

**ZHEJIANG DAHUA VISION TECHNOLOGY
CO.,LTD.**

RF TEST REPORT

Report Type:

FCC Part 15.407

Model:

8812CU3

REPORT NUMBER:

220102160SHA-002

ISSUE DATE:

April 21, 2022

DOCUMENT CONTROL NUMBER:

TTRF15.407_V1 © 2018 Intertek

Applicant: ZHEJIANG DAHUA VISION TECHNOLOGY CO., LTD.
No.1199, Bin'an Road, Binjiang District, Hangzhou, P.R. China

Manufacturer: ZHEJIANG DAHUA VISION TECHNOLOGY CO., LTD.
No.1199, Bin'an Road, Binjiang District, Hangzhou, P.R. China

FCC ID: SVN-R8812AF

SUMMARY:

The equipment complies with the requirements according to the following standard(s) or Specification:

47CFR Part 15 (2019): Radio Frequency Devices (Subpart C)

ANSI C63.10 (2013): American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

PREPARED BY:

Project Engineer
Sky Yang

REVIEWED BY:

Reviewer
Wakeyou Wang

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

TEST REPORT**Content**

REVISION HISTORY	5
MEASUREMENT RESULT SUMMARY	6
1 GENERAL INFORMATION	7
1.1 DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)	7
1.2 TECHNICAL SPECIFICATION	7
1.3 ANTENNA INFORMATION.....	7
1.4 DESCRIPTION OF TEST FACILITY	8
2 TEST SPECIFICATIONS.....	10
2.1 STANDARDS OR SPECIFICATION	10
2.2 MODE OF OPERATION DURING THE TEST.....	10
2.3 TEST SOFTWARE LIST	12
2.4 TEST PERIPHERALS LIST	12
2.5 TEST ENVIRONMENT CONDITION:.....	12
2.6 INSTRUMENT LIST	13
2.7 MEASUREMENT UNCERTAINTY	14
2.8 DUTY CYCLE.....	15
3 26 DB BANDWIDTH.....	19
3.1 LIMIT	19
3.2 MEASUREMENT PROCEDURE	19
3.3 TEST CONFIGURATION	20
3.4 THE RESULTS OF 26 DB BANDWIDTH	20
4 MINIMUM 6DB BANDWIDTH.....	21
4.1 LIMIT	21
4.2 MEASUREMENT PROCEDURE	21
4.3 TEST CONFIGURATION	21
4.4 THE RESULTS OF MINIMUM 6DB BANDWIDTH	21
5 MAXIMUM CONDUCTED OUTPUT POWER	22
5.1 LIMIT	22
5.2 MEASUREMENT PROCEDURE	23
5.3 TEST CONFIGURATION	23
5.4 TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER.....	23
6 POWER SPECTRUM DENSITY	24
6.1 LIMIT	24
6.2 MEASUREMENT PROCEDURE	25
6.3 TEST CONFIGURATION	26
6.4 TEST RESULTS OF POWER SPECTRUM DENSITY	26
7 RADIATED EMISSIONS	27
7.1 LIMIT	27
7.2 MEASUREMENT PROCEDURE	28
7.3 TEST CONFIGURATION	29
7.4 TEST RESULTS OF RADIATED EMISSIONS	31
8 POWER LINE CONDUCTED EMISSION.....	32
8.1 LIMIT	32

TEST REPORT

8.2 TEST CONFIGURATION	32
8.3 MEASUREMENT PROCEDURE	33
8.4 TEST RESULTS OF POWER LINE CONDUCTED EMISSION.....	34
9 DYNAMIC FREQUENCY SELECTION	35
9.1 LIMIT	35
9.2 TEST CONFIGURATION	37
9.3 MEASUREMENT PROCEDURE	38
9.4 TEST RESULTS OF DYNAMIC FREQUENCY SELECTION	38
10 FREQUENCY STABILITY	39
10.1 LIMIT	39
10.2 TEST RESULT.....	39
11 ANTENNA REQUIREMENT.....	40
APPENDIX I: PHOTOGRAPH OF TEST SETUP	41
APPENDIX II: PHOTOGRAPH OF EQUIPMENT UNDER TEST.....	41

TEST REPORT**Revision History**

Report No.	Version	Description	Issued Date
220102160SHA-002	Rev. 01	Initial issue of report	April 21, 2022

TEST REPORT

Measurement result summary

TEST ITEM	FCC REFERENCE	RESULT
26 dB Bandwidth	15.407(a)	Pass
Minimum 6dB Bandwidth	15.407(e)	Pass
Maximum Conducted Output Power	15.407(a)	Pass
Power spectral density	15.407(a)	Pass
Radiated emission	15.407(b) 15.205 15.209	Pass
Power line conducted emission	15.407(b) 15.207	Pass
Dynamic Frequency Selection	FCC 47 CFR Part 15 Subpart E Section 15.407 (h)	Pass
Frequency Stability	15.407(g)	Pass
Antenna requirement	15.203	Pass

Notes: 1: NA =Not Applicable

2. Determination of the test conclusion is based on IEC Guide 115 in consideration of measurement uncertainty.

3: Additions, Deviations and Exclusions from Standards: None.

4: This is a client device without radar detection capability and it does not support TPC function.

TEST REPORT

1 GENERAL INFORMATION

1.1 Description of Equipment Under Test (EUT)

Product name:	WiFi Module
Type/Model:	8812CU3
Description of EUT:	WiFi Module
Rating:	3.3Vdc
EUT type:	<input checked="" type="checkbox"/> Table top <input type="checkbox"/> Floor standing
Software Version:	V1.0
Hardware Version:	v5.9.0.1_36324_COEX20200103
Sample received date:	November 23, 2021
Date of test:	November 23, 2021 to March 21, 2022

1.2 Technical Specification

Frequency Range:	5150 ~ 5250MHz 5250 ~ 5350MHz 5470 ~ 5725MHz 5725 ~ 5850MHz
Support Standards:	IEEE 802.11a, IEEE 802.11n-HT20, IEEE 802.11n-HT40 IEEE 802.11ac-VHT20, IEEE 802.11ac-VHT40, IEEE 802.11ac-VHT80
Type of Modulation:	OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)
Channel Number:	For 5150 ~ 5250MHz band: Channel 36 - 48 For 5250 ~ 5350MHz Band: Channel 52 - 64 For 5470 ~ 5725MHz Band: Channel 100 - 140 For 5725 ~ 5850MHz band: Channel 149 - 165

1.3 Antenna information

Antenna information:				
No.	Antenna Type	Gain (dBi)		Note
1	Chain 0: PCB Antenna	5150 -5250MHz	5.02	-
		5250-5350MHz	6.15	
		5470-5725MHz	8.46	
		5725-5850MHz	9.23	
2	Chain 1: PCB Antenna	5150 -5250MHz	6.45	-
		5250-5350MHz	6.48	
		5470-5725MHz	7.26	
		5725-5850MHz	5.38	

TEST REPORT

Frequency Band	Tx/Rx Function	Beamforming function	CDD function	Directional gain (dBi)
5150 -5250MHz	1Tx/1Rx	NO	NO	8.77
5250-5350MHz	2Tx/2Rx	NO	NO	9.33
5470-5725MHz	2Tx/1Rx	NO	NO	10.89
5725-5850MHz	2Tx/1Rx	NO	NO	10.53

Note:

Unequal antenna gains, with equal transmit powers. Directional gain is to be computed as follows:

If transmit signals are correlated, then

Directional gain = $10 \log[(10^{G1}/20 + 10^{G2}/20 + \dots + 10^{GN}/20)^2 / N_{ANT}]$ dBi [Note the "20"s in the denominator of each exponent and the square of the sum of terms; the object is to combine the signal levels coherently.]

