

Full SAR TEST REPORT

No. 2014SR0007

For

Client: ZTE Corporation

Production: WCDMA/GSM (GPRS)

Dual-Mode Digital Mobile Phone

Model Name: ZTE Kis Q

Hardware Version: TMAK

Software Version: IUS-MX-LTB25S-P172D02V1.0.0B01

Issued date: 2014-01-24

FCC ID: SRQ-ZTEKISQ

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of ECIT Shanghai.

Test Laboratory:

ECIT Shanghai, East China Institute of Telecommunications

Add: 7F, G Area, No.668, Beijing East Road, Huangpu District, Shanghai, P. R. China

Tel: (+86)-021-63843300, E-Mail: welcome@ecit.org.cn

Revision Version

Report Number	Revision	Date	Memo
2014SR0007	00	2014/01/24	Initial creation of test report

CONTENTS

1 Test Laboratory	6
1.1 Testing Location	6
1.2 Testing Environment	6
1.3 Project Data	6
1.4 Signature	6
2 Statement of Compliance	7
3 Client Information	9
3.1 Applicant Information	9
3.2 Manufacturer Information	9
4 Equipment Under Test (EUT) and Ancillary Equipment (AE)	10
4.1 About EUT	10
4.2 Internal Identification of EUT used during the test	11
4.3 Internal Identification of AE used during the test	11
5 TEST METHODOLOGY	12
5.1 Applicable Limit Regulations	12
5.2 Applicable Measurement Standards	12
6 Specific Absorption Rate (SAR)	13
6.1 Introduction	13
6.2 SAR Definition	13
7 Tissue Simulating Liquids	14
7.1 Targets for tissue simulating liquid	14
7.2 Dielectric Performance	14
8 System verification	18
8.1 System Setup	18
8.2 System Verification	19
9 Measurement Procedures	20
9.1 Tests to be performed	20
9.2 General Measurement Procedure	21
9.3 WCDMA Measurement Procedures for SAR	22
9.4 Bluetooth & Wi-Fi Measurement Procedures for SAR	23
9.5 Power Drift	24
40 Conducted Output Bower	25

10.1 Manufacturing tolerance	25
10.2 GSM Measurement result	30
10.3 WCDMA Measurement result	32
10.4 Wi-Fi and BT Measurement result	33
11 Simultaneous TX SAR Considerations	35
11.1 Introduction	35
11.2 Transmit Antenna Separation Distances	35
11.3 Standalone SAR Test Exclusion Considerations	36
12 Evaluation of Simultaneous	37
13 SAR Test Result	38
14 SAR Measurement Variability	43
15 Measurement Uncertainty	45
16 Main Test Instrument	47
ANNEX A GRAPH RESULTS	48
ANNEX B SYSTEM VALIDATION RESULTS	125
ANNEX C SAR Measurement Setup	131
C.1 Measurement Set-up	131
C.2 DASY5 E-field Probe System	132
C.3 E-field Probe Calibration	132
C.4 Other Test Equipment	133
C.4.1 Data Acquisition Electronics(DAE)	133
C.4.2 Robot	134
C.4.3 Measurement Server	134
C.4.4 Device Holder for Phantom	135
C.4.5 Phantom	136
ANNEX D Position of the wireless device in relation to the phantom	137
D.1 General considerations	137
D.2 Body-worn device	138
D.3 Desktop device	138
D.4 DUT Setup Photos	140
ANNEX E Equivalent Media Recipes	141
ANNEX F System Validation	142
ANNEY G. Prohe and DAE Calibration Cortificate	1/13

ANNEX H	Dipole Calibration Certificate	168
, _ ,		. ••

1 Test Laboratory

1.1 Testing Location

Company Name: ECIT Shanghai, East China Institute of Telecommunications

Address: 7F, G Area, No. 668, Beijing East Road, Huangpu District, Shanghai,

P. R. China

Postal Code: 200001

Telephone: 00862163843300 Fax: 00862163843301

1.2 Testing Environment

Normal Temperature: $15-35^{\circ}$ C Relative Humidity: 20-75%

Ambient noise & Reflection: < 0.012 W/kg

1.3 Project Data

Project Leader: Wang Yaqiong
Testing Start Date: 2017-01-13
Testing End Date: 2014-01-17

