

Intentional Radiator Test Report

For the

Raveon Technologies Corporation

DART Data Modem RV-D80-EB/RV-M80-EB

Tested under

The FCC Rules contained in Title 47 of the CFR, Part 90 for

Private Land Mobile Radio Services

June 22, 2015

Prepared for:

Raveon Technologies, Corp

2320 Cousteau Court

Vista, CA 92081

Prepared By:

H.B. Compliance Solutions

5005 S. Ash Avenue, Suite A-10

Tempe, Arizona 85282

Reviewed By:

Hoosamuddin Bandukwala

Cert # ATL-0062-E

Engineering Statement: The measurements shown in this report were made in accordance with the procedure indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurement made, the equipment tested is capable of operation in accordance with the requirements of Part 90 of the FCC Rules under normal use and maintenance.

Report Status Sheet

Revision #	Report Date	Reason for Revision
Ø	June 22, 2015	Initial Issue
1	August 11, 2015	Updated Mask J and Necessary BW
2	August 21, 2015	Removed 14K and 16K Necessary BW

Table of Contents

EXECU.	TIVE SUMMARY	4
1.	Testing Summary	4
EQUIPI	MENT CONFIGURATION	5
1.	Overview	5
2.	Test Facility	6
3.	Description of Test Sample	6
4.	Equipment Configuration	6
5.	Support Equipment	6
6.	Ports and Cabling Information	6
7.	Method of Monitoring EUT Operation	7
8.	Mode of Operation	7
9.	Modifications	7
10.	Disposition of EUT	7
Criteria	a for Intentional Radiators	8
1.	RF Power Output	8
2.	Modulation Characteristics	12
3.	Occupied Bandwidth (Emission Mask)	14
4.	Spurious Emissions at Antenna Terminals	18
5.	Radiated Spurious Emissions	22
6.	Frequency Stability vs Temperature	24
7.	Frequency Stability vs Voltage	26
8.	Necessary Bandwidth	28
I. Tes	st Equipment	29

EXECUTIVE SUMMARY

1. Testing Summary

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 90. All tests were conducted using measurement procedure from ANSI TIA/EIA-603-D-2010 as appropriate.

Test Name	Test	Result	Comments
	Method/Standard		
RF Output Power	2.1046; 90.205	Pass	
Modulation	2.1047(a)	Pass	The EUT does not transmit voice.
Characteristics			The device transmit data signal
			only
Occupied Bandwidth	2.1049; 90.210	Pass	EUT Meets Mask J
Spurious Emissions at	2.1051; 90.210	Pass	
Antenna Terminals			
Radiated Spurious	2.1053; 90.210	Pass	
Emissions			
Frequency Stability over	2.1055(a)(1);	Pass	
Temperature Variations	90.213		
Frequency Stability over	2.1055(d)	Pass	
Voltage Variations			
Transient Frequency	90.214	N/A	Device does not operate in 150-
Behavior			174 or 421-512MHz Band

EQUIPMENT CONFIGURATION

1. Overview

H.B Compliance Solutions was contracted by Raveon Technologies Corporation to perform testing on the RV-D80-EB/RV-M80-EB UHF Data Modem under the purchase order number 6402.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the Raveon Technologies Corporation, RV-D80-EB/RV-M80-EB UHM Data Modem.

The tests were based on FCC Part 90 Rules. The tests described in this document were formal tests as described with the objective of the testing was to evaluate compliance of the Equipment Under Test (EUT) to the requirements of the aforementioned specifications. Raveon Technologies Corporation should retain a copy of this document and it should be kept on file for at least five years after the manufacturing of the EUT has been permanently discontinued. The results obtained relate only to the item(s) tested.

Product Name:	DART Radio Modem
Model(s) Tested:	RV-D80-EB/RV-M80-EB
FCC ID:	SRS-D80-EB
Supply Voltage Input:	Primary Power : 12 Vdc
Frequency Range:	896.1MHz to 901.1MHz
No. of Channels:	Single Chanel
Necessary Bandwidth	12.5 & 25kHz
Type(s) of Modulation:	2-FSK & 4-FSK
Range of Operation Power:	4.72W
Voltage into final Transistor	28 volts
Current into final Transistor	1.5 amps
Emission Designator:	8K0F1D & 11K01FD
Channel Spacing(s)	None
Test Item:	Pre-Production
Type of Equipment :	Fixed
Antenna:	50 ohm MMCX Connector
Environmental Test	Temperature: 15-35°C
Conditions:	Humidity: 30-60%
	Barometric Pressure: 860-1060 mbar
Modification to the EUT:	None
Evaluated By:	Staff at Artesyn Embedded & H.B. Compliance Solutions
Test Date(s):	04/30/15 till 05/11/15

2. Test Facility

Radiated Emission testing was performed at Artesyn Embedded Technologies. This facility is located at 2900 S. Diablo Way, Suite 190, Tempe, AZ 85282. All equipment used in making physical determination is accurate and bears recent traceability to the National Institute of Standards and Technology.