1.4 Description of Test Facility

Name:	Intertek Testing Services Shanghai
Address:	Building 86, No. 1198 Qinzhou Road(North), Shanghai 200233, P.R. China
Telephone:	86 21 61278200
Telefax:	86 21 54262353

The test facility is recognized, certified, or accredited by these organizations:	CNAS Accreditation Lab Registration No. CNAS L0139
	FCC Accredited Lab Designation Number: CN1175
	IC Registration Lab CAB identifier.: CN0051
	VCCI Registration Lab Registration No.: R-14243, G-10845, C-14723, T-12252
	A2LA Accreditation Lab Certificate Number: 3309.02

All tests were sub-contracted.

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng Science and Technology Park, Longhua District, Shenzhen, China 518109

Telephone: +86 (0) 755 2823 0888

Fax: +86 (0) 755 2823 0886

TEST REPORT

All tests were sub-contracted at Shenzhen UnionTrust Quality and Technology Co., Ltd, and conducted by Kieron Luo

Reviewed and approved by Wakeyou from Intertek Testing Services Shanghai.

The test facility is recognized, certified, or accredited by the following organizations:**CNAS-Lab Code: L9069**

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

IC-Registration No.: 21600-1

The 3m Semi-anechoic chamber of Shenzhen UnionTrust Quality and Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 21600-1.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC Accredited Lab.

Designation Number: CN1194

Test Firm Registration Number: 259480

TEST REPORT

2 TEST SPECIFICATIONS

2.1 Standards or specification

47CFR Part 15 (2019)

ANSI C63.10 (2013)

KDB 789033 D02 v02r01

2.2 Mode of operation during the test

While testing transmitting mode of EUT, the continuously transmission was applied by following software.

Software name	Manufacturer	Version	Supplied by
REALTEK 11ac 8822CU USB WLAN NIC Mass production Kit.exe	NA	V10.01	Client

The lowest, middle and highest channel for the following modes were tested as representatives.

Frequency Band (MHz)	Mode	Lowest (MHz)	Middle (MHz)	Highest (MHz)
5150 - 5250	802.11a	5180	5220	5240
	802.11n(HT20)	5180	5220	5240
	802.11n(HT40)	5190	/	5230
	802.11ac(VHT20)	5180	5220	5240
	802.11ac(VHT40)	5190	/	5230
	802.11ac(VHT80)	/	5210	/
5250 - 5350	802.11a	5260	5300	5320
	802.11n(HT20)	5260	5300	5320
	802.11n(HT40)	5270	/	5310
	802.11ac(VHT20)	5260	5300	5320
	802.11ac(VHT40)	5270	/	5310
	802.11ac(VHT80)	/	5290	/
5470 - 5725	802.11a	5500	5580	5700
	802.11n(HT20)	5500	5580	5700
	802.11n(HT40)	5510	5550	5670
	802.11ac(VHT20)	5500	5580	5700
	802.11ac(VHT40)	5510	5550	5670
	802.11ac(VHT80)	5530	/	5610

TEST REPORT

5725 - 5850	802.11a	5745	5785	5825
	802.11n(HT20)	5745	5785	5825
	802.11n(HT40)	5755	/	5795
	802.11ac(VHT20)	5745	5785	5825
	802.11ac(VHT40)	5755	/	5795
	802.11ac(VHT80)	/	5775	/

Data rate and Power setting:

The pre-scan for the conducted power with all data rates in each modulation and band was used, and the worst case was found and used in all test cases. After this pre-scan, we choose the following table of the data rates as the worst case.

Frequency Band (MHz)	Mode	Worst case data rate
5150 - 5250	802.11a	6Mbps
	802.11n(HT20)	MCS0
	802.11n(HT40)	MCS0
	802.11ac(VHT20)	MCS0
	802.11ac(VHT40)	MCS0
	802.11ac(VHT80)	MCS0
5250 - 5350	802.11a	6Mbps
	802.11n(HT20)	MCS0
	802.11n(HT40)	MCS0
	802.11ac(VHT20)	MCS0
	802.11ac(VHT40)	MCS0
	802.11ac(VHT80)	MCS0
5500 - 5725	802.11a	6Mbps
	802.11n(HT20)	MCS0
	802.11n(HT40)	MCS0
	802.11ac(VHT20)	MCS0
	802.11ac(VHT40)	MCS0
	802.11ac(VHT80)	MCS0
5725 - 5850	802.11a	6Mbps
	802.11n(HT20)	MCS0
	802.11n(HT40)	MCS0
	802.11ac(VHT20)	MCS0
	802.11ac(VHT40)	MCS0
	802.11ac(VHT80)	MCS0

TEST REPORT**2.3 Test software list**

Test Items	Software	Manufacturer	Version
Conducted emission	e3	Audix	920151119i
Radiated emission	e3	Audix	9.160323

2.4 Test peripherals list

Item No.	Name	Band and Model	FCC ID
1	Laptop computer	DELL, Latitude 3400	NA
2	Wireless Router	SAGEMCOM, RAC2V1S	VW3FAST5280

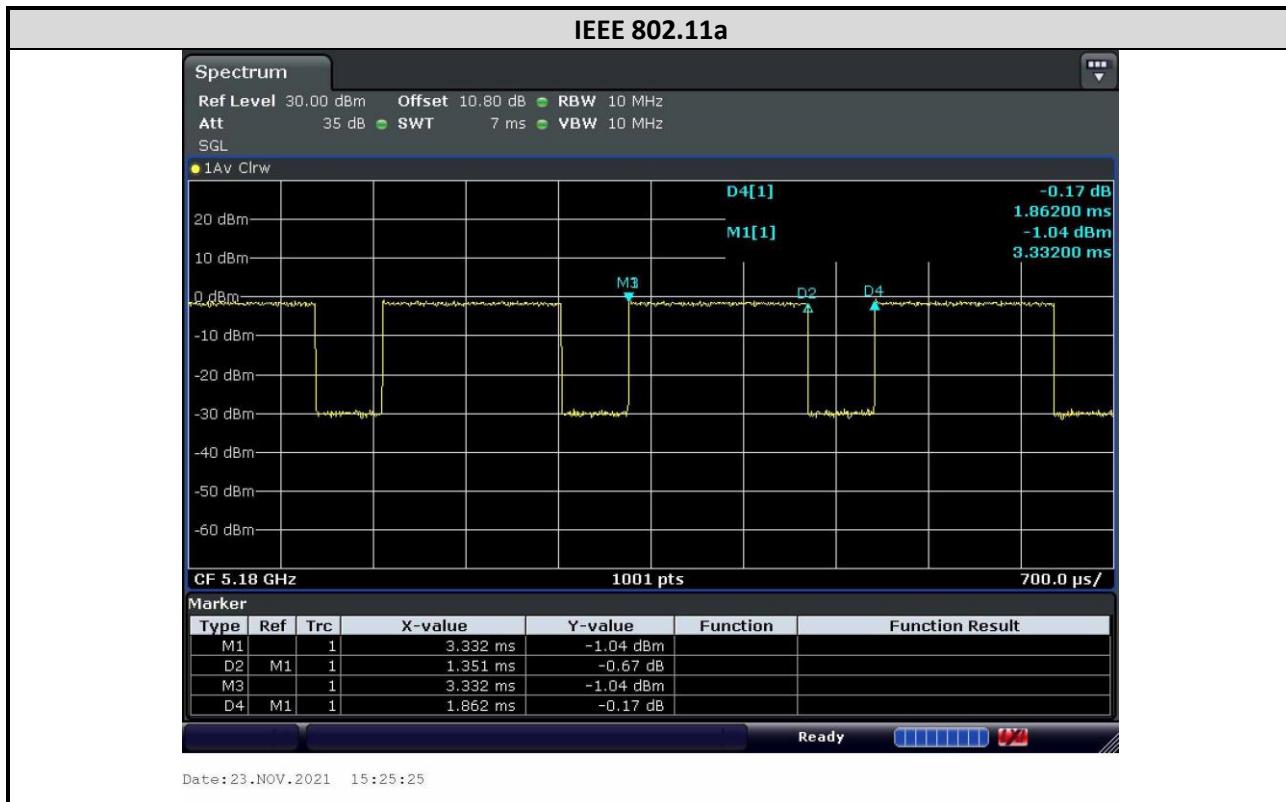
2.5 Test environment condition:

Test items	Temperature	Humidity
26 dB Bandwidth	26°C	53% RH
Minimum 6dB Bandwidth		
Maximum Conducted Output Power		
Dynamic Frequency Selection		
Power spectral density		
Radiated Emissions	24.2°C	49% RH
Power line conducted emission	24.9°C	48% RH

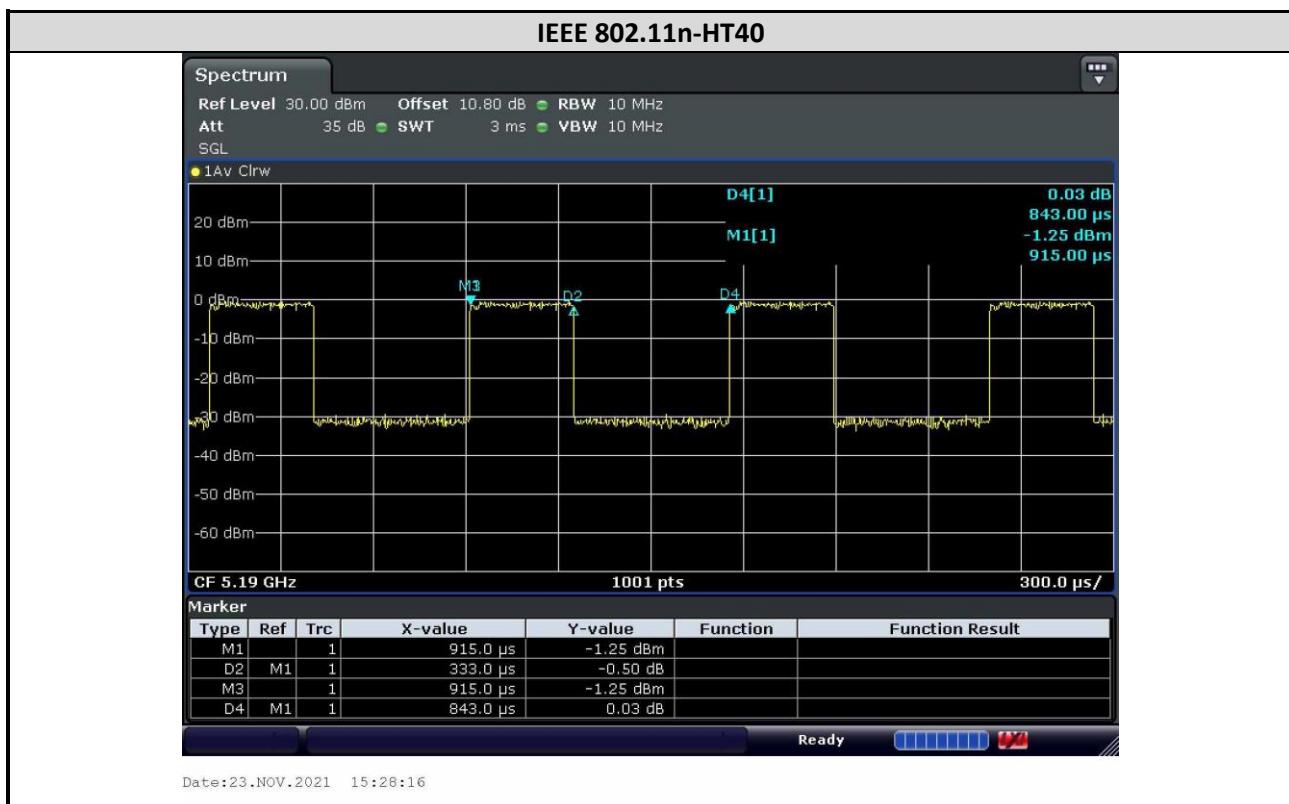
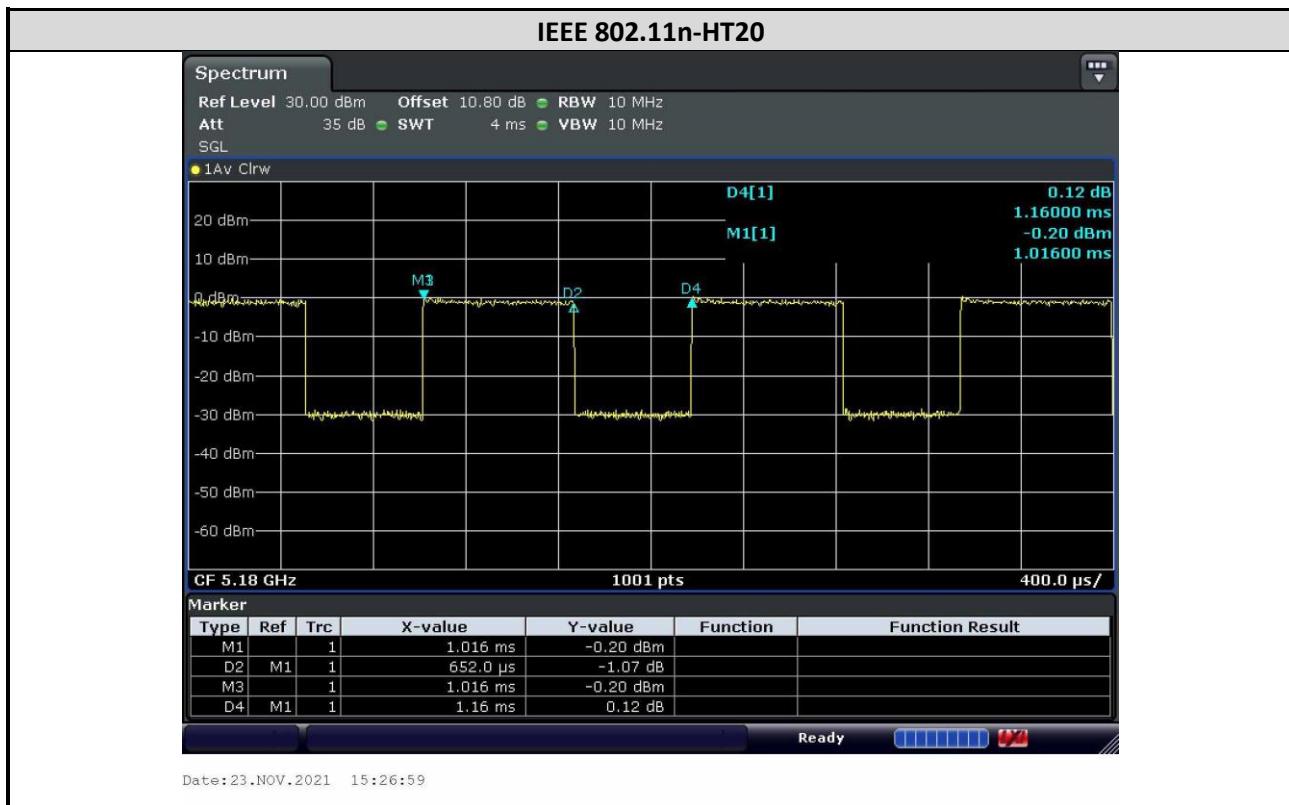
TEST REPORT
2.6 Instrument list

