

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com



Dates of Tests: August 11 ~ September 10, 2009 Test Report S/N:LR500190909F Test Site: LTA CO., LTD.

## CERTIFICATIO OF COMPLIANCE

FCC ID.

**APPLICANT** 

STSFLEX7000

Bitel Co., Ltd.

FCC Classification : Licensed Portable Transmitter Worn on body (PCT)

Manufacturing Description : Industrial PDA POS

Manufacturer : Bitel Co.,Ltd.

Manufacturer (RF Module) : Wavecom S.A

Model name : Flex7000

Brand name : Bitel

Test Device Serial No.: : Identical prototype Rule Part(s) : \$24(E), \$22(H), \$2

TX Frequency Range : 824.2 ~ 848.8 MHz (GSM850)/1850.2 ~ 1909.8 MHz (PCS1900)

RX Frequency Range : 869.2 ~ 893.8 MHz (GSM850)/1930.2 ~ 1989.8 MHz (PCS1900)

RF Output Power : GSM850 (33dBm: Level 5) / PCS1900 (30dBm: Level 0)

Max. SAR Measurement : 0.201W/kg GSM850 Body SAR

0.132W/kg PCS1900 Body SAR

This test report is issued under the authority of:

The test was supervised by:

17.

Dong -Min J UNG, Technical Manager

My

Kyung-Taek LEE, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. This report must not be used by the applicant to claim product endorsement by any agency.

NVLAP

NVLAP LAB Code.: 200723-0

# TABLE OF CONTENTS

| 1. GENERAL INFORMATION'S               | 3  |
|----------------------------------------|----|
| 2. INFORMATION'S ABOUT TEST ITEM       | 4  |
| 3. TEST REPORT                         | 6  |
| 3.1 SUMMARY OF TESTS                   | 6  |
| 3.2 TECHNICAL CHARACTERISTICS TEST     |    |
| 3.2.2 FIELD STRENGTH                   | 8  |
| 3.2.2 AC CONDUCTED EMISSIONS           | 12 |
| APPENDIX                               |    |
| APPENDIX TEST EQUIPMENT USED FOR TESTS | 22 |

## 1. General information's

### 1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822

Web site : <a href="http://www.ltalab.com">http://www.ltalab.com</a>
E-mail : <a href="mailtalab.com">chahn@ltalab.com</a>
Telephone : +82-31-323-6008
Facsimile +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

### 1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

| Agency    | Country Accreditation No. Validity |              | Country Accreditation No. Validity |                     | Country Accreditation No. Validity |  | Validity | Reference |
|-----------|------------------------------------|--------------|------------------------------------|---------------------|------------------------------------|--|----------|-----------|
| NVLAP     | U.S.A                              | 200723-0     | -0 2010-09-30 ECT accredited L     |                     |                                    |  |          |           |
| RRL       | KOREA                              | KR0049       | 2011-06-20                         | EMC accredited Lab. |                                    |  |          |           |
| FCC U.S.A |                                    | 610755       | 2011-04-22                         | FCC filing          |                                    |  |          |           |
| VCCI      | JAPAN                              | R2133, C2307 | 2011-06-21                         | VCCI registration   |                                    |  |          |           |
| IC CANADA |                                    | IC5799       | 2010-05-03                         | IC filing           |                                    |  |          |           |

#### 2. Information's about test item

#### 2-1 Client & Manufacturer

Company name : Bitel Co., Ltd.

Address : 11F Yohyun B/D 242-29 Nonhyun-dong Gangnam-gu Seoul, 135-830, KOREA

Tel / Fax : +82 2 545 2630/ +82 2 545 0190

#### 2-2 Equipment Under Test (EUT)

Trade name : Industrial PDA POS

Model name : Flex7000

Serial number : Identical prototype

Date of receipt : August 11, 2009

EUT condition : Pre-production, not damaged

Wavecom S.A (Q24 Plus) Identification mark: 0682

Antenna type : DIPOLE ANTENNA / Gain: -2dBi

RF output power : 1.27 W ERP GSM850 (31.02dBm)

1.03 W EIRP PCS1900 (30.12dBm)

Modulation : GMSK, 8PSK Temperature range :  $-30 \,^{\circ}\text{C} \sim +60 \,^{\circ}\text{C}$ 