Test facility at Artesyn Embedded Technologies is an A2LA accredited test site. The A2LA certificate number is 2716.01. The scope of accreditation covers the FCC Method - 47 CFR Part 15, ICES-003, CISPR 22, AS/NZS 3548 and VCCI

Conducted testing was performed at H.B. Compliance Solutions. This facility is located at 5005 S. Ash Avenue, Suite # A-10, Tempe AZ 85282.

Radiated Emissions measurements were performed in a semi-anechoic chamber (equivalent to an Open Area Test Site). In accordance with §2.948(a)(3), a complete site description is contained at Emerson Network Power.

3. Description of Test Sample

The Raveon Technologies, M80 DART Data modem, is a high-speed narrow-band data communications device. The components are contained in a metal enclosure. It runs off 12 Vdc via a 2 wire cord. This model transmit data in a in the 896.1 to 901.1MHz range.

4. Equipment Configuration

Ref. ID	Name / Description	Model Number	Serial Number
# 1	DART Radio Modem	RV-D80-EB/RV-M80-	N/A
		EB	

Table 1. Equipment Configuration

5. Support Equipment

All support equipment supplied is listed in the following Support Equipment List.

Ref ID	Name / Description	Manufacturer	Model #	Serial #
#2	DC Power Supply	Lambda	LA-200	LA2-AA20-1433535
#3	Laptop	Dell	Inspiron 1545	17934612445

Table 2. Support Equipment

6. Ports and Cabling Information

Ref ID	Port name	Cable	Qty.	Length (m)	Shielded?	Termination
	on the EUT	Description			(Y/N)	Box ID & Port ID

#4	Power	2 wire	1	2	N	DC Power
						Supply

Table 3. Ports and Cabling Information

7. Method of Monitoring EUT Operation

A test receiver will be used to monitor the data transmission from the EUT.

8. Mode of Operation

The EUT will be configured to transmit at maximum power level. Test mode was provided to select the lower, middle and upper band of the transmitter by customer provided software. This software programmed the transmitter from three frequencies modulated and the other three in CW mode. These settings were created for testing purpose only.

9. Modifications

9.1 Modifications to EUT

No modifications were made to the EUT

9.2 Modifications to Test Standard

No Modifications were made to the test standard.

10. Disposition of EUT

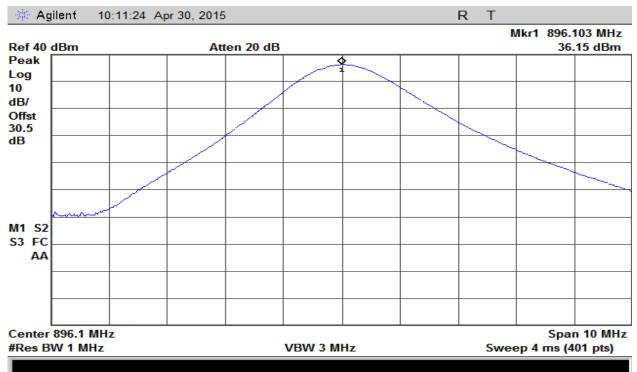
The test sample including all support equipment submitted to H.B Compliance Solutions for testing will be returned to Raveon Technologies Corporation upon completion of testing & certification

Criteria for Intentional Radiators

1. RF Power Output

Test Requirement(s):	§2.1046 and §90.215	Test Engineer(s):	Keith T.
Test Results:	Pass	Test Date(s):	04/28/2015

Test Procedures:


As required by 47 CFR 2.1046, RF Power output measurements were made at the RF output terminals of the EUT.

Customer provided a test mode internal to the EUT to control the RF modulation, and frequency channel. The EUT was connected through an attenuator to a Spectrum Analyzer capable of making power measurements. Measurements were made at the low, mid, and high channels of the entire frequency band.

