

SIMBEX LLC TEST REPORT

SCOPE OF WORK

EMISSIONS TESTING - INSITE NXT PLAYER UNIT

REPORT NUMBER

104955058ATL-001a

ISSUE DATE

REVISED DATE

May 20, 2022 June 09, 2022

PAGES

50

DOCUMENT CONTROL NUMBER

Non-Specific Radio Report Shell Rev. December 2017 © 2017 INTERTEK

EMISSIONS TEST REPORT

(FULL COMPLIANCE)

Report Number: 104955058ATL-001a Project Number: G104955058

Report Issue Date: May 20, 2022 Report Revision Date: June 09, 2022

Model(s) Tested: INSITE NXT PLAYER UNIT

Standards: CFR47 FCC Part 15.247 Subpart C: 2022,

CFR47 FCC Part 15 Subpart C: 2022, RSS-247 Issue 2 February 2017, ICES-003 Issue 6 Published: 2020, RSS-Gen Issue 5 April 2018, Issue 5 March 2015 +A1: 2021

Tested by: Intertek Testing Services NA, Inc. 1950 Evergreen Blvd., Suite 100 Duluth, GA 30096 USA Client: Simbex LLC 10 Water Street Suite 410 Lebanon, NH 03766 USA

Report prepared by Dan Alvarez

Report reviewed by Kouma Sinn

Dan Alvarez / EMC Engineer

Kouma Sinn / EMC Engineering Supervisor

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek

Report Number: 104955058ATL-001a Revised: 06/09/2022

Table of Contents

1	Introduction and Conclusion	4
2	Test Summary	4
3	Client Information	5
4	Description of Equipment Under Test and Variant Models	5
5	System Setup and Method	7
6	Maximum Peak Output Power	8
7	6 dB Bandwidth and Occupied Bandwidth	15
8	Maximum Power Spectral Density	25
9	Band Edge Compliance	31
10	Transmitter spurious emissions	36
11	Revision History	50

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	
4	Description of Equipment Under Test and Variant Models	
5	System Setup and Method	
6	Maximum Peak Output CFR47 FCC Part 15 Subpart B:2019, Section 15.247 (b)(3) RSS-247 Issue 2 February 2017, Issue 5 March 2015	Pass
7	6 dB Bandwidth and Occupied Bandwidth CFR47 FCC Part 15 Subpart C:2019, Section 15.247 (a)(2) RSS-247 Issue 2 February 2017	Pass
8	Maximum Power Spectral Density CFR47 FCC Part 15 Subpart C:2019, Section 15.247 (e) RSS-247 Issue 2 February 2017	Pass
9	Band Edge Compliance CFR47 FCC Part 15 Subpart C:2019, Section 15.247 (d) RSS-247 Issue 2: 02/2017)	Pass
10	Transmitter spurious emissions CFR47 FCC Part 15 Subpart C:2019, Section 15.247 (d) RSS-247 Issue 2 February 2017	Pass
11	Revision History	

Notes: The EUT is powered by 1.5 VDC Battery. No AC Conducted Emissions test is required.

3 Client Information

This EUT was tested at the request of:

Client: Simbex LLC

10 Water Street Suite 410 Lebanon, NH 03766

USA

Contact: Evart Fairman Telephone: +1 (603) 448 2367

Fax: None

Email: ef01@simbex.com

4 Description of Equipment Under Test and Variant Models

Manufacturer: Simbex LLC

10 Water Street Suite 410 Lebanon, NH 03766

USA

Equipment Under Test						
Description	Manufacturer	Model Number	Serial Number			
INSITE NXT PLAYER UNIT (No Shield)	Simbex, LLC	016-N-1003 Rev.A	Test Unit 5			
INSITE NXT PLAYER UNIT (No Shield	Simbex, LLC	016-N-1003 Rev.A	Test Unit 7			
with Coax on antenna port)						

Receive Date:	04/25/2022
Received Condition:	Good
Type:	Production

Description of Equipment Under Test (provided by client)

The InSite NXT Player Unit is a battery-powered device that is designed to be built into football helmets worn by players. The device detects and measures head impact events and transmits event data to the paired smart phone using the IEEE 802.15.1 -2006 Bluetooth Low Energy protocol.

Equipment Under Test Power Configuration						
Rated Voltage Rated Power Rated Frequency Number of Phase						
1.5 VDC Battery	-	-	-			

Operating modes of the EUT:

	Descriptions of EUT Exercising
1	Continuously transmitting

Software used by the EUT:

No.	Descriptions of EUT Exercising
1	None

Radio/Receiver Characteristics				
Frequency Band(s)	2400-2480 MHz			
Modulation Type(s)	Direct-sequence Spread Spectrum, 40 channels, GFSK			
Data Rates	800 kbps			
Power Setting During Test	Max			
Maximum Output Power	Low Channel (2402.2 MHz): + 15.13 dBm (Conducted)			
	Mid Channel (2441.4 MHz): + 14.78 dBm (Conducted)			
	High Channel (2480.1 MHz): + 14.19 dBm (Conducted)			
Test Channels	Low Channel (2402 MHz)			
	Mid Channel (2442 MHz)			
Occupied Bandwidth	High Channel (2480 MHz)			
Occupied Bandwidth	Low Channel (2401.7 MHz): 1.058 MHz Mid Channel (2441.7 MHz): 1.067 MHz			
	High Channel (2479.7 MHz): 1.065 MHz			
6 dB Bandwidth	Low Channel (2401.7 MHz): 0.649 MHz			
	Mid Channel (2441.7 MHz): 0.632 MHz			
	High Channel (2479.7 MHz): 0.674 MHz			
20 dB Bandwidth	Low Channel (2401.7 MHz): 1.191 MHz			
	Mid Channel (2441.7 MHz): 1.199 MHz			
	High Channel (2479.7 MHz): 1.192 MHz			
Frequency Hopper: Number of Hopping				
Channels	N/A			
Frequency Hopper: Channel Dwell Time	N/A			
Frequency Hopper: Max interval between	N1/A			
two instances of use of the same channel	N/A			
MIMO Information (# of Transmit and Receive antenna ports)	1			
Equipment Type	Standalone			
Antenna Type and Gain	PCB, +3.3 dBi			
Antenna Type and Gam	1 OD, TO.O UDI			

Antenna Requirement - FCC: Section 15.203

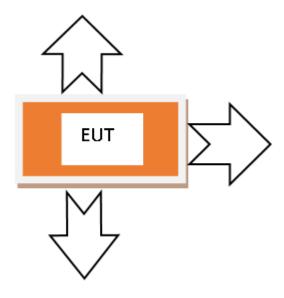
The PCB antenna is a mounted antenna and the antenna is permanently attached to the board. This satisfies the requirements of Section 15.203.