Power Source : Adaptor(ITS-006X): 100-240VAC/0.8A, 1 2VDC/3A

Battery: Rechargeable Lithium Ion Battery 7.4VDC 1100mA

#### **2-3 Tested frequency**

**GSM Module** 

| Frequency              | quency Ch. GSM 850 |          | Ch | PCS    |
|------------------------|--------------------|----------|----|--------|
| Low frequency (MHz)    | 128                | 824.2 51 | 2  | 1850.2 |
| Middle frequency (MHz) | 190                | 836.6 66 | 1  | 1880.0 |
| High frequency (MHz)   | 251                | 848.8 81 | 0  | 1909.8 |

#### **2.4 Test conditions**

| Temperature | : + 15~35 ℃ Humidity : 30~65 %RH                                                       |                | : 30~65 %RH     |  |  |
|-------------|----------------------------------------------------------------------------------------|----------------|-----------------|--|--|
| Pressure    | : 860~1030 mbar                                                                        | Operating mode | : Air link mode |  |  |
| GSM850      | A communication link is established between the mobile station and the test simulator. |                |                 |  |  |
|             | The transmitter is operate d at its m aximum rated ou tput po wer: 33 dBm (power       |                |                 |  |  |
|             | class 4 = power control level 5)                                                       |                |                 |  |  |
| PCS1900     | A communication link is established between the mobile station and the test simulator. |                |                 |  |  |
|             | The transmitter is op erated at its m aximum rated out put power: 30 dBm (power        |                |                 |  |  |
|             | class 1 = power control level 0)                                                       |                |                 |  |  |

# 3. Test Report

## 3.1 Summary of tests

| Parameter                                                             | Test Condition                         | Status (note 1) |  |  |
|-----------------------------------------------------------------------|----------------------------------------|-----------------|--|--|
| I. FCC Part Section(s)                                                |                                        |                 |  |  |
| GSM 850/1900 Terminal equipment ( <b>Q24 Plus</b> ) is                | certified by FCC(FCC ID: O9EQ24PL001). |                 |  |  |
| Refer to the test report of FCC                                       | ID:O9EQ24PL003.                        |                 |  |  |
| II. Additional items                                                  |                                        |                 |  |  |
| Output Power                                                          | Radiated C                             |                 |  |  |
| Field Strength of Harmonics                                           | Radiated C                             |                 |  |  |
| AC Conducted Emissions                                                | Line Conducted                         | С               |  |  |
| Note 1: C=Complies NC=No t Complies NT=Not Tested NA=Not Applicable   |                                        |                 |  |  |
| Note 2: The data in this test report are traceable to the national or | international standards.               |                 |  |  |

The sample was tested according to the following specification:

ANSI C-63.4-2003

#### 3.2 Technical Characteristics Test

#### 3.2.1 Effective Radiated Power Output

# Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antennal. The receive antenna height and turn table rotation was adjusted for the highest reading on the receive spectrum analyzer. For GSM signals, an average detector is used, with RBW=VBW=3MHz, SPAN=10MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the exame receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

#### 3.2.2 Radiation Spurious and Harmonic Emissions

# Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

Radiation and harm onic em issions are m easured outdoors at our 3-m eter test range. The equipment under test is placed on a wooden turntable 3-meters from the receive antenna. The receive antenna height and turntable ro tations were adjusted for the highest reading on the receive spectrum analyzer. The Spectrum was investigated from 30MHz to the 10<sup>th</sup> Harmonic of the fundamental. A peak detector is used. W ith RBW=VBW=1MHz. The value that we could measure was only reported. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator with the level of the signal genera tor being adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1GHz, the above procedure is rep eated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

## **Effective Radiated Power Output (GSM850)**

#### **Measurement Data:**

#### **GSM850**

| -       | Frequency | TEST CONDITIONS Power Step: 5 |            |              |            | TEST CONDITIONS Power St |  |  |  |
|---------|-----------|-------------------------------|------------|--------------|------------|--------------------------|--|--|--|
| Channel | (MHz)     | Ref. level (dBm)              | Pol. (H/V) | ERP<br>(dBm) | ERP<br>(W) | Battery                  |  |  |  |
| 128 82  | 4.2       | -9.45 V                       |            | 30.78        | 1.20       | Li-ion 7.4V              |  |  |  |
| 190 83  | 6.6       | -9.05 V                       |            | 31.02        | 1.27       | Li-ion 7.4V              |  |  |  |
| 251 84  | 8.8       | -9.93 V                       |            | 30.11        | 1.03       | Li-ion 7.4V              |  |  |  |

Note 1: Radiated measurements at 3 meters by Substitution Method.