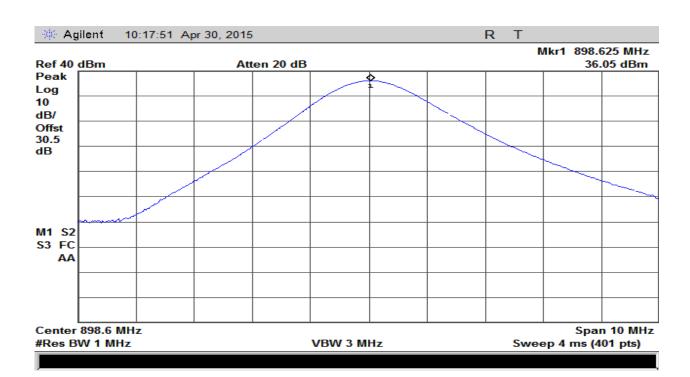
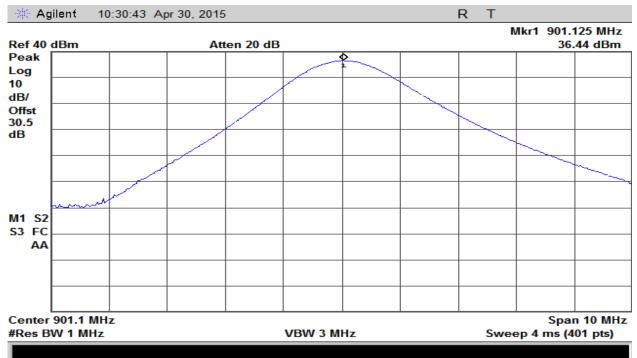
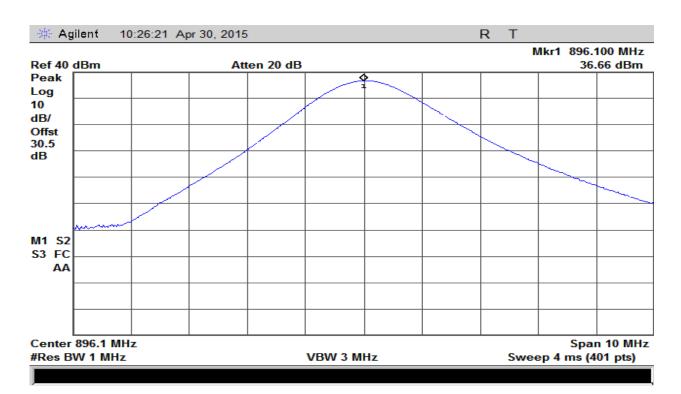

Channel Spacing	Bit Rate (bps)	Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)
	9600	896.1	36.15	4.12
12.5 kHz	9600	898.6	36.05	4.02
	9600	901.1	36.44	4.40
	19200	896.1	36.66	4.63
25kHz	19200	898.6	36.57	4.53
	19200	901.1	36.74	4.72

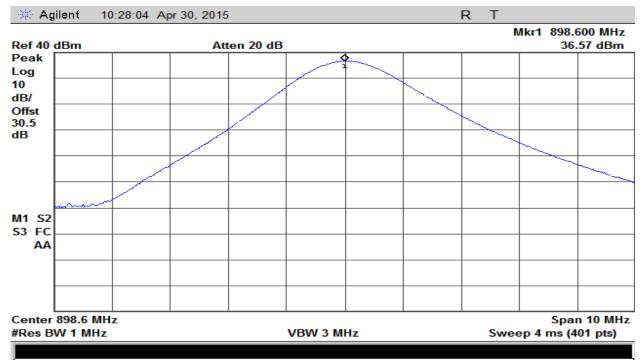
Table 4. RF Power Output, Test Results



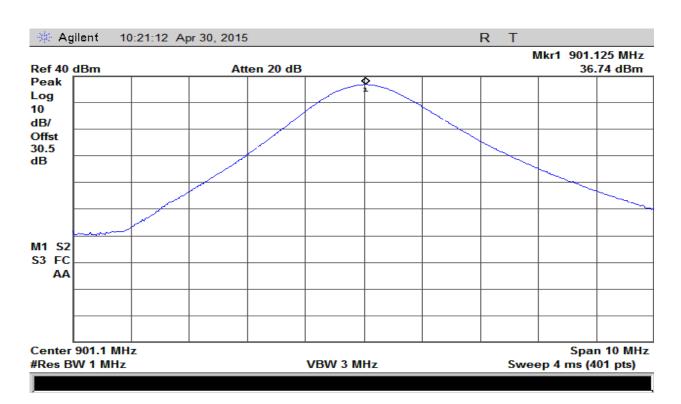
Plot 1 – Output Power – Low (12.5 kHz Channel Spacing)