Variant Models:

The following variant models were not tested as part of this evaluation, but have been identified by the manufacturer as being electrically identical models, depopulated models, or with reasonable similarity to the model(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

None

5 System Setup and Method


Cables							
ID	Description	Length (m)	Shielding	Ferrites	Termination		
	None	N/A	N/A	N/A	N/A		

Support Equipment						
Description Manufacturer Model Number Serial Number						
None	N/A	N/A	N/A			

5.1 Method:

Configuration as required by Configuration as required by FCC Part 15 Subpart C 15.247:2022, FCC Part 15 Subpart B:2022, RSS 247 Issue 2: 02/2017, ICES 003 Issue 7:2020, RSS-Gen Issue 5 April 2018, Issue 5:2015 +A1:2021, ANSI C 63.10: 2013, ANSI C 63.4: 2014, ANSI C63.10:2013, and KBD 558074 D01 15.247 Meas Guidance v05r02:2019

5.2 EUT Block Diagram:

6 Maximum Peak Output Power

6.1 Method

Tests are performed in accordance with CFR47 FCC Part 15.247, RSS-247, ANSI C63.10, and KBD 558074.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.9 dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	4.6 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.6 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	5.8 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	4.7 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	4.9 dB	6.3 dB

As shown in the table above our radiated emissions $U_{\it lab}$ is less than the corresponding $U_{\it CISPR}$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBuV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 \ dB\mu V$ $AF = 7.4 \ dB/m$ $CF = 1.6 \ dB$ $AG = 29.0 \ dB$ $FS = 32 \ dB\mu V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V NF = Net Reading in $dB\mu$ V

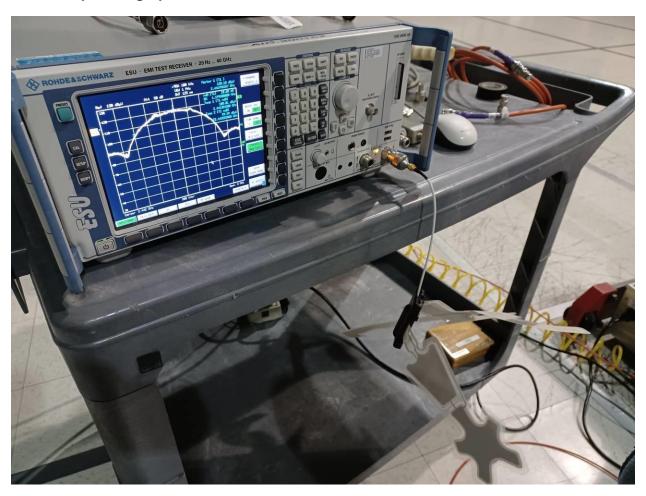
Example:

$$FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 \\ UF = 10^{(32 \, dB\mu V \, / \, 20)} = 39.8 \; \mu V/m$$

6.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
200005'	Attenuator, 03 dB, <18GHz	Weinschel Corp	2	BK7890	05/27/2021	05/27/2022
200162'	EMI Receiver (20Hz-40GHz)	Rohde & Schwarz	ESU 40	100314	10/13/2021	10/13/2022
212104'	Barometric Pressure/Humidity/Temperature Datalogger	Extech	SD700	A.074980	05/25/2021	05/25/2022

Software Utilized:

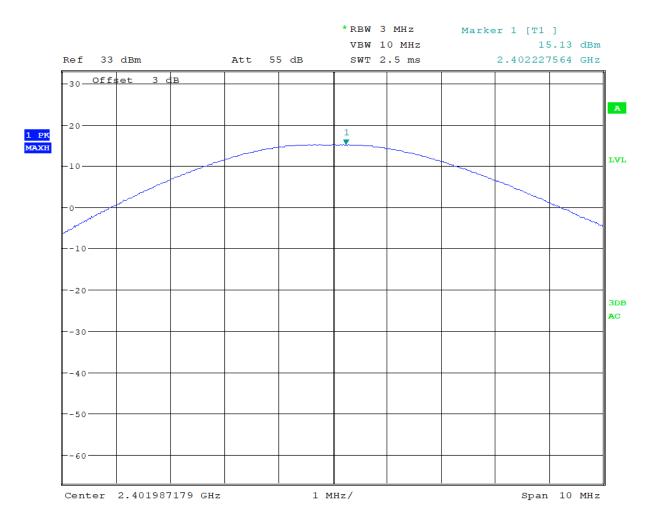

Name	Manufacturer	Version
BAT-EMC	Nexio	3.19.1.18

6.3 Results:

The sample tested was found to Comply.

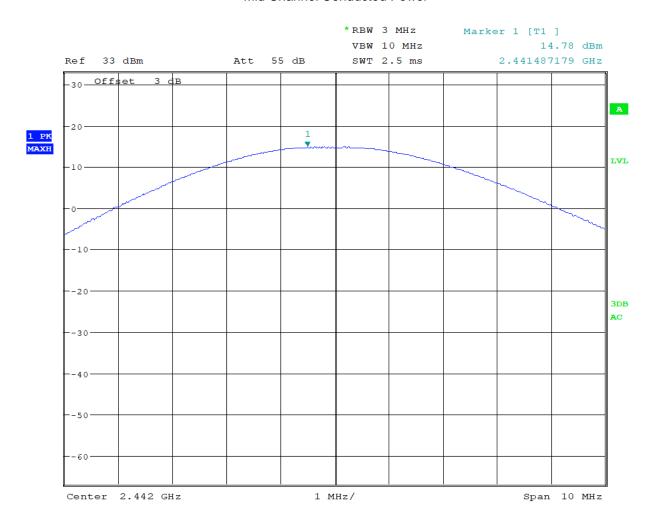
Limits - FCC Part §15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt or + 30 dBm.