## **Equivalent Isotropic Radiated Power (PCS1900)**

#### **Measurement Data:**

#### **PCS1900**

| Channel | Frequency | TEST CONDITIONS Power Step: 0 |            |               |             | TEST CONDITIONS |  |  |  |
|---------|-----------|-------------------------------|------------|---------------|-------------|-----------------|--|--|--|
|         | (MHz)     | Ref. level (dBm)              | Pol. (H/V) | EIRP<br>(dBm) | EIRP<br>(W) | Battery         |  |  |  |
| 512 18  | 50.2      | -11.90 V                      |            | 29.53         | 0.90        | Li-ion 7.4V     |  |  |  |
| 661 18  | 80.0      | -11.01 V                      |            | 30.12         | 1.03        | Li-ion 7.4V     |  |  |  |
| 810 19  | 09.8      | -11.41 V                      |            | 29.02         | 0.80        | Li-ion 7.4V     |  |  |  |

Note 2: Radiated measurements at 3 meters by Substitution Method.

#### 3.2.2 Field Strength

#### **Procedure:**

The EUT was placed on a 0.8m high wooden table i nside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

#### The spectrum analyzer is set to:

Center frequency = the worst channel

Frequency Range =  $30 \text{ MHz} \sim 10^{\text{th}} \text{ harmonic.}$ 

 $RBW = 100 \text{ kHz} (30 \text{MHz} \sim 1 \text{ GHz})$   $VBW \geq RB W$ 

= 1 MHz (1 GHz  $\sim$  10<sup>th</sup> harmonic)

Span = 100 MHz Detector function = Quasi-peak

Trace =  $\max$  hold Sweep = auto

#### **Measurement Data: Complies**

→ No other emissions were detected are a level greater than 20dB below limit.

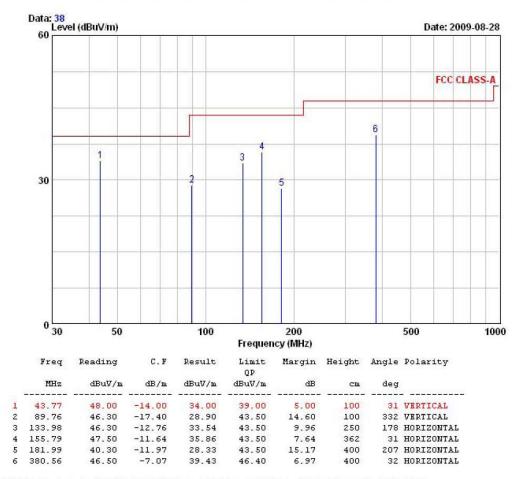
#### Minimum Standard: FCC Part 15.209(a)

| Frequency (MHz) | Limit (uV/m) @ 3m |
|-----------------|-------------------|
| 30 ~ 88         | 100 **            |
| 88 ~ 216        | 150 **            |
| 216 ~ 960       | 200 **            |
| Above 960       | 500               |

<sup>\*\*</sup> Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

## Minimum Standard: FCC Part 15.109

| Frequency (MHz) | Limit (uV/m) @ 10m |
|-----------------|--------------------|
| 30 ~ 88         | 90                 |
| 88 ~ 216        | 150                |
| 216 ~ 960       | 210                |
| Above 960       | 300                |