Plot 2 - Output Power - Mid (12.5 kHz Channel Spacing)



Plot 3 – Output Power – High (12.5 kHz Channel Spacing)



Plot 4 – Output Power – Low (25 kHz Channel Spacing)

Plot 5 - Output Power - Mid (25 kHz Channel Spacing)

Plot 6 – Output Power – High (25 kHz Channel Spacing)

2. Modulation Characteristics

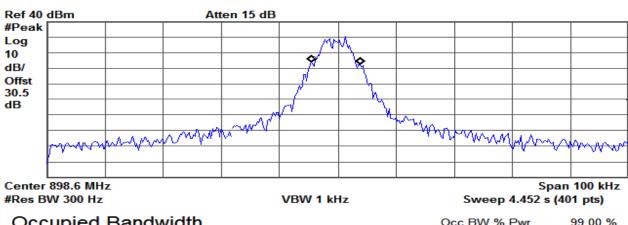
Test	2.1047 and §90.207	Test Engineer(s):	Keith T.
Requirement(s):			
Test Results:	Pass	Test Date(s):	04/29/2015

Test Procedure: As required by 47 CFR 2.1047, Modulation characteristics measurements

were made at the RF output terminals of the EUT.

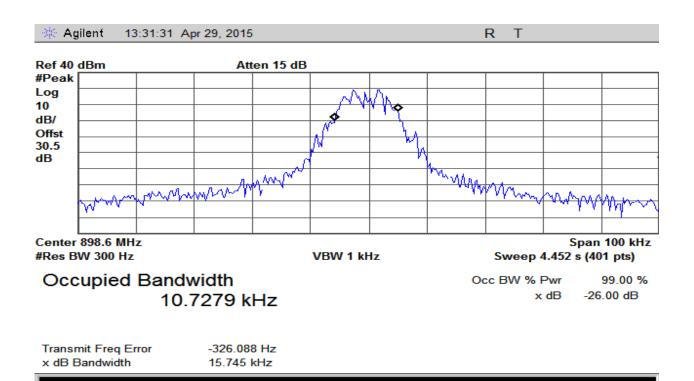
Customer provided a test mode internal to the EUT to control the RF modulation, and frequency channel. The EUT was connected through an

attenuator to a Spectrum Analyzer.


As per standard a curve or equivalent data of the EUT is shown

The plot(s) of the modulation characteristic is presented hereinafter as

reference.



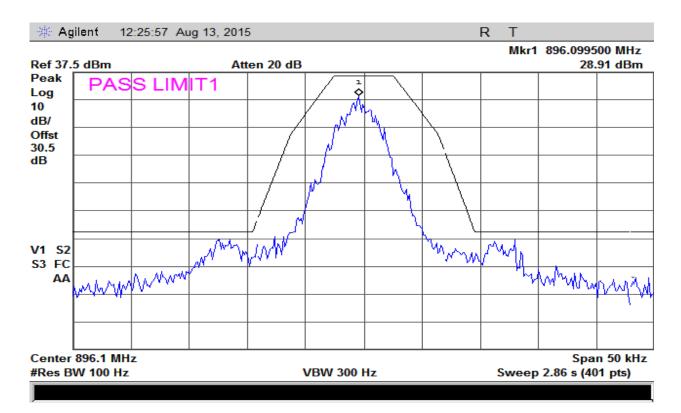
Occupied Bandwidth 8.1324 kHz Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -365.285 Hz x dB Bandwidth 10.679 kHz

Plot 7 – For 12.5 kHz Channel Spacing – Mid Channel

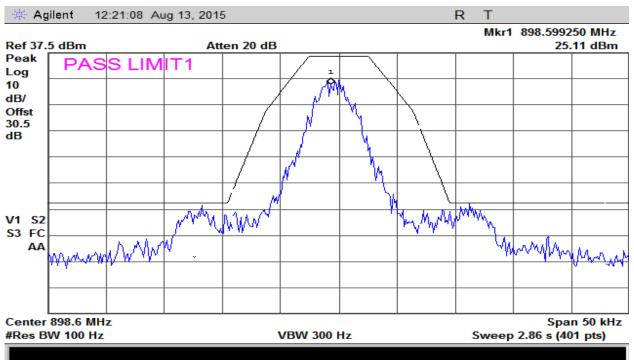
Plot 8 - For 25kHz Channel Spacing - Mid Channel