6.4 Setup Photograph:

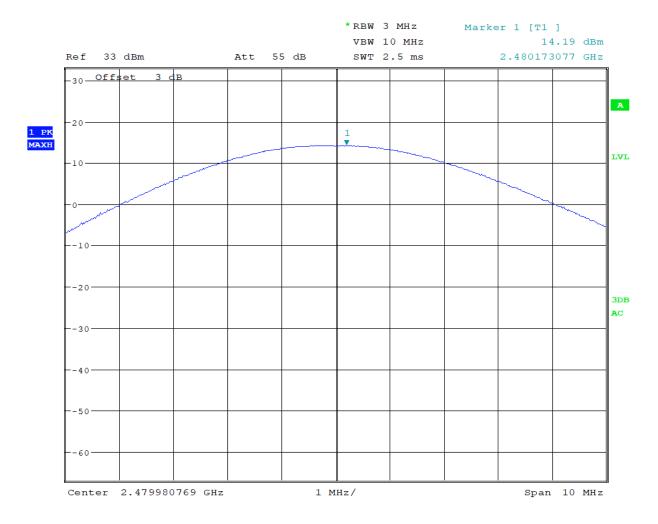

Intertek

Report Number: 104955058ATL-001a Revised: 06/09/2022

6.5 Plots/Data:


Frequency (MHz)	Conducted Power (dBm)
2402.2	15.13
2441.4	14.78
2480.1	14.19

Low Channel Conducted Power


Date: 19.MAY.2022 15:36:41

Mid Channel Conducted Power

Date: 19.MAY.2022 15:37:39

High Channel Conducted Power

Date: 19.MAY.2022 15:38:13

Test Personnel:	Dan Alvarez	Test Date:	05/19/2022
Supervising/Reviewing			
Engineer:			
(Where Applicable)	N/A		
	CFR47 FCC Part 15.247		
Product Standard:	RSS-247,	Limit Applied:	See report section 6.3
Input Voltage:	Battery Powered		
Pretest Verification w/		Ambient Temperature:	23 °C
Ambient Signals or			
BB Source:	N/A	Relative Humidity:	43 %
		Atmospheric Pressure:	986 mbars

Deviations, Additions, or Exclusions: None

7 6 dB Bandwidth and Occupied Bandwidth

7.1 Method

Tests are performed in accordance with CFR47 FCC Part 15.247, RSS-247, and ANSI C63.10.

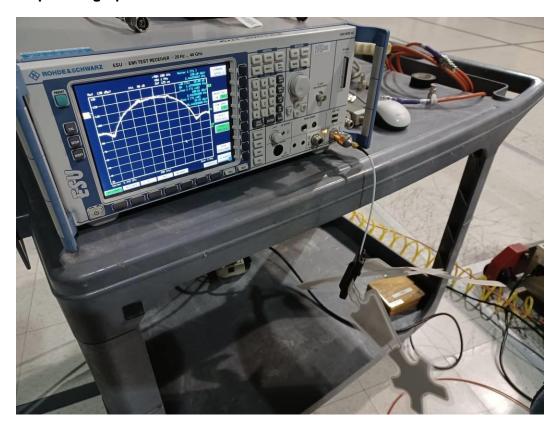
TEST SITE: EMC Lab

<u>The EMC Lab</u> has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

7.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
200162'	EMI Receiver (20Hz-40GHz)	Rohde & Schwarz	ESU 40	100314	10/13/2021	10/13/2022
212104'	Barometric Pressure/Humidity/Temperature Datalogger	Extech	SD700	A.074980	05/25/2021	05/25/2022

Software Utilized:


Name	Manufacturer	Version
None	N/A	N/A

7.3 Results:

The sample tested was found to Comply.

Limits – FCC Part §15.247 (a) (2) Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

7.4 Setup Photograph:

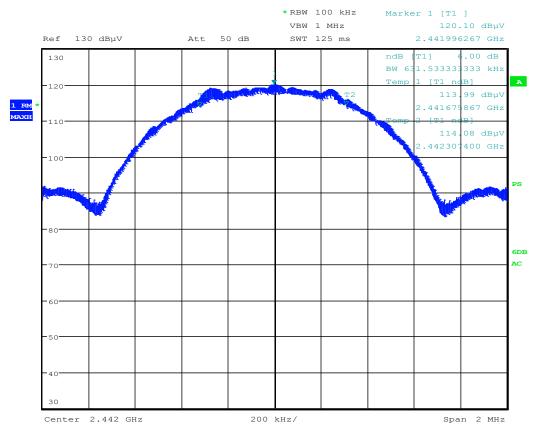
Intertek

Report Number: 104955058ATL-001a Revised: 06/09/2022

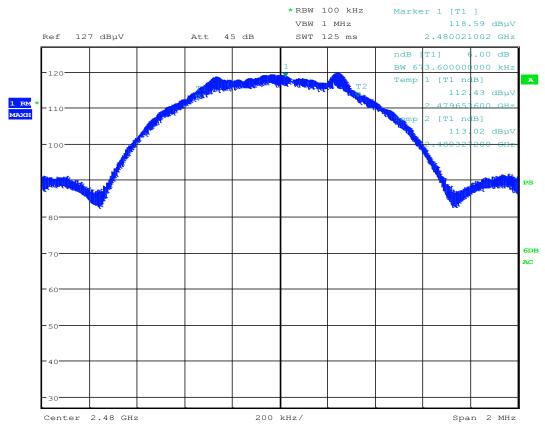
7.5 Plots/Data:

DTS Bandwidths

Frequency	6 dB DTS Bandwidth	Bandwidth Limit	Results
2401.7 MHz	649 kHz	> 500 kHz	Pass
2441.7 MHz	632 kHz	> 500 kHz	Pass
2479.7 MHz	674 kHz	> 500 kHz	Pass


Notes: Measurement was performed using conducted method.