1.4 Signature

Hu Jiajing

(Prepared this test report)

Yu Naiping

Report No.: 2014SR0007

(Reviewed this test report)

Zheng Zhongbin

Director of the laboratory

(Approved this test report)

2 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for ZTE Kis Q $\,$, ZTE Kis Q are as follows (with expanded uncertainty 22.4%)

Report No.: 2014SR0007

Table 2.1: Max. Reported SAR (1g)

14.515 2111 114.541 115 115 115 115 115 115 115 115 115					
Band	Position	Reported SAR			
Ballu	Position	1g (W/Kg)			
GSM 850	Head	0.620			
GSIVI 850	Body	1.342			
GSM 1900	Head	0.778			
G2M 1900	Body	0.712			
WCDMA 850	Head	0.551			
WCDINIA 850	Body	0.858			
WCDMA 1900	Head	0.967			
WCDINA 1900	Body	0.808			
Wi-Fi	Head	0.257			
۷۷۱-۲۱	Body	0.214			

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1992.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The measurement together with the test system set-up is described in chapter 7 of this test report. A detailed description of the equipment under test can be found in chapter 3 of this test report. The maximum reported SAR value is obtained at the case of (Table 2.1), and the values are: 1.342 W/kg (1g).

The sample has three antennas. One is main antenna for GSM/WCDMA, and the other two is for WiFi/BT and GPS. So simultaneous transmission is GSM/WCDMA and WiFi/BT.

Table 2.2: Simultaneous SAR (1g)

	14010 2121 0111414110040 07111 (19)								
Simult	Simultaneous Transmission SAR(W/Kg)								
Test Position		GSM	GSM	WCDMA	WCDMA	\A/IFI	ВТ	CLIM	
		850	1900	ВV	BII	WIFI	note	SUM	
1.6		Cheek	0.567	0.778	0.474	0.967	0.257	0.16	1.224
Llood	Left	Tilt 15°	0.395	0.288	0.302	0.384	0.190	0.16	0.585
Head	Right	Cheek	0.620	0.446	0.551	0.541	0.134	0.16	0.780
		Tilt 15°	0.414	0.213	0.340	0.308	0.128	0.16	0.574
	Phantom Side		1.012	0.501	0.580	0.563	0.176	0.08	1.188
	Ground Side		1.342	0.712	0.858	0.808	0.201	0.08	1.543
Dody	Left Side		0.576	0.112	0.451	0.168	0.059	0.08	0.656
Body	Right Side		0.684	0.128	0.477	0.188	0.214	0.08	0.898
	Top Sid	le	N/A	N/A	N/A	N/A	0.175	0.08	N/A
	Bottom Side		0.098	0.489	0.084	0.498	0.038	0.08	0.578

According to the above table, the maximum sum of reported SAR values for GSM and WiFi is **1.543 W/kg (1g)**. The detail for simultaneous transmission consideration is described in chapter 13.

3 Client Information

3.1 Applicant Information

Company Name: ZTE Corporation

Address /Post: ZTE Plaza, Keji Road South, Hi-Tech, Industrial Park,

Nanshan District, Shenzhen, Guangdong, 518057, P.R.China

Report No.: 2014SR0007

City: Shenzhen Country: China

3.2 Manufacturer Information

Company Name: ZTE Corporation

Address /Post: ZTE Plaza, Keji Road South, Hi-Tech, Industrial Park,

Nanshan District, Shenzhen, Guangdong, 518057, P.R.China

City: Shenzhen Country: China

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT

Description: WCDMA/GSM (GPRS) Dual-Mode Digital Mobile Phone

Model name: ZTE Kis Q

Operation Model(s): GSM850/1900,WCDMA1900/850,Wifi2450

Tx Frequency: 824-849,1850-1910MHz (GSM)

1852-1908 MHz, 826-847MHz (WCDMA)

Report No.: 2014SR0007

2412-2462 MHz (Wi-Fi) 2402 - 2480 MHz (BT)

Test device Production information: Production unit

GPRS Class Mode: B
GPRS Multislot Class: 12

Device type: Portable device

UE category: 3

Antenna type: Inner antenna

Accessories/Body-worn configurations: Headset

Form factor: $12.1 \text{cm} \times 6.2 \text{cm}$

Hotspot Mode: Support simultaneous transmission of hotspot and voice (or

data)