3. Occupied Bandwidth (Emission Mask)

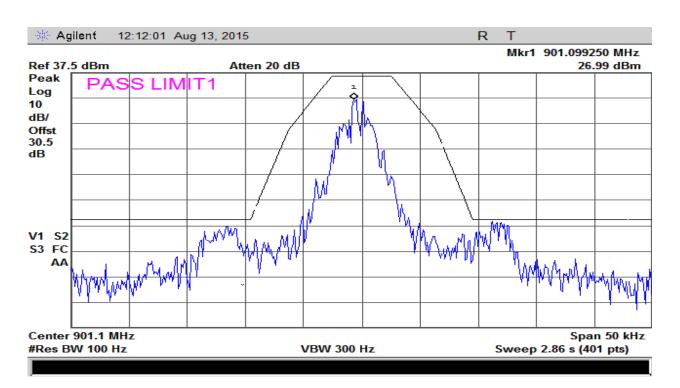

Test 2.1049 and §90.210 with		Test Engineer(s):	Keith T.
Requirement(s):	FCC (Emission Mask J)		
Test Results:	Pass	Test Date(s):	05/11/2015

Test Procedure:

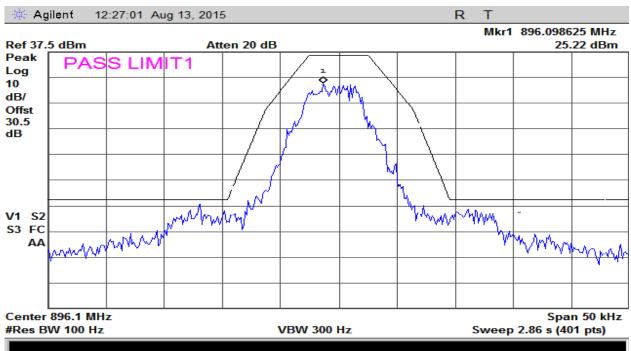
As required by 47 CFR 2.1049, occupied bandwidth measurements were made at the output terminals of the EUT.


Customer provided a test mode internal to the EUT to control the RF modulation, and frequency channel. The EUT was connected through an attenuator to a Spectrum Analyzer. The measured highest peak power was set relative to zero dB reference. The RBW of the Spectrum Analyzer was set to at least 1% of the channel bandwidth. Measurements were carried out at the low, mid and high channels of the TX band.

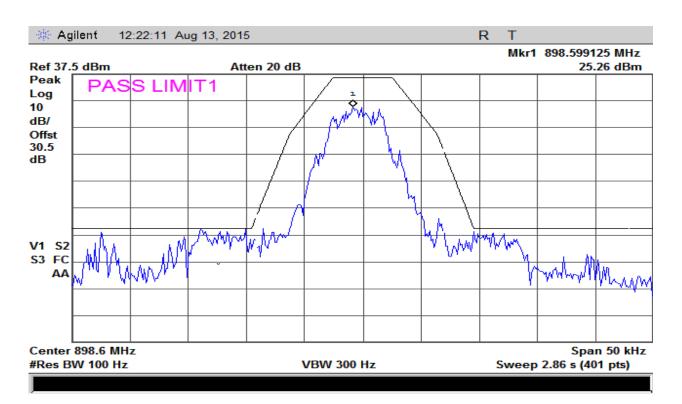
The following pages show measurements of Emission Mask plots:



Plot 9 - Low Chanel at 12.5 kHz Spacing - Mask J



Plot 10 - Mid Chanel at 12.5kHz Spacing - Mask J



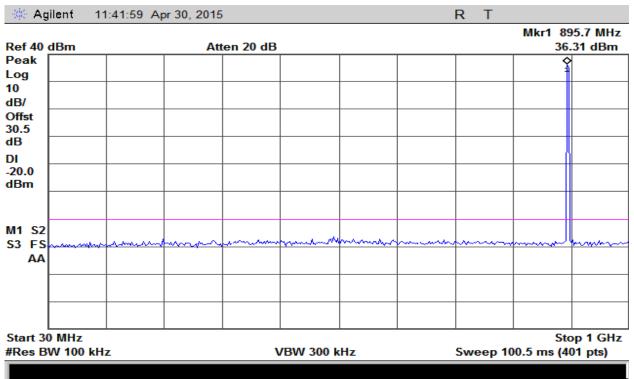
Plot 11 - High Chanel at 12.5 kHz Spacing - Mask J