Radiated Emission					
Used	Equipment	Manufacturer	Type	Internal no.	Due date
<input checked="" type="checkbox"/>	3m Chamber SAC	ETS-LINDGREN	3m	NA	2024-01-21
<input checked="" type="checkbox"/>	Receiver	R&S	ESIB26	100114	2022-11-04
<input checked="" type="checkbox"/>	Broadband Antenna (Pre-amplifier)	ETS-Lindgren	3142E-PA	00201891	2023-04-29
<input checked="" type="checkbox"/>	6dB Attenuator	Talent	RA6A5-N-18	18103001	2023-11-10
<input checked="" type="checkbox"/>	Preamplifier	HP	8447F	2805A02960	2022-11-04
<input checked="" type="checkbox"/>	Double-Ridged Waveguide Horn Antenna (Pre-amplifier)	ETS-Lindgren	3117-PA	00201541	2023-04-29
<input checked="" type="checkbox"/>	Pre-amplifier	ETS-Lindgren	00118385	00201874	2022-11-05
<input checked="" type="checkbox"/>	Band Reject Filter(2400MHz~2 500MHz)	Micro-Tronics	BRM50702	G248	2022-11-05
<input checked="" type="checkbox"/>	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A
<input checked="" type="checkbox"/>	Test Software	Audix	e3	Software Version: 9.160323	
RF test					
Used	Equipment	Manufacturer	Type	Internal no.	Due date
<input checked="" type="checkbox"/>	MXG X-Series RF Vector Signal Generator	KEYSIGHT	N5182B	MY51350267	2022-11-04
<input checked="" type="checkbox"/>	EXA Signal Analyzer	KEYSIGHT	N9010A	MY51440197	2022-04-21
<input checked="" type="checkbox"/>	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	2022-11-04
<input checked="" type="checkbox"/>	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430023	2022-11-04
<input checked="" type="checkbox"/>	Test Software	AutomationTestSystem	ECIT	Software Version: 1.0.7515.16529	
Conducted Emission Test Equipment List					
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. Due date (mm dd, yyyy)
<input checked="" type="checkbox"/>	Receiver	R&S	ESR7	1316.3003K07-101181-K3	Nov. 04, 2022
<input checked="" type="checkbox"/>	Pulse Limiter	R&S	ESH3-Z2	0357.8810.54	Nov. 04, 2022
<input checked="" type="checkbox"/>	LISN	R&S	ESH2-Z5	860014/024	Nov. 04, 2022
<input checked="" type="checkbox"/>	Test Software	AutomationTestSystem	ECIT	Software Version: 920151119i	

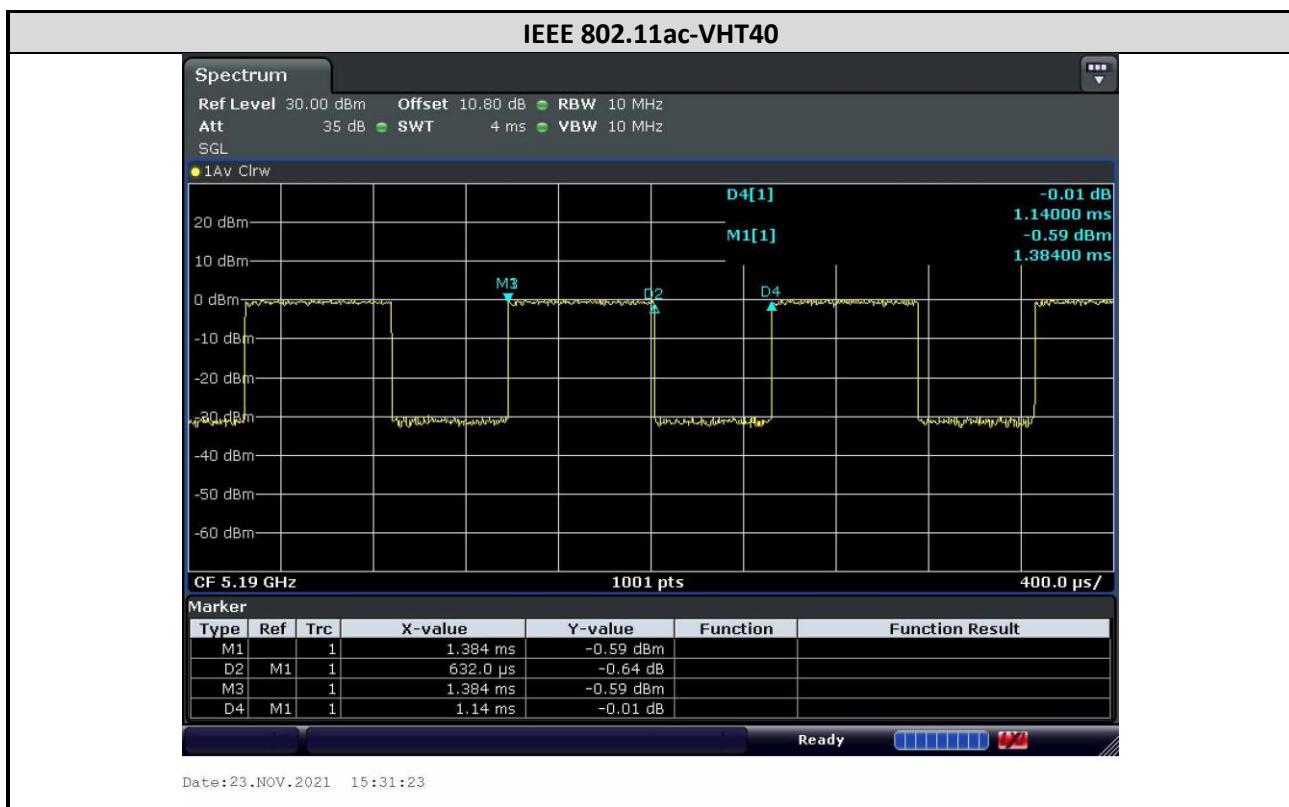
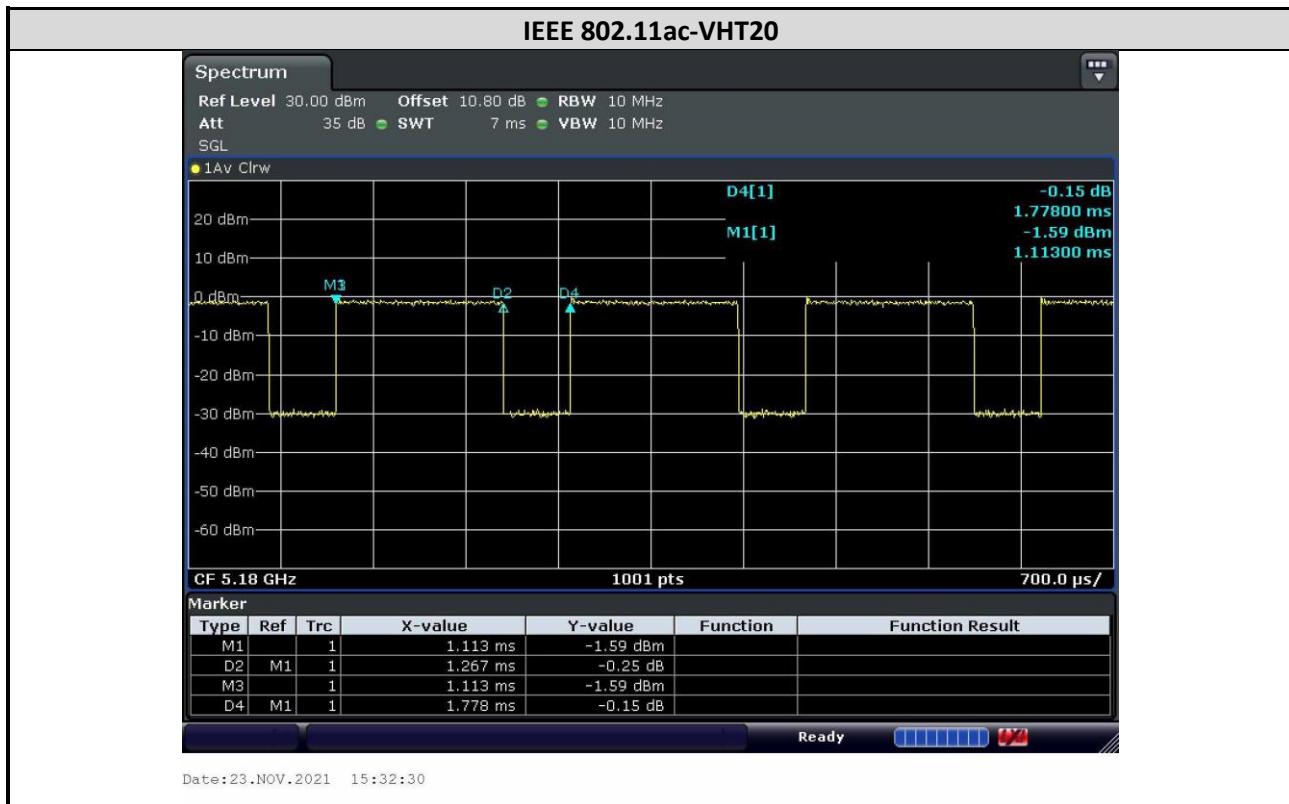
TEST REPORT**2.7 Measurement uncertainty**