Low Channel 6 dB DTS Bandwidth


Date: 27.APR.2022 13:42:39

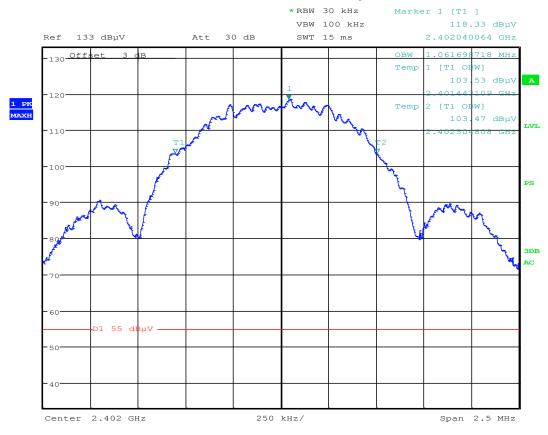
Mid Channel 6 dB DTS Bandwidth

Date: 27.APR.2022 14:59:24

High Channel 6 dB DTS Bandwidth

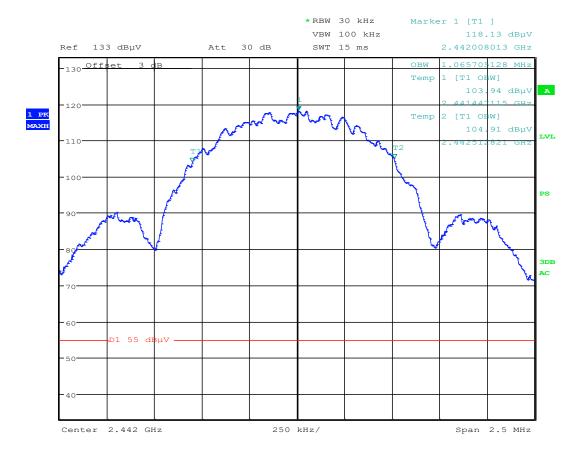
Date: 27.APR.2022 13:31:16

Intertek

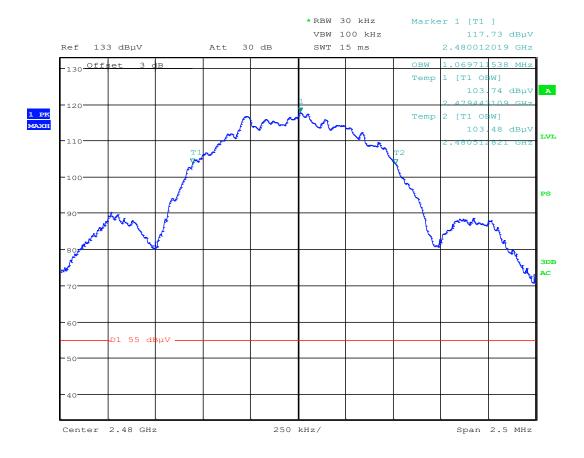

Report Number: 104955058ATL-001a Revised: 06/09/2022

Occupied Bandwidths

Frequency	99% Occupied Bandwidth	Bandwidth Limit	Result
2401.7 MHz	1.062 MHz	Upper and Lower edge within assigned band	Pass
2441.7 MHz	1.066 MHz	Upper and Lower edge within assigned band	Pass
2479.7 MHz	1.070 MHz	Upper and Lower edge within assigned band	Pass


Notes: Measurement was performed using conducted method.

Low Channel 99% Power Occupied Bandwidth


Date: 13.MAY.2022 13:26:14

Mid Channel 99% Power Occupied Bandwidth

Date: 13.MAY.2022 13:26:42

High Channel 99% Power Occupied Bandwidth

Date: 13.MAY.2022 13:25:43

Test Personnel: Supervising/Reviewing Engineer:	Dan Alvarez	Test Date:	04/27/2022
(Where Applicable)	N/A		
Product Standard: Input Voltage:	CFR47 FCC Part 15.247, RSS-247 Battery Powered	Limit Applied:	See report section 7.3
Pretest Verification w/		Ambient Temperature:	23 °C
Ambient Signals or	N/A	Relative Humidity:	40.2 %
		Atmospheric Pressure:	987 mbars

Deviations, Additions, or Exclusions: None

8 Maximum Power Spectral Density

8.1 Method

Tests are performed in accordance with CFR47 FCC Part 15.247, RSS-247, and ANSI C63.10.

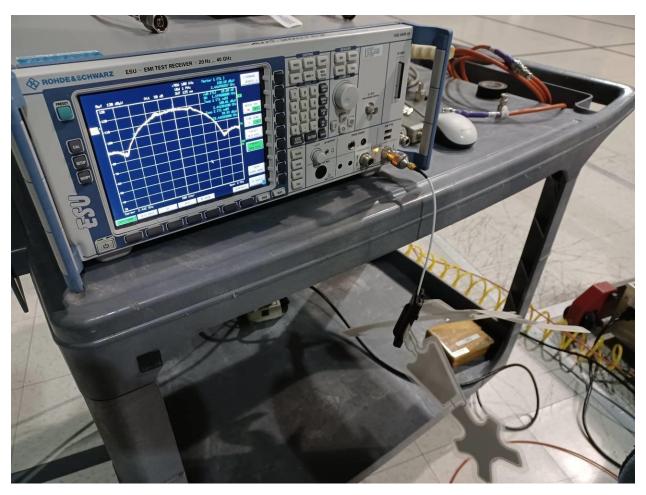
TEST SITE: EMC Lab

<u>The EMC Lab</u> has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

8.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
200162'	EMI Receiver (20Hz-40GHz)	Rohde & Schwarz	ESU 40	100314	10/13/2021	10/13/2022
	Barometric Pressure/Humidity/Temperature					
212104'	Datalogger	Extech	SD700	A.074980	05/25/2021	05/25/2022

Software Utilized:


Name	Manufacturer	Version
None	N/A	N/A

8.3 Results:

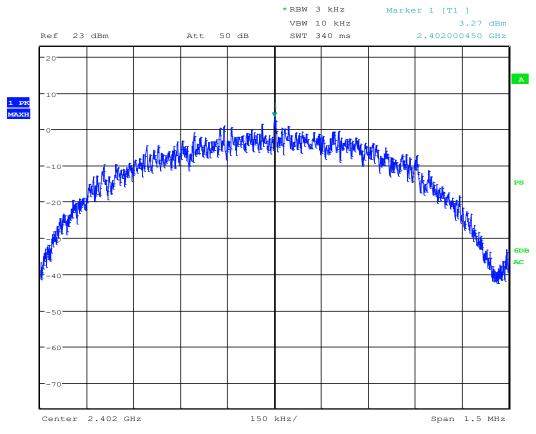
The sample tested was found to Comply.

