1:8.3	33	32.48	-0.041	0.015	1.13	0.017	Figure9
Test Position 2	190/836.6	1Txslot	1:8.3	33	32.48	-0.0578	0.037	1.13	0.041	Figure10
Test Position 3	190/836.6	1Txslot	1:8.3	33	32.48	-0.041	0.069	1.13	0.078	Figure11
Test Position 4	190/836.6	1Txslot	1:8.3	NA	NA	NA	NA	NA	NA	NA
Test Position 5	190/836.6	1Txslot	1:8.3	NA	NA	NA	NA	NA	NA	NA
Test Position 6	190/836.6	1Txslot	1:8.3	33	32.48	0.051	0.001	1.13	0.001	Figure12

Worst Case Position of GPRS with EGPRS (GMSK, Distance 5mm)

Test Position 3 190/836.6 1Txslot 1:8.3 33 32.36 0.050 0.031 1.16 0.036 Figure13

Note: 1.The value with blue color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01v05, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
3. When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.
4. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

TA Technology (Shanghai) Co., Ltd.
Test Report

1.1.1. GSM 1900 (GPRS/EGPRS)

Table 15: SAR Values [GSM 1900 (GPRS/EGPRS)]

Test Position	Channel/ Frequency (MHz)	Time slot	Duty Cycle	Maximum Allowed Power (dBm)	Conducted Power (dBm)	Drift $\pm 0.21\text{dB}$	Limit SAR _{1g} 1.6 W/kg			
						Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
Test Position 1	661/1880	2Txslots	1:4.15	30	27.06	0.057	0.084	1.97	0.166	Figure14
Test Position 2	661/1880	2Txslots	1:4.15	30	27.06	-0.046	0.072	1.97	0.142	Figure15
Test Position 3	661/1880	2Txslots	1:4.15	30	27.06	0.038	0.201	1.97	0.396	Figure16
Test Position 4	661/1880	2Txslots	1:4.15	NA	NA	NA	NA	NA	NA	NA
Test Position 5	661/1880	2Txslots	1:4.15	NA	NA	NA	NA	NA	NA	NA
Test Position 6	661/1880	2Txslots	1:4.15	30	27.06	-0.081	0.00003	1.97	0.00006	Figure 17

Worst Case Position of GPRS with EGPRS (GMSK, Distance 5mm)

Test Position 3	661/1880	2Txslots	1:4.15	30	27.05	-0.031	0.106	1.97	0.209	Figure18
-----------------	----------	----------	--------	----	-------	--------	-------	------	-------	----------

Note: 1. The value with blue color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01v05, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
3. When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.
4. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

TA Technology (Shanghai) Co., Ltd.
Test Report

1.1.2. UMTS Band V (WCDMA/HSDPA/HSUPA)

Table 16: SAR Values [UMTS Band V (WCDMA/HSDPA/HSUPA)]

Test Position	Channel/ Frequency (MHz)	Channel Type	Duty Cycle	Maximum Allowed Power (dBm)	Conducted Power (dBm)	Drift $\pm 0.21\text{dB}$	Limit SAR_{1g} 1.6 W/kg			
							Drift (dB)	Measured SAR_{1g} (W/kg)	Scaling Factor	Reported SAR_{1g} (W/kg)
Test Position 1	4183/836.6	RMC 12.2k	1:1	22.5	21.74	0.002	0.0358	1.19	0.043	Figure19
Test Position 2	4183/836.6	RMC 12.2k	1:1	22.5	21.74	0.019	0.0432	1.19	0.051	Figure20
Test Position 3	4183/836.6	RMC 12.2k	1:1	22.5	21.74	0.156	0.1300	1.19	0.155	Figure21
Test Position 4	4183/836.6	RMC 12.2k	1:1	NA	NA	NA	NA	NA	NA	NA
Test Position 5	4183/836.6	RMC 12.2k	1:1	NA	NA	NA	NA	NA	NA	NA
Test Position 6	4183/836.6	RMC 12.2k	1:1	22.5	21.74	0.135	0.0003	1.19	0.0004	Figure22

Note: 1. The value with blue color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01v05, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
3. WCDMA mode was tested under RMC 12.2kbps without HSPA (HSDPA/HSUPA) inactive per KDB Publication 941225 D01. HSPA (HSDPA/HSUPA) SAR for body was not required since the average output power of the HSPA (HSDPA/HSUPA) subtests was not more than 0.25 dB higher than the RMC level or the maximum SAR for 12.2kbps RMC was less than 75% SAR limit.

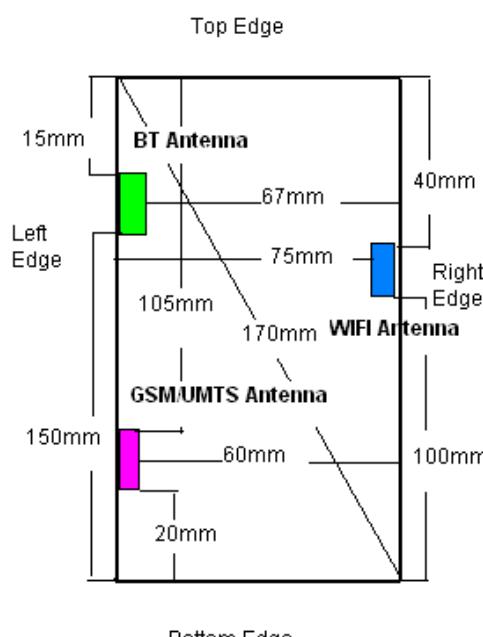
TA Technology (Shanghai) Co., Ltd.
Test Report

1.1.3. WIFI (802.11b)

Table 17: SAR Values (802.11b)

Test Position	Channel/ Frequency (MHz)	Service	Duty Cycle	Maximum Allowed Power (dBm)	Conducted Power (dBm)	Drift ± 0.21dB	Limit of SAR 1.6 W/kg			
						Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
Test position of Body (Distance 5mm)										
Test Position 1	6/2437	DSSS	1:1	17	16.89	0.066	0.0372	1.03	0.038	Figure23
Test Position 2	6/2437	DSSS	1:1	17	16.89	0.085	0.1630	1.03	0.167	Figure24
Test Position 3	6/2437	NA	NA	NA	NA	NA	NA	NA	NA	NA
Test Position 4	6/2437	DSSS	1:1	17	16.89	0.047	0.3280	1.03	0.336	Figure25
Test Position 5	6/2437	NA	NA	NA	NA	NA	NA	NA	NA	NA
Test Position 6	6/2437	NA	NA	NA	NA	NA	NA	NA	NA	NA

Note: 1. The value with blue color is the maximum SAR Value of each test band.


2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
3. KDB 248227-SAR is not required for 802.11g channels when the maximum average output power is less than 1/4 dB higher than measured on the corresponding 802.11b channels.

TA Technology (Shanghai) Co., Ltd.
Test Report

7.4. Simultaneous Transmission Conditions

Air-Interface	Band (MHz)	Type	Simultaneous Transmissions	Voice Over Digital Transport (Data)
GSM	850	VO	Yes WIFI and BT	NA
	1900	VO	Yes WIFI and BT	NA
	850	DT	Yes WIFI and BT	NA
	1900	DT	Yes WIFI and BT	NA
UMTS	850	VO	Yes WIFI and BT	NA
	850	DT	Yes WIFI and BT	NA
WIFI	2450	DT	Yes WCDMA, HSDPA, HSUPA, GSM, GPRS, EGPRS and BT	NA
Bluetooth (BT)	2400	DT	Yes WCDMA, HSDPA, HSUPA, GSM, GPRS, EGPRS and WIFI	NA
Note: VO Voice Service only DT Digital Transport				

The location of the antennas inside EUT

TA Technology (Shanghai) Co., Ltd.
Test Report

Estimated SAR

(1) for test separation distances ≤ 50 mm

When standalone SAR is not required to be measured per FCC KDB 447498 D01, the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter for test separation distances ≤ 50 mm.

$$\text{Estimated SAR} = \frac{(\text{max. power of channel, including tune-up tolerance, mW}) * \sqrt{f(\text{GHz})}}{(\text{min. test separation distance, mm})} * 7.5$$

(2) for test separation distances > 50 mm

0.4 W/kg for 1-g SAR

$$\text{Body Estimated SAR}_{\text{Max.BT. Test Position 1}} = [10^{(3.5/10)/5}] * (2.48^{0.5} / 7.5) = 0.094 \text{ W/kg}$$

$$\text{Body Estimated SAR}_{\text{Max. BT. Test Position 2}} = [10^{(3.5/10)/5}] * (2.48^{0.5} / 7.5) = 0.094 \text{ W/kg}$$

$$\text{Body Estimated SAR}_{\text{Max. BT. Test Position 3}} = [10^{(3.5/10)/5}] * (2.48^{0.5} / 7.5) = 0.094 \text{ W/kg}$$

$$\text{Body Estimated SAR}_{\text{Max. BT. Test Position 4}} \leq 0.4 \text{ W/kg}$$

$$\text{Body Estimated SAR}_{\text{Max. BT. Test Position 5}} = [10^{(3.5/10)/15}] * (2.45^{0.5} / 7.5) = 0.031 \text{ W/kg}$$

$$\text{Body Estimated SAR}_{\text{Max. BT. Test Position 6}} \leq 0.4 \text{ W/kg}$$

Per FCC KDB 447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific physical test configuration is ≤ 1.6 W/kg. When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

$$\text{Ratio} = \frac{(\text{SAR}_1 + \text{SAR}_2)^{1.5}}{(\text{min. test separation distance, mm})} < 0.04$$

GSM/UMTS &BT&WIFI Mode

Test Position	Reported SAR _{1g} (W/kg)	GSM 850	GSM 1900	UMTS Band V	BT	WIFI	MAX. Σ SAR _{1g}
Back Side	0.017	0.166	0.043	0.094	0.038		0.358
Front Side	0.041	0.142	0.051	0.094	0.167		0.495
Left Edge	0.078	0.396	0.155	0.094	NA		NA
Right Edge	NA	NA	NA	≤ 0.4	0.336		NA
Top Edge	NA	NA	NA	0.031	NA		NA
Bottom Edge	0.036	0.000059	0.0003	≤ 0.4	NA		NA

Note: 1. The value with blue color is the maximum Σ SAR_{1g} Value.

2. MAX. Σ SAR_{1g} = Reported SAR_{Max.WIFI} + Reported SAR_{Max.UMTS} + Reported SAR_{Max.BT}

MAX. Σ SAR_{1g} = 0.495W/kg < 1.6 W/kg, so the Simultaneous SAR are not required for BT, WIFI and UMTS antenna.

TA Technology (Shanghai) Co., Ltd.
Test Report

2. 700MHz to 3GHz Measurement Uncertainty

No.	source	Type	Uncertainty Value (%)	Probability Distribution	k	c _i	Standard uncertainty u _i (%)	Degree of freedom V _{eff} or v _i
1	System repetitivity	A	0.5	N	1	1	0.5	9
Measurement system								
2	-probe calibration	B	6.0	N	1	1	6.0	∞
3	-axial isotropy of the probe	B	4.7	R	$\sqrt{3}$	$\sqrt{0.5}$	1.9	∞
4	- Hemispherical isotropy of the probe	B	9.4	R	$\sqrt{3}$	$\sqrt{0.5}$	3.9	∞
6	-boundary effect	B	1.9	R	$\sqrt{3}$	1	1.1	∞
7	-probe linearity	B	4.7	R	$\sqrt{3}$	1	2.7	∞
8	- System detection limits	B	1.0	R	$\sqrt{3}$	1	0.6	∞
9	-readout Electronics	B	1.0	N	1	1	1.0	∞
10	-response time	B	0	R	$\sqrt{3}$	1	0	∞
11	-integration time	B	4.32	R	$\sqrt{3}$	1	2.5	∞
12	-noise	B	0	R	$\sqrt{3}$	1	0	∞
13	-RF Ambient Conditions	B	3	R	$\sqrt{3}$	1	1.73	∞
14	-Probe Positioner Mechanical Tolerance	B	0.4	R	$\sqrt{3}$	1	0.2	∞
15	-Probe Positioning with respect to Phantom Shell	B	2.9	R	$\sqrt{3}$	1	1.7	∞
16	-Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	B	3.9	R	$\sqrt{3}$	1	2.3	∞
Test sample Related								
17	-Test Sample Positioning	A	2.9	N	1	1	2.9	71
18	-Device Holder Uncertainty	A	4.1	N	1	1	4.1	5
19	-Output Power Variation - SAR drift measurement	B	5.0	R	$\sqrt{3}$	1	2.9	∞
Physical parameter								
20	-phantom	B	4.0	R	$\sqrt{3}$	1	2.3	∞

TA Technology (Shanghai) Co., Ltd.
Test Report

21	-liquid conductivity (deviation from target)	B	5.0	R	$\sqrt{3}$	0.64	1.8	∞
22	-liquid conductivity (measurement uncertainty)	B	2.5	N	1	0.64	1.6	9
23	-liquid permittivity (deviation from target)	B	5.0	R	$\sqrt{3}$	0.6	1.7	∞
24	-liquid permittivity (measurement uncertainty)	B	2.5	N	1	0.6	1.5	9
Combined standard uncertainty		$u_c = \sqrt{\sum_{i=1}^{24} c_i^2 u_i^2}$				11.50		
Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$		N	k=2		23.00	

TA Technology (Shanghai) Co., Ltd.
Test Report

3. Main Test Instruments

Table 18: List of Main Instruments

No.	Name	Type	Serial Number	Calibration Date	Valid Period
01	Network analyzer	Agilent 8753E	US37390326	September 11, 2012	One year
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Requested	
03	Power meter	Agilent E4417A	GB41291714	March 10, 2013	One year
04	Power sensor	Agilent N8481H	MY50350004	September 24, 2012	One year
05	Power sensor	E9327A	US40441622	January 2, 2013	One year
06	Signal Generator	HP 8341B	2730A00804	September 10, 2012	One year
07	Dual directional coupler	778D-012	50519	March 25, 2013	One year
07	Dual directional coupler	777D	50146	March 25, 2013	One year
08	Amplifier	IXA-020	0401	No Calibration Requested	
09	BTS	E5515C	MY48360988	December 1, 2012	One year
10	E-field Probe	EX3DV4	3753	January 17, 2013	One year
11	DAE	DAE4	1317	January 25, 2013	One year
12	Validation Kit 835MHz	D835V2	4d020	August 26, 2011	Three years
13	Validation Kit 1900MHz	D1900V2	5d060	August 31, 2011	Three years
14	Validation Kit 2450MHz	D2450V2	786	August 29, 2011	Three years
15	Temperature Probe	JM222	AA1009129	March 14, 2013	One year
16	Hygrothermograph	WS-1	64591	September 27, 2012	One year

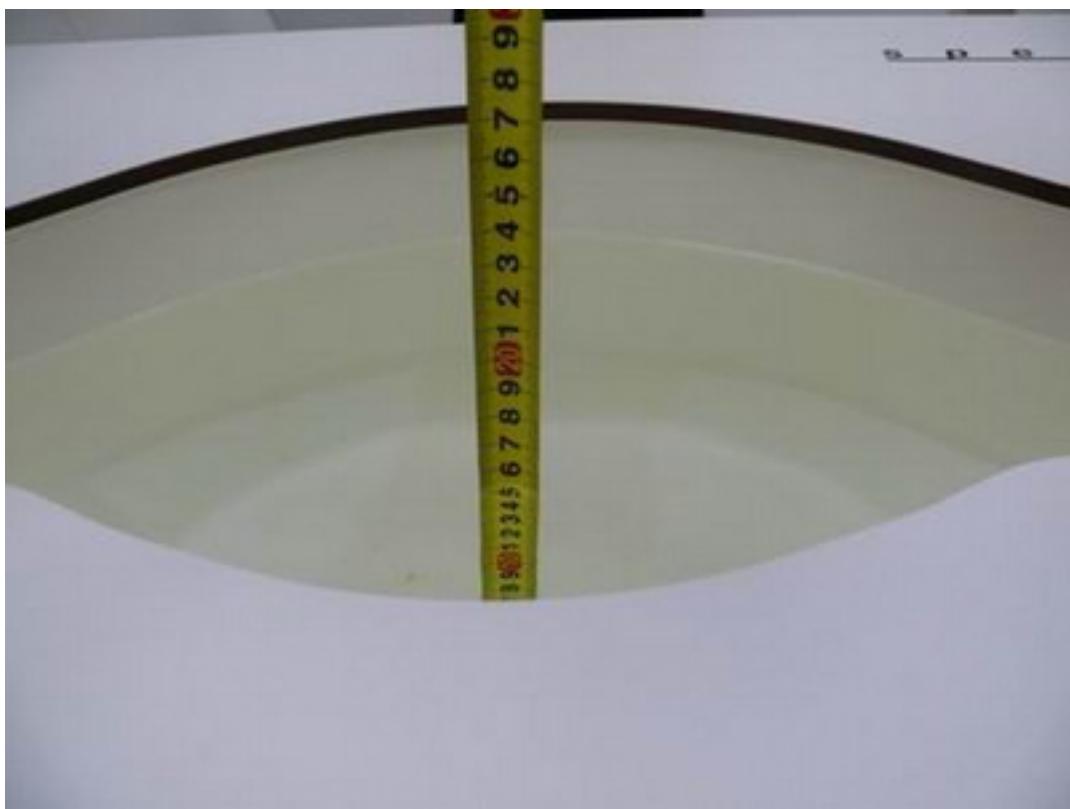
*****END OF REPORT *****

**TA Technology (Shanghai) Co., Ltd.
Test Report**

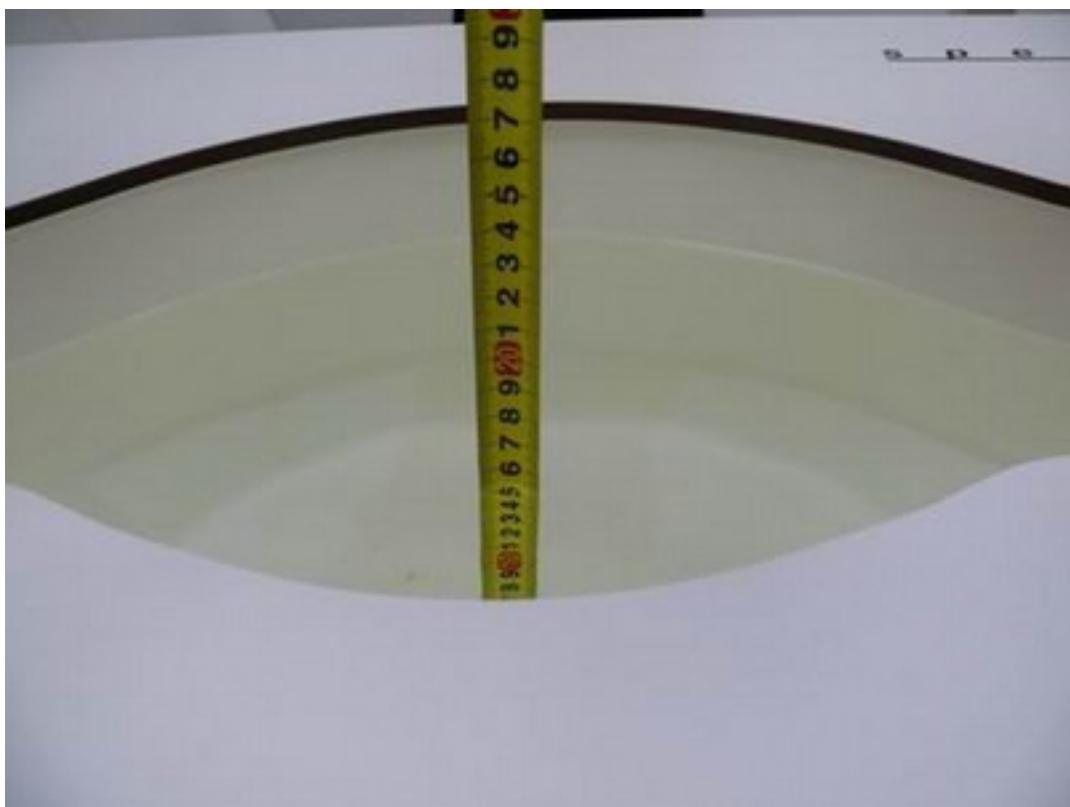
Report No. RXA1303-0290SAR01

Page 43 of 113

ANNEX A: Test Layout



Picture 1: Specific Absorption Rate Test Layout



Picture 2: Liquid depth in the flat Phantom (835MHz, 15.4cm depth)