Plot 12 - Low Chanel at 25kHz Spacing - Mask J

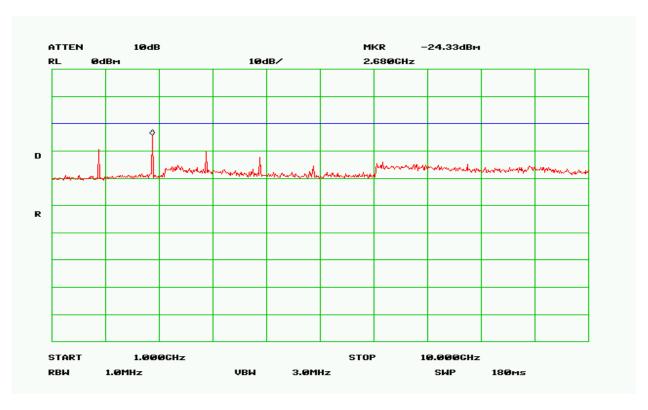
Plot 13 - Mid Chanel at 25kHz Spacing - Mask J

Plot 14 - High Chanel at 25 kHz Spacing - Mask J

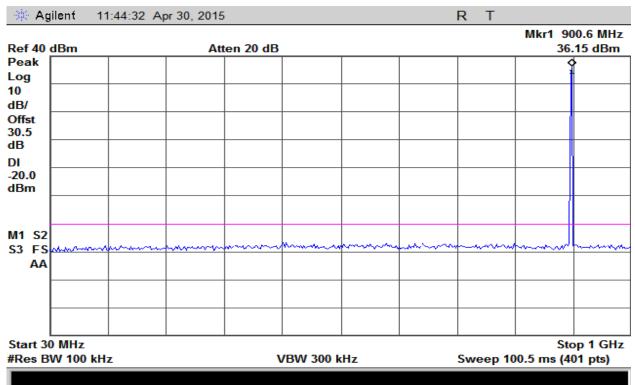
4. Spurious Emissions at Antenna Terminals


Test	§2.1051 and	Test Engineer(s):	Keith T.
Requirement(s):	90.210(m)		
Test Results:	Pass	Test Date(s):	04/30/2015

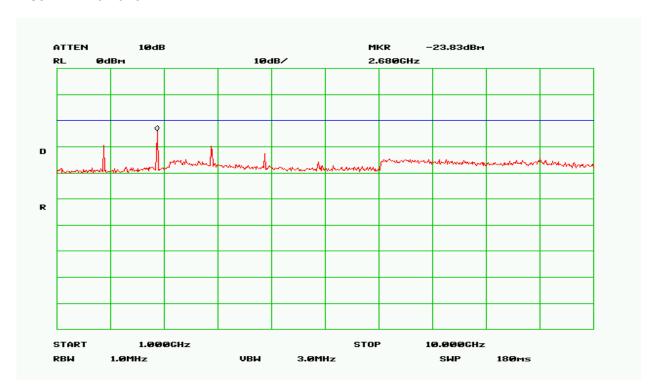
Test Procedures:


As required by 47 CFR 2.1051, spurious emissions at antenna terminal measurements were made at the RF output antenna terminal of the EUT.

Customer provided a test mode internal to the EUT to control the RF modulation, and frequency channel. The EUT was connected through an attenuator to a Spectrum Analyzer. The Spectrum Analyzer was set to sweep from 30MHz up to 10th harmonic of the fundamental or 40GHz whichever is the lesser. Measurements were made at the low, mid and high frequency of the transmit band.



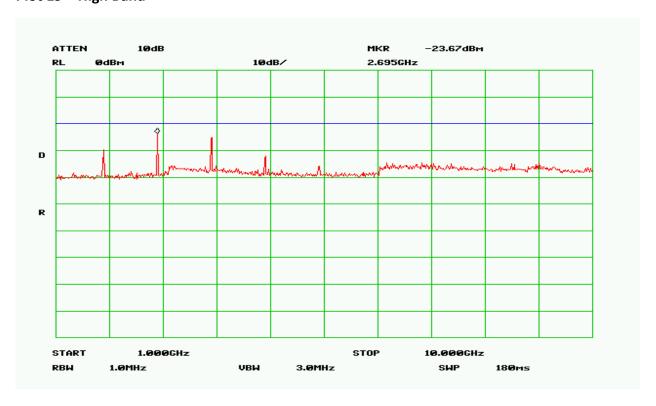
Plot 15 - Low Band



Plot 16 - Low Band



Plot 17 - Mid Band



Plot 18 - Mid Band

Plot 19 - High Band

Plot 20 - High Band

5. Radiated Spurious Emissions

Test	§2.1053 and 90.210(j)	Test Engineer(s):	Keith T.
Requirement(s):			
Test Results:	Pass	Test Date(s):	06/17/2015

Test Procedures:

As required by 47 CFR 2.1053, field strength of radiated spurious measurements were made in accordance with the procedures of the TIA/EIA-603-D-2010.