Limits – FCC Part §15.247 (e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.4 Setup Photograph:

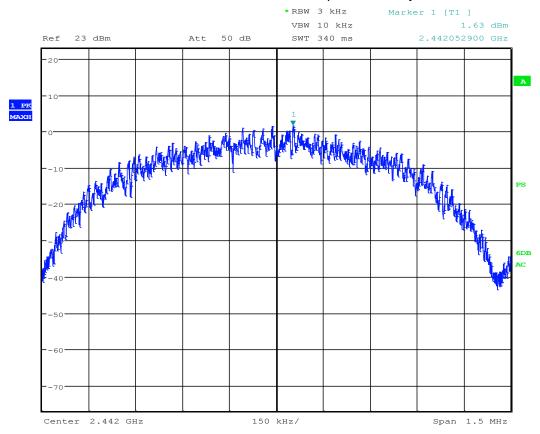
Intertek

Report Number: 104955058ATL-001a Revised: 06/09/2022

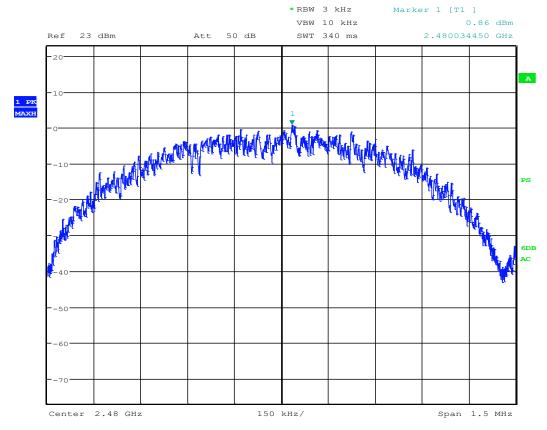

8.5 Plots/Data:

Power Spectral Density

Frequency (MHz)	PSD RBW (kHz)	Power Spectral Density (dBm)	Limit (dBm)	Margin (dB)	Result
2401.7	3	3.27	8	-4.73	Pass
2441.7	3	1.63	8	-6.37	Pass
2479.7	3	0.86	8	-7.14	Pass


Notes: Measurement was performed using conducted method.

Low Channel Power Spectral Density


Date: 27.APR.2022 16:11:41

Mid Channel Power Spectral Density

Date: 27.APR.2022 16:12:48

High Channel Power Spectral Density

Date: 27.APR.2022 16:13:46

Test Personnel:	Dan Alvarez	Test Date:	04/27/2022
Supervising/Reviewing Engineer:			
(Where Applicable)	N/A		
	CFR47 FCC Part 15.247,		
Product Standard:	RSS-247	Limit Applied:	See report section 8.3
Input Voltage:	Battery Powered		
		A 11 1 -	00.00
Pretest Verification w/		Ambient Temperature:	23 °C
Ambient Signals or BB Source:	N/A	Relative Humidity:	43 %
		·	
		Atmospheric Pressure:	986 mbars

Deviations, Additions, or Exclusions: None

9 Band Edge Compliance

9.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C 15.247 RSS 247, ANSI C 63.10, and ANSI C 63.4.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.9 dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	4.6 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.6 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	5.8 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	4.7 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	4.9 dB	6.3 dB

As shown in the table above our radiated emissions $U_{\it lab}$ is less than the corresponding $U_{\it CISPR}$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in $dB\mu V$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This

value in $dB\mu V/m$ was converted to its corresponding level in $\mu V/m$.

 $RA = 52.0 \ dB\mu V$ $AF = 7.4 \ dB/m$ $CF = 1.6 \ dB$ $AG = 29.0 \ dB$ $FS = 32 \ dB\mu V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μ V NF = Net Reading in $dB\mu$ V

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$
 UF = $10^{(32 \text{ dB}\mu\text{V}\,/\,20)} = 39.8 \ \mu\text{V/m}$

9.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
200005'	Attenuator, 03 dB, <18GHz	Weinschel Corp	2	BK7890	05/27/2021	05/27/2022
200162'	EMI Receiver (20Hz-40GHz)	Rohde & Schwarz	ESU 40	100314	10/13/2021	10/13/2022
MM3'	RF Coax Cable 10KHz-18GHz	Maury Microwave	UC-N-MM36	769548	05/28/2021	05/28/2022
212104'	Barometric Pressure/Humidity/Temperature Datalogger	Extech	SD700	A.074980	05/25/2021	05/25/2022
MM8	RF Coax Cable 9KHz-18GHz	Maury Microwave	UC-N-MM-267	1635289	10/13/2021	10/13/2022
213453'	Preamplifier 500MHz-18GHz	Com-Power	PAM-118A	18040030	10/13/2021	10/13/2022
213058a'	Antenna, Horn, <18 GHz	A.H. Systems	SAS-200/571	246	02/08/2022	02/08/2023

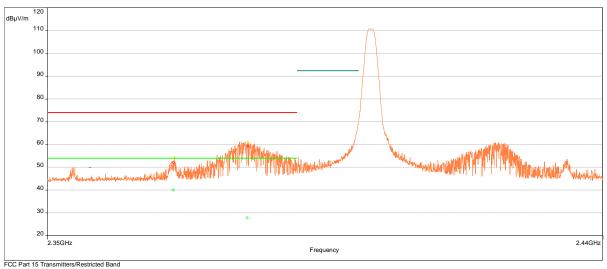
Software Utilized:

Name	Manufacturer	Version
BAT-EMC	Nexio	3.19.1.18

9.3 Results:

The sample tested was found to Comply.

Limit – FCC Part §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c))


Note: Emissions were highest in the Z-Axis.