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Picture 3: Liquid depth in the flat Phantom (1900 MHz, 15.2cm depth)

Picture 4: Liquid depth in the flat Phantom (2450 MHz, 15.3cm depth)

ANNEX B: System Check Results

System Performance Check at 835 MHz

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Date/Time: 7/1/2013 10:25:37 AM

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 835$ MHz; $\sigma = 1.01$ mho/m; $\epsilon_r = 54.35$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3753; ConvF(9.05, 9.05, 9.05); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

d=15mm, Pin=250mW/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.72 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 50.9 V/m; Power Drift = 0.023 dB

Peak SAR (extrapolated) = 3.63 W/kg

SAR(1 g) = 2.52 mW/g; SAR(10 g) = 1.65 mW/g

Maximum value of SAR (measured) = 2.73 mW/g

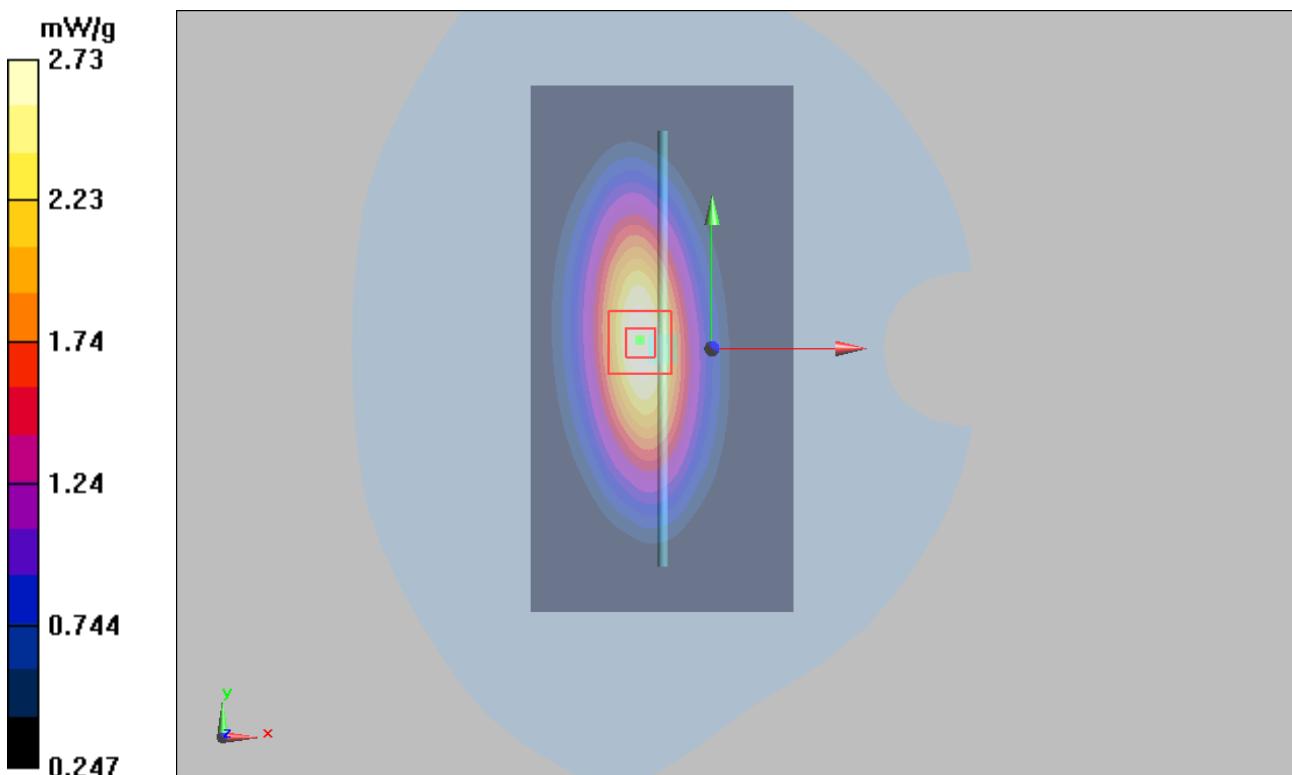


Figure 6 System Performance Check 835MHz 250mW

System Performance Check at 1900 MHz

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Date/Time: 7/3/2013 2:15:01 AM

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.52$ mho/m; $\epsilon_r = 52.56$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3753; ConvF(7.33, 7.33, 7.33); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 11.9 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 80.8 V/m; Power Drift = -0.063 dB

Peak SAR (extrapolated) = 17.6 W/kg

SAR(1 g) = 9.82 mW/g; SAR(10 g) = 5.2 mW/g

Maximum value of SAR (measured) = 11 mW/g

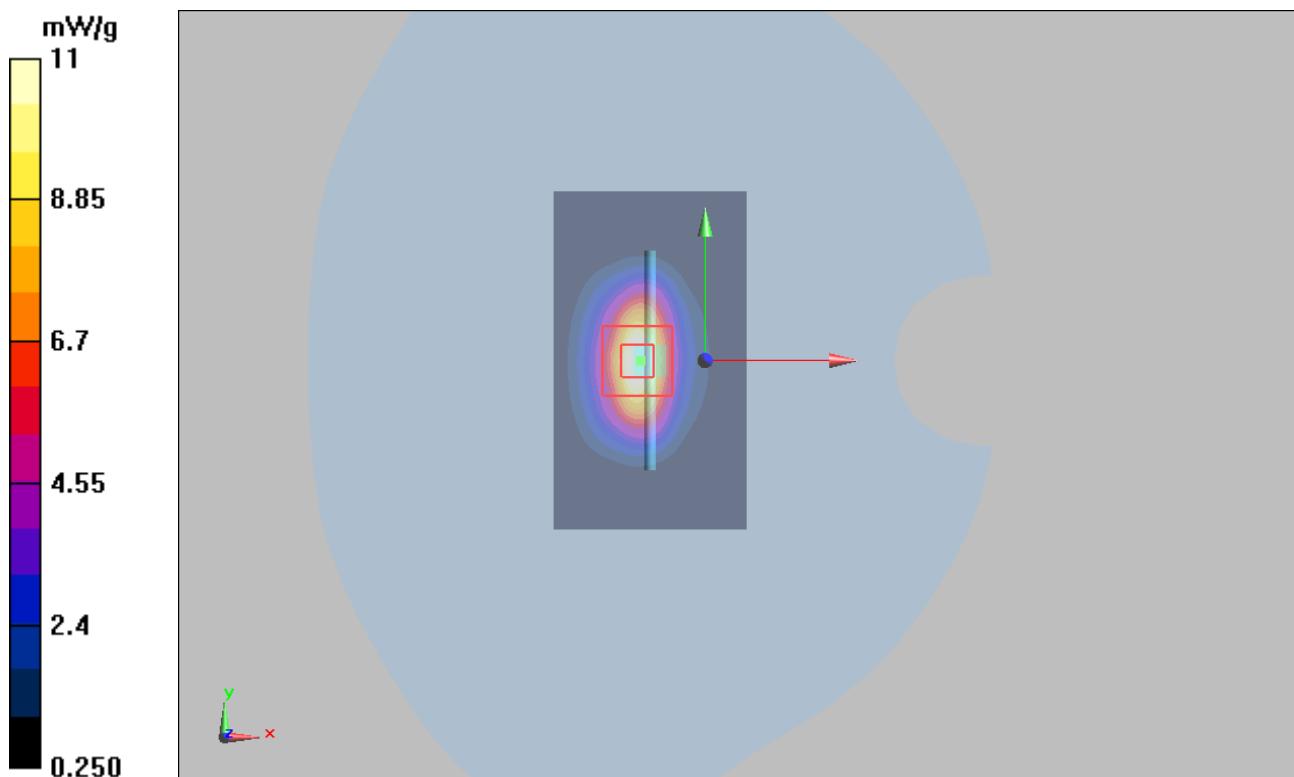


Figure 7 System Performance Check 1900MHz 250mW

System Performance Check at 2450 MHz Body TSL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Date/Time: 7/2/2013 4:50:59 PM

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.903$ mho/m; $\epsilon_r = 51.69$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(6.90, 6.90, 6.90); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 16 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 81.2 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 25.4 W/kg

SAR(1 g) = 12.5 mW/g; SAR(10 g) = 6.20 mW/g

Maximum value of SAR (measured) = 14.4 mW/g

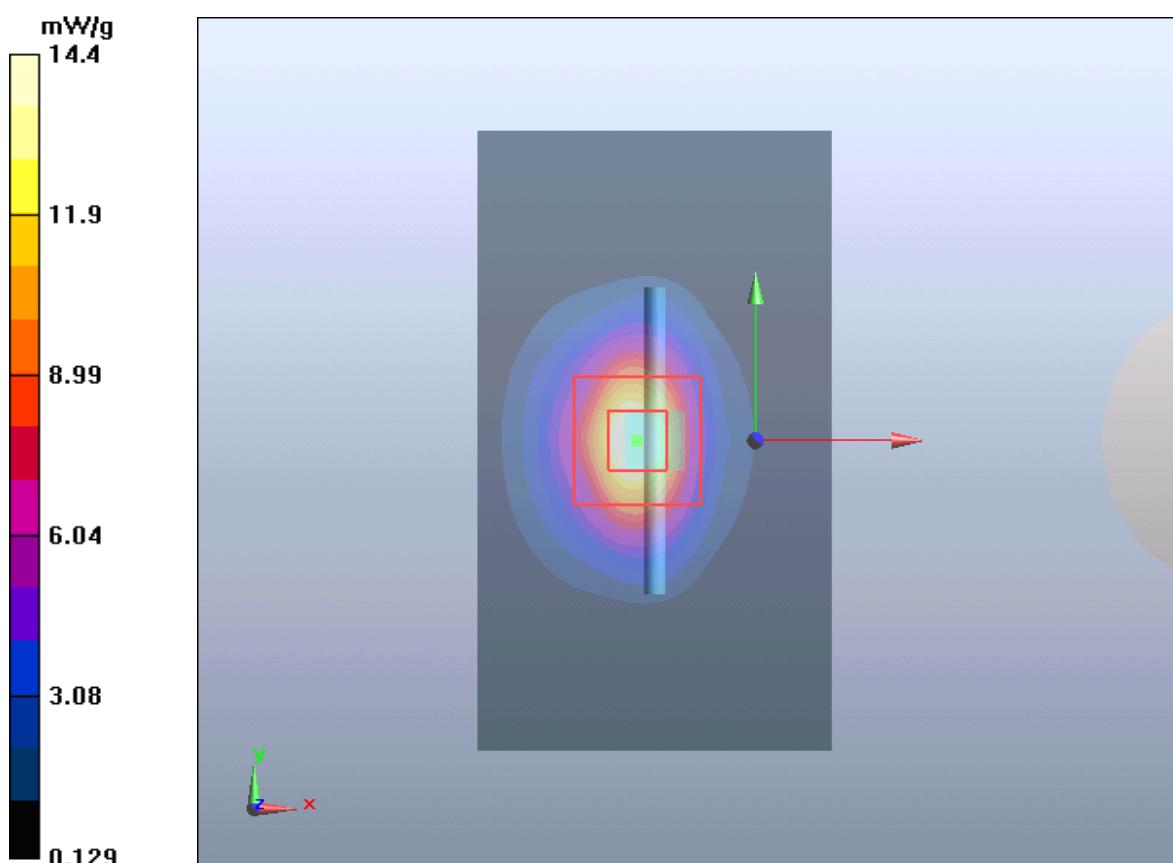


Figure 8 System Performance Check 2450MHz 250mW

ANNEX C: Graph Results

GSM 850 GPRS (1TXslot) with Test Position 1 Middle

Date/Time: 7/1/2013 12:39:42 PM

Communication System: GPRS 1TX; Frequency: 836.6 MHz; Duty Cycle: 1:8.30042

Medium parameters used: $f = 837$ MHz; $\sigma = 1.01$ mho/m; $\epsilon_r = 54.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(9.05, 9.05, 9.05); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 1 Middle /Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.017 mW/g

Test Position 1 Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.38 V/m; Power Drift = -0.041 dB

Peak SAR (extrapolated) = 0.023 W/kg

SAR(1 g) = 0.015 mW/g; SAR(10 g) = 0.010 mW/g

Maximum value of SAR (measured) = 0.016 mW/g

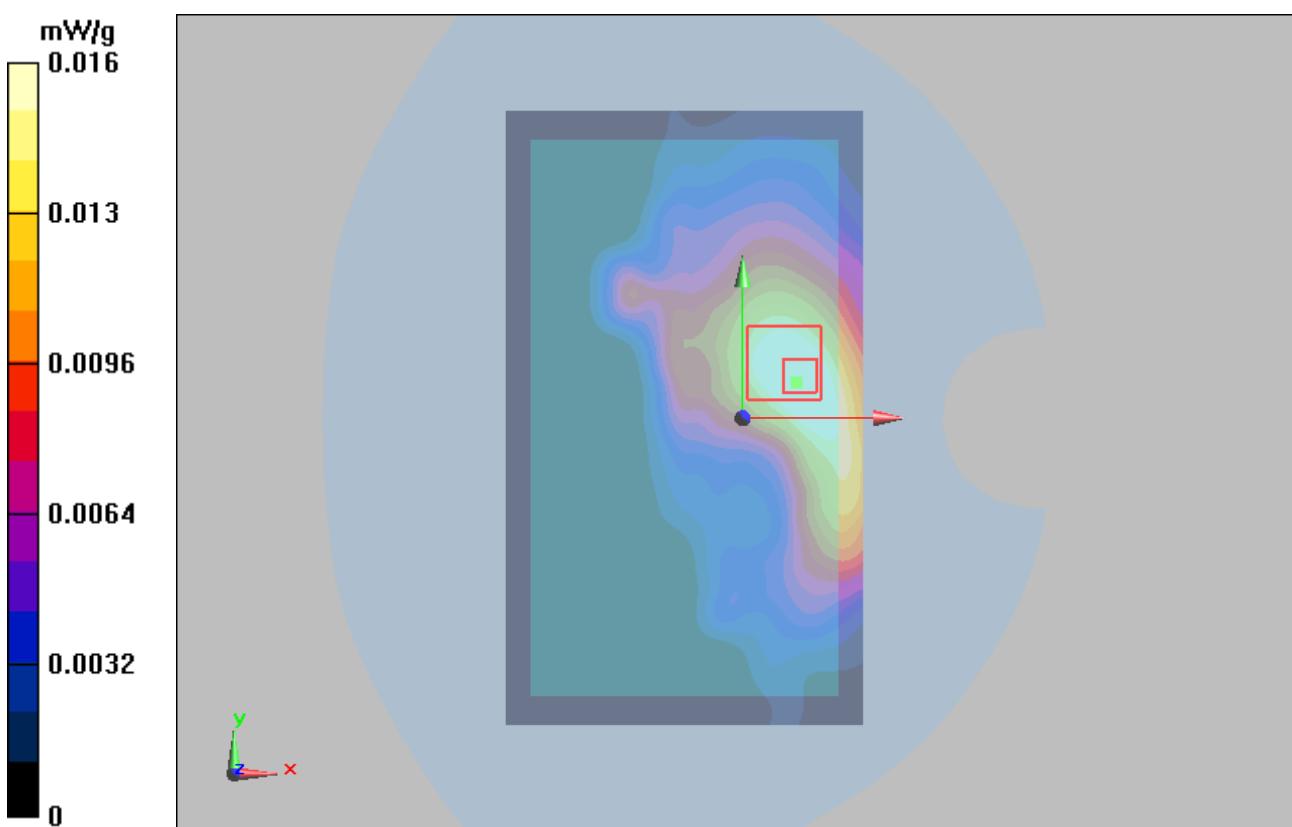


Figure 9 GSM 850 GPRS (1TXslot) with Test Position 1 Channel 190

TA Technology (Shanghai) Co., Ltd.
Test Report

GSM 850 GPRS (1TXslot) with Test Position 2 Middle

Date/Time: 7/1/2013 7:08:06 PM

Communication System: GPRS 1TX; Frequency: 836.6 MHz; Duty Cycle: 1:8.30042

Medium parameters used: $f = 837$ MHz; $\sigma = 1.01$ mho/m; $\epsilon_r = 54.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(9.05, 9.05, 9.05); Calibrated: 1/17/2013

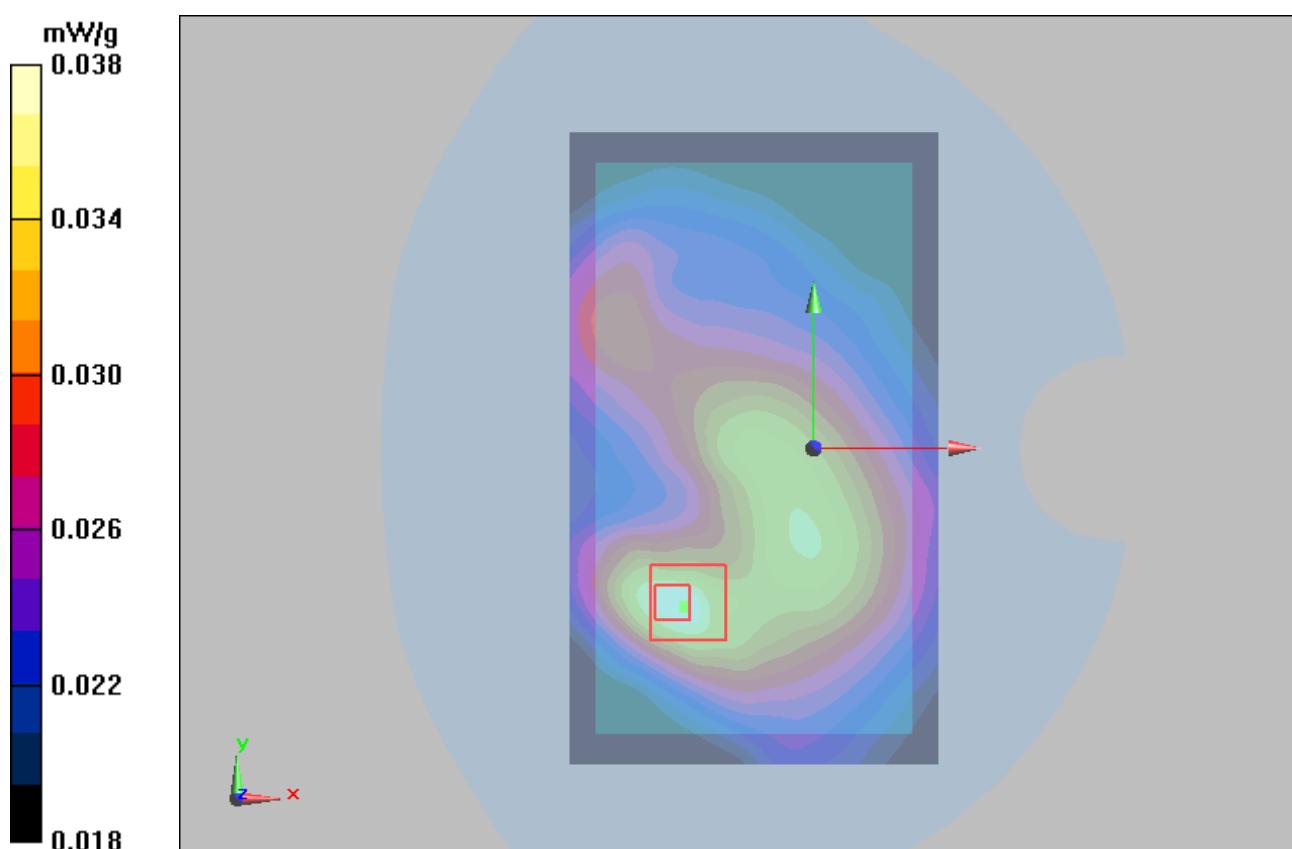
Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 2 Middle /Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.038 mW/g