FCC ID: SRQ-ZTEKISQ

4.2 Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version:
N04	IMEI: 863921025000947	TMAK	IUS-MX-LTB25S-P172D02V1.0.0B01

Report No.: 2014SR0007

4.3 Internal Identification of AE used during the test

AE ID*	Description	Description Model		Manufacturer
B02 Battery Li3712T42P3h484952		N/A	N/A	
A02 Headset N/A		N/A	N/A	

^{*}AE ID: is used to identify the test sample in the lab internally.

^{*}EUT ID: is used to identify the test sample in the lab internally.

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

Report No.: 2014SR0007

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IC RSS-102 ISSUE4: Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

OET Bulletin 65 (Edition 97-01) and Supplement C(Edition 01-01): Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits.

KDB648474 D04 SAR Handsets Multi Xmiter and Ant v01r02: SAR Evaluation Considerations for Wireless Handsets.

KDB248227 SAR meas for 802.11abg v01r02: SAR measurement procedures for 802.112abg transmitters.

KDB447498 D01 General RF Exposure Guidance v05r**01:** Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB865664 D01 v01r02: SAR Measurement Requirements for 100 MHz to 6 GHz

KDB941225 D06 SAR test for 3G devides v01r01: Recommended SAR Test Reduction Procedures for GSM/GPRS/EDGE.

KDB941225 D03 SAR test Redution GSM GPRS EDGE v01: Recommended SAR Test Reduction Procedures for GSM/GPRS/EDGE.

KDB941225 D06 hotspot SAR v01: SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities.

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

Report No.: 2014SR0007

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

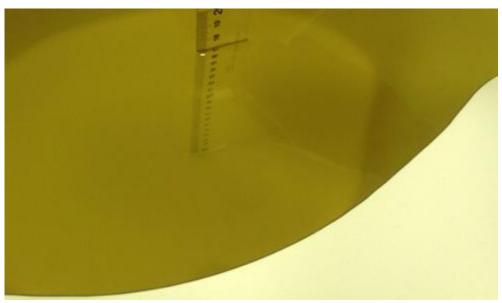
However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7 Tissue Simulating Liquids

7.1 Targets for tissue simulating liquid

Table 7.1: Targets for tissue simulating liquid

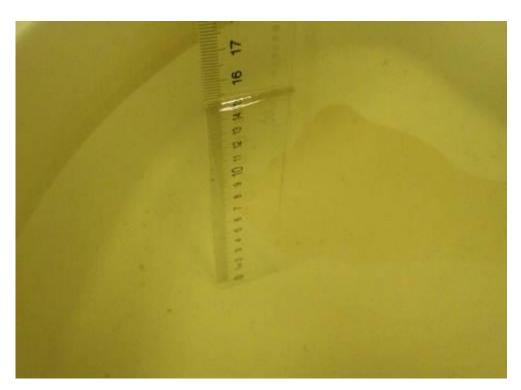
Report No.: 2014SR0007


Frequency (MHz)	Liquid Type	Conductivity (σ)	± 5% Range	Permittivity (ε)	± 5% Range			
835	Head	0.90	0.86~0.95	41.5	39.4~43.6			
835	Body	0.97	0.92~1.02	55.2	52.4~58.0			
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0			
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0			
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2			
2450	Body	1.95	1.85~2.05	52.7	50.1~55.3			