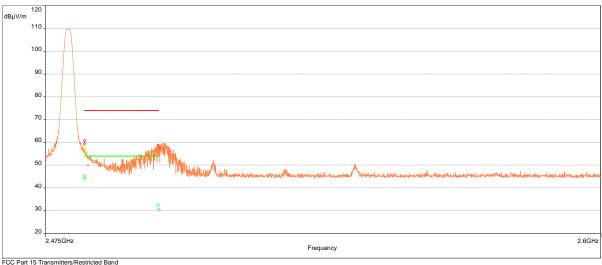
9.4 Setup Photograph:

9.5 Plots/Data:

Restricted Band- Class 2.35GHz-2.44GHz. InSite NXT Player Unit _RE_Z-Axis_Low-Channel_Band Edge Emissions Graph:

4/27/2022 9:53:32 AM

Data Results:


Avg (PASS) (2)

7.48 (17.83) (2)								
Frequency	Level	Limit	Margin	Azimuth	Height	Pol.	(RBW)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(°)	(m)		(MHz)	(dB)
2370.057	40.08	54.00	-13.92	177.00	3.61	Horizontal	1.00	-5.71
2381.93	27.90	54.00	-26.10	311.00	2.57	Horizontal	1.00	-5.70

Peak (PASS) (2)

Frequency	Level	Limit	Margin	Azimuth	Height	Pol.	(RBW)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(°)	(m)		(MHz)	(dB)
2370.057	52.24	74.00	-21.76	177.00	3.61	Horizontal	1.00	-5.71
2381.93	59.34	74.00	-14.66	311.00	2.57	Horizontal	1.00	-5.70

Restricted Band- Class 2.475GHz-2.6GHz. InSite NXT Player Unit _RE_Z-Axis_High-Channel_Band Edge Emissions Graph:

FCC Part 15 Transmitters/Restricted Band 4/27/2022 10:49:40 AM

Data Results:

Avg (PASS) (3)

Frequency	Level	Limit	Margin	Azimuth	Height	Pol.	(RBW)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(°)	(m)		(MHz)	(dB)
2483.563141	44.32	54.00	-9.68	288.00	2.20	Horizontal	1.00	-5.55
2499.799167	32.59	54.00	-21.41	316.00	1.66	Horizontal	1.00	-5.49
2500.032659	30.82	92.4	-61.58	316.00	1.66	Horizontal	1.00	-5.49

Peak (PASS) (3)

() (-)								
Frequency	Level	Limit	Margin	Azimuth	Height	Pol.	(RBW)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(°)	(m)		(MHz)	(dB)
2483.563141	59.45	74.00	-14.55	288.00	2.20	Horizontal	1.00	-5.55
2499.799167	58.82	74.00	-15.18	316.00	1.66	Horizontal	1.00	-5.49
2500.032659	57.58	92.4	-34.82	316.00	1.66	Horizontal	1.00	-5.49

Note: Measurement at 2500.032659 was checked to make sure that it met the 15.209 requirement. This frequency did not fall under the restricted band.

Test Personnel:	Dan Alvarez	Test Date:	04/27/2022
Supervising/Reviewing Engineer:			
(Where Applicable)	N/A		
	CFR47 FCC Part 15.247,		
Product Standard:	RSS-247	Limit Applied:	See report section 9.3
Input Voltage:	Battery Powered		
D		A self-to at To some continue	00.00
Pretest Verification w/		Ambient Temperature:	23 ℃
Ambient Signals or BB Source:	RR Source	Relative Humidity:	43 %
DD Course.	BB Gource	relative Hamilary.	40 70
		Atmospheric Pressure:	986 mbars

Deviations, Additions, or Exclusions: None

10 Transmitter spurious emissions

10.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C 15.247, FCC Part 15 Subpart B, RSS 247, ICES 003, ANSI C 63.10, and ANSI C 63.4.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.9 dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	4.6 dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.6 dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	5.8 dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	4.7 dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	4.9 dB	6.3 dB

As shown in the table above our radiated emissions $U_{\it lab}$ is less than the corresponding $U_{\it CISPR}$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in $dB\mu V$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

```
RA = 52.0 dB\mu V

AF = 7.4 dB/m

CF = 1.6 dB

AG = 29.0 dB

FS = 32 dB\mu V/m
```

To convert from $dB\mu V$ to μV or mV the following was used:

```
UF = 10^{(NF/20)} where UF = Net Reading in \muV NF = Net Reading in dB\muV
```

Example:

```
FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 UF = 10^{(32 \text{ dB}\mu\text{V}\,/\,20)} = 39.8 \ \mu\text{V/m}
```

Alternately, when BAT-EMC Emission Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". The "Correction" includes Antenna Factor, Preamp, and Cable Loss. These are already accounted for in the "Level" column.