Test Position 2 Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.03 V/m; Power Drift = -0.058 dB

Peak SAR (extrapolated) = 0.046 W/kg

SAR(1 g) = 0.037 mW/g; SAR(10 g) = 0.030 mW/g

Maximum value of SAR (measured) = 0.038 mW/g

Figure 10 GSM 850 GPRS (1TXslot) with Test Position 2 Channel 190

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1303-0290SAR01

Page 50 of 113

GSM 850 GPRS (1TXslot) with Test Position 3 Middle

Date/Time: 7/1/2013 1:01:32 PM

Communication System: GPRS 1TX; Frequency: 836.6 MHz; Duty Cycle: 1:8.30042

Medium parameters used: $f = 837$ MHz; $\sigma = 1.01$ mho/m; $\epsilon_r = 54.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(9.05, 9.05, 9.05); Calibrated: 1/17/2013

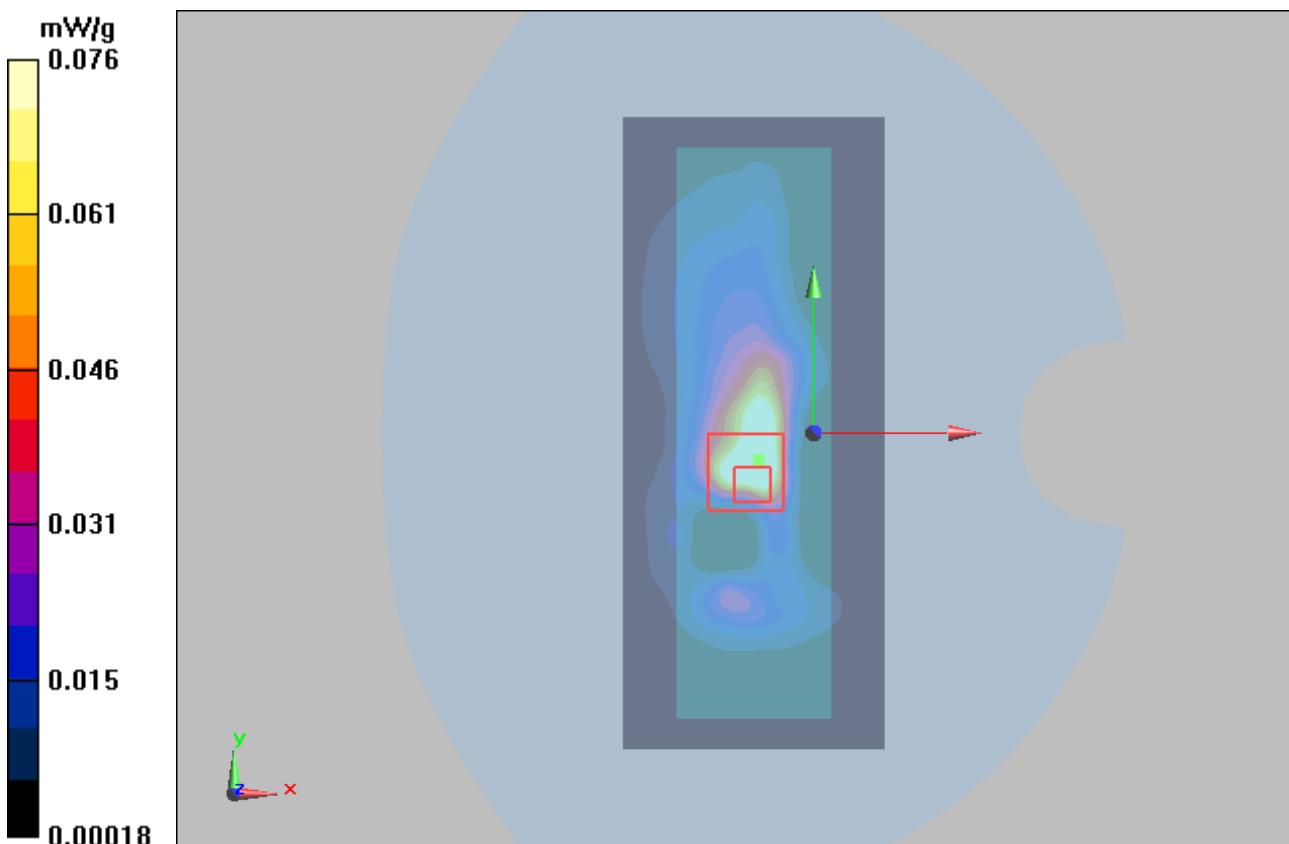
Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM1; Type: SAM; Serial: TP-1534

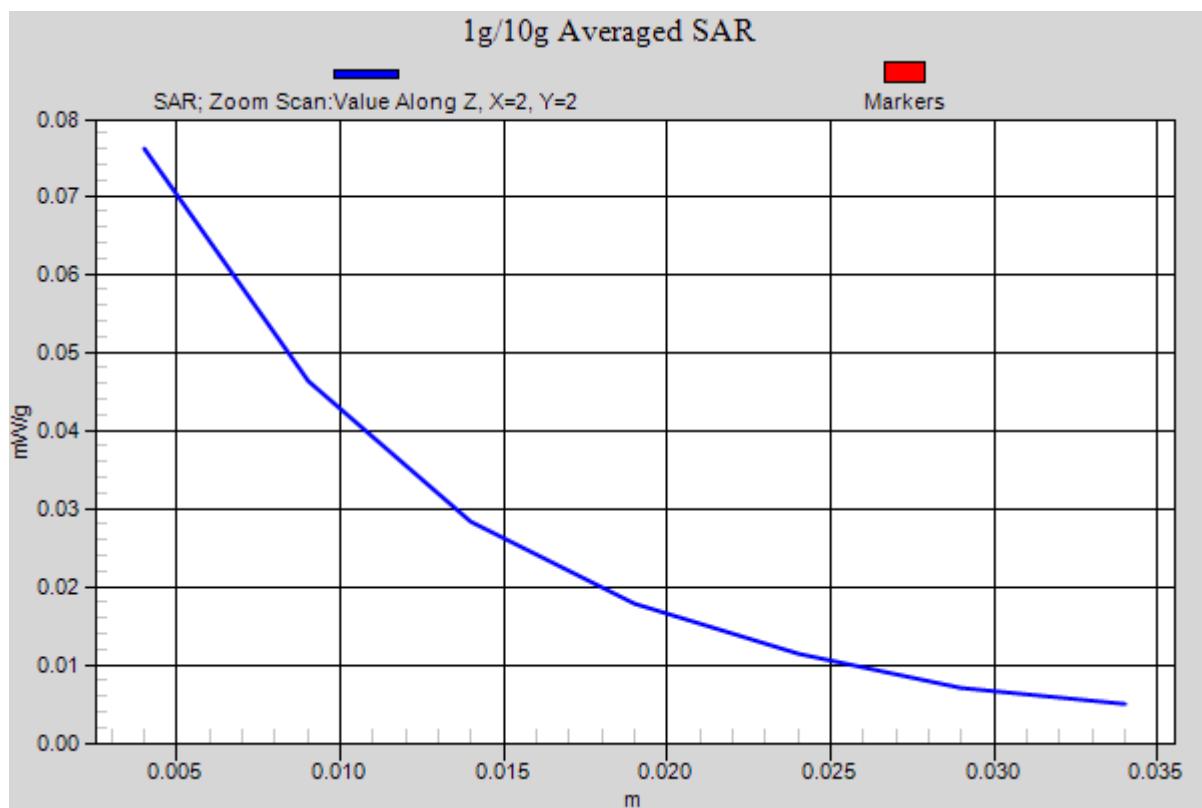
Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 3 Middle /Area Scan (51x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.152 mW/g


Test Position 3 Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.68 V/m; Power Drift = -0.041 dB


Peak SAR (extrapolated) = 0.132 W/kg

SAR(1 g) = 0.069 mW/g; SAR(10 g) = 0.039 mW/g

Maximum value of SAR (measured) = 0.076 mW/g

TA Technology (Shanghai) Co., Ltd.
Test Report

Figure 11 GSM 850 GPRS (1TXslot) with Test Position 3 Channel 190

GSM 850 GPRS (1TXslot) with Test Position 6 Middle

Date/Time: 7/1/2013 1:34:10 PM

Communication System: GPRS 1TX; Frequency: 836.6 MHz; Duty Cycle: 1:8.30042

Medium parameters used: $f = 837$ MHz; $\sigma = 1.01$ mho/m; $\epsilon_r = 54.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(9.05, 9.05, 9.05); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 6 Middle /Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.00230 mW/g

Test Position 6 Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.314 V/m; Power Drift = 0.051 dB

Peak SAR (extrapolated) = 0.00078 W/kg

SAR(1 g) = 0.001 mW/g; SAR(10 g) = 0.0001 mW/g

Maximum value of SAR (measured) = 0.00124 mW/g

Figure 12 GSM 850 GPRS (1TXslot) with Test Position 6 Channel 190

GSM 850 EGPRS (1TXslot) with Test Position 3 Middle

Date/Time: 7/1/2013 1:44:11 PM

Communication System: EGPRS 1TX; Frequency: 836.6 MHz; Duty Cycle: 1:8.30042

Medium parameters used: $f = 837$ MHz; $\sigma = 1.01$ mho/m; $\epsilon_r = 54.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(9.05, 9.05, 9.05); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 3 Middle /Area Scan (51x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.067 mW/g

Test Position 3 Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.57 V/m; Power Drift = 0.050 dB

Peak SAR (extrapolated) = 0.063 W/kg

SAR(1 g) = 0.031 mW/g; SAR(10 g) = 0.016 mW/g

Maximum value of SAR (measured) = 0.032 mW/g

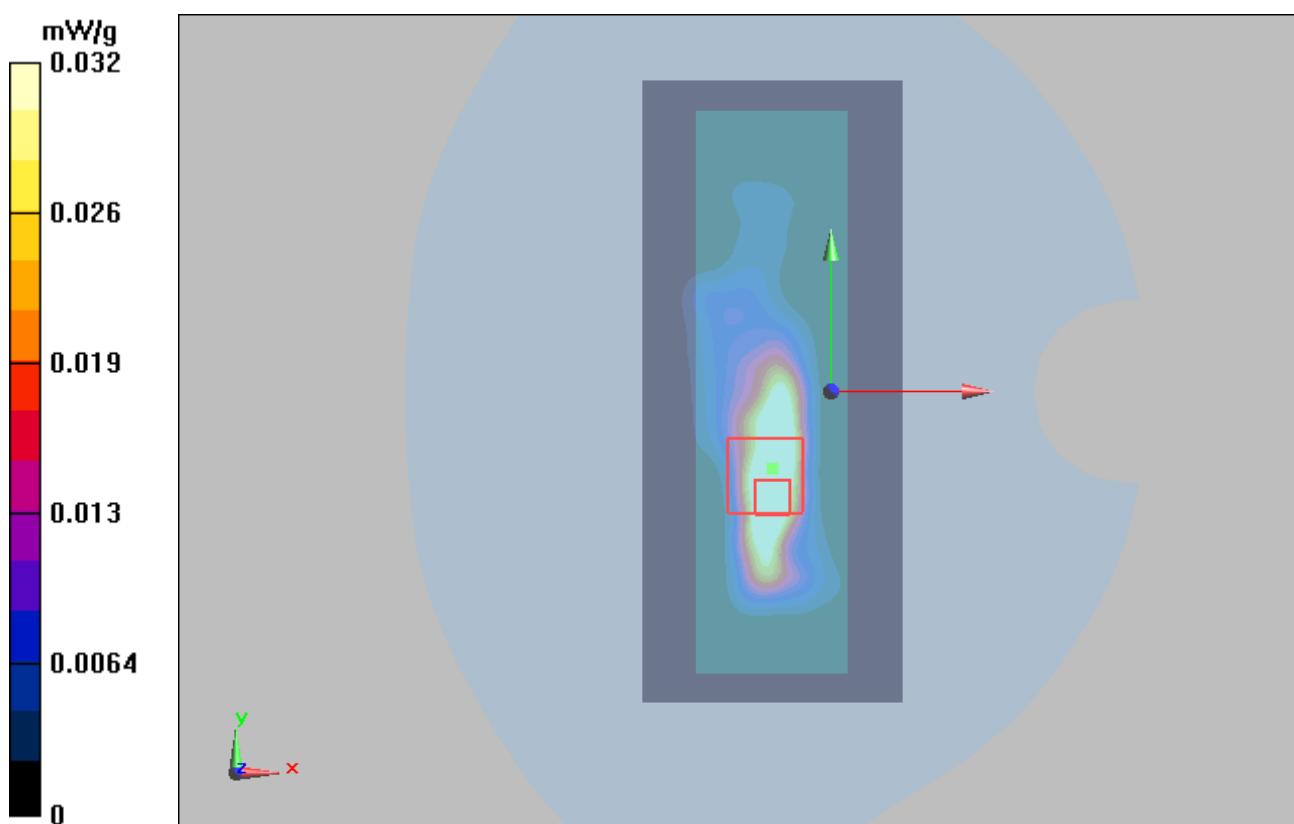


Figure 13 GSM 850 EGPRS (1TXslot) with Test Position 3 Channel 190

GSM 1900 GPRS (2TXslots) with Test Position 1 Middle

Date/Time: 7/3/2013 4:24:16 AM

Communication System: GPRS 2TX ; Frequency: 1880 MHz; Duty Cycle: 1:4.14954

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 52.6$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(7.33, 7.33, 7.33); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 1 Middle /Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.091 mW/g

Test Position 1 Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.97 V/m; Power Drift = 0.057 dB

Peak SAR (extrapolated) = 0.151 W/kg

SAR(1 g) = 0.084 mW/g; SAR(10 g) = 0.044 mW/g

Maximum value of SAR (measured) = 0.092 mW/g

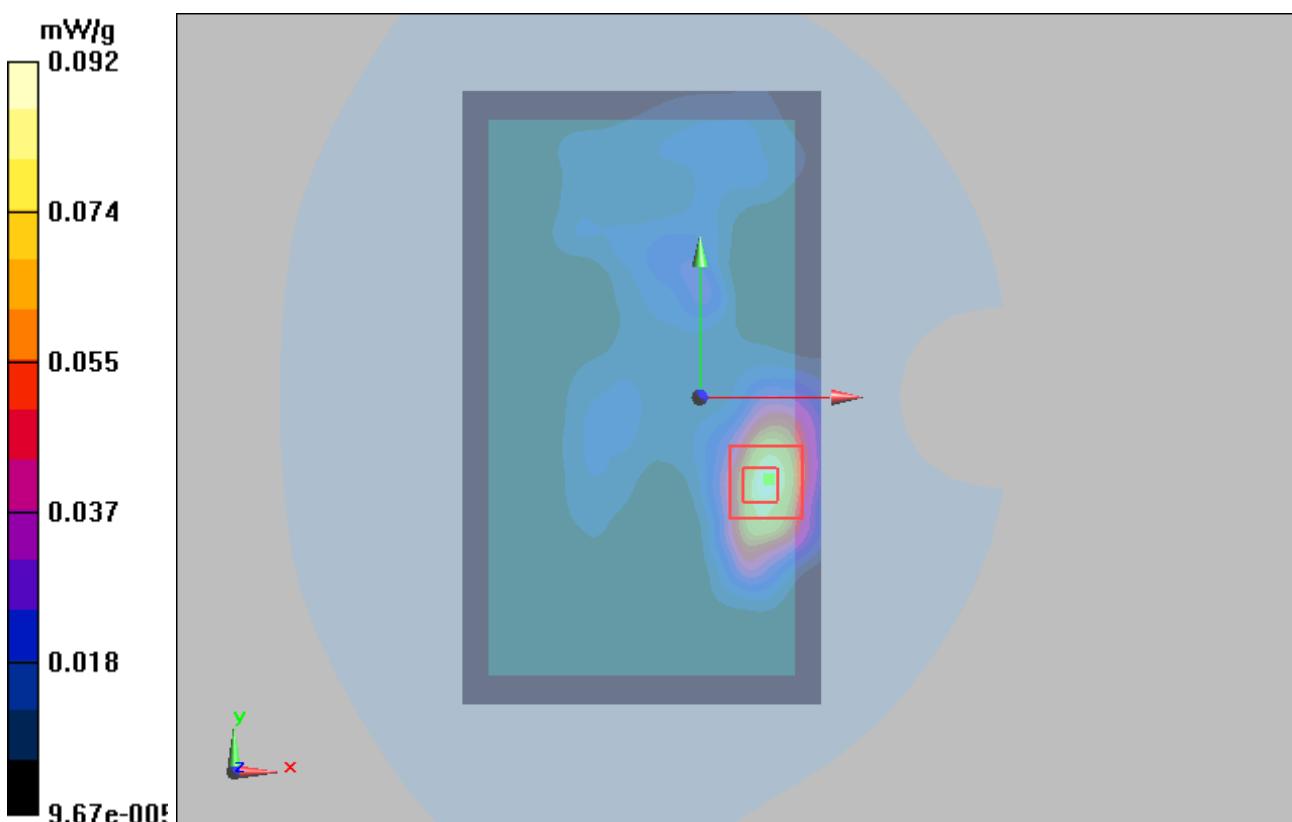


Figure 14 GSM 1900 GPRS (2TXslots) with Test Position 1 Channel 661

GSM 1900 GPRS (2TXslots) with Test Position 2 Middle

Date/Time: 7/3/2013 8:32:02 AM

Communication System: GPRS 2TX ; Frequency: 1880 MHz; Duty Cycle: 1:4.14954

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 52.6$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(7.33, 7.33, 7.33); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 2 Middle /Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.084 mW/g

Test Position 2 Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.42 V/m; Power Drift = -0.046 dB