The EUT was placed on a wooden table inside a 3 meter semi-anechoic chamber. The EUT was transmitting into a non-radiating load which was directly connected to the EUT antenna port.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3 orthogonal axis. The frequency range up to the 10th harmonic was investigated.

The EUT is removed and replaced with a substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB = $10 \log (Txpwr in Watts/0.001)$ -the absolute level

Spurious attenuation limit in $dB = 50 + 10 \log_{10} (P) dB$ or 70dB whichever is the lesser attenuation

Frequency	Amplitude (dbuV)	Antenna Polarity	Cable Loss	Substitution Generator Level (dbm)	Transmit Antenna Gain	Corrected Amplitude (dBm)	Limit (dBm)
1.792 GHz	62.83	Horz	1.45	-37.6	3.6	-35.45	-20
2.688 GHz	59.33	Vert	2.05	-38.5	3.9	-36.65	-20

Table 5 - Spurious Radiated Emission Data - Low Band

Frequency	Amplitude (dbuV)	Antenna Polarity	Cable Loss	Substitution Generator Level (dbm)	Transmit Antenna Gain	Corrected Amplitude (dBm)	Limit (dBm
1.797 GHz	45.0	Horz	1.45	-59	3.6	-56.85	-20
2.695 GHz	54.6	Horz	2.05	-43.5	4.3	-41.25	-20

Table 6 – Spurious Radiated Emission Data – Mid Band

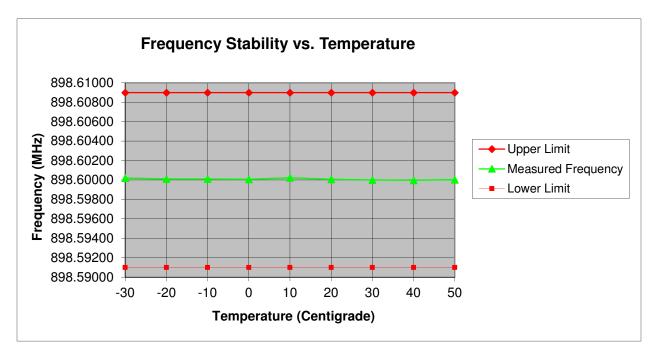
Frequency	Amplitude (dbuV)	Antenna Polarity	Cable Loss	Substitution Generator Level (dbm)	Transmit Antenna Gain	Corrected Amplitude (dBm)	Limit (dBm)
1.802 GHz	61.83	Horz	1.45	-38.0	3.6	-35.85	-20
2.703 GHz	53.83	Vert	2.05	-43.5	3.9	-41.65	-20

Table 7 – Spurious Radiated Emission Data – High Band

6. Frequency Stability vs Temperature

Test	§2.1055 and 90.213	Test Engineer(s):	Jerry Mejak
Requirement(s):			
Test Results:	Pass	Test Date(s):	05/07/2015

Test Procedures:


As required by 47 CFR 2.0155, Frequency Stability measurements were made at the RF antenna output terminals of the EUT.

The EUT was placed in an Environmental Chamber with all the support equipment outside the chamber. The EUT was set to transmit a modulated carrier. The reference frequency at 20°C was observed and noted down. The frequency drift was investigated for every 10°C increment until the unit was stabilized then recorded the reading in tabular format with the temperature range of -30°C to 50°C.

Temperature centigrade	Measured Frequency (MHz)	Upper Margin (MHz)	Lower Margin (MHz)
-30	898.60020	-0.00879	0.00919
-20	898.60010	-0.00889	0.00909
-10	898.60010	-0.00889	0.00909
0	898.60007	-0.00892	0.00906
10	898.60023	-0.00876	0.00922
20	898.60007	-0.00892	0.00906
30	898.60000	-0.00899	0.00899
40	898.59997	-0.00902	0.00896
50	898.60003	-0.00896	0.00902