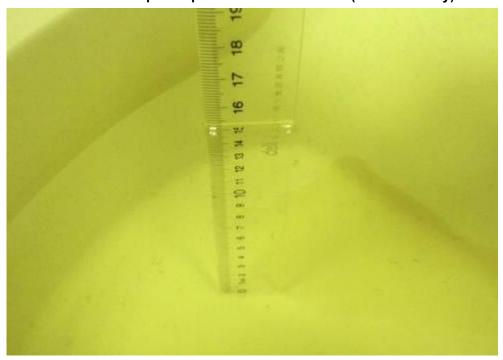
7.2 Dielectric Performance

Table 7.2: Dielectric Performance of Tissue Simulating Liquid

Measurement Da	Measurement Date : 835 MHz Head <u>Jan 13, 2014</u> 1900 MHz Head <u>Jan 15, 2014</u>									
	2450 MHz Head <u>Jan 17, 2014</u> 2450 MHz Body <u>Jan 17, 2014</u>									
	835 MHz Body <u>Jan 14, 2014</u> 1900 MHz Body <u>Jan 16, 2014</u>									
Type Frequency Permittivity Drift (%) Conductivity σ (S/m) Drift (9)										
	Head	835 MHz	41.04	-1.10%	0.917	1.88%				
	Body	835 MHz	55.15	0.09%	0.9989	2.97%				
Measurement	Head	1900 MHz	39.64	-0.90%	1.385	-1.07%				
value	Body	1900 MHz	53.24	0.11%	1.524	0.26%				
	Head	2450 MHz	39.12	0.84%	1.809	1.33%				
	Body	2450 MHz	53.95	2.37%	1.918	1.64%				

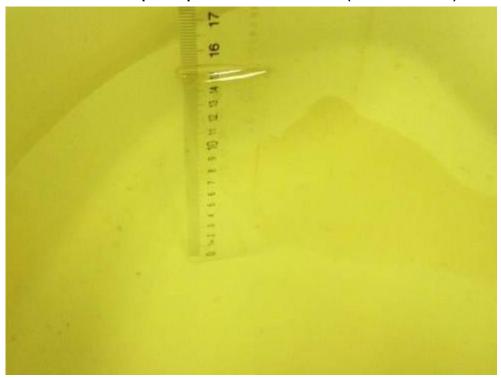


Picture 7-1: Liquid depth in the Flat Phantom (835 MHz Head)



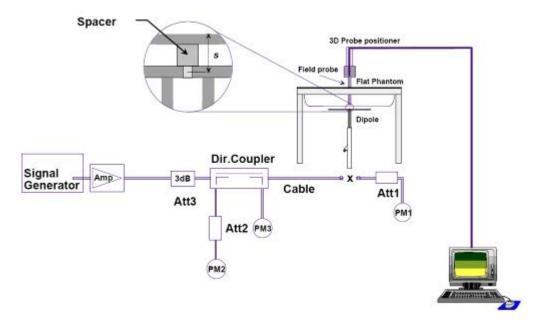
Picture 7-2: Liquid depth in the Flat Phantom (1900 MHz Head)

Picture 7-3: Liquid depth in the Flat Phantom (835 MHz Body)



Picture 7-4: Liquid depth in the Flat Phantom (1900 MHz Body)

Picture 7-5: Liquid depth in the Flat Phantom (2450 MHz Head)


Picture 7-6: Liquid depth in the Flat Phantom (2450 MHz Body)

8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Report No.: 2014SR0007

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

Report No.: 2014SR0007

Table 8.1: System Verification of Head

Measurement Date: 835 MHz Head Jan 13, 2014	_ 1900 MHz Head <u>Jan 15, 2014</u>

2450 MHz Head Jan 17, 2014

Input power level: 250mW

input power is	input power rever. 250mm							
		Target val	Target value (W/kg)		alue (W/kg)	Deviation		
	Frequency	uency 10 g 1 g 1		10 g	1 g	10 g	1 g	
Verification		Average	Average	Average	Average	Average	Average	
results	835 MHz	5.98	9.12	6.24	9.60	4.35%	5.26%	
	1900 MHz	22.2	42.7	21.57	40.36	-2.84%	-5.48%	
	2450 MHz	23.0	49.5	24.72	51.44	7.48%	3.92%	

Table 8.2: System Verification of Body

Measurement Date : 835 MHz Body <u>Jan 14, 2014</u> 1900 MHz Body <u>Jan 16, 2014</u>

2450 MHz Body Jan 17, 2014

Input power level: 250mW

		Target value (W/kg)		Measured v	alue (W/kg)	Deviation		
	Frequency	10 g	1 g	10 g	1 g	10 g	1 g	
Verification		Average	Average	Average	Average	Average	Average	
results	835 MHz	6.06	9.15	6.32	9.64	4.29%	5.36%	
	1900 MHz	22.7	43.4	21.76	40.84	-4.14%	-5.90%	
	2450 MHz	22.2	47.7	22.76	49.2	2.52%	3.14%	