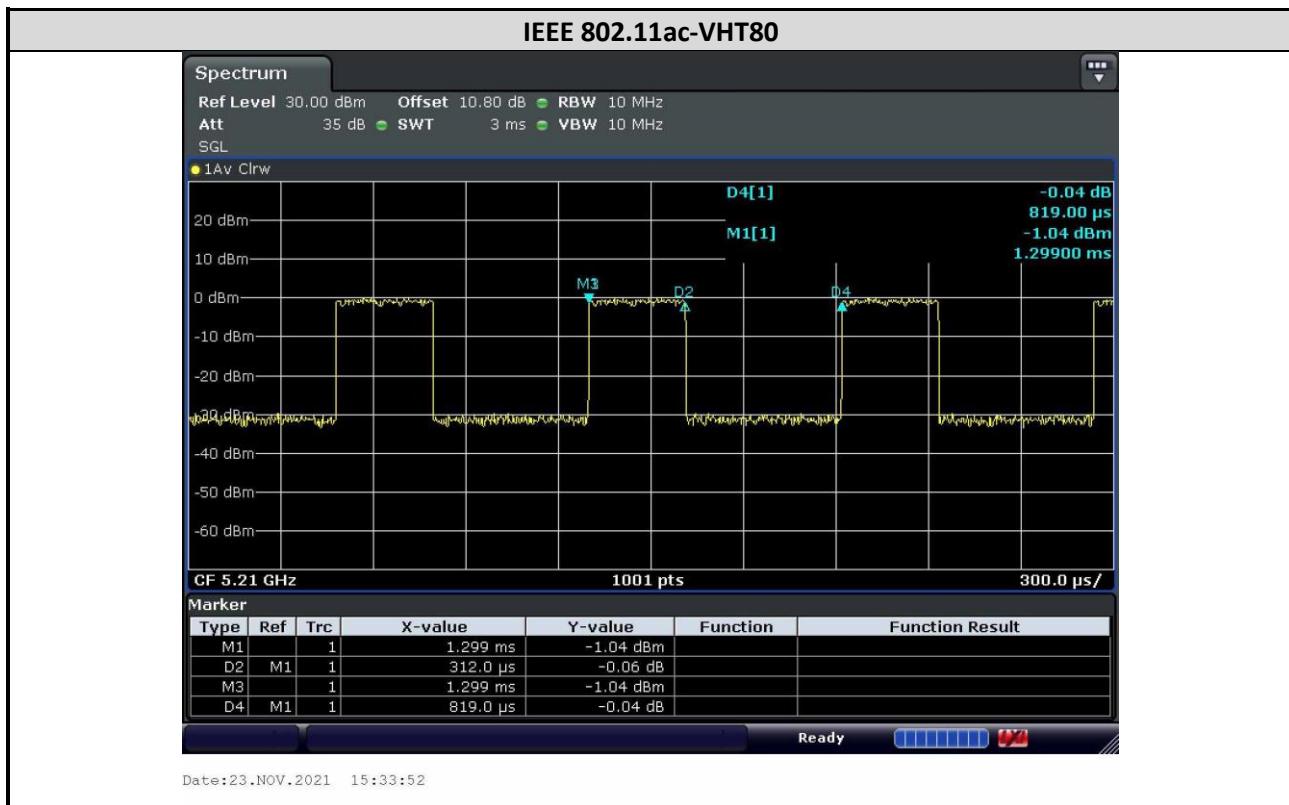

The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Measurement uncertainty
Maximum peak output power	
26 dB Bandwidth	± 0.60dB
Minimum 6dB Bandwidth	
Power spectral density	
Radiated Emissions in restricted frequency bands below 1GHz	± 4.90dB
Radiated Emissions in restricted frequency bands above 1GHz	± 4.8dB
Emission outside the frequency band	± 4.6dB
Power line conducted emission	± 2.7dB



TEST REPORT

2.8 Duty cycle



Test Mode	Channel	ON Time [ms]	Period [ms]	Duty Cycle (%)	Duty Cycle Factor (dB)	Limit	Verdict
IEEE 802.11a	5180	1.351	1.862	72.56	1.39	---	PASS
IEEE 802.11n-HT20	5180	0.652	1.160	56.21	2.50	---	PASS
IEEE 802.11n-HT40	5190	0.333	0.843	39.50	4.03	---	PASS
IEEE 802.11ac-VHT20	5180	1.267	1.788	70.86	1.50	---	PASS
IEEE 802.11ac-VHT40	5190	0.632	1.140	55.44	2.56	---	PASS
IEEE 802.11ac-VHT80	5210	0.312	0.819	38.10	4.19	---	PASS



TEST REPORT

TEST REPORT

TEST REPORT

TEST REPORT**3 26 dB Bandwidth**

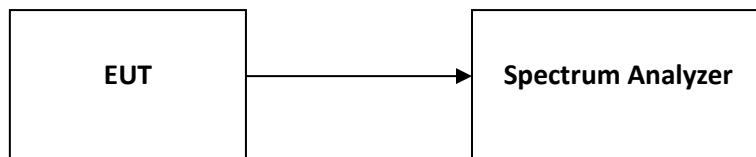
Test result: Pass

3.1 Limit

None

3.2 Measurement Procedure

The EUT was tested according to test procedure of "KDB789033 D02 General UNII Test Procedures New Rules"


26 dB Bandwidth

- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

99% Occupied Bandwidth

The following procedure shall be used for measuring (99 %) power bandwidth:

1. Set center frequency to the nominal EUT channel center frequency.
2. Set span = 1.5 times to 5.0 times the OBW.
3. Set RBW = 1 % to 5 % of the OBW
4. Set VBW $\geq 3 \cdot$ RBW
5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
6. Use the 99 % power bandwidth function of the instrument (if available).
7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

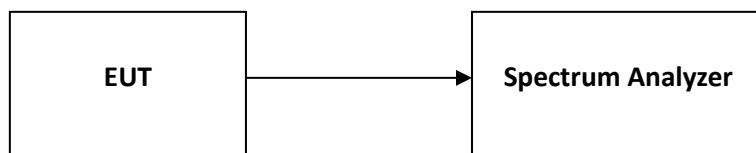
TEST REPORT**3.3 Test Configuration****3.4 The results of 26 dB Bandwidth**

Test data reference “Appendix of 220102160SHA-002_15.407-WIFI_Appendix” Appendix A

TEST REPORT**4 Minimum 6dB Bandwidth**

Test result: Pass

4.1 Limit


For systems using digital modulation techniques that may operate in the 5725 - 5850 MHz band, the minimum 6 dB bandwidth shall be at least 500 kHz.