#### 1. Measurement Data:

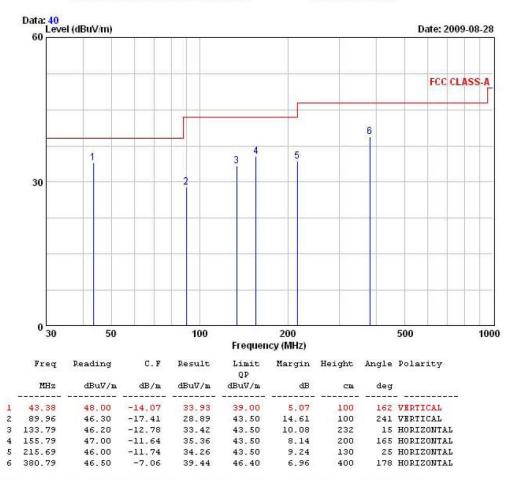


243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

 EUT/Model No.: FLEX 7000
 TEST MODE: 850 mode

 Temp Humi : 24 / 61
 Tested by: PARK.H.W



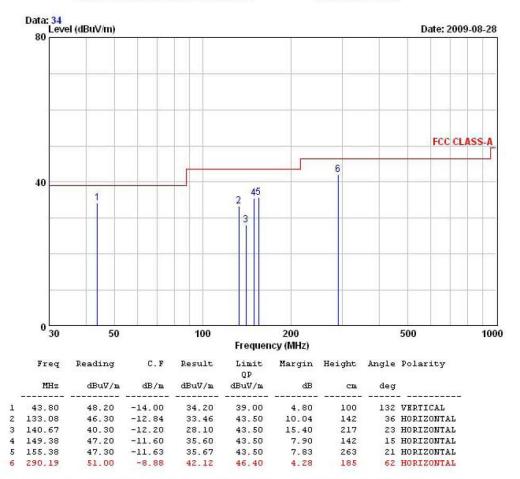

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain



243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT/Model No.: FLEX 7000 TEST MODE: 1900 mode

Temp Humi : 24 / 61 Tested by: PARK.H.W

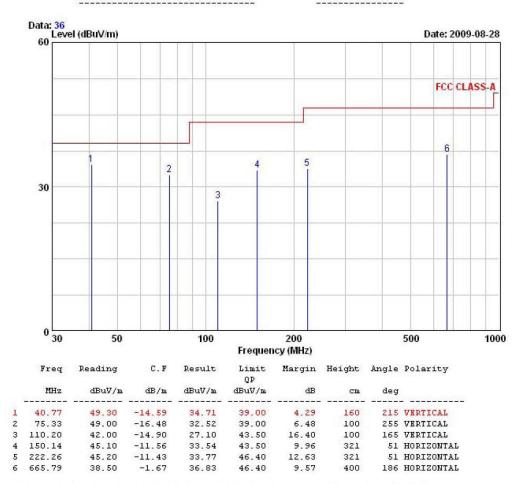



Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain



243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT/Model No.: FLEX 7000 TEST MODE: ACTIVE SYNC mode
Temp Humi : 24 / 61 Tested by: PARK.H.W




Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain



243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT/Model No.: FLEX 7000 TEST MODE: PRINT mode
Temp Humi : 24 / 61 Tested by: PARK.H.W



Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

#### 3.2.3 AC Conducted Emissions

#### **Procedure:**

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

#### **Measurement Data: Complies**

- See next pages for actual measured spectrum plots.
- No emissions were detected at a level greater than 10dB below limit.

#### Minimum Standard: FCC Part 15.207(a)/EN 55022

#### Class B

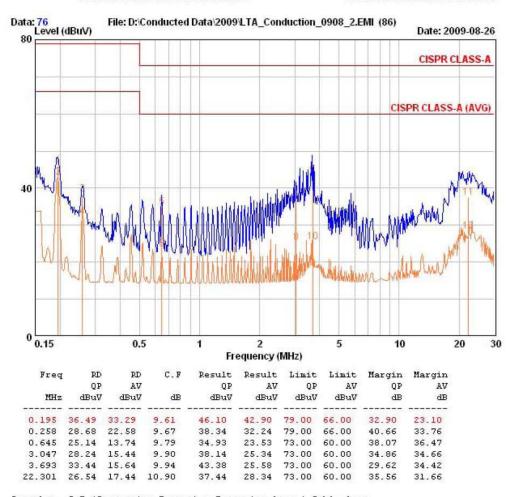
| Frequency Range | quasi-peak | Average    |
|-----------------|------------|------------|
| 0.15 ~ 0.5      | 66 to 56 * | 56 to 46 * |
| 0.5 ~ 5         | 56         | 46         |
| 5 ~ 30          | 60         | 50         |