9 Measurement Procedures

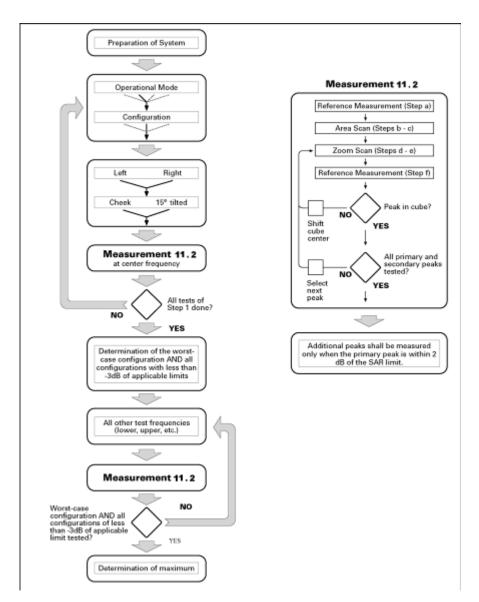
9.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in Picture 11.1.

Report No.: 2014SR0007

Step 1: The tests described in 11.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f_c) for:

- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in Chapter 8),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and
- c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.


If more than three frequencies need to be tested according to 11.1 (i.e., $\ N_c \ >$ 3), then all

frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 11.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 9.1 Block diagram of the tests to be performed

9.2 General Measurement Procedure

The following procedure shall be performed for each of the test conditions (see Picture 11.1) described in 11.1:

- a) Measure the local SAR at a test point within 8 mm or less in the normal direction from the inner surface of the phantom.
- b) Measure the two-dimensional SAR distribution within the phantom (area scan procedure). The boundary of the measurement area shall not be closer than 20 mm from the phantom side walls. The distance between the measurement points should enable the detection of the location of local maximum with an accuracy of better than half the linear dimension of the tissue cube after interpolation. A maximum grip spacing of 20 mm for frequencies below 3 GHz and (60/f [GHz]) mm for frequencies of 3GHz and greater is recommended. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for

frequencies below 3 GHz and δ In(2)/2 mm for frequencies of 3 GHz and greater, where δ is the plane wave skin depth and In(x) is the natural logarithm. The maximum variation of the sensor-phantom surface shall be ± 1 mm for frequencies below 3 GHz and ± 0.5 mm for frequencies of 3 GHz and greater. At all measurement points the angle of the probe with respect to the line normal to the surface should be less than 5° . If this cannot be achieved for a measurement distance to the phantom inner surface shorter than the probe diameter, additional uncertainty evaluation is needed.

Report No.: 2014SR0007

- c) From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that are not within the zoom-scan volume; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR limit. This is consistent with the 2 dB threshold already stated; d) Measure the three-dimensional SAR distribution at the local maxima locations identified in step c). The horizontal grid step shall be (24/f[GHz]) mm or less but not more than 8 mm. The minimum zoom size of 30 mm by 30 mm and 30 mm for frequencies below 3 GHz. For higher frequencies, the minimum zoom size of 22 mm by 22 mm and 22 mm. The grip step in the vertical direction shall be (8-f[GHz]) mm or less but not more than 5 mm, if uniform spacing is used. If variable spacing is used in the vertical direction, the maximum spacing between the two closest measured points to the phantom shell shall be (12 / f[GHz]) mm or less but not more than 4 mm, and the spacing between father points shall increase by an incremental factor not exceeding 1.5. When variable spacing is used, extrapolation routines shall be tested with the same spacing as used in measurements. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz andδ In(2)/2 mm for frequencies of 3 GHz and greater, where δ is the plane wave skin depth and $\ln(x)$ is the natural logarithm. Separate grids shall be centered on each of the local SAR maxima found in step c). Uncertainties due to field distortion between the media boundary and the dielectric enclosure of the probe should also be minimized, which is achieved is the distance between the phantom surface and physical tip of the probe is larger than probe tip diameter. Other methods may utilize correction procedures for these boundary effects that enable high precision measurements closer than half the probe diameter. For all measurement points, the angle of the probe with respect to the flat phantom surface shall be less than 5°. If this cannot be achieved an additional uncertainty evaluation is needed.
- e) Use post processing(e.g. interpolation and extrapolation) procedures to determine the local SAR values at the spatial resolution needed for mass averaging.