10.2 Test Equipment Used:

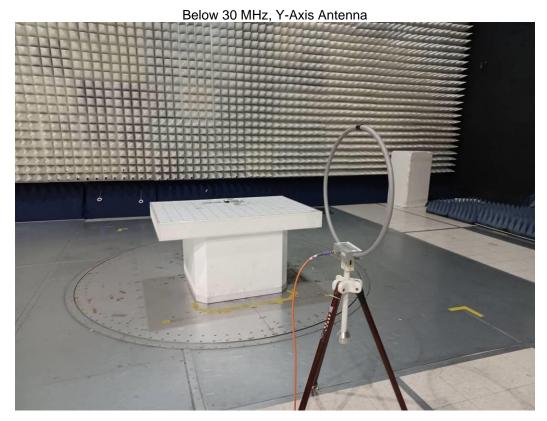
Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
200005'	Attenuator, 03 dB, <18GHz	Weinschel Corp	2	BK7890	05/27/2021	05/27/2022
		Fairview	SCE18110505-			
MM13'	RF Coax Cable 9KHz-18GHz	Microwave	600CM	MM13	09/09/2021	09/09/2022
TW4		Fairview				
211413'	RF Low loss cable 9KHz-18GHz	Microwave	FMCA1282-472	TW4	05/28/2021	05/28/2022
200074'	Preamplifier, 10 MHz to 2000 MHz, 37 dB gain	Mini-Circuits	ZKL-2	D052005	12/13/2021	12/13/2022
211386'	Antenna, BiLog, 20-2000MHz	Chase	CBL6112B	2622	05/11/2021	05/11/2022
213451'	(20Mhz step5GHz) Omni -directional Comb Generator	Com-Power	CGO-520	281266	VBU	Verified
200162'	EMI Receiver (20Hz-40GHz)	Rohde & Schwarz	ESU 40	100314	10/13/2021	10/13/2022
E211'	RF Coax Cable	Megaphase	TM18-N1N1-120	15055601001	09/09/2021	09/09/2022
MM3'	RF Coax Cable 10KHz-18GHz	Maury Microwave	UC-N-MM36	769548	05/28/2021	05/28/2022
212104'	Barometric Pressure/Humidity/Temperature Datalogger	Extech	SD700	A.074980	05/25/2021	05/25/2022
213462'	Band reject Filter 2.4-2.5GHz	Micro Tronics	BRM50702	G357	02/07/2022	02/07/2023
213453'	Preamplifier 500MHz-18GHz	Com-Power	PAM-118A	18040030	10/13/2021	10/13/2022
213058a'	Antenna, Horn, <18 GHz	A.H. Systems	SAS-200/571	246	02/08/2022	02/08/2023
E402'	Cable E402, 40 GHz, 2.9, 9"	Megaphase	TM40 K1K1 9	E402	10/13/2021	10/13/2022
E405'	Cable E405, 40 GHz, 2.9, 2m	Megaphase	TM40 K1K1 80	E405	10/13/2021	10/13/2022
213023'	Antenna, Horn, 18-40 GHz	EMCO	3116	9310-2222	03/30/2022	03/30/2023
			JS41800400-30-	_		
200080'	Preamplifier, 18-40GHz, 29 dB Gain	Miteq	5P-S	818197	10/12/2021	10/12/2022

Software Utilized:

Name	Manufacturer	Version
BAT-EMC	Nexio	3.19.1.18

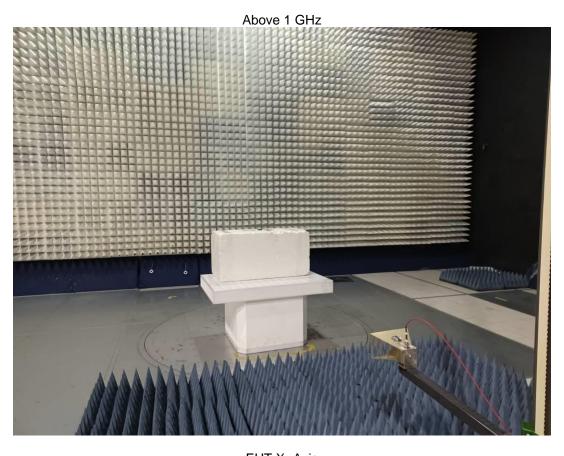
10.3 Results:

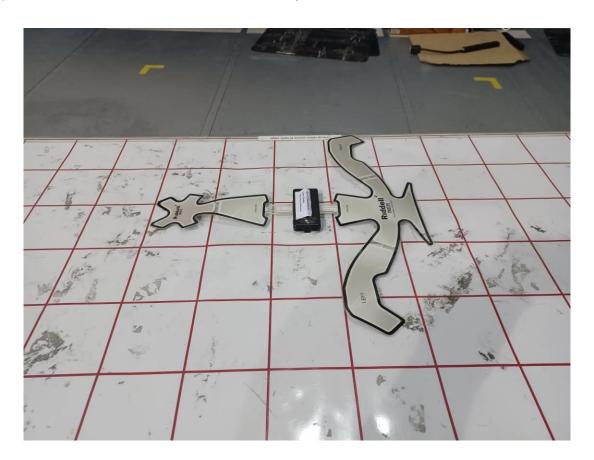
The sample tested was found to Comply.

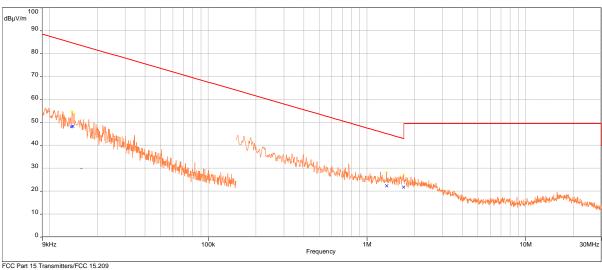

Limit – FCC Part §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c))

Note: Emissions were highest in the Z-Axis

The EUT has a worst-case duty cycle of 30% during normal operation. The duty cycle factor of -10.5 was used.

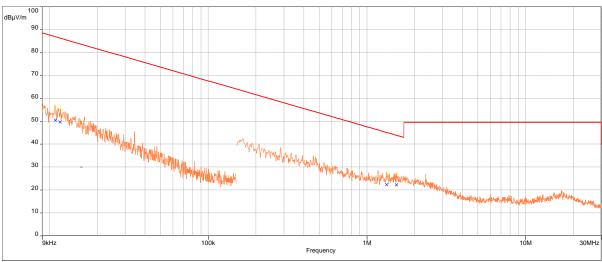

10.4 Setup Photographs:





10.5 Plots/Data:

FCC 15.209- Class 9kHz-30MHz. Insite Player_Mid-Channel_Z-Axis_RE_9kHz-30MHz_Antenna in Z-Axis Emissions Graph:

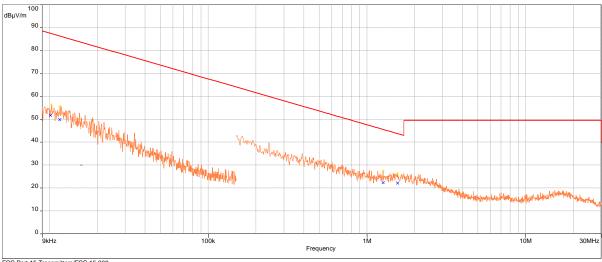

FCC Part 15 Transmitters/FCC 15.209 4/26/2022 1:06:12 PM

Data Results:

QuasiPeak (PASS) (4)