4.2 Measurement Procedure

The EUT was tested according to test procedure of “KDB789033 D02 General UNII Test Procedures New Rules”

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) $\geq 3 \times$ RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

4.3 Test Configuration**4.4 The results of Minimum 6dB Bandwidth**

Test data reference “Appendix of 220102160SHA-002_15.407-WIFI_Appendix” Appendix B

TEST REPORT**5 Maximum conducted output power****Test result:** Pass**5.1 Limit**

For an outdoor access point operating in the band 5.15-5.25GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1W provided the maximum antenna gain does not exceed 6dBi.

The maximum e.i.r.p. at any elevation angle above 30 degrees from the horizon must not exceed 125mW (21 dBm).

For an indoor access point operating in the band 5.15-5.25GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6dBi.

For fixed point-to-point access points operating in the band 5.15-5.25GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1W.

For client devices in the 5.15-5.25GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250mW provided the maximum antenna gain does not exceed 6dBi. (FCC Limit)

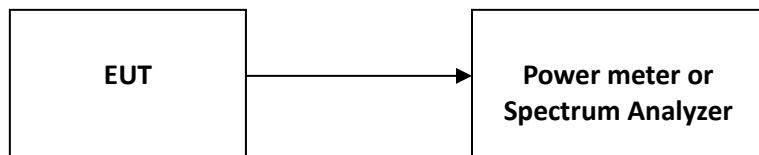
For the 5.25-5.35GHz and 5.47-5.725GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250mW or $11\text{dBm} + 10\log B$, where B is the 26dB emission bandwidth in megahertz. (FCC limit)

For the band 5.725-5.85GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1W. (FCC limit)

For Frequency Band 5150-5250 MHz, the maximum e.i.r.p. shall not exceed 200 mW or $10 + 10\log_{10}B$, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. (IC limit)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or $11 \text{ dBm} + 10 \log B$, where B is the 99% emission bandwidth in megahertz. (IC limit)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum e.i.r.p. shall not exceed 1.0 W or $17 + 10 \log_{10}B$, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. (IC limit)


For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. (IC limit)

If transmitting antennas of directional gain greater than 6dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

TEST REPORT**5.2 Measurement Procedure**

The EUT was tested according to test procedure of “KDB789033 D02 General UNII Test Procedures New Rules”

- (i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.
- (ii) Set RBW = 1 MHz.
- (iii) Set VBW \geq 3 MHz.
- (iv) Number of points in sweep $\geq 2 \times$ span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)
- (v) Sweep time = auto.
- (vi) Detector = power averaging (rms), if available. Otherwise, use sample detector mode.
- (vii) If transmit duty cycle $<$ 98%, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \geq 98%, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to “free run.”
- (viii) Trace average at least 100 traces in power averaging (rms) mode.
- (ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument’s band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the spectrum.

5.3 Test Configuration**5.4 Test Results of Maximum conducted output power**

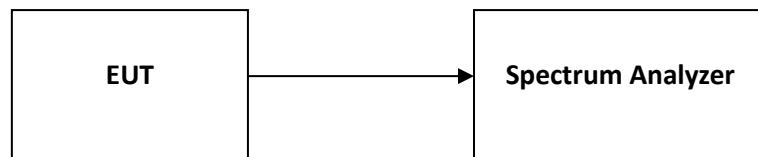
Test data reference “Appendix of 220102160SHA-002_15.407-WIFI_Appendix” Appendix C

TEST REPORT**6 Power spectrum density****Test result:** **Pass****6.1 Limit**

- For an outdoor access point operating in the band 5.15-5.25GHz, the maximum power spectral density shall not exceed 17dBm in any 1 megahertz band.
- For an indoor access point operating in the band 5.15-5.25GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.
- For client devices in the 5.15-5.25GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. (FCC limit)
- For the 5.25-5.35 GHz and 5.47-5.725GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. (FCC limit)
- For the band 5.725-5.85GHz, the maximum power spectral density shall not exceed 30dBm in any 500kHz band. (FCC limit)
- For the 5.15-5.25GHz band, the e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band. (IC limit)
- For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. (IC limit)
- For the 5.725-5.85GHz band, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. (IC limit)

If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. If there have a beam forming type, the limit should be the less of original and original + (6 - antenna gain - beamforming gain).

TEST REPORT**6.2 Measurement Procedure**


The EUT was tested according to test procedure of “KDB789033 D02 General UNII Test Procedures New Rules”

1. Create an average power spectrum for the EUT operating mode being tested by following the instructions in II.E.2. for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, “Compute power....” (This procedure is required even if the maximum conducted output power measurement was performed using a power meter, method PM.)
2. Use the peak search function on the instrument to find the peak of the spectrum and record its value.
3. Make the following adjustments to the peak value of the spectrum, if applicable:
 - a) If Method SA-2 or SA-2 Alternative was used, add $10 \log (1/x)$, where x is the duty cycle, to the peak of the spectrum.
 - b) If Method SA-3 Alternative was used and the linear mode was used in step II.E.2.g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.
4. The result is the Maximum PSD over 1 MHz reference bandwidth.
5. For devices operating in the bands 5.15 - 5.25 GHz, 5.25 - 5.35 GHz, and 5.47 - 5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in Section 15.407(a)(5). For devices operating in the band 5.725 - 5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, “provided that the measured power is integrated over the full reference bandwidth” to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 kHz bandwidth, the following adjustments to the procedures apply:
 - a) Set RBW $\geq 1/T$, where T is defined in II.B.I.a).
 - b) Set VBW ≥ 3 RBW.
 - c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add $10 \log (500 \text{ kHz}/\text{RBW})$ to the measured result, whereas RBW (<500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
 - d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add $10 \log (1\text{MHz}/\text{RBW})$ to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
 - e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 kHz for steps 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

TEST REPORT

6.3 Test Configuration

6.4 Test Results of Power spectrum density

Test data reference "Appendix of 220102160SHA-002_15.407-WIFI_Appendix" Appendix D

TEST REPORT

7 Radiated Emissions

 Test result: **Pass**

7.1 Limit

The radiated emissions which fall in the restricted bands, and the radiated emissions below 1GHz, must comply with the radiated emission limits specified showed as below:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

The radiated emissions which fall outside the restrict bands, should comply with the EIRP limit as below:

For transmitters operating in the 5.15 - 5.25 / 5.25 - 5.35 / 5.47 - 5.725GHz band:

Frequency (MHz)	EIRP Limit (dBm)	Equivalent Field Strength (3m) (dB μ V/m)
<5150		
>5350		
<5470	-27	68.20
>5725		