Peak SAR (extrapolated) = 0.098 W/kg

SAR(1 g) = 0.072 mW/g; SAR(10 g) = 0.052 mW/g

Maximum value of SAR (measured) = 0.075 mW/g

Figure 15 GSM 1900 GPRS (2TXslots) with Test Position 2 Channel 661

GSM 1900 GPRS (2TXslots) with Test Position 3 Middle

Date/Time: 7/3/2013 4:05:12 AM

Communication System: GPRS 2TX ; Frequency: 1880 MHz; Duty Cycle: 1:4.14954

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 52.6$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(7.33, 7.33, 7.33); Calibrated: 1/17/2013

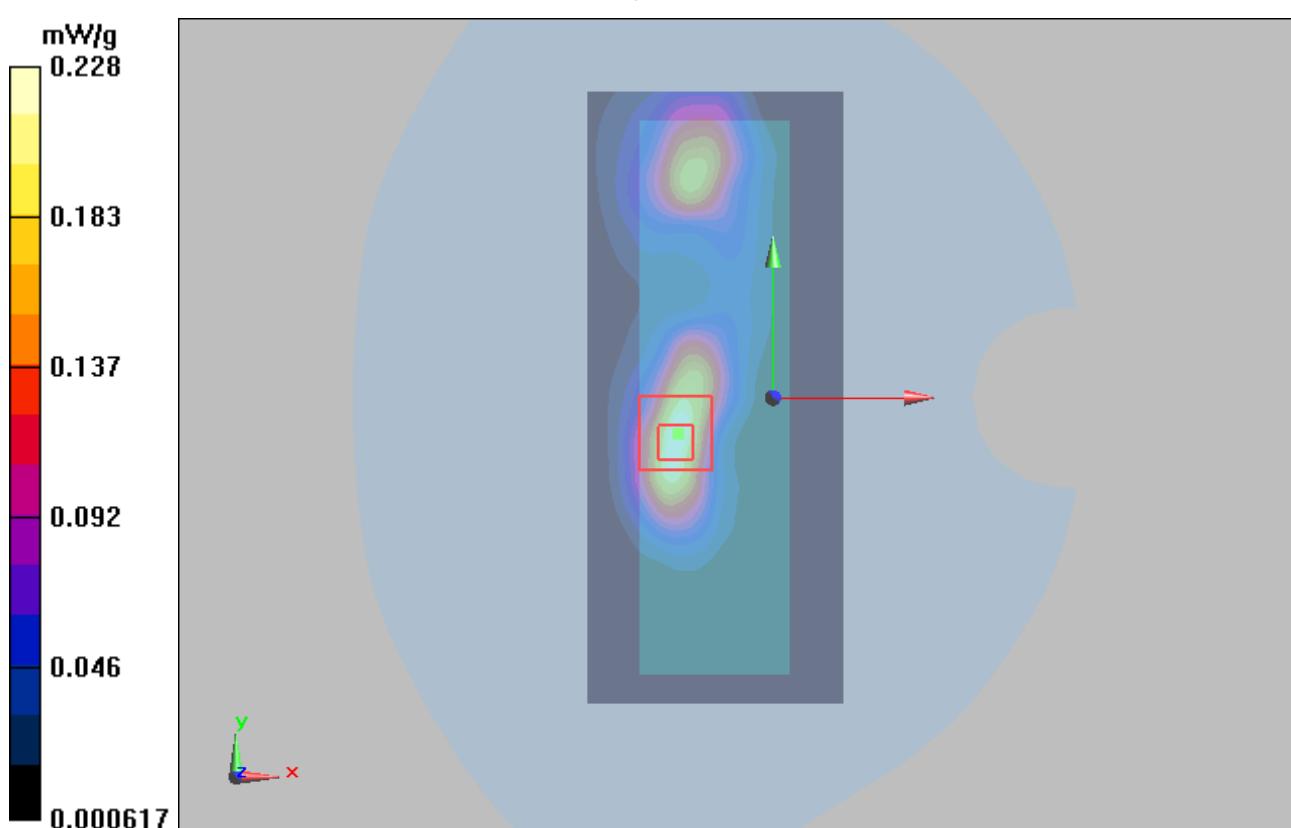
Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM2; Type: SAM; Serial: TP-1524

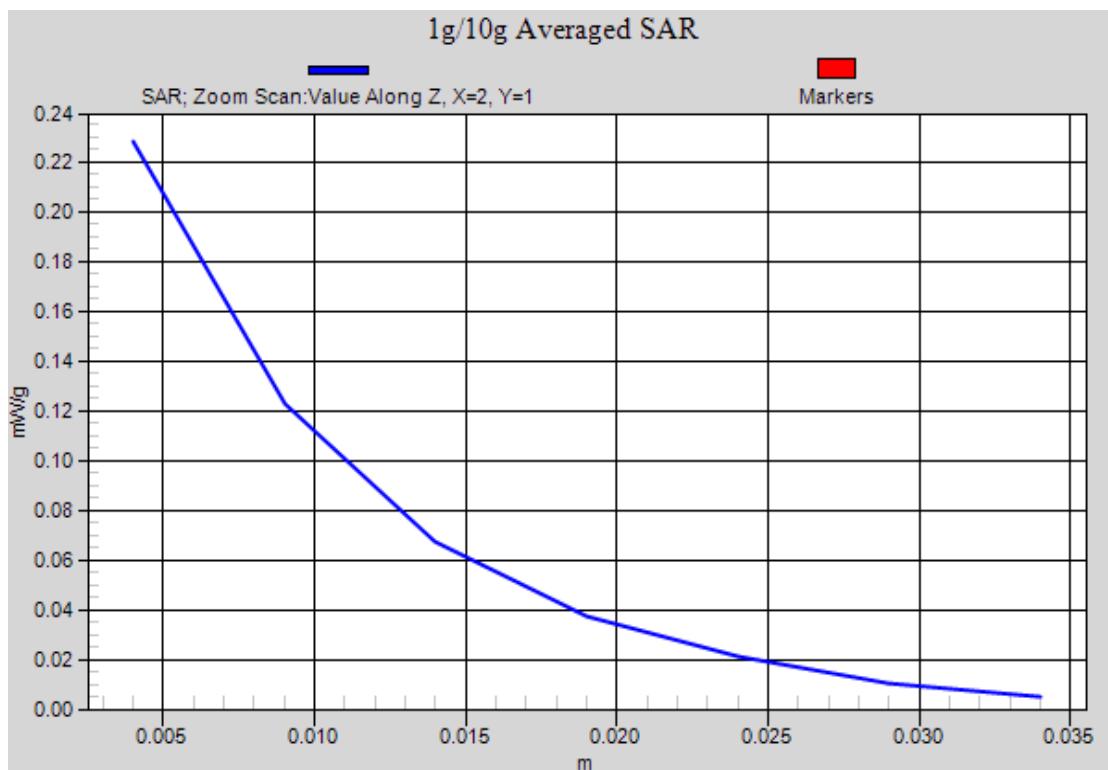
Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 3 Middle /Area Scan (51x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.229 mW/g


Test Position 3 Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.36 V/m; Power Drift = 0.038 dB


Peak SAR (extrapolated) = 0.397 W/kg

SAR(1 g) = 0.201 mW/g; SAR(10 g) = 0.099 mW/g

Maximum value of SAR (measured) = 0.228 mW/g

TA Technology (Shanghai) Co., Ltd.
Test Report

Figure 16 GSM 1900 GPRS (2TXslots) with Test Position 3 Channel 661

GSM 1900 GPRS (2TXslots) with Test Position 6 Middle

Date/Time: 7/3/2013 3:38:17 AM

Communication System: GPRS 2TX ; Frequency: 1880 MHz; Duty Cycle: 1:4.14954

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 52.6$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(7.33, 7.33, 7.33); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 6 Middle /Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.00241 mW/g

Test Position 6 Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.305 V/m; Power Drift = 0.081 dB

Peak SAR (extrapolated) = 0.00078 W/kg

SAR(1 g) = 0.00003 mW/g; SAR(10 g) = 0.000003 mW/g

Maximum value of SAR (measured) = 0.00122 mW/g

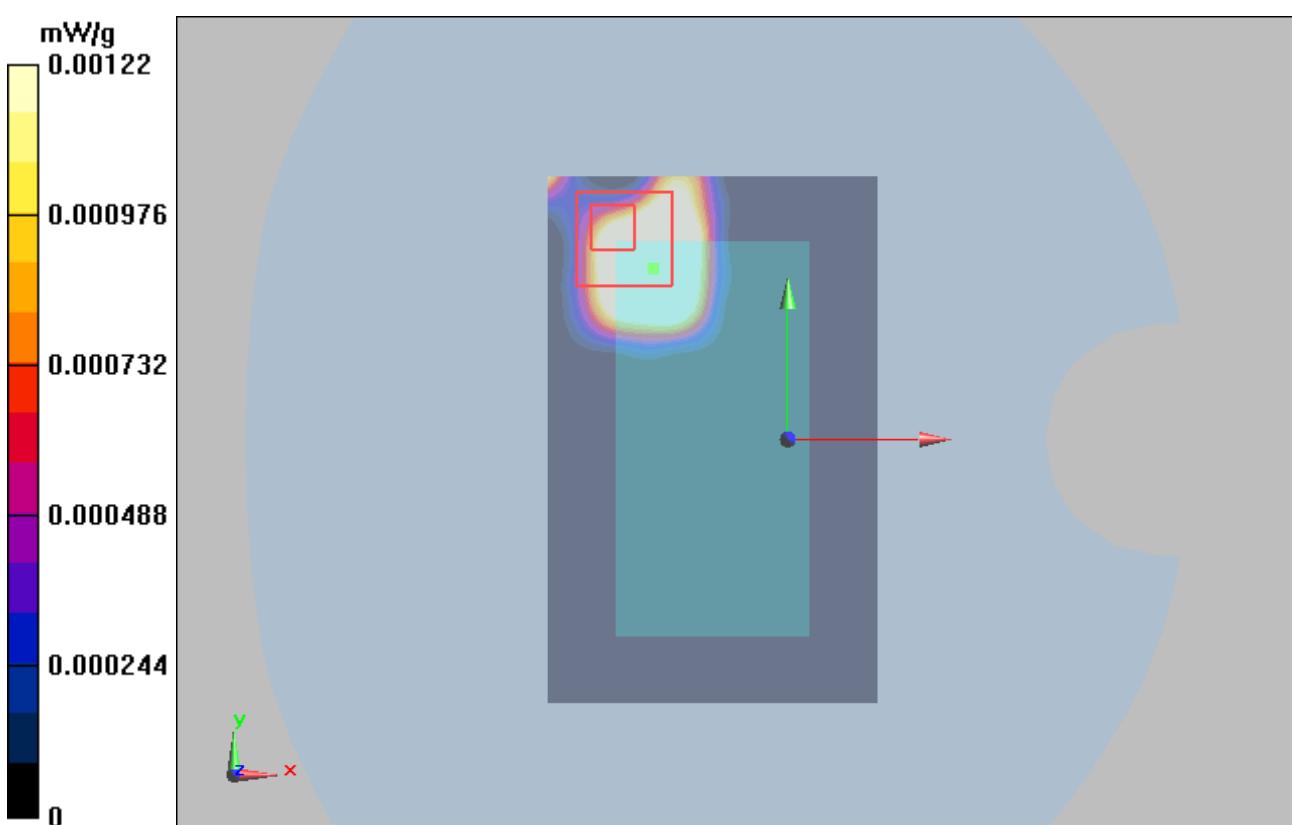


Figure 17 GSM 1900 GPRS (2TXslots) with Test Position 6 Channel 661

GSM 1900 EGPRS (2TXslots) with Test Position 3 Middle

Date/Time: 7/3/2013 2:56:08 AM

Communication System: EGPRS 2TX; Frequency: 1880 MHz; Duty Cycle: 1:4.14954

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 52.6$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(7.33, 7.33, 7.33); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 3 Middle /Area Scan (51x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.126 mW/g

Test Position 3 Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.27 V/m; Power Drift = -0.031 dB

Peak SAR (extrapolated) = 0.209 W/kg

SAR(1 g) = 0.106 mW/g; SAR(10 g) = 0.051 mW/g

Maximum value of SAR (measured) = 0.118 mW/g

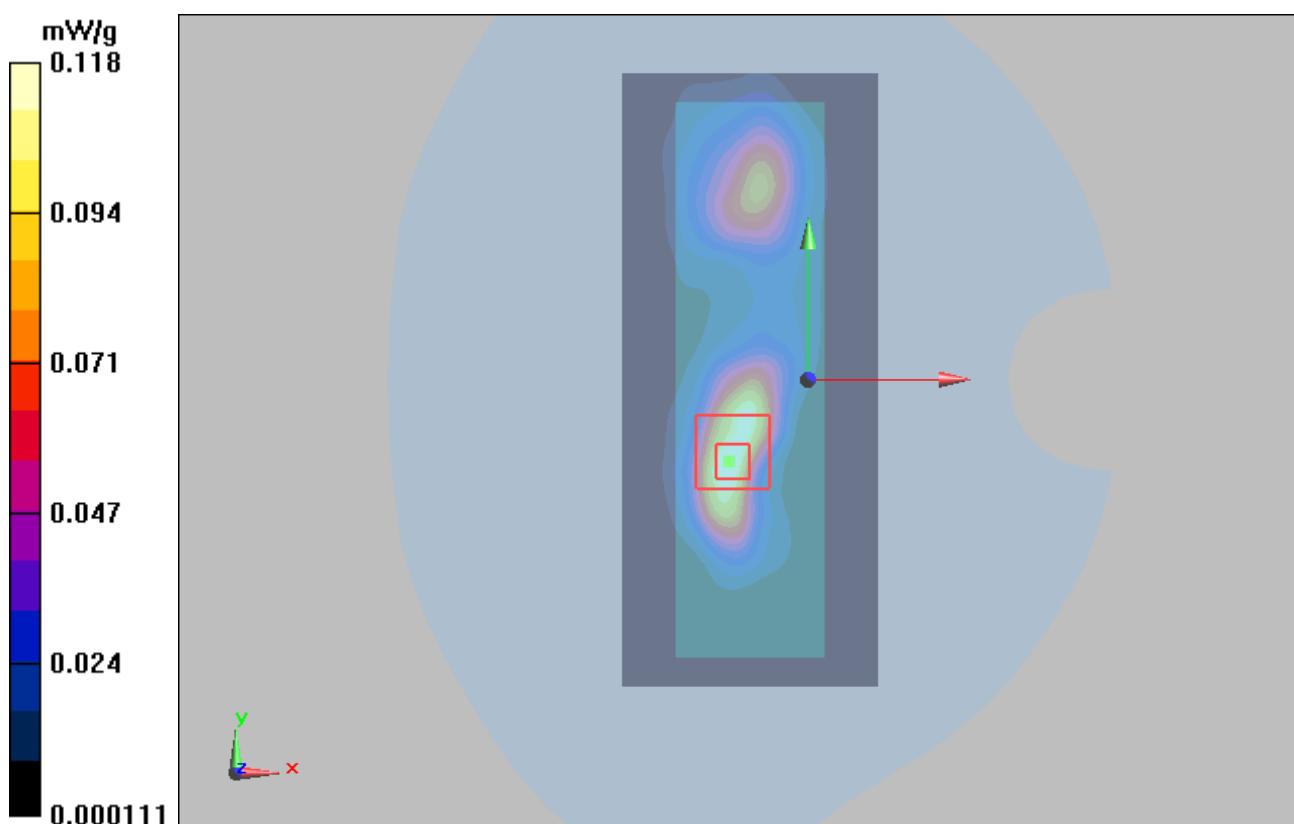


Figure 18 GSM 1900 EGPRS (2TXslots) with Test Position 3 Channel 661

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1303-0290SAR01

Page 60 of 113

UMTS Band V with Test Position 1 Middle

Date/Time: 7/1/2013 4:52:53 PM

Communication System: WCDMA ; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 837$ MHz; $\sigma = 1.01$ mho/m; $\epsilon_r = 54.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(9.05, 9.05, 9.05); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 1 Middle /Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.039 mW/g

Test Position 1 Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.59 V/m; Power Drift = 0.002 dB

Peak SAR (extrapolated) = 0.052 W/kg

SAR(1 g) = 0.0358 mW/g; SAR(10 g) = 0.024 mW/g

Maximum value of SAR (measured) = 0.038 mW/g

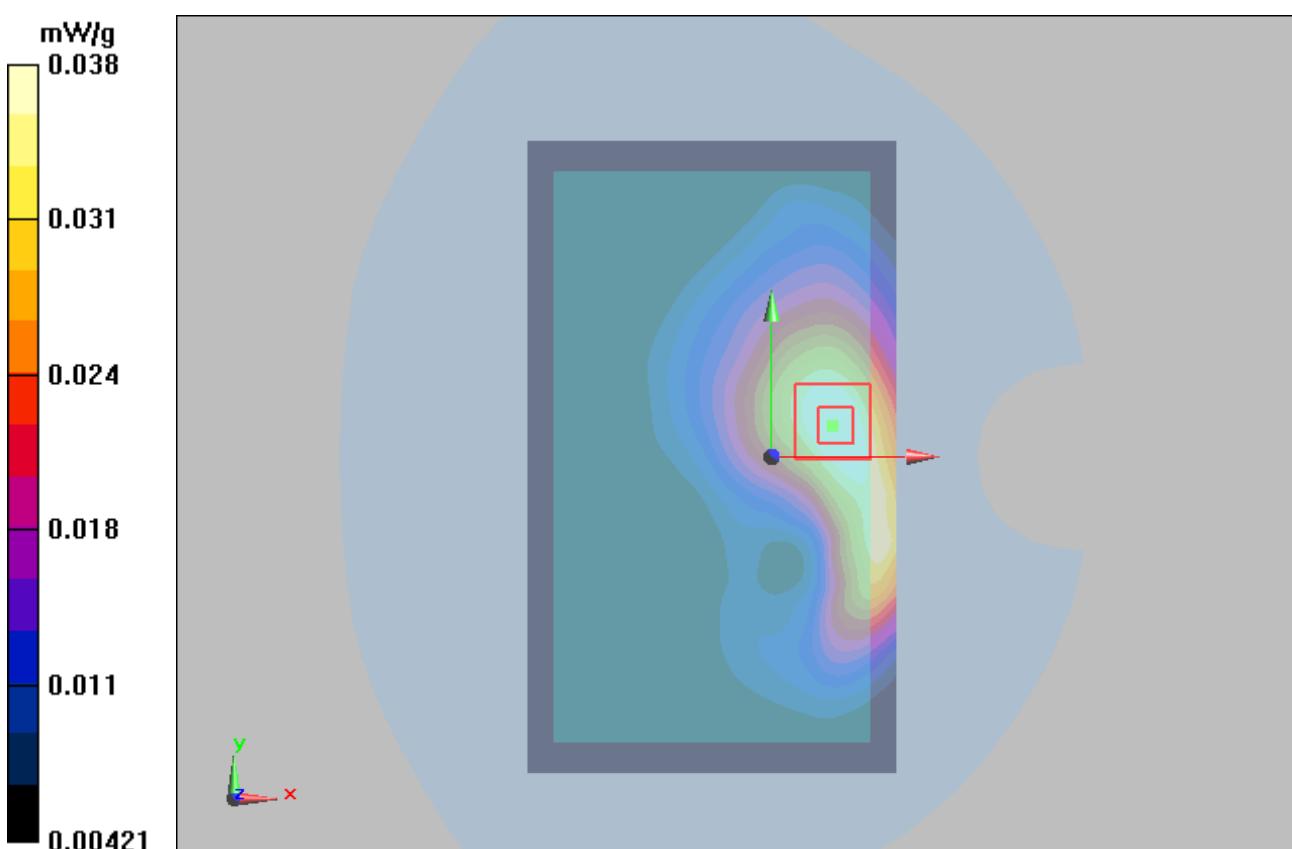


Figure 19 UMTS Band V with Test Position 1 Channel 4183

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1303-0290SAR01

Page 61 of 113

UMTS Band V with Test Position 2 Middle

Date/Time: 7/1/2013 7:55:09 PM

Communication System: WCDMA ; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 837$ MHz; $\sigma = 1.01$ mho/m; $\epsilon_r = 54.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(9.05, 9.05, 9.05); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 2 Middle /Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.046 mW/g