9.3 WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for

Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

For Release 5 HSDPA Data Devices:

Sub-test	$oldsymbol{eta}_c$	$oldsymbol{eta}_d$	β_d (SF)	$oldsymbol{eta}_c$ / $oldsymbol{eta}_d$	$oldsymbol{eta}_{hs}$	CM/dB
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15	15/15	64	12/15	24/25	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

For Release 6 HSUPA Data Devices

Sub-	$oldsymbol{eta}_c$	$oldsymbol{eta_d}$	eta_d	$oldsymbol{eta}_c$ / $oldsymbol{eta}_d$	$oldsymbol{eta_{hs}}$	$oldsymbol{eta}_{ec}$	$oldsymbol{eta}_{ed}$	eta_{ed}	eta_{ed} (codes)	CM (dB)	MPR (dB)	AG Index	E-TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	eta_{ed1} :47/15 eta_{ed2} :47/1	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	3.0	2.0	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	1.0	0.0	21	81

9.4 Bluetooth & Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.5 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 13.2 to Table 13.11 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

Report No.: 2014SR0007

10 Conducted Output Power

10.1 Manufacturing tolerance

Table 10.1: GSM Speech

Report No.: 2014SR0007

Table 10.1. Som opecon										
	GSM 835									
Channel	Channel Channel 251 Channel 190 Channel 128									
Maximum Target Value (dBm)	32	32	32							
	GSM 1900									
Channel	Channel 810	Channel 661	Channel 512							
Maximum Target Value (dBm)	29.5	29.5	29.5							

Table 10.2: GPRS (GMSK Modulation)

COMPANDE ORDER								
GSM 850 GPRS								
	Channel	251	190	128				
1 Txslots	Maximum Target Value (dBm)	32	32	32				
2 Txslots	Maximum Target Value (dBm)	31.5	31.5	31.5				
3 Txslots	Maximum Target Value (dBm)	30.0	30.0	30.0				
4 Txslots	Maximum Target Value (dBm)	29.0	29.0	29.0				
		GSM 1900 GPRS	8					
	Channel	810	661	512				
1 Txslots	Maximum Target Value (dBm)	29.0	29.0	29.0				
2 Txslots	Maximum Target Value (dBm)	28.5	28.5	28.5				
3 Txslots	Maximum Target Value (dBm)	27.5	27.5	27.5				
4 Txslots	Maximum Target Value (dBm)	26.5	26.5	26.5				

Table 10.3: E-GPRS (GMSK Modulation)

	GSM 850 E-GPRS							
	Channel	251	190	128				
1 Txslots	Maximum Target Value (dBm)	32	32	32				
2 Txslots	Maximum Target Value (dBm)	31.5	31.5	31.5				
3 Txslots	Maximum Target Value (dBm)	30.0	30.0	30.0				
4 Txslots	Maximum Target Value (dBm)	29.0	29.0	29.0				
		GSM 1900 E-GPR	RS					
	Channel	810	661	512				
1 Txslots	Maximum Target Value (dBm)	29.0	29.0	29.0				
2 Txslots	Maximum Target Value (dBm)	28.5	28.5	28.5				
3 Txslots	Maximum Target Value (dBm)	27.5	27.5	27.5				
4 Txslots	Maximum Target Value (dBm)	26.5	26.5	26.5				

Table 10.4: WCDMA

WCDMA 850 CS								
Channel	Channel 4132	Channel 4182	Channel 4233					
Maximum Target Value (dBm)	22.5	22.5	22.5					
	WCDMA	1900 CS						
Channel	Channel 9262	Channel 9400	Channel 9538					
Maximum Target Value (dBm)	22.0	22.0	22.0					

Table 10.5: HSDPA

	WCDMA 850							
	Channel	4132	4182	4233				
1	Maximum Target Value (dBm)	20.5	20.5	20.5				
2	Maximum Target Value (dBm)	20.5	20.5	20.5				
3	Maximum Target Value (dBm)	20.5	20.5	20.5				
4	Maximum Target Value (dBm)	20.5	20.5	20.5				
		WCDMA 1900						
	Channel	9262	9400	9538				
1	Maximum Target Value (dBm)	20.0	20.0	20.0				
2	Maximum Target Value (dBm)	20.0	20.0	20.0				
3	Maximum Target Value (dBm)	20.0	20.0	20.0				
4	Maximum Target Value (dBm)	20.0	20.0	20.0				