<sup>\*</sup> Decreases with the logarithm of the frequency

#### Class A

| Frequency Range | quasi-peak | Average |
|-----------------|------------|---------|
| 0.15 ~ 0.5 MHz  | 79 dBuV    | 66 dBuV |
| 0.5 ~ 30 MHz    | 73 dBuV    | 60 dBuV |

#### AC Conducted Emissions -GSM850 mode




243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

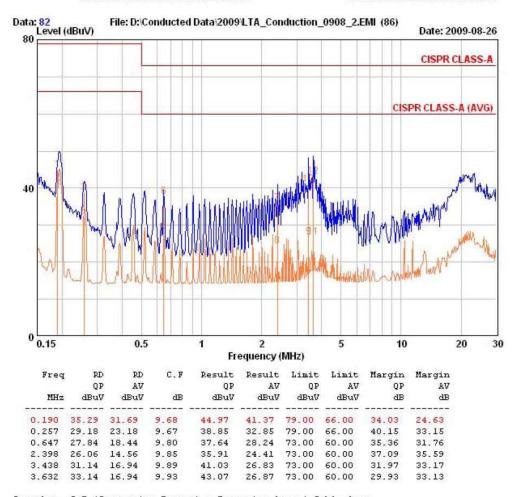
EUT / Model No. : FLEX 7000 Phase : LINE

Test Mode : 850 mode Test Power : 120 / 60

Temp./Humi. : 25 / 55 Test Engineer : B.S.KIM



#### AC Conducted Emissions -GSM850 mode




243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

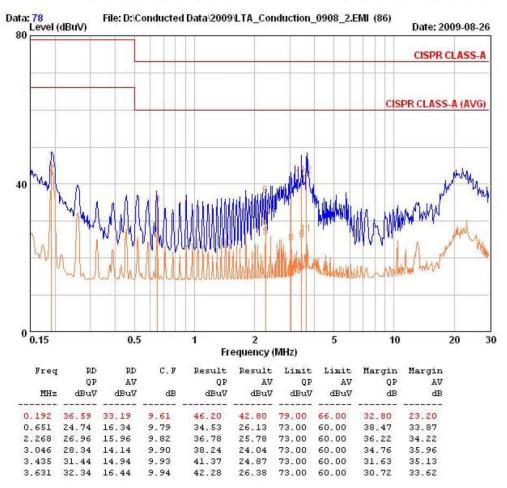
EUT / Model No. : FLEX 7000 Phase : NEUTRAL

Test Mode : 850 mode Test Power : 120 / 60

Temp./Humi. : 25 / 55 Test Engineer : B.S.KIM



#### AC Conducted Emissions -Line: PCS1900 mode



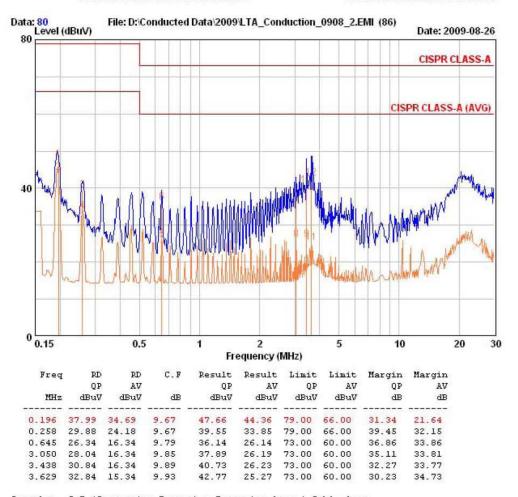

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

EUT / Model No. : FLEX 7000 Phase : LINE

Test Mode : 1900 mode Test Power : 120 / 60

Temp./Humi. : 25 / 55 Test Engineer : B.S.KIM




#### AC Conducted Emissions -Neutral: PCS1900 mode



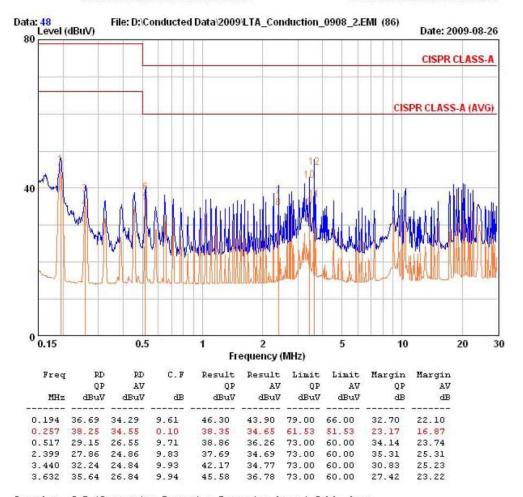
243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