Test Position 2 Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.51 V/m; Power Drift = 0.019 dB

Peak SAR (extrapolated) = 0.051 W/kg

SAR(1 g) = 0.0432 mW/g; SAR(10 g) = 0.036 mW/g

Maximum value of SAR (measured) = 0.045 mW/g

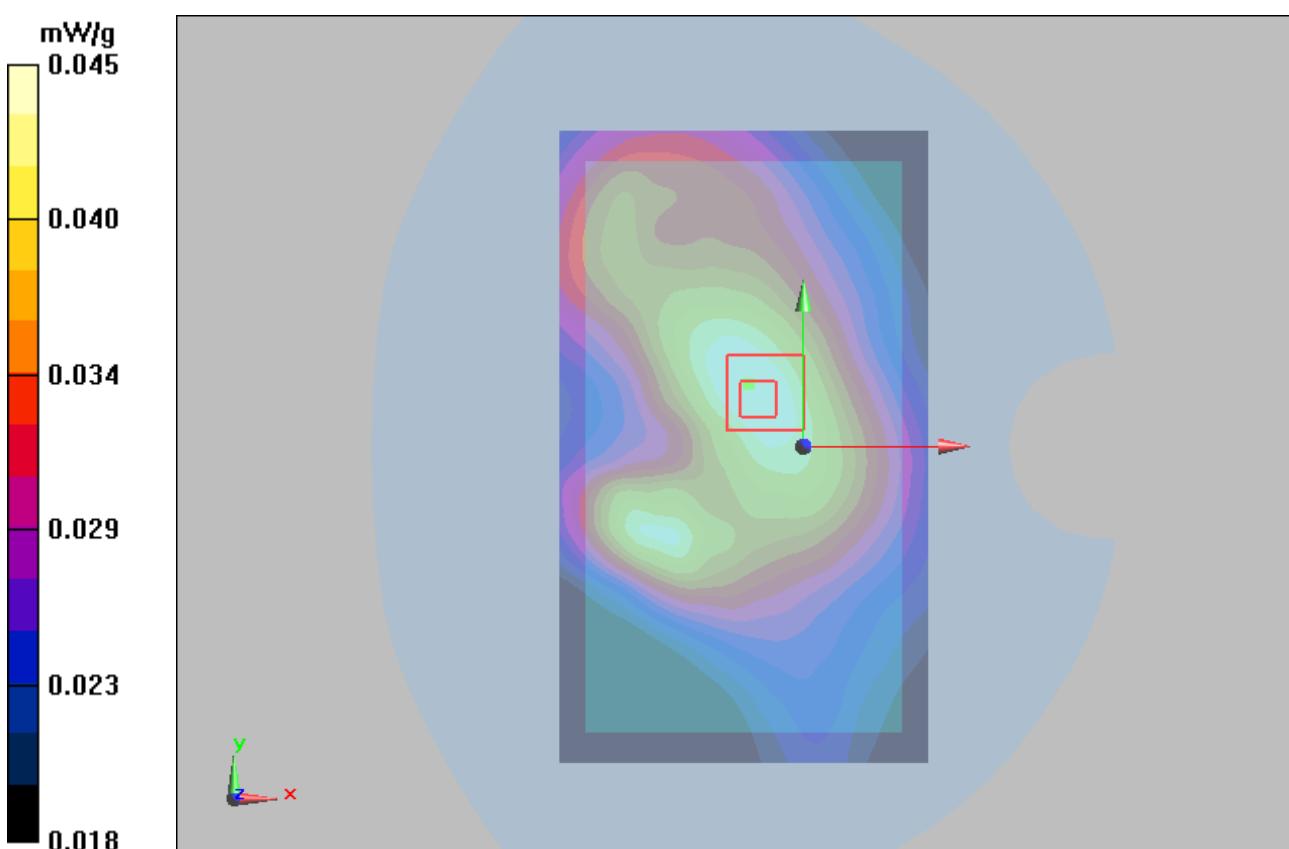


Figure 20 UMTS Band V with Test Position 2 Channel 4183

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1303-0290SAR01

Page 62 of 113

UMTS Band V with Test Position 3 Middle

Date/Time: 7/1/2013 5:13:00 PM

Communication System: WCDMA ; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 837$ MHz; $\sigma = 1.01$ mho/m; $\epsilon_r = 54.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(9.05, 9.05, 9.05); Calibrated: 1/17/2013

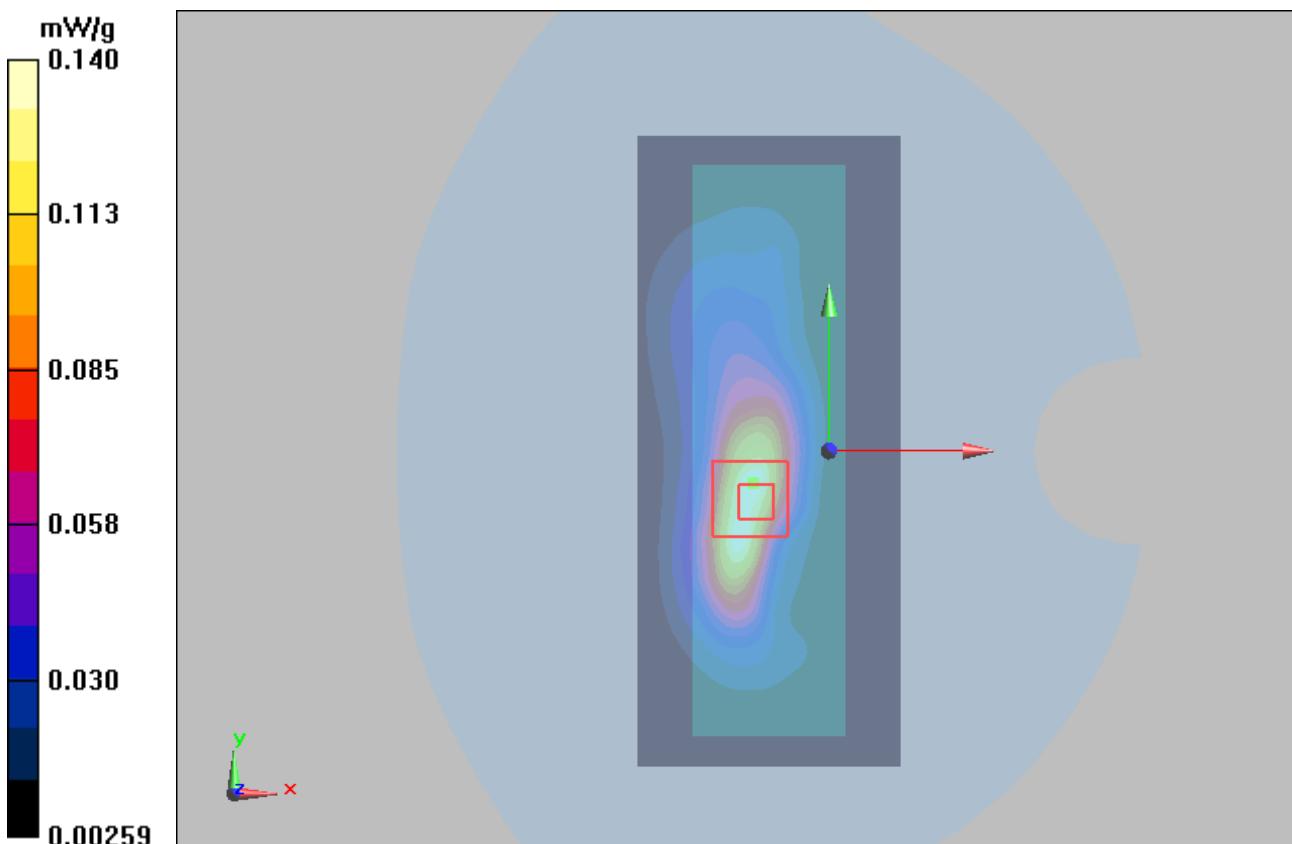
Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 3 Middle /Area Scan (51x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.139 mW/g


Test Position 3 Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.1 V/m; Power Drift = 0.156 dB

Peak SAR (extrapolated) = 0.230 W/kg

SAR(1 g) = 0.1300 mW/g; SAR(10 g) = 0.072 mW/g

Maximum value of SAR (measured) = 0.140 mW/g

TA Technology (Shanghai) Co., Ltd.
Test Report

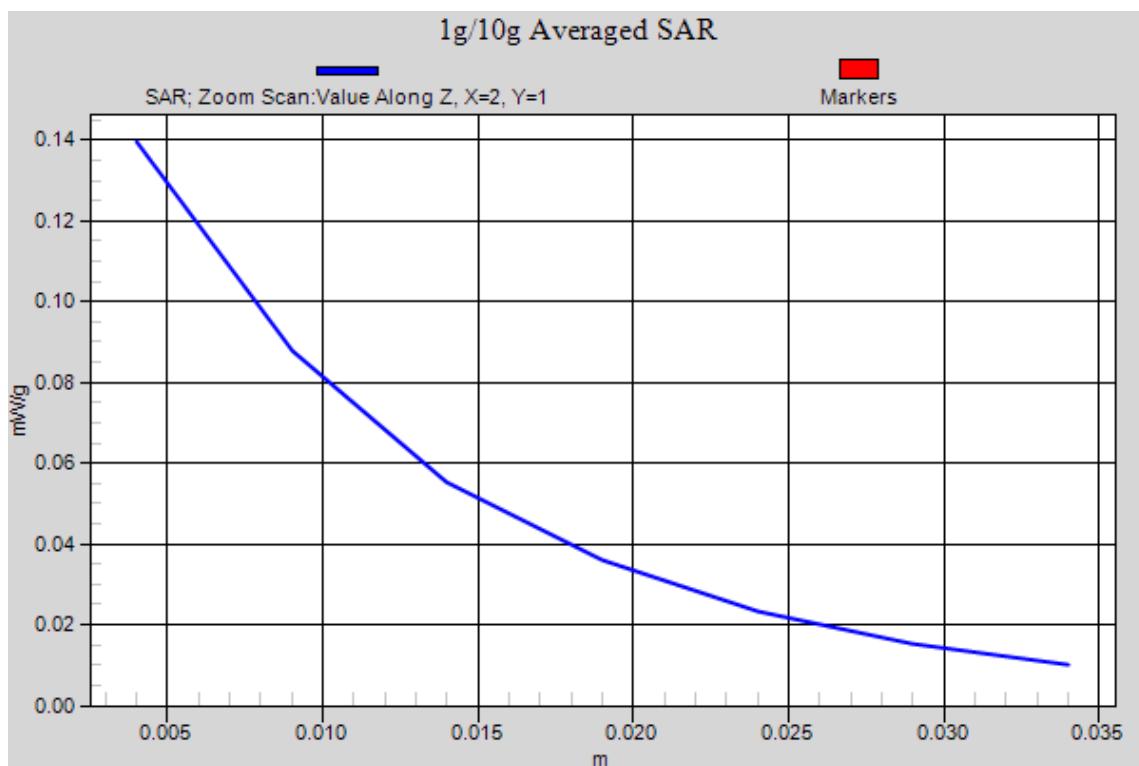


Figure 21 UMTS Band V with Test Position 3 Channel 4183

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1303-0290SAR01

Page 64 of 113

UMTS Band V with Test Position 6 Middle

Date/Time: 7/1/2013 5:37:02 PM

Communication System: WCDMA ; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 837$ MHz; $\sigma = 1.01$ mho/m; $\epsilon_r = 54.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(9.05, 9.05, 9.05); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 6 Middle /Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.000441 mW/g

Test Position 6 Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.229 V/m; Power Drift = 0.135 dB

Peak SAR (extrapolated) = 0.00401 W/kg

SAR(1 g) = 0.0003 mW/g; SAR(10 g) = 0.0001 mW/g

Maximum value of SAR (measured) = 0.00196 mW/g

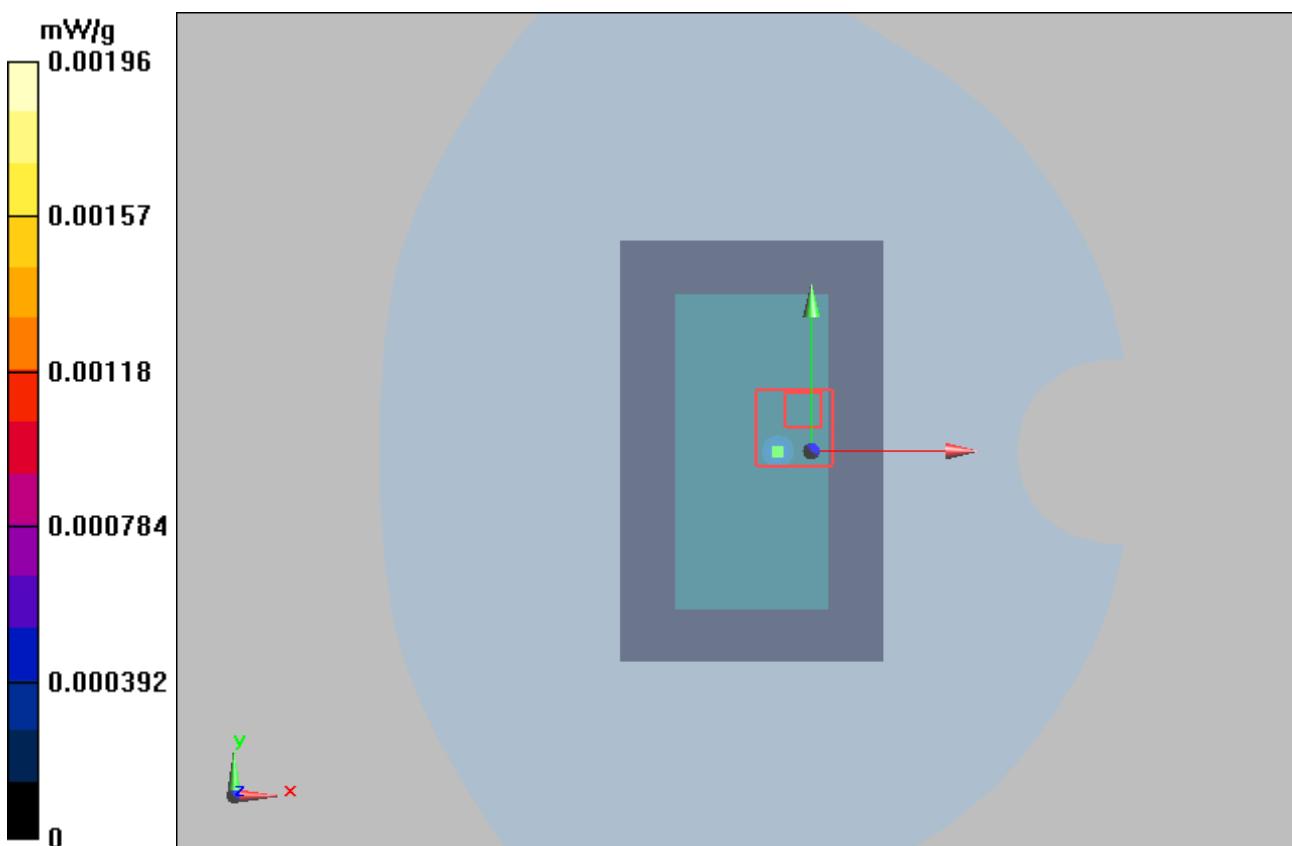


Figure 22 UMTS Band V with Test Position 6 Channel 4183

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1303-0290SAR01

Page 65 of 113

802.11b with Test Position 1 Middle

Date/Time: 7/2/2013 6:54:10 PM

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.88$ mho/m; $\epsilon_r = 51.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(6.90, 6.90, 6.90); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 1 Middle /Area Scan (71x121x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 0.038 mW/g

Test Position 1 Middle /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.67 V/m; Power Drift = 0.066 dB

Peak SAR (extrapolated) = 0.080 W/kg

SAR(1 g) = 0.0372 mW/g; SAR(10 g) = 0.020 mW/g

Maximum value of SAR (measured) = 0.039 mW/g

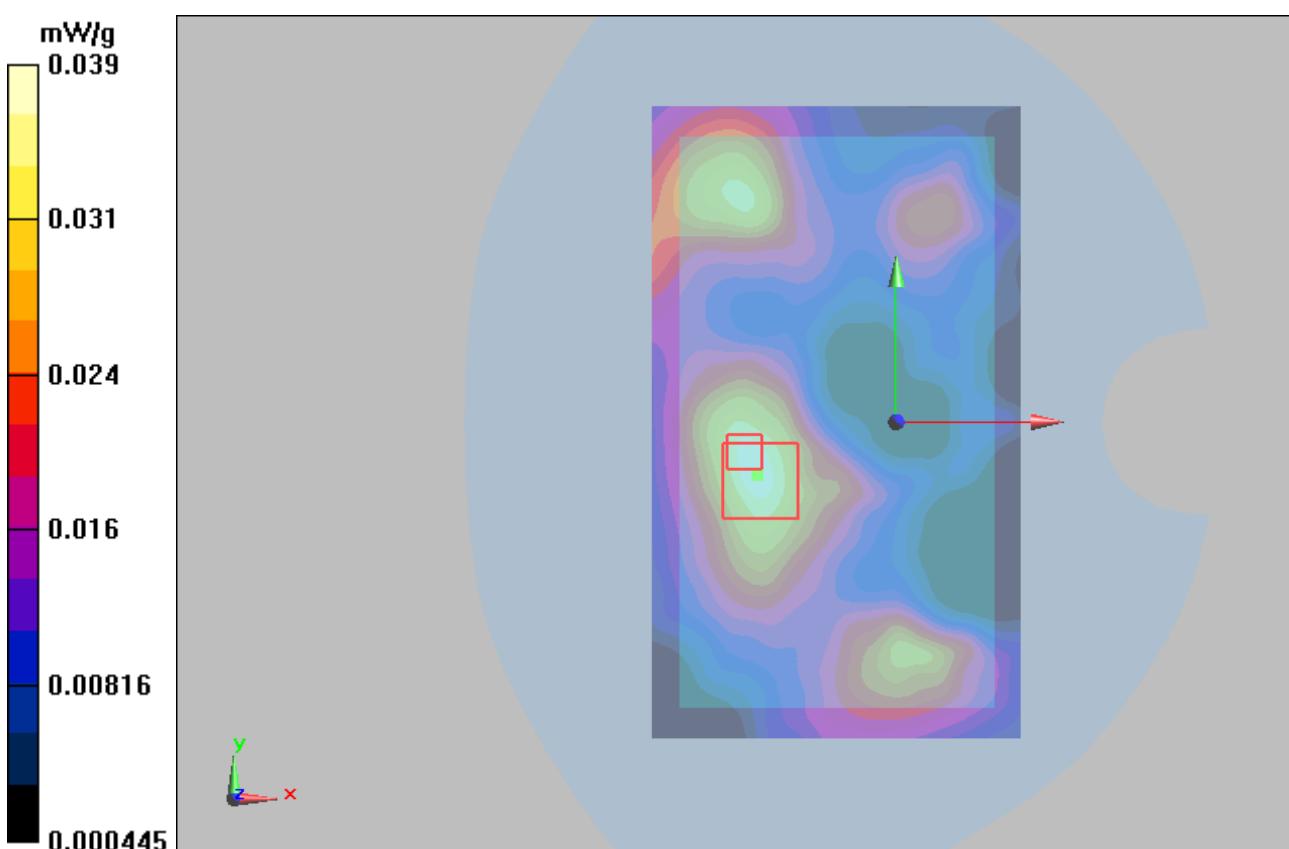


Figure 23 802.11b with Test Position 1 Channel 6

802.11b with Test Position 2 Middle

Date/Time: 7/2/2013 5:44:49 PM

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.88$ mho/m; $\epsilon_r = 51.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(6.90, 6.90, 6.90); Calibrated: 1/17/2013

Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM2; Type: SAM; Serial: TP-1524

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 2 Middle /Area Scan (71x121x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 0.182 mW/g

Test Position 2 Middle /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.03 V/m; Power Drift = 0.085 dB

Peak SAR (extrapolated) = 0.314 W/kg

SAR(1 g) = 0.1630 mW/g; SAR(10 g) = 0.087 mW/g

Maximum value of SAR (measured) = 0.176 mW/g

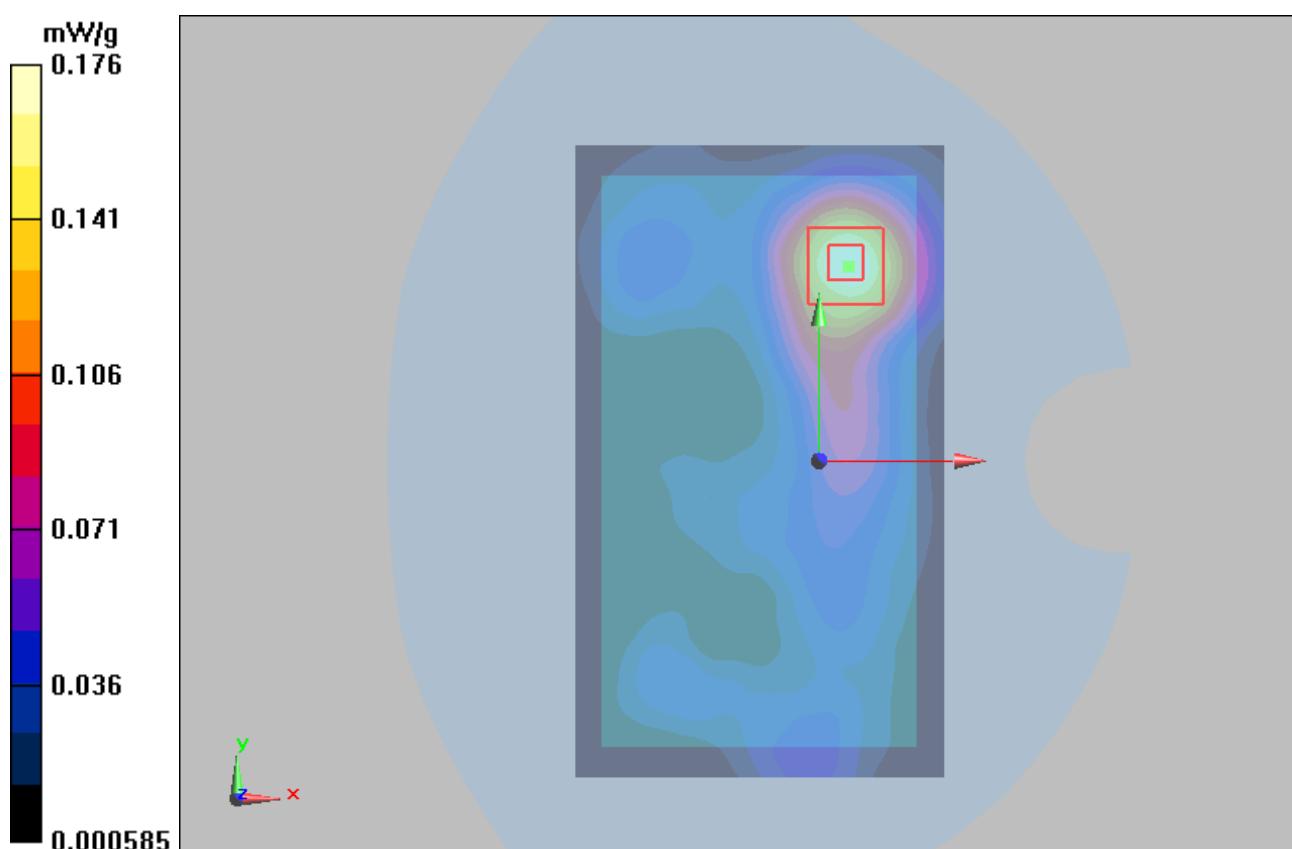


Figure 24 802.11b with Test Position 2 Channel 6

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1303-0290SAR01

Page 67 of 113

802.11b with Test Position 4 Middle

Date/Time: 7/2/2013 7:26:37 PM

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.88$ mho/m; $\epsilon_r = 51.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3753; ConvF(6.90, 6.90, 6.90); Calibrated: 1/17/2013

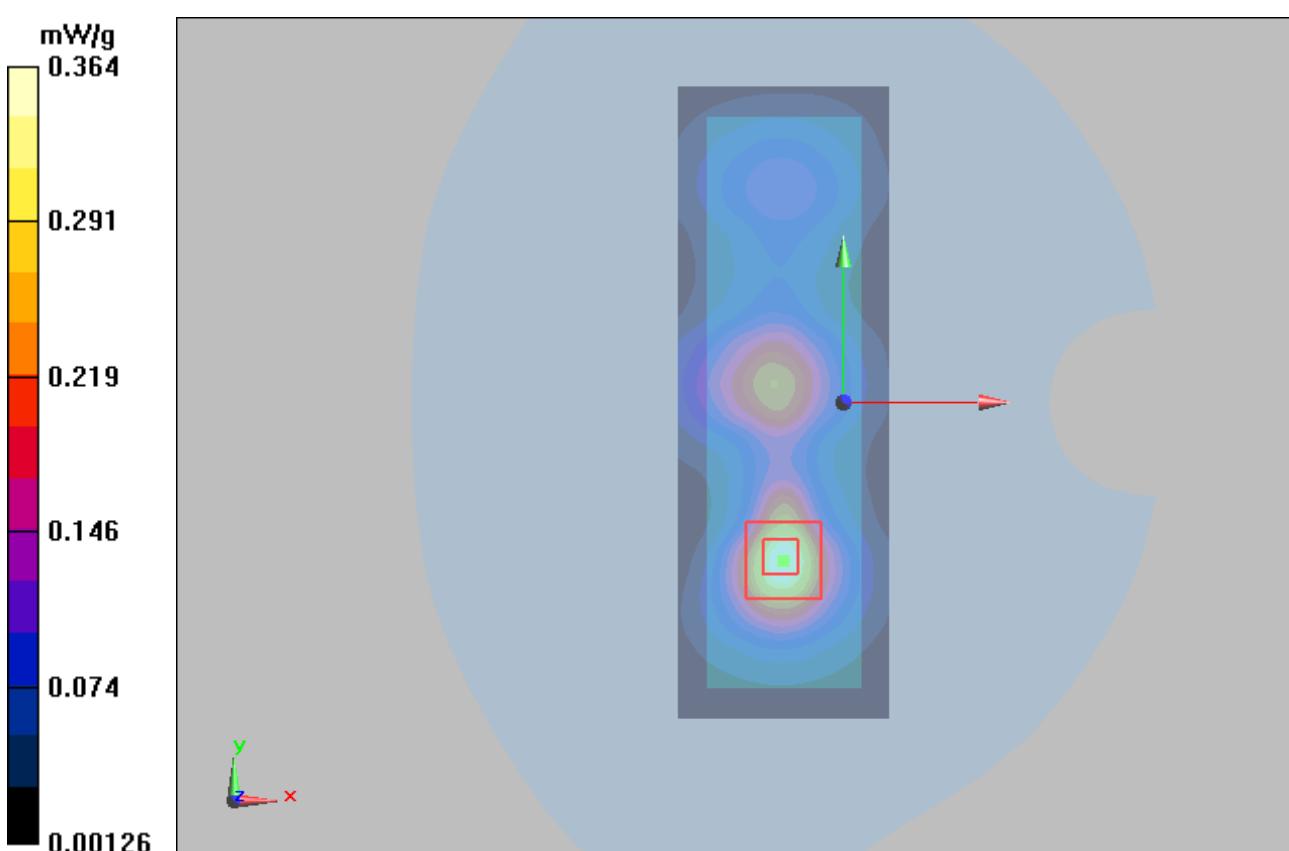
Electronics: DAE4 Sn1317; Calibrated: 1/25/2013

Phantom: SAM2; Type: SAM; Serial: TP-1524

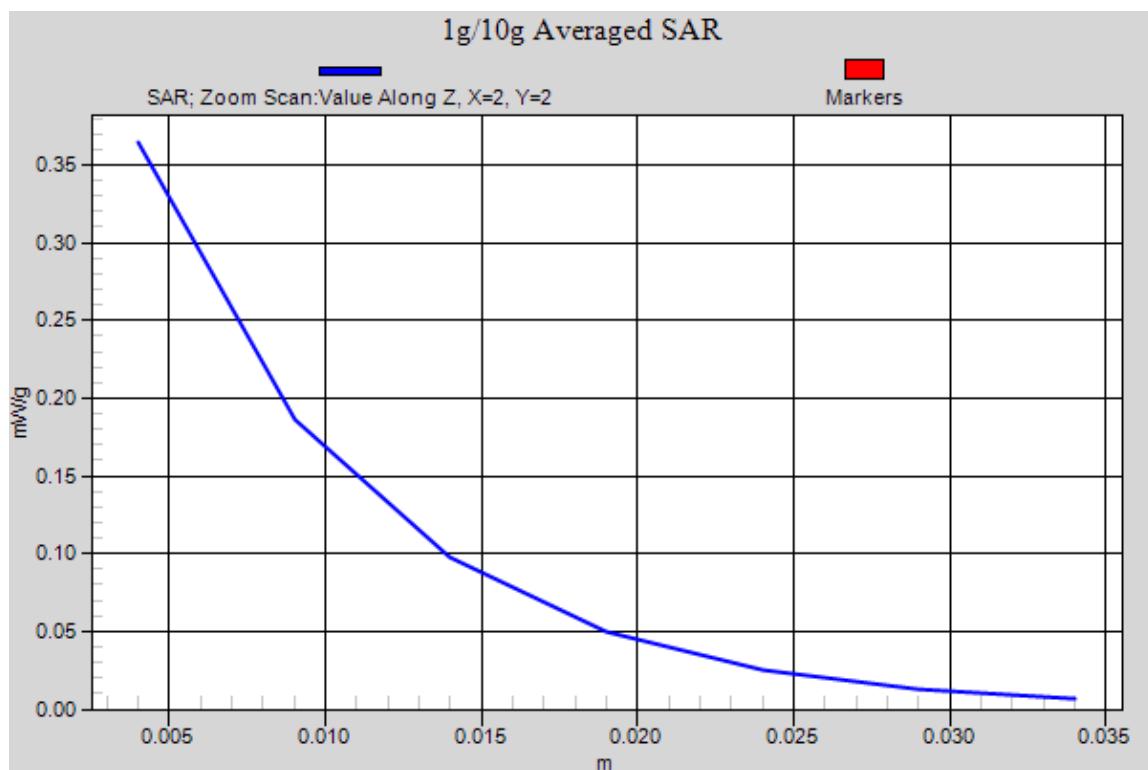
Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 4 Middle /Area Scan (41x121x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 0.363 mW/g


Test Position 4 Middle /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.2 V/m; Power Drift = 0.047 dB


Peak SAR (extrapolated) = 0.666 W/kg

SAR(1 g) = 0.3280 mW/g; SAR(10 g) = 0.161 mW/g

Maximum value of SAR (measured) = 0.364 mW/g

TA Technology (Shanghai) Co., Ltd.
Test Report

Figure 25 802.11b with Test Position 4 Channel 6

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1303-0290SAR01

Page 69 of 113

ANNEX D: Probe Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Auden

Certificate No: EX3-3753_Jan13

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3753

Calibration procedure(s) QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4
Calibration procedure for dosimetric E-field probes

Calibration date: January 17, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	20-Jun-12 (No. DAE4-660_Jun12)	Jun-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Calibrated by:	Name Jeton Kastrati	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	

Issued: January 17, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1303-0290SAR01

Page 70 of 113

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TS	tissue simulating liquid
NORM x,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORM x,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- $NORM_{x,y,z}$: Assessed for E-field polarization $\vartheta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). $NORM_{x,y,z}$ are only intermediate values, i.e., the uncertainties of $NORM_{x,y,z}$ does not affect the E^2 -field uncertainty inside TSL (see below *ConvF*).
- $NORM(f)x,y,z = NORM_{x,y,z} * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- $DCP_{x,y,z}$: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR : PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $A_{x,y,z}; B_{x,y,z}; C_{x,y,z}; D_{x,y,z}; VR_{x,y,z}; A, B, C, D$ are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORM_{x,y,z} * ConvF$ whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1303-0290SAR01

Page 71 of 113

EX3DV4 – SN:3753

January 17, 2013

Probe EX3DV4

SN:3753

Manufactured: March 16, 2010
Calibrated: January 17, 2013

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

TA Technology (Shanghai) Co., Ltd.
Test Report

EX3DV4– SN:3753

January 17, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3753

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm ($\mu\text{V}/(\text{V}/\text{m})^2$) ^A	0.47	0.31	0.45	$\pm 10.1 \%$
DCP (mV) ^B	101.8	102.3	102.3	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB/ μV	C	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	163.7	$\pm 3.5 \%$
		Y	0.0	0.0	1.0		168.5	
		Z	0.0	0.0	1.0		159.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E^2 -field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

TA Technology (Shanghai) Co., Ltd.
Test Report

EX3DV4- SN:3753

January 17, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3753

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	9.46	9.46	9.46	0.45	0.83	± 12.0 %
835	41.5	0.90	8.95	8.95	8.95	0.26	1.19	± 12.0 %
1750	40.1	1.37	7.86	7.86	7.86	0.52	0.79	± 12.0 %
1900	40.0	1.40	7.63	7.63	7.63	0.54	0.73	± 12.0 %
2000	40.0	1.40	7.50	7.50	7.50	0.53	0.77	± 12.0 %
2450	39.2	1.80	6.86	6.86	6.86	0.44	0.80	± 12.0 %
5200	36.0	4.66	4.65	4.65	4.65	0.40	1.80	± 13.1 %
5300	35.9	4.76	4.48	4.48	4.48	0.40	1.80	± 13.1 %
5500	35.6	4.96	4.46	4.46	4.46	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.51	4.51	4.51	0.35	1.80	± 13.1 %
5800	35.3	5.27	4.36	4.36	4.36	0.45	1.80	± 13.1 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

TA Technology (Shanghai) Co., Ltd.
Test Report

EX3DV4– SN:3753

January 17, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3753

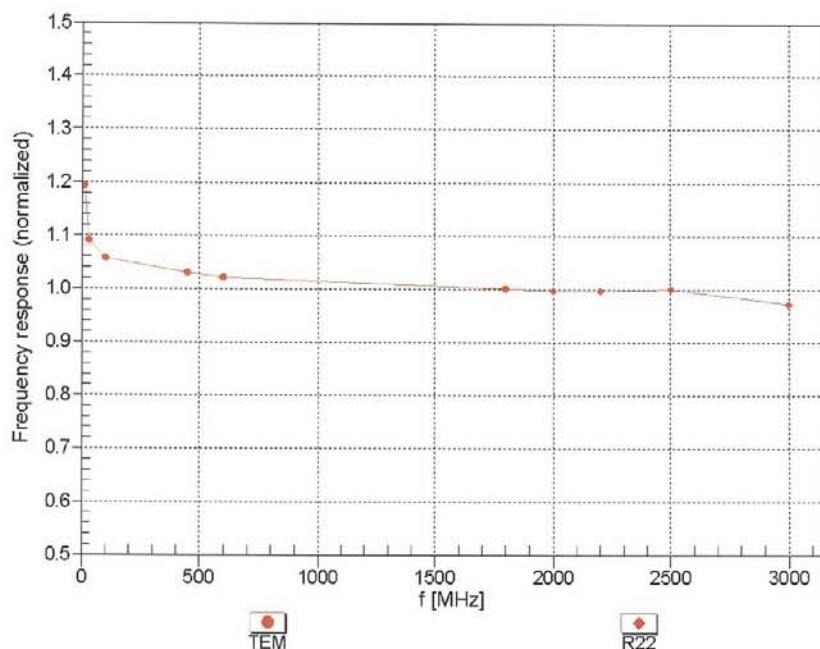
Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	9.25	9.25	9.25	0.54	0.75	± 12.0 %
835	55.2	0.97	9.05	9.05	9.05	0.68	0.68	± 12.0 %
1750	53.4	1.49	7.82	7.82	7.82	0.50	0.84	± 12.0 %
1900	53.3	1.52	7.33	7.33	7.33	0.31	1.01	± 12.0 %
2000	53.3	1.52	7.43	7.43	7.43	0.57	0.73	± 12.0 %
2300	52.9	1.81	7.07	7.07	7.07	0.74	0.64	± 12.0 %
2450	52.7	1.95	6.90	6.90	6.90	0.80	0.50	± 12.0 %
2600	52.5	2.16	6.66	6.66	6.66	0.80	0.50	± 12.0 %
3500	51.3	3.31	6.30	6.30	6.30	0.38	1.11	± 13.1 %
5200	49.0	5.30	4.38	4.38	4.38	0.50	1.90	± 13.1 %
5300	48.9	5.42	4.13	4.13	4.13	0.50	1.90	± 13.1 %
5500	48.6	5.65	4.09	4.09	4.09	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.10	4.10	4.10	0.45	1.90	± 13.1 %
5800	48.2	6.00	4.02	4.02	4.02	0.55	1.90	± 13.1 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

TA Technology (Shanghai) Co., Ltd.
Test Report


Report No. RXA1303-0290SAR01

Page 75 of 113

EX3DV4- SN:3753

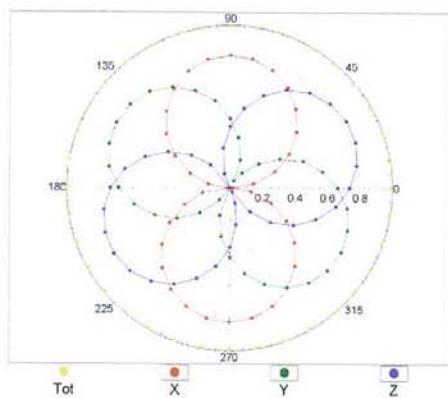
January 17, 2013

Frequency Response of E-Field
(TEM-Cell:ifi110 EXX, Waveguide: R22)