Table 8 – Temperature vs Frequency Test Result

Plot 21 – Temperature vs Frequency

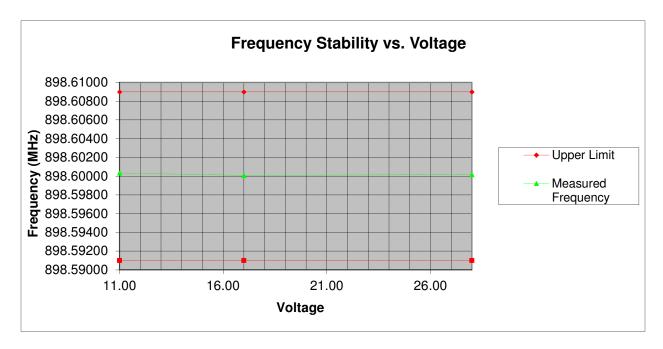
7. Frequency Stability vs Voltage

Test	§2.1055	Test Engineer(s):	Jerry Mejak
Requirement(s):			
Test Results:	Pass	Test Date(s):	05/07/2015

Test Procedures:

As required by 47 CFR 2.0155, Frequency Stability measurements were made at the RF antenna output terminals of the EUT.

The EUT was connected to a variable DC source. The frequency was measured at both the nominal 12 Vdc of the EUT and at the extreme lower and upper voltages.


With the voltage set to a measurement point, the transmitted signal was captured by the spectrum analyzer and the frequency value determined. The frequencies are compared to the tuned frequency. All data for these measurements are found in the table 9.

Reference Frequency: 898.6MHz at 12VdC at 20°C

Input Voltage (Vdc)	Measured Frequency (MHz)	Upper Margin (MHz)	Lower Margin (MHz)
11.00	898.60033	-0.00866	0.00932
17.00	898.60008	-0.00891	0.00907
28.00	898.60017	-0.00882	0.00916

Table 9. Temperature vs. Voltage Test Result

Plot 22 – Temperature vs Voltage

8. Necessary Bandwidth

Referencing Part 2.202 of the FCC Rules and Regulation and using the following formula for calculating the Necessary Bandwidth

B = 2M + 2DK

Where M = Baud Rate, D = Deviation and K= Constant

Digital Data: 2 level FSK; 4800 bps; Narrow Band; 12.5 KHz Channel Spacing

<u>Calculation</u>

Data Rate in bps (R) = 4800

Peak Deviation of Carrier (D) = +-1.6KHz

Number of States in Each Symbol = 2

BN = $[4800/\log_2(2) + 2(1600)(1)] = 8.0 \text{ KHz}$

Emission Designator: 8K0F1D

Digital Data: 2 level FSK; 9600 bps; Narrow Band; 12.5 KHz Channel Spacing

Calculation

Modulation = FID 11K0FID

Necessary Bandwidth Calculation:

Maximum Modulation (M), kHz 3.25

Maximum Deviation (D), kHz = 2.25

Constant Factor (K) = 1

Calculated Necessary Bandwidth (BN), kHz = $(2 \times M) + (2 \times K \times D) = 11.0$

Emission Designator: 11K0FID

I. Test Equipment

Equipment	Manufacturer	Model	Serial #	Last Cal Date	Cal Due Date
Power Supply	Lambda	LA-200	LA2AA201433535		ified
Digital Multimeter	Fluke	77 III	72550270	Sep/26/13	Sep/26/15
Spectrum Analyzer	Agilent	E4402B	US41192757	Jan/27/15	Jan/27/16
Temperature Chamber	Thermotron	SM-3.5S	12817	Sep/22/14	Sep/22/15
Spectrum Analyzer	Hewlett Packard	8563E	3821A09316	Sep/19/14	Sep/19/15
Temperature Meter	Control Company	6066N53	140536623	Aug/08/14	Aug/08/16
Attenuator 10dB	Huber+Suhner	6810.17.A	757300	Ver	fied
High Pass Filter	Mini-Circuits	VHF- 3100+	1023	Ver	fied
Variable Attenuator	H.P.	None	None	NCR	None
EMI Receiver	R&S	ESCS-30	825788/008	Dec/02/14	Dec/02/15
Signal Generator	R&S	SMY02	1062.5502.12	NCR	None
Attenuator 20dB	Weinschel	41-20-12	86332	Verified	
Horn Antenna	Com-Power	AHA-118	711150	Feb/10/15	Feb/10/16
Bilog Antenna	Chase	CBL6140	1040	Mar/30/15	Mar/30/16

Table 10 – Test Equipment List

END OF TEST REPORT

^{*}Statement of Traceability: Test equipment is maintained and calibrated on a regular basis. All calibrations have been performed by a 17025 accredited test facility, traceable to National Institute of Standards and Technology (NIST)