	/ \ · /						
Frequency	Level	Limit	Margin (dB)	Azimuth (°)	Pol.	(RBW) (kHz)	Correction
(MHz)	(dBµV/m)	(dBμV/m)					(dB)
0.01371257949	48.09	84.86	-36.77	48.00	0.00	0.20	57.22
0.01402917692	48.30	84.66	-36.37	153.00	0.00	0.20	57.08
1.328658333	22.36	45.13	-22.77	129.00	0.00	9.00	18.59
1.699536923	21.80	43.00	-21.20	256.00	0.00	9.00	16.74

FCC 15.209- Class 9kHz-30MHz. Insite Player_Mid-Channel_Z-Axis_RE_9kHz-30MHz_Antenna in X-Axis Emissions Graph:

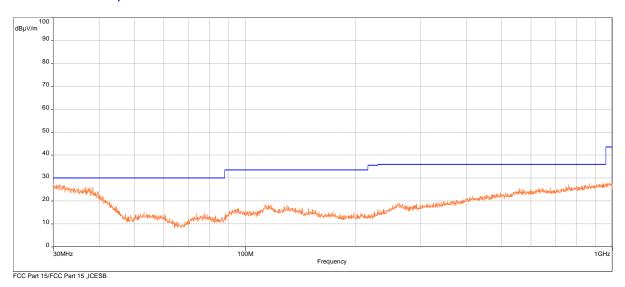

FCC Part 15 Transmitters/FCC 15.209 4/26/2022 1:18:16 PM

Data Results:

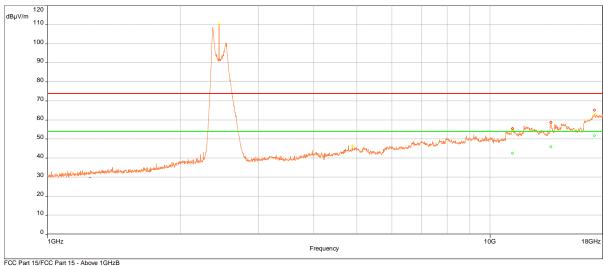
QuasiPeak (PASS) (4)

Frequency	Level	Limit	Margin (dB)	Azimuth (°)	Pol.	(RBW) (kHz)	Correction	
(MHz)	(dBµV/m)	(dBµV/m)					(dB)	
0.01088770256	50.48	86.86	-36.39	58.00	0.00	0.20	58.45	
0.01167140513	49.64	86.26	-36.62	334.00	0.00	0.20	58.12	
1.330358462	22.36	45.13	-22.77	67.00	0.00	9.00	18.58	
1.535281795	22.25	43.88	-21.63	248.00	0.00	9.00	17.61	

FCC 15.209- Class 9kHz-30MHz. Insite Player_Mid-Channel_Z-Axis_RE_9kHz-30MHz_Antenna in Y-Axis Emissions Graph:


FCC Part 15 Transmitters/FCC 15.209 4/26/2022 1:29:01 PM

Data Results:


QuasiPeak (PASS) (4)

Frequency	Level	Limit	Margin (dB)	Azimuth (°)	Pol.	(RBW) (kHz)	Correction	
(MHz)	(dBµV/m)	(dBμV/m)					(dB)	
0.01014175128	51.72	87.48	-35.76	351.00	0.00	0.20	58.75	
0.01158584872	49.89	86.33	-36.44	18.00	0.00	0.20	58.15	
1.263531795	22.41	45.57	-23.17	89.00	0.00	9.00	18.88	
1.559499744	22.16	43.74	-21.58	275.00	0.00	9.00	17.49	

FCC Part 15 & ICES- Class B 30MHz-1GHz. Insite Player_Battery_Mid-Channel_Z-Axis_RE 30MHz-1GHz Emissions Graph:

FCC Part 15 - Above 1GHz- Class B 1GHz-18GHz. Insite Player_Band Pass Filter_Z-Axis_Mid-Channel_RE_1GHz-18GHz Emissions Graph:

FCC Part 15/FCC Part 15 - Above 1GHzB 4/25/2022 1:34:18 PM

Data Results:

Avg (PASS) (3)

0 (/ (- /								
Frequency	Level	Limit	Margin	Azimuth	Height	Pol.	(RBW)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(°)	(m)		(MHz)	(dB)
11236.06058	42.52	54.00	-11.48	290.00	2.29	Vertical	1.00	11.51
13723.492	45.96	54.00	-8.04	331.00	2.08	Vertical	1.00	14.14
17214.62724	51.82	54.00	-2.18	355.00	3.63	Horizontal	1.00	21.31

Peak (PASS) (3)

(/(-								
Frequency	Level	Limit	Margin	Azimuth	Height	Pol.	(RBW)	Correction
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(°)	(m)		(MHz)	(dB)
11236.06058	55.57	74.00	-18.43	290.00	2.29	Vertical	1.00	11.51
13723.492	58.83	74.00	-15.17	331.00	2.08	Vertical	1.00	14.14
17214.62724	65.19	74.00	-8.81	355.00	3.63	Horizontal	1.00	21.31

Notes: Worst-case output power channel was used for testing. A bandpass filter used between 2.3 GHz to 2.6 GHz.

Product was hand scanned from 18 GHz to 26 GHz. No discernable emissions were detected above 18 GHz.

Intertek

Report Number: 104955058ATL-001a Revised: 06/09/2022

Test Personnel: Dan Alvarez Test Date: 04/25/2022 Supervising/Reviewing Engineer: (Where Applicable) FCC Part 15 Subpart C, Limit Applied: FCC Part 15.209, Product Standard: ICES-003 FCC Part 15.205 Input Voltage: Battery Powered Ambient Temperature: 23 °C Pretest Verification w/ Ambient Signals or BB Source: Yes Relative Humidity: 43 % Atmospheric Pressure: 986 mbars

Deviations, Additions, or Exclusions: None

Intertek

Report Number: 104955058ATL-001a Revised: 06/09/2022

11 Revision History

Revision	Date	Report Number	Prepared	Reviewed	Notes
Level			Ву	Ву	
0	05/20/2022	104550058ATL-001	PA	KPS 43	Original Issue
1	06/09/2022	104955058ATL-001a	Pa	KPS/43	TCB Corrections issued 06/06/2022
			_		