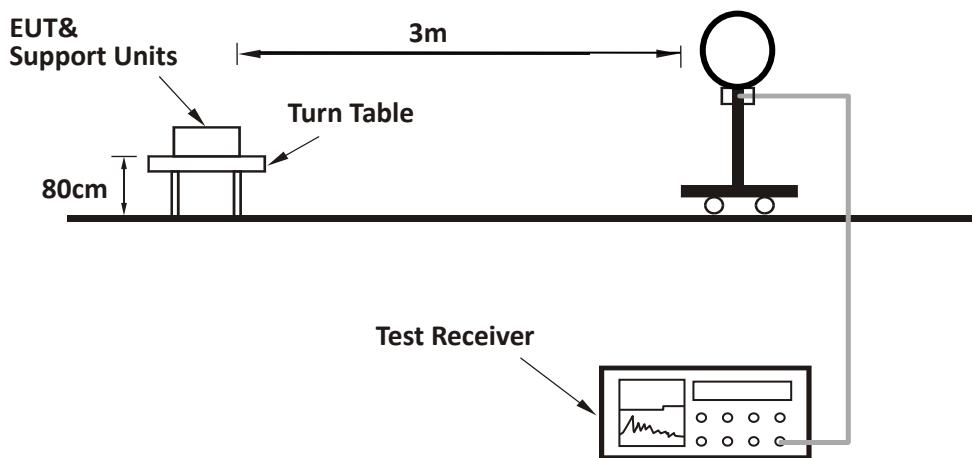
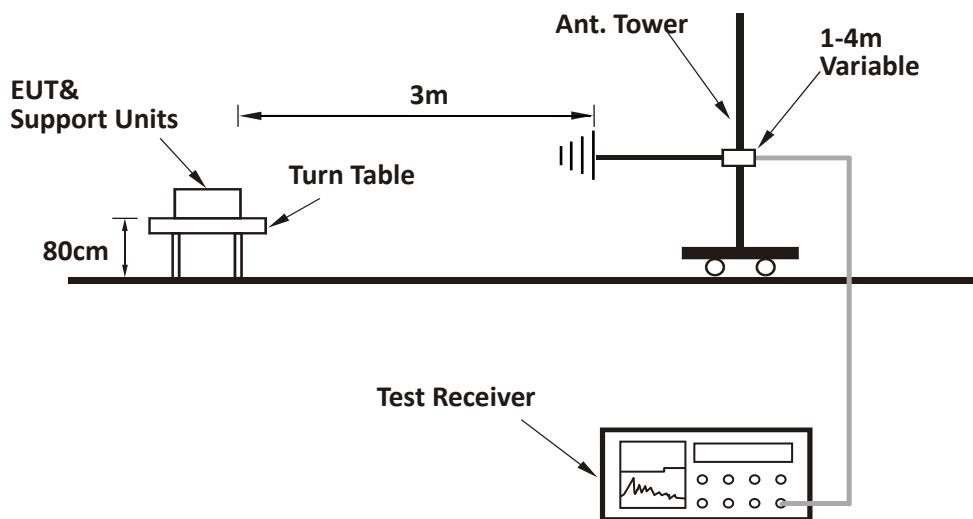
For transmitters operating in the 5.725 - 5.85GHz band:

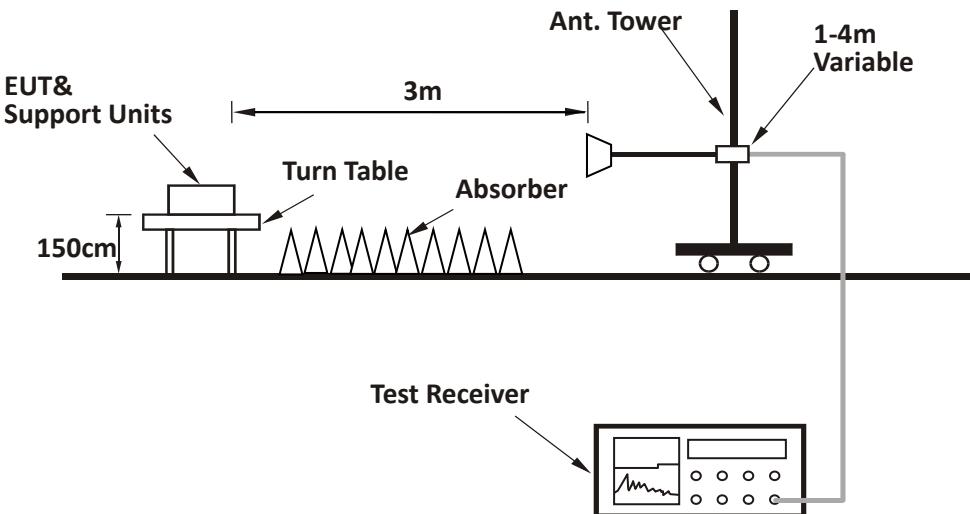
Frequency (MHz)	EIRP Limit (dBm/MHz)	Equivalent Field Strength (3m) (dB μ V/m)
<5650	-27	68.20
5650 ~ 5700	-27 ~ 10	68.20 ~ 105.20
5700 ~ 5720	10 ~ 15.6	105.20 ~ 110.80
5720 ~ 5725	15.6 ~ 27	110.80 ~ 122.20
5850 ~ 5855	27 ~ 15.6	122.20 ~ 110.80
5855 ~ 5875	15.6 ~ 10	110.80 ~ 105.20
5875 ~ 5925	10 ~ -27	105.20 ~ 68.20
>5925	-27	68.20

TEST REPORT**7.2 Measurement Procedure****For Radiated emission below 30MHz:**

- a) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) Both X and Y axes of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to peak or quasi-peak detect function and specified bandwidth with maximum hold mode.

NOTE:



1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.


For Radiated emission above 30MHz:

- a) The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meters chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to peak or quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f) The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

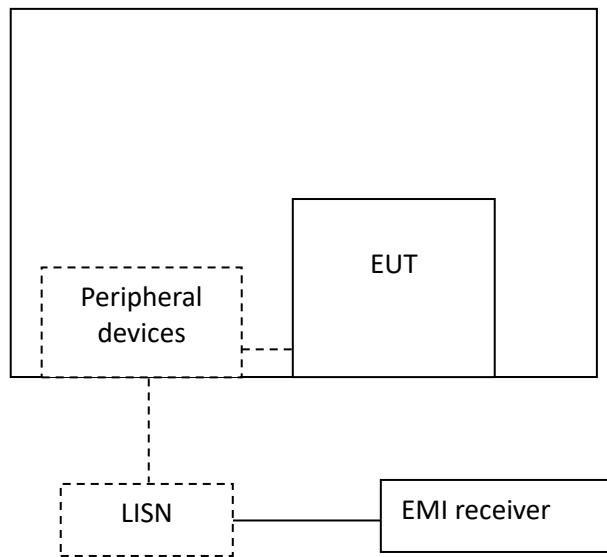
Note:

1. The resolution bandwidth of test receiver/spectrum analyzer is 120kHz for peak or quasi-peak detection at frequency below 1GHz.
2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz at frequency above 1GHz for peak detection above 1GHz.
3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is $\geq 1/T$ (Duty cycle $< 98\%$) or $3 \times RBW$ (Duty cycle $\geq 98\%$) for average detection (AV) at frequency above 1GHz.
4. All modes of operation were investigated and the worst-case emissions are reported.

TEST REPORT**7.3 Test Configuration****For Radiated emission below 30MHz:****For Radiated emission 30MHz to 1GHz:**

TEST REPORT**For Radiated emission above 1GHz:**

TEST REPORT


7.4 Test Results of Radiated Emissions

Test data reference "Appendix of 220102160SHA-002_15.407-WIFI_Appendix" Appendix E

TEST REPORT**8 Power line conducted emission****Test result:** Pass**8.1 Limit**

Frequency of Emission (MHz)	Conducted Limit (dBuV)	
	QP	AV
0.15-0.5	66 to 56*	56 to 46 *
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

8.2 Test Configuration

TEST REPORT

8.3 Measurement Procedure

Measured levels of ac power-line conducted emission shall be the emission voltages from the voltage probe, where permitted, or across the 50 Ω LISN port (to which the EUT is connected), where permitted, terminated into a 50 Ω measuring instrument. All emission voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord by the use of mating plugs and receptacles on the LISN, if used. Equipment shall be tested with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended by the manufacturer. For those measurements using a LISN, the 50 Ω measuring port is terminated by a measuring instrument having 50 Ω input impedance. All other ports are terminated in 50 Ω loads.

Tabletop devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.

The bandwidth of the test receiver is set at 9 kHz.