Table 10.6: HSUPA

Table 10.0. HOOFA								
WCDMA 850								
	Channel	4132	4182	4233				
1	Maximum Target Value (dBm)	20.5	20.5	20.5				
2	Maximum Target Value (dBm)	20.5	20.5	20.5				
3	Maximum Target Value (dBm)	20.5	20.5	20.5				
4	Maximum Target Value (dBm)	20.5	20.5	20.5				
5	Maximum Target Value (dBm)	20.5	20.5	20.5				
		WCDMA 1900						
	Channel	9262	9400	9538				
1	Maximum Target Value (dBm)	20.0	20.0	20.0				
2	Maximum Target Value (dBm)	20.0	20.0	20.0				
3	Maximum Target Value (dBm)	20.0	20.0	20.0				
4	Maximum Target Value (dBm)	20.0	20.0	20.0				
5	Maximum Target Value (dBm)	20.0	20.0	20.0				

Table 10.7: WiFi

1997									
	WiFi 802.11b								
Channel	Channel 1	Channel 6	Channel 11						
Maximum Target	14.0	14.0	14.0						
Value (dBm)	14.0	14.0	14.0						
	WiFi 802.11g								
Channel	Channel 1	Channel 6	Channel 11						
Maximum Target	10.0	10.0	10.0						
Value (dBm)	10.0	10.0	10.0						
	WiFi 8	302.11n							
Channel	Channel 1	Channel 6	Channel 11						
Maximum Target	9.0	9.0	9.0						
Value (dBm)	9.0	9.0	9.0						

For BT,The Maximum Target Value of tune up power is 6dBm.

10.2 GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

Report No.: 2014SR0007

Table 10.8: The conducted power measurement results for GSM850/1900

GSM	Conducted Power (dBm)					
835MHZ	Channel 251(848.8MHz)	Channel 190(836.6MHz)	Channel 128(824.2MHz)			
OSSIVITZ	31.94	31.97	31.99			
CCM		Conducted Power (dBm)				
GSM 1900MHZ	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel 512(1850.2MHz)			
1900IVITZ	29.04	29.16	29.28			

Table 10.9: The conducted power measurement results for GPRS

Table 10.5. The conducted power measurement results for GFRS									
GSM 850	Measu	ired Power	(dBm)	calculation	Averag	jed Power (dBm)		
GPRS (GMSK)	251	190	128		251	190	128		
1 Txslot	31.72	31.75	31.78	-9.03dB	22.69	22.72	22.75		
2 Txslots	31.02	31.06	31.05	-6.02dB	25.00	25.04	25.03		
3Txslots	29.86	29.88	29.89	-4.26dB	25.60	25.62	25.63		
4 Txslots	28.91	28.95	28.96	-3.01dB	25.90	25.94	25.95		
GSM 850	Measu	red Power	(dBm)	calculation	Averag	jed Power (dBm)		
E-GPRS(GMSK)	251	190	128		251	190	128		
1 Txslot	31.70	31.73	31.76	-9.03dB	22.67	22.70	22.73		
2 Txslots	30.99	31.03	31.02	-6.02dB	24.97	25.01	25.00		
3Txslots	29.83	29.85	29.86	-4.26dB	25.57	25.59	25.60		
4 Txslots	28.89	28.93	28.94	-3.01dB	25.88	25.92	25.93		
PCS1900	Measu	red Power	(dBm)	calculation	Averag	jed Power (dBm)		
GPRS (GMSK)	810	661	512		810	661	512		
1 Txslot	28.84	28.91	28.98	-9.03dB	19.81	19.88	19.95		
2 Txslots	28.03	28.17	28.26	-6.02dB	22.01	22.15	22.24		
3 Txslots	27.23	27.35	27.42	-4.26dB	22.97	23.09	23.16		
4 Txslots	26.36	26.45	26.48	-3.01dB	23.35	23.44	23.47		
PCS1900	Measu	red Power	(dBm)	calculation	Averag	jed Power (dBm)		
E-GPRS(GMSK)	810	661	512		810	661	512		
1 Txslot	28.82	28.89	28.96	-9.03dB	19.79	19.86	19.93		
2 Txslots	28.00	28.14	28.23	-6.02dB	21.98	22.12	22.21		
3Txslots	27.20	27.32	27.39	-4.26dB	22.94	23.06	23.13		
4 Txslots	26.34	26.43	26.46	-3.01dB	23.33	23.42	23.45		