EUT / Model No. : FLEX 7000 Phase : NEUTRAL

Temp./Humi. : 25 / 55 Test Engineer : B.S.KIM



#### **AC Conducted Emissions -Active SYNC mode**




243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

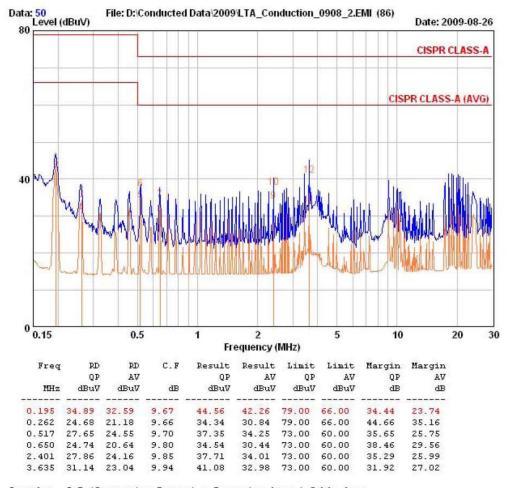
EUT / Model No. : FLEX 7000 Phase : LINE

Test Mode : ACTIVE SYNC mode Test Power : 120 / 60

Temp./Humi. : 25 / 55 Test Engineer : B.S.KIM



#### **AC Conducted Emissions – Active SYNC mode**




243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

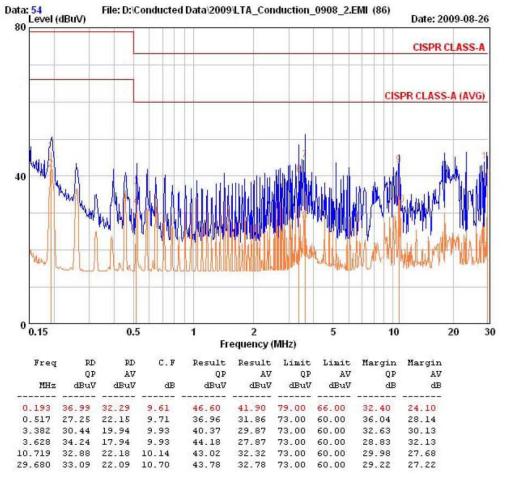
EUT / Model No. : FLEX 7000 Phase : NEUTRAL

Test Mode : ACTIVE SYNC mode Test Power : 120 / 60

Temp./Humi. : 25 / 55 Test Engineer : B.S.KIM



#### **AC Conducted Emissions –Line: Print mode**




243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

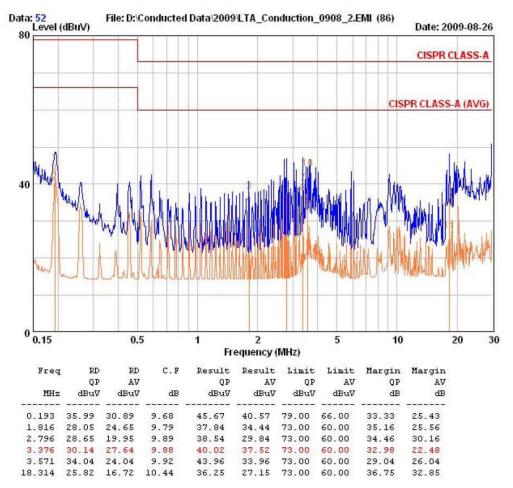
EUT / Model No. : FLEX 7000 Phase : LINE

Test Mode : PRINT mode Test Power : 120 / 60

Temp./Humi. : 25 / 55 Test Engineer : B.S.KIM



#### **AC Conducted Emissions -Neutral: Print mode**




243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-323-6008 Fax:+82-31-323-6010