TEST REPORT

8.4 Test Results of Power line conducted emission

Test data reference "Appendix of 220102160SHA-002_15.407-WIFI_Appendix" Appendix F

TEST REPORT

9 Dynamic frequency selection

Test result: Pass

9.1 Limit

EUT Operating Mode:

DFS Operational mode	Operating Frequency Range	
	5250 MHz to 5350 MHz	5470 MHz to 5725 MHz
Slave without radar Interference detection function	✓	✓

Applicability of DFS Requirements Prior to Use of a Channel:

Requirement	Operational Mode		
	Master	Client Without Radar Detection	Client With Radar Detection
Non-Occupancy Period	✓	Not required	Yes
DFS Detection Threshold	✓	Not required	Yes
Channel Availability Check Time	✓	Not required	Not required
U-NII Detection Bandwidth	✓	Not required	Yes

Applicability of DFS requirements during normal operation:

Requirement	Operational Mode	
	Master Device or Client with Radar Detection	Client Without Radar Detection
DFS Detection Threshold	Yes	Not required
Channel Closing Transmission Time	Yes	Yes
Channel Move Time	Yes	Yes
U-NII Detection Bandwidth	Yes	Not required

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.		

TEST REPORT

DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection:

Maximum Transmit Power	Value (See Notes 1, 2, and 3)
EIRP \geq 200 milliwatt	-64 dBm
EIRP $<$ 200 milliwatt and power spectral density $<$ 10 dBm/MHz	-62 dBm
EIRP $<$ 200 milliwatt that do not meet the power spectral density requirement	-64dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

DFS Radar Signal Parameter Values:

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds (See Note 1.)
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. (See Notes 1 and 2.)
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. (See Note 3.)

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

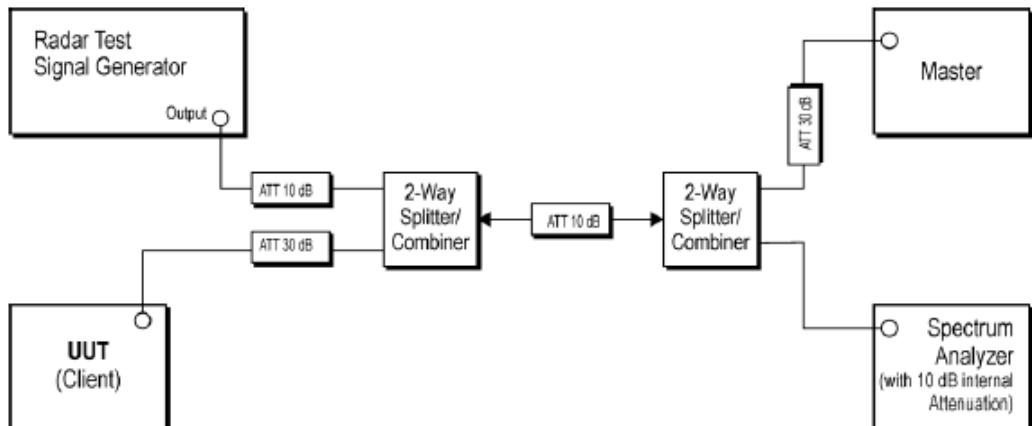
DFS Radar Signal Parameter:

Radar Type 0 was used in the evaluation of the Client device for the purpose of measuring the Channel Move Time and the Channel Closing Transmission Time

TEST REPORT

Table 1-Short Pulse Radar Test Waveforms

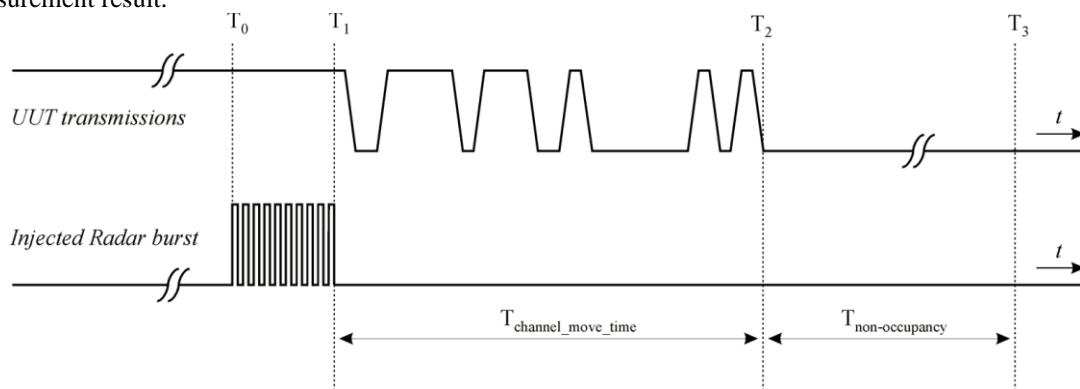
Radar Type	Pulse Width (μsec)	PRI (μsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Trials
0	1	1428	18	See Note 1.	See Note 1.
1	1	Test A Test B	Roundup $\left\{ \left(\frac{1}{360} \right) \left(\frac{19 \cdot 10^6}{\text{PRI}_{\mu\text{sec}}} \right) \right\}$	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Radar Types 1-4)				80%	120
Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.					


Table 2-Long Pulse Radar Test Waveform

Radar Type	Pulse Width (μsec)	Chirp Width (MHz)	PRI (μsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Table 3-Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (μsec)	PRI (μsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	9	0.333	300	70%	30


9.2 Test Configuration

TEST REPORT

9.3 Measurement Procedure

- a) One frequency will be chosen from the Operating Channels of the EUT within the 5250-5350 MHz or 5470-5725 MHz bands. For 802.11 devices, the test frequency must contain control signals. This can be verified by disabling channel loading and monitoring the spectrum analyzer. If no control signals are detected, another frequency must be selected within the emission bandwidth where control signals are detected.
- b) In case the EUT is a Master Device, a U-NII device operating as a Client Device will be used and it is assumed that the Client will associate with the EUT (Master). For radiated tests, the emissions of the Radar Waveform generator will be directed towards the Master Device. If the Master Device has antenna gain, the main beam of the antenna will be directed toward the radar emitter. Vertical polarization is used for testing.
- c) The TCP protocol unicast data stream was generated by the iperf software command line with at least 17% activity ratio over any 100ms period.
- d) Timing plots are reported with calculations demonstrating a minimum channel loading of approximately 17% or greater. For example, channel loading can be estimated by setting the spectrum analyzer for zero span and approximate the Time On/ (Time On + Off Time).
- e) At time T0 the Radar Waveform generator sends a Burst of pulses for one of the Short Pulse Radar Types 1-4 at DFS Detection Threshold levels on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.
- f) Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Channel Move Time). Measure and record the Channel Move Time and Channel Closing Transmission Time if radar detection occurs.
- g) When operating as a Master Device, monitor the EUT for more than 30 minutes following instant T2 to verify that the EUT does not resume any transmissions on this Channel. Perform this test once and record the measurement result.

9.4 Test Results of Dynamic frequency selection

Test data reference "Appendix of 220102160SHA-002_15.407-WIFI_Appendix" Appendix G

TEST REPORT**10 Frequency Stability****Test result:** Pass**10.1 Limit**

The frequency stability shall be sufficient to ensure that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

10.2 Test Result

Frequency Error - Temperature Variation

Supply Voltage DC (V)	Temperature (°C)	Frequency Deviation (ppm)
		Channel (5180MHz)
3.3	-20	7.722
	-10	7.568
	0	7.861
	10	7.726
	20	7.728
	30	7.834
	40	7.866
	50	7.865

Frequency Error - Voltage Variation

Supply Voltage DC (V)	Temperature (°C)	Frequency Deviation (ppm)
		Channel (5180MHz)
2.97	20	7.857
3.3		7.728
3.63		7.844

TEST REPORT

11 Antenna requirement

Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Result:

EUT use of a permanently attached antenna and a unique coupling to the intentional radiator, so it can comply with the provisions of this section.

TEST REPORT**Appendix I: Photograph of test setup**

See test photos attached in Appendix 1 for the actual connections between Product and support equipment.

Appendix II: Photograph of equipment under test

Refer to Appendix 2 for EUT external and internal photos.

***** END *****