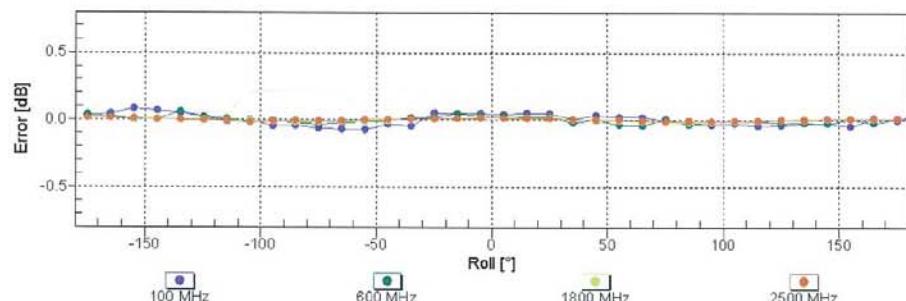
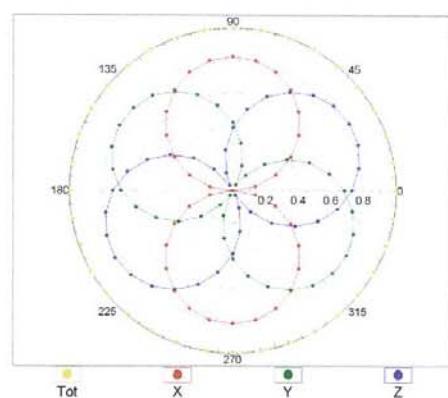
Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1303-0290SAR01


Page 76 of 113

EX3DV4- SN:3753



January 17, 2013

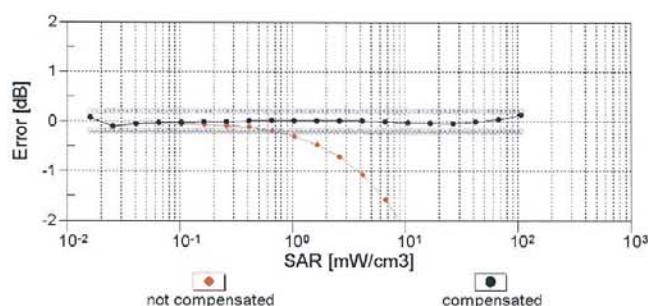
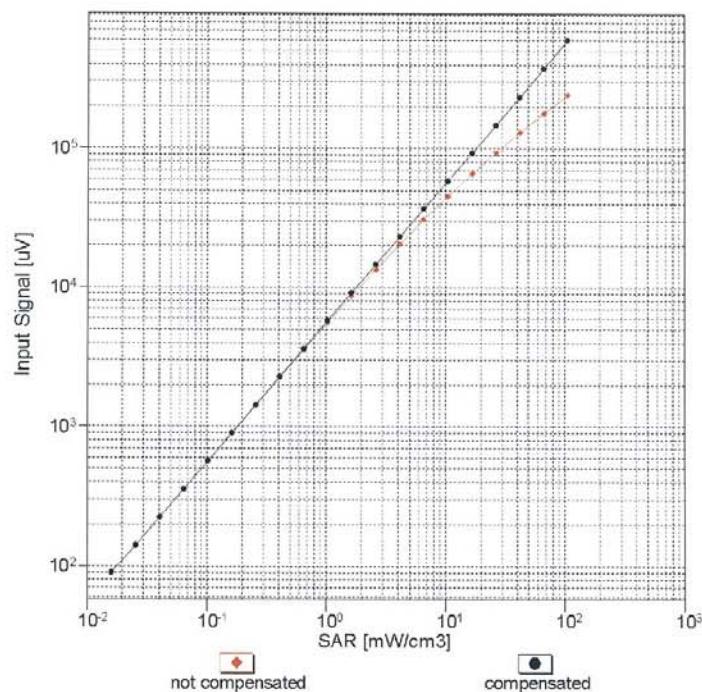
Receiving Pattern (ϕ), $\theta = 0^\circ$

$f=600$ MHz, TEM

$f=1800$ MHz, R22

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)

TA Technology (Shanghai) Co., Ltd.
Test Report



Report No. RXA1303-0290SAR01

Page 77 of 113

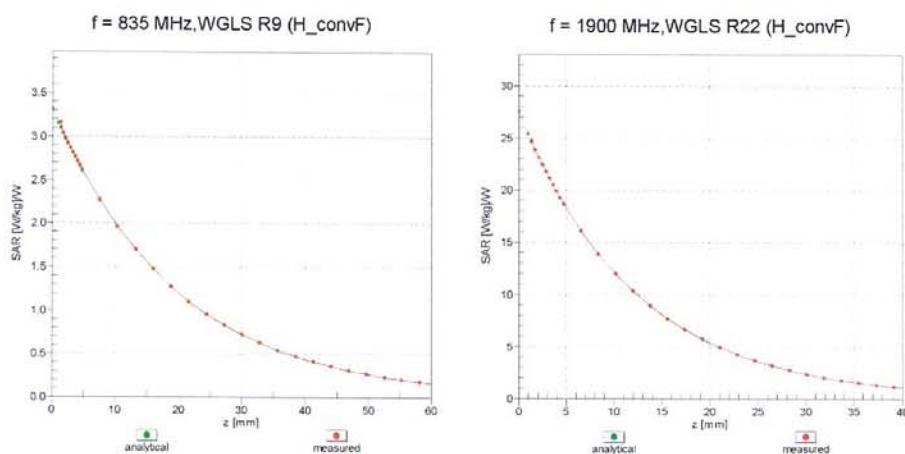
EX3DV4- SN:3753

January 17, 2013

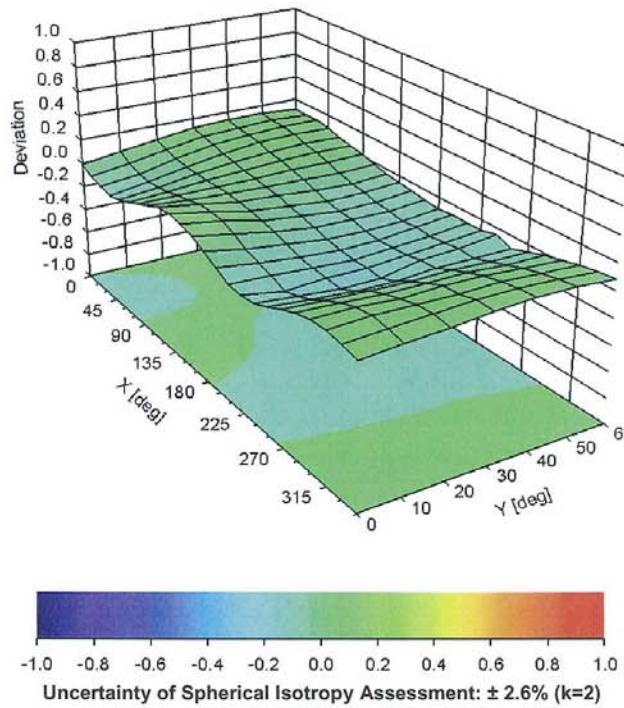
Dynamic Range $f(\text{SAR}_{\text{head}})$
(TEM cell, $f = 900 \text{ MHz}$)

Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)

TA Technology (Shanghai) Co., Ltd.
Test Report


Report No. RXA1303-0290SAR01

Page 78 of 113


EX3DV4- SN:3753

January 17, 2013

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ, θ), $f = 900$ MHz

TA Technology (Shanghai) Co., Ltd.
Test Report

EX3DV4- SN:3753

January 17, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3753

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	55.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1303-0290SAR01

Page 80 of 113

ANNEX E: D835V2 Dipole Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client **TA-Shanghai (Auden)**

Certificate No: **D835V2-4d020_Aug11**

CALIBRATION CERTIFICATE

Object **D835V2 - SN: 4d020**

Calibration procedure(s) **QA CAL-05.v8**
Calibration procedure for dipole validation kits above 700 MHz

Calibration date: **August 26, 2011**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe ES3DV3	SN: 3205	29-Apr-11 (No. ES3-3205_Apr11)	Apr-12
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by: **Jelton Kastrati** **Laboratory Technician**

Approved by: **Katja Pokovic** **Technical Manager**

Issued: August 26, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1303-0290SAR01

Page 81 of 113

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

TA Technology (Shanghai) Co., Ltd.

Test Report

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.32 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.34 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.52 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.11 mW / g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.4 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.42 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.46 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.59 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.26 mW / g ± 16.5 % (k=2)

TA Technology (Shanghai) Co., Ltd.

Test Report

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω - 3.1 $j\Omega$
Return Loss	- 27.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.7 Ω - 5.4 $j\Omega$
Return Loss	- 25.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.391 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 22, 2004

TA Technology (Shanghai) Co., Ltd.
Test Report

DASY5 Validation Report for Head TSL

Date: 25.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Communication System: CW; Frequency: 835 MHz

Medium parameters used: $f = 835$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 41.1$; $\rho = 1000$ kg/m³

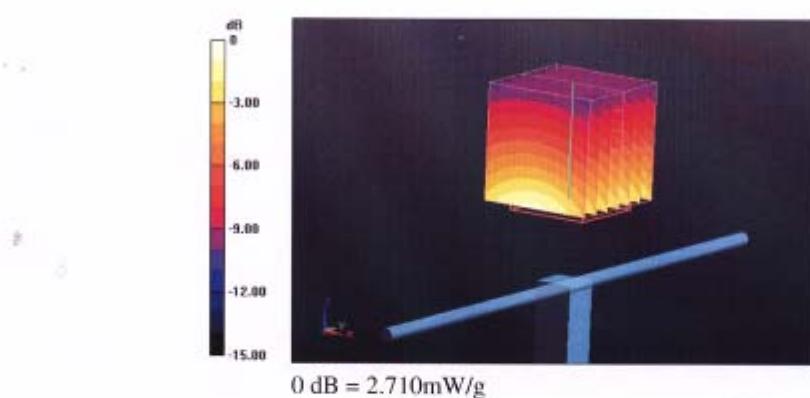
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

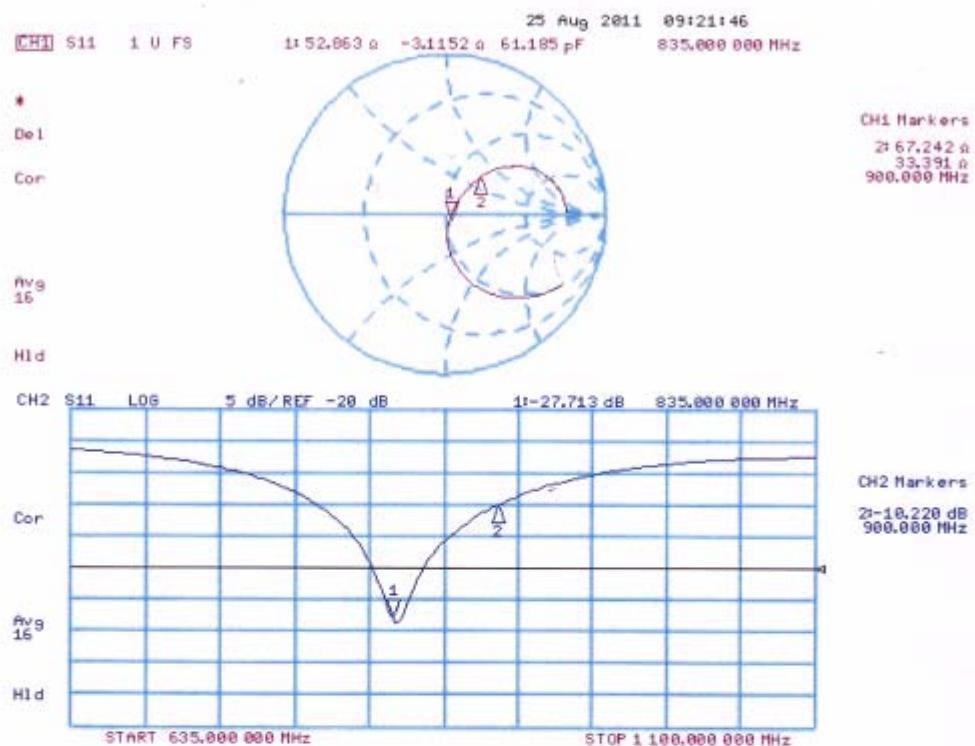

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.930 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.421 W/kg

SAR(1 g) = 2.32 mW/g; SAR(10 g) = 1.52 mW/g

Maximum value of SAR (measured) = 2.708 mW/g



TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1303-0290SAR01

Page 85 of 113

Impedance Measurement Plot for Head TSL

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1303-0290SAR01

Page 86 of 113

DASY5 Validation Report for Body TSL

Date: 26.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Communication System: CW; Frequency: 835 MHz

Medium parameters used: $f = 835$ MHz; $\sigma = 0.99$ mho/m; $\epsilon_r = 53.4$; $\rho = 1000$ kg/m³

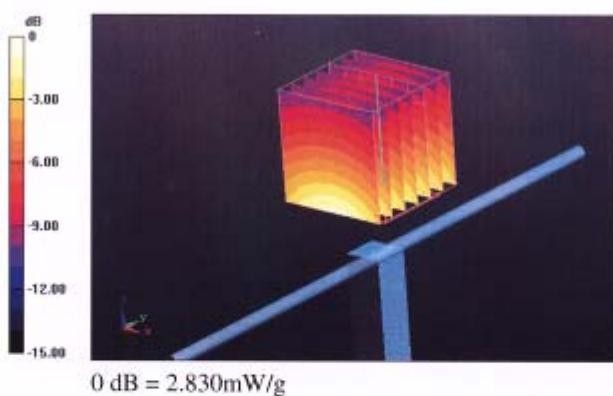
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

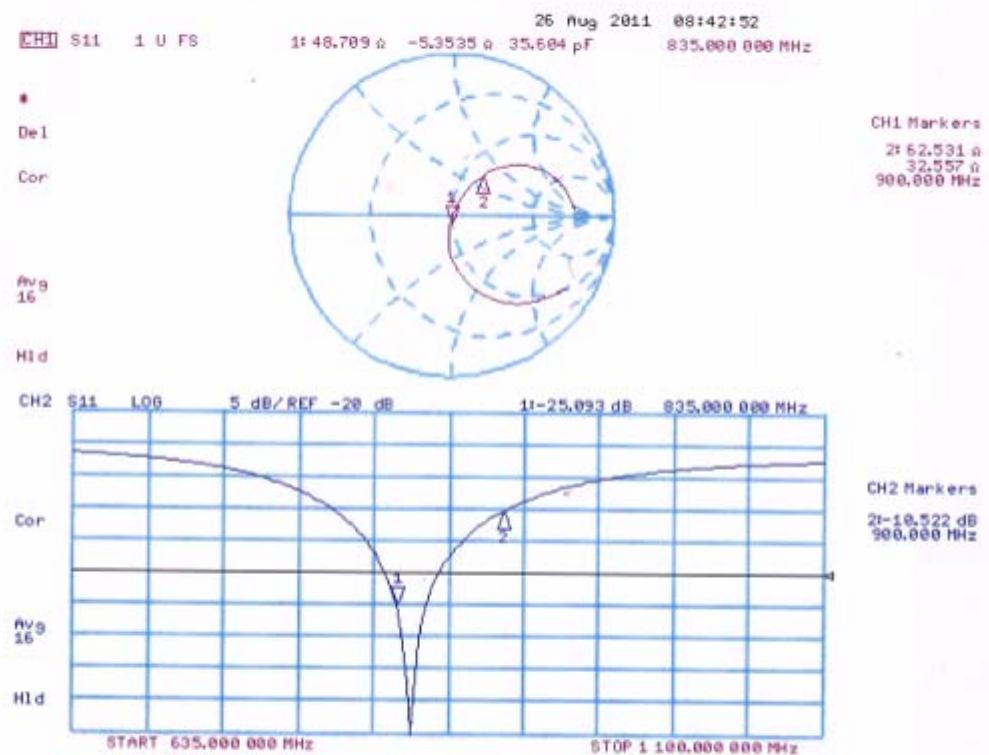

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.406 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.509 W/kg

SAR(1 g) = 2.42 mW/g; SAR(10 g) = 1.59 mW/g

Maximum value of SAR (measured) = 2.827 mW/g



TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RXA1303-0290SAR01

Page 87 of 113

Impedance Measurement Plot for Body TSL

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1303-0290SAR01

Page 88 of 113

ANNEX F: D1900V2 Dipole Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client TA-Shanghai (Auden)

Certificate No: D1900V2-5d060_Aug11

CALIBRATION CERTIFICATE

Object	D1900V2 - SN: 5d060																														
Calibration procedure(s)	QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz																														
Calibration date:	August 31, 2011																														
<p>This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.</p> <p>All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.</p> <p>Calibration Equipment used (M&TE critical for calibration)</p>																															
<table border="1"><thead><tr><th>Primary Standards</th><th>ID #</th><th>Cal Date (Certificate No.)</th><th>Scheduled Calibration</th></tr></thead><tbody><tr><td>Power meter EPM-442A</td><td>GB37480704</td><td>06-Oct-10 (No. 217-01266)</td><td>Oct-11</td></tr><tr><td>Power sensor HP 8481A</td><td>US37292783</td><td>06-Oct-10 (No. 217-01266)</td><td>Oct-11</td></tr><tr><td>Reference 20 dB Attenuator</td><td>SN: S5086 (20b)</td><td>29-Mar-11 (No. 217-01367)</td><td>Apr-12</td></tr><tr><td>Type-N mismatch combination</td><td>SN: 5047.2 / 06327</td><td>29-Mar-11 (No. 217-01371)</td><td>Apr-12</td></tr><tr><td>Reference Probe ES3DV3</td><td>SN: 3205</td><td>29-Apr-11 (No. ES3-3205_Apr11)</td><td>Apr-12</td></tr><tr><td>DAE4</td><td>SN: 601</td><td>04-Jul-11 (No. DAE4-601_Jul11)</td><td>Jul-12</td></tr></tbody></table>				Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration	Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11	Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11	Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12	Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12	Reference Probe ES3DV3	SN: 3205	29-Apr-11 (No. ES3-3205_Apr11)	Apr-12	DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration																												
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11																												
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11																												
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12																												
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12																												
Reference Probe ES3DV3	SN: 3205	29-Apr-11 (No. ES3-3205_Apr11)	Apr-12																												
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12																												
<table border="1"><thead><tr><th>Secondary Standards</th><th>ID #</th><th>Check Date (in house)</th><th>Scheduled Check</th></tr></thead><tbody><tr><td>Power sensor HP 8481A</td><td>MY41092317</td><td>18-Oct-02 (in house check Oct-09)</td><td>In house check: Oct-11</td></tr><tr><td>RF generator R&S SMT-06</td><td>100005</td><td>04-Aug-99 (in house check Oct-09)</td><td>In house check: Oct-11</td></tr><tr><td>Network Analyzer HP 8753E</td><td>US37390585 S4206</td><td>18-Oct-01 (in house check Oct-10)</td><td>In house check: Oct-11</td></tr></tbody></table>				Secondary Standards	ID #	Check Date (in house)	Scheduled Check	Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11	RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-09)	In house check: Oct-11	Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11												
Secondary Standards	ID #	Check Date (in house)	Scheduled Check																												
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11																												
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-09)	In house check: Oct-11																												
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11																												
Calibrated by:	Name Dimco Iliev	Function Laboratory Technician	Signature 																												
Approved by:	Katja Pokovic	Technical Manager																													
<p>Issued: August 31, 2011</p> <p>This calibration certificate shall not be reproduced except in full without written approval of the laboratory.</p>																															

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1303-0290SAR01

Page 89 of 113

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSI	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

TA Technology (Shanghai) Co., Ltd.