EUT / Model No. : FLEX 7000 Phase : NEUTRAL

Test Mode : PRINT mode Test Power : 120 / 60

Temp./Humi. : 25 / 55 Test Engineer : B.S.KIM



## **APPENDIX**

## TEST EQUIPMENT USED FOR TESTS

| Description                  | Model No.   | Serial No.     | Manufacturer  | Next Cal. Date |
|------------------------------|-------------|----------------|---------------|----------------|
| 1 Spectrum Analyzer          | FSV-30 1    | 00757          | R&S Feb-10    |                |
| 2 Spectrum Analyzer          | 8563E       | 3425A02505     | НР            | Apr-10         |
| 3 Sp ectrum Analyzer         | 8594E       | 3710A04074     | HP            | Oct-10         |
| 4 Sig nal Generator          | 8648C       | 3623A02597     | НР            | Apr-10         |
| 5 Sig nal Generator          | 83711B      | US34490456     | НР            | Apr-10         |
| 6 At tenuator (3dB)          | 8491A       | 37822          | НР            | Oct-10         |
| 7 At tenuator (10dB)         | 8491A       | 63196          | НР            | Oct-10         |
| 8 At tenuator (30dB)         | 8498A 1     | 801A06689      | НР            | Oct-10         |
| 9 EMI Test Receiver          | ESVD        | 843748/001     | R&S           | Apr-10         |
| 10 Ho rn Antenna(18 ~ 40GHz) | SAS-574     | 154            | Schwarzbeck   | Nov-10         |
| 11 Ho rn Antenna(18 ~ 40GHz) | SAS-574     | 155            | Schwarzbeck   | Nov-10         |
| 12 R F Amplifier             | 8447D       | 2949A02670     | НР            | Oct-10         |
| 13 RF Amplifier              | 8449B       | 3008A02126     | НР            | Apr-10         |
| 14 T est Receiver            | ESHS10      | 828404/009 R&S |               | Apr-10         |
| 15 TR ILOG Antenna           | VULB 9160   | 9160-3212      | SCHWARZBECK   | Apr-11         |
| 16 LogPer. Antenna           | VULP 9118   | 9118 A 401     | SCHWARZBECK   | Apr-11         |
| 17 Biconical Antenna         | BBA 9106    | VHA 9103-2315  | SCHWARZBECK   | Apr-11         |
| 18 Horn Antenna              | 3115        | 00055005       | ETS LINDGREN  | Mar-11         |
| 19 Ho rn Antenna             | BBHA 9120D  | 9120D122       | SCHWARZBECK   | Dec-11         |
| 20 Dip ole Antenna           | VHA9103     | 2116           | SCHWARZBECK   | Nov-09         |
| 21 Dip ole Antenna           | VHA9103     | 2117           | SCHWARZBECK   | Nov-09         |
| 22 Dip ole Antenna           | VHA9105     | 2261           | SCHWARZBECK   | Nov-09         |
| 23 Dip ole Antenna           | VHA9105     | 2262           | SCHWARZBECK   | Nov-09         |
| 24 Hy gro-Thermograph        | THB-36      | 0041557-01     | ISUZU         | Apr-10         |
| 25 Sp litter (SMA)           | ZFSC-2-2500 | SF617800326    | Mini-Circuits | -              |
| 26 R F Switch                | MP59B       | 6200414971     | ANRITSU       | -              |
| 27 Po wer Divider            | 11636A      | 6243           | HP            | Oct-10         |
| 28 D C Power Supply          | 6622A       | 3448A03079     | HP            | Oct-10         |
| 29 Fr equency Counter        | 5342A       | 2826A12411     | HP            | Apr-10         |
| 30 Pow er Meter              | EPM-441A    | GB32481702     | HP            | Apr-10         |
| 31 Pow er Sensor             | 8481A       | 2702A64048     | HP            | Apr-10         |
| 32 A udio Analyzer           | 8903B       | 3729A18901     | HP            | Oct-10         |
| 33 Mo dulation Analyzer      | 8901B       | 3749A05878     | HP            | Oct-10         |
| 34 TEMP & HUMIDITY Chamber   | YJ-500 L    | TAS06041       | JinYoung Tech | Oct-10         |
| 35 LOO P-ANTENNA             | FMZB 1516   | 151602/94      | SCHWARZBECK   | Mar-11         |
| 36 S top Watch               | HS-3        | 601Q09R        | CASIO         | Apr-10         |
| 37 LIS N                     | ENV216      | 100408         | R&S           | Oct-10         |