Test Report

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.5 ± 6 %	1.42 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.3 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.30 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.1 mW / g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.9 ± 6 %	1.57 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.6 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	41.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.55 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.0 mW / g ± 16.5 % (k=2)

TA Technology (Shanghai) Co., Ltd.

Test Report

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.6 Ω + 7.5 $j\Omega$
Return Loss	-22.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.3 Ω + 7.9 $j\Omega$
Return Loss	-21.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.194 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 10, 2004

TA Technology (Shanghai) Co., Ltd.

Test Report

DASY5 Validation Report for Head TSL

Date: 30.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.42$ mho/m; $\epsilon_r = 39.5$; $\rho = 1000$ kg/m³

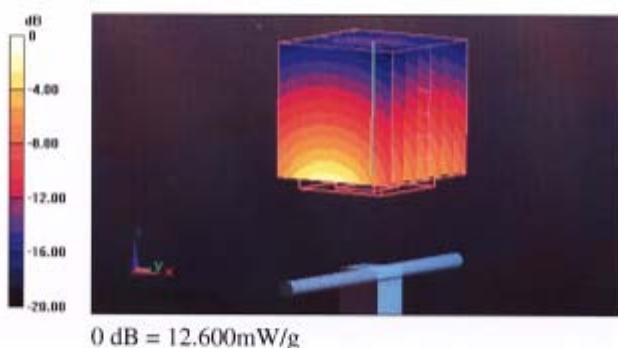
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

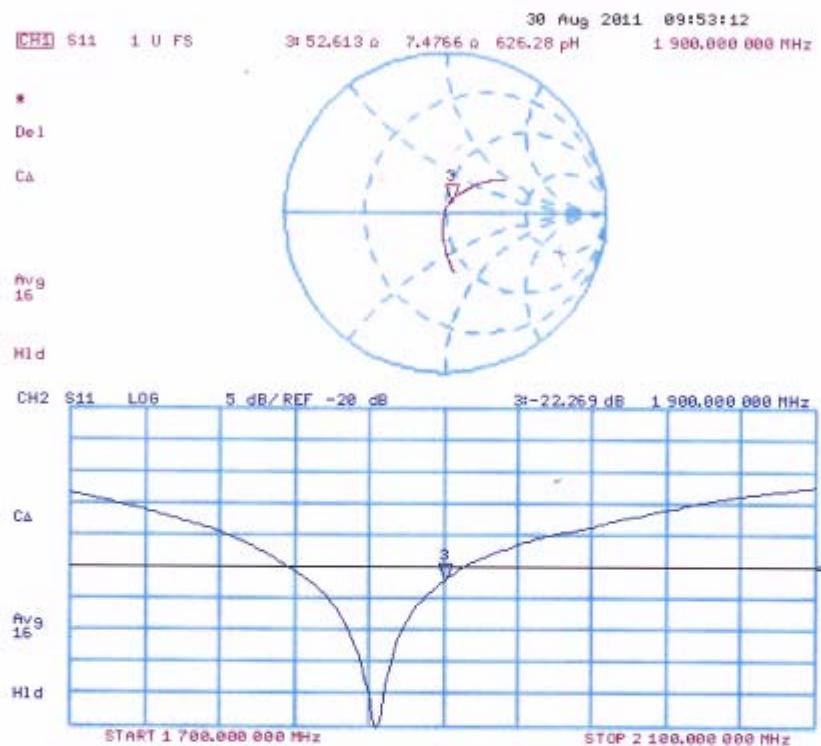

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.636 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 18.535 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.3 mW/g

Maximum value of SAR (measured) = 12.600 mW/g



TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1303-0290SAR01

Page 93 of 113

Impedance Measurement Plot for Head TSL

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1303-0290SAR01

Page 94 of 113

DASY5 Validation Report for Body TSL

Date: 31.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.57$ mho/m; $\epsilon_r = 53.9$; $\rho = 1000$ kg/m³

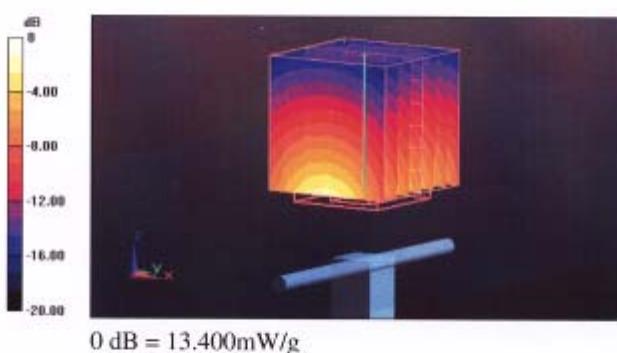
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

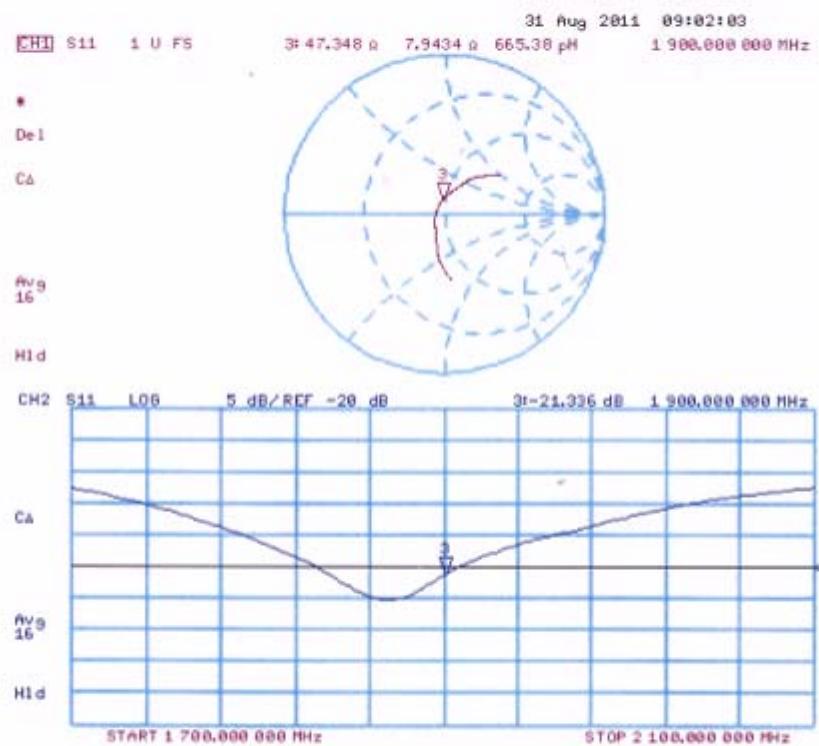

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.435 V/m; Power Drift = -0.0099 dB

Peak SAR (extrapolated) = 18.663 W/kg

SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.55 mW/g

Maximum value of SAR (measured) = 13.397 mW/g



TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1303-0290SAR01

Page 95 of 113

Impedance Measurement Plot for Body TSL

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1303-0290SAR01

Page 96 of 113

ANNEX G: D2450V2 Dipole Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client TA-Shanghai (Auden)

Certificate No: D2450V2-786_Aug11

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 786

Calibration procedure(s) QA CAL-05.v8
Calibration procedure for dipole validation kits above 700 MHz

Calibration date: August 29, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe ES3DV3	SN: 3205	29-Apr-11 (No. ES3-3205_Apr11)	Apr-12
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by: Name Dimce Iliev Function Laboratory Technician Signature

Approved by: Katja Pokovic Technical Manager

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Issued: August 29, 2011

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1303-0290SAR01

Page 97 of 113

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:* SAR measured at the stated antenna input power.
- SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

TA Technology (Shanghai) Co., Ltd.

Test Report

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.4 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	53.8 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL		
SAR measured	250 mW input power	6.41 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	25.4 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.7 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL		
SAR measured	250 mW input power	6.10 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.2 mW / g ± 16.5 % (k=2)

TA Technology (Shanghai) Co., Ltd.

Test Report

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.0 Ω + 2.4 $j\Omega$
Return Loss	-25.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.4 Ω + 3.5 $j\Omega$
Return Loss	-29.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 06, 2005

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1303-0290SAR01

Page 100 of 113

DASY5 Validation Report for Head TSL

Date: 29.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.85$ mho/m; $\epsilon_r = 38.4$; $\rho = 1000$ kg/m³

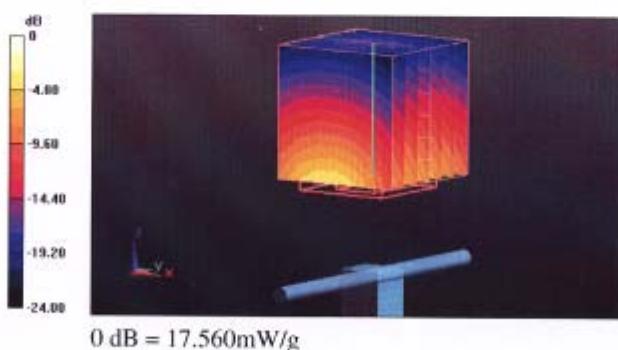
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

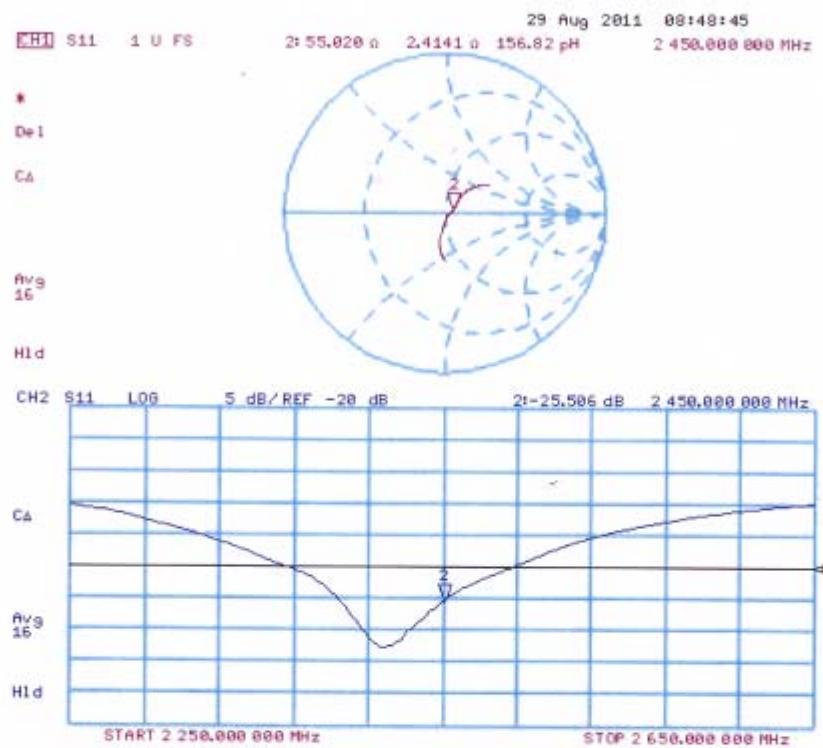

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.5 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 28.303 W/kg

SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.41 mW/g

Maximum value of SAR (measured) = 17.561 mW/g



TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1303-0290SAR01

Page 101 of 113

Impedance Measurement Plot for Head TSL

TA Technology (Shanghai) Co., Ltd.
Test Report

DASY5 Validation Report for Body TSL

Date: 29.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 2.02$ mho/m; $\epsilon_r = 51.8$; $\rho = 1000$ kg/m³

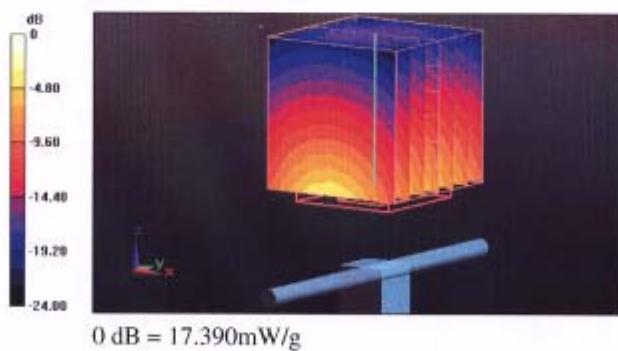
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

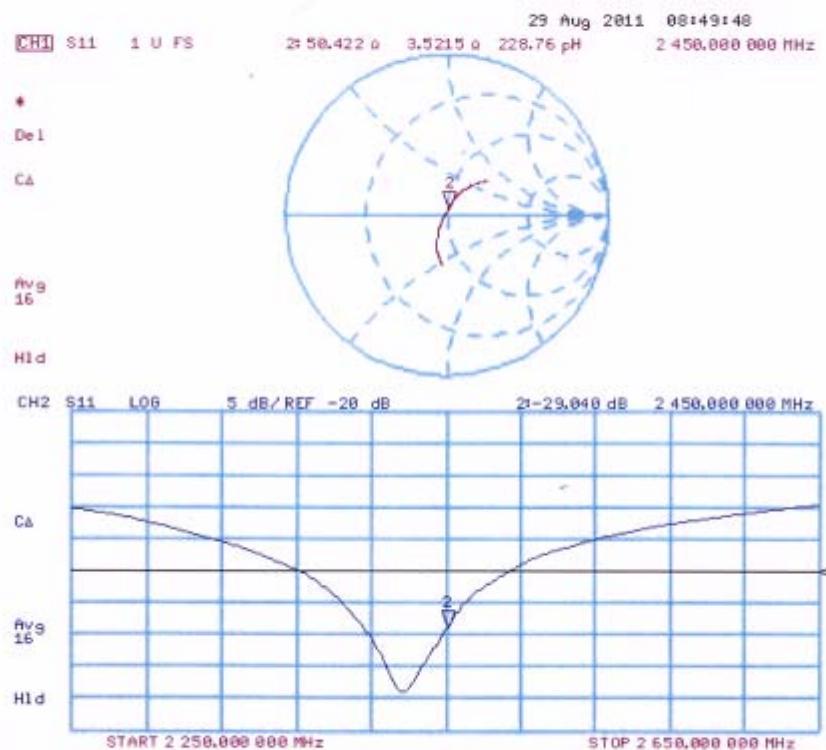

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.118 V/m; Power Drift = 0.0072 dB

Peak SAR (extrapolated) = 27.129 W/kg

SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.1 mW/g

Maximum value of SAR (measured) = 17.387 mW/g



TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1303-0290SAR01

Page 103 of 113

Impedance Measurement Plot for Body TSL

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RXA1303-0290SAR01

Page 104 of 113

ANNEX H: DAE4 Calibration Certificate

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1303-0290SAR01

Page 105 of 113

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS).
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client TA Shanghai (Auden)

Certificate No: DAE4-1317_Jan13

CALIBRATION CERTIFICATE

Object DAE4 - SD 000 D04 BJ - SN: 1317

Calibration procedure(s) QA CAL-06.v25
Calibration procedure for the data acquisition electronics (DAE)

Calibration date: January 25, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	02-Oct-12 (No:12728)	Oct-13
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit Calibrator Box V2.1	SE UWS 053 AA 1001 SE UMS 006 AA 1002	07-Jan-13 (in house check) 07-Jan-13 (in house check)	In house check: Jan-14 In house check: Jan-14

Calibrated by: Name R. Mayoraz Function Technician Signature

Approved by: Fin Bomholt Deputy Technical Manager

Issued: January 25, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RXA1303-0290SAR01

Page 106 of 113

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary

DAE	data acquisition electronics
Connector angle	information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement*: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - *DC Voltage Measurement Linearity*: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - *Common mode sensitivity*: Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation*: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - *AD Converter Values with inputs shorted*: Values on the internal AD converter corresponding to zero input voltage
 - *Input Offset Measurement*: Output voltage and statistical results over a large number of zero voltage measurements.
 - *Input Offset Current*: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - *Input resistance*: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - *Low Battery Alarm Voltage*: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption*: Typical value for information. Supply currents in various operating modes.

TA Technology (Shanghai) Co., Ltd.

Test Report

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = $6.1\mu\text{V}$, full range = $-100\ldots+300\text{ mV}$

Low Range: 1LSB = 61nV , full range = $-1\ldots+3\text{mV}$

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$404.011 \pm 0.02\% \text{ (k=2)}$	$404.006 \pm 0.02\% \text{ (k=2)}$	$403.901 \pm 0.02\% \text{ (k=2)}$
Low Range	$3.98819 \pm 1.55\% \text{ (k=2)}$	$3.99805 \pm 1.55\% \text{ (k=2)}$	$3.98192 \pm 1.55\% \text{ (k=2)}$

Connector Angle

Connector Angle to be used in DASY system	$117^\circ \pm 1^\circ$
---	-------------------------

TA Technology (Shanghai) Co., Ltd.
Test Report

Appendix

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	199994.16	-0.78	-0.00
Channel X	+ Input	20000.75	0.37	0.00
Channel X	- Input	-19997.98	2.89	-0.01
Channel Y	+ Input	199995.20	0.02	0.00
Channel Y	+ Input	19999.08	-1.15	-0.01
Channel Y	- Input	-20002.66	-1.66	0.01
Channel Z	+ Input	199994.67	-0.43	-0.00
Channel Z	+ Input	19997.92	-2.31	-0.01
Channel Z	- Input	-20000.66	0.26	-0.00

Low Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	2001.23	0.59	0.03
Channel X	+ Input	201.53	0.55	0.28
Channel X	- Input	-198.20	0.62	-0.31
Channel Y	+ Input	2000.33	-0.29	-0.01
Channel Y	+ Input	200.43	-0.68	-0.34
Channel Y	- Input	-199.64	-0.69	0.35
Channel Z	+ Input	2000.78	0.22	0.01
Channel Z	+ Input	200.32	-0.69	-0.34
Channel Z	- Input	-199.27	-0.35	0.18

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	-23.69	-25.75
	-200	28.59	26.45
Channel Y	200	-1.44	-1.70
	-200	-0.06	-0.16
Channel Z	200	-10.76	-11.18
	-200	9.82	9.91

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	1.52	-4.72
Channel Y	200	8.54	-	4.31
Channel Z	200	10.79	5.34	-

TA Technology (Shanghai) Co., Ltd.

Test Report

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16104	15986
Channel Y	16111	15993
Channel Z	16217	16069

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (µV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	1.28	0.53	2.45	0.33
Channel Y	-1.29	-2.89	0.51	0.58
Channel Z	-0.39	-1.47	1.06	0.37

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RXA1303-0290SAR01

Page 110 of 113

ANNEX I: The EUT Appearances and Test Configuration

From HRT300 front, when open up it will be as shown on the right. The antenna placement between Wifi, GSM and Bluetooth as shown above.

Picture 5: Constituents of the EUT

TA Technology (Shanghai) Co., Ltd.
Test Report

Picture 6: Test Position 1

Picture 7: Test Position 2

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RXA1303-0290SAR01

Page 112 of 113

Picture 8: Test Position 3

Picture 9: Test Position 4

TA Technology (Shanghai) Co., Ltd.
Test Report

Picture 10: Test Position 6