NOTES:

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

¹⁾ Division Factors

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with GPRS 4Txslots for GSM850 and GSM1900.

Report No.: 2014SR0007

10.3 WCDMA Measurement result

Table 10.10: The conducted power for WCDMA850/1900

Report No.: 2014SR0007

	band		FDDV result(dBm	n)			
ltem	ARFCN	4233	4182	4132			
	ARFCN	(846.6MHz)	(836.4MHz)	(826.4MHz)			
WCDMA	RMC	22.17	22.18	22.05			
	1	20.04	20.06	20.10			
HSDPA	2	20.09	20.12	20.15			
порра	3	20.07	20.09	20.12			
	4	20.10	20.11	20.16			
	1	20.05	20.08	20.09			
	2	20.11	20.13	20.14			
HSUPA	3	20.07	20.09	20.12			
	4	20.09	20.10	20.15			
	5	20.06	20.07	20.11			
	band	FDDII result(dBm)					
Item	ARFCN	9538	9400	9262			
	ARFON	(1907.6MHz)	(1880MHz)	(1852.4MHz)			
WCDMA	RMC	21.73	21.93	21.98			
	1	19.57	19.90	19.91			
HSDPA	2	19.62	19.95	19.98			
ПЭДРА	3	19.58	19.92	19.94			
	4	19.61	19.93	19.96			
	1	19.55	19.89	19.90			
	2	19.61	19.93	19.96			
HSUPA		19.58	19.90	19.93			
HSUPA	3	13.30	10.00				
HSUPA	4	19.59	19.92	19.95			

Note: HSDPA/HSUPA body SAR are not required, because maximum average output power of each RF channel with HSDPA/HSUPA active is not 1/4 dB higher than that measured without HSDPA/HSUPA and the maximum SAR for WCDMA850 and WCDMA1900 are not above 75% of the SAR limit.

10.4 Wi-Fi and BT Measurement result

The output power of BT antenna is as following:

For GFSK

Channel	Ch0 (2402 MHz)	Ch39 (2441MHz)	CH78 (2480MHz)
Conducted Output Power (dBm)	5.54	5.75	5.62

Report No.: 2014SR0007

For π/4 DQPSK

Channel	Ch0 (2402 MHz)	Ch39 (2441MHz)	CH78 (2480MHz)
Conducted Output Power (dBm)	4.92	5.06	4.82

For 8DPSK

Channel	Ch0 (2402 MHz)	Ch39 (2441MHz)	CH78 (2480MHz)
Conducted Output Power (dBm)	4.98	5.14	5.01

NOTE:BT standalone SAR are not required, because maximum average output power is less than 10mW.

When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR. So,

SAR head value of BT is 0.16W/Kg. SAR body value of BT is 0.08W/Kg.

The average conducted power for Wi-Fi is as following: 802.11b (dBm)

Channel\data rate	1Mbps	2Mbps	5.5Mbps	11Mbps
1	12.86	12.01	12.15	13.72
6	13.19	12.78	12.65	13.47
11	12.48	12.12	12.15	12.59

802.11g (dBm)

Channel\data	6Mbp	9Mbp	12Mbp	18Mbp	24Mbp	36Mbp	48Mbp	54Mbp
rate	s	s	s	s	s	S	S	s
1	8.96	9.12	8.24	8.56	9.54	8.52	8.46	7.44
6	8.18	9.32	8.85	8.92	9.26	8.26	8.15	7.08
11	8.90	9.12	8.05	8.84	9.11	8.59	8.35	7.48

20M 802.11n (dBm)

Channel\data rate	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
1	7.02	7.15	7.11	7.05	8.28	8.67	8.51	7.72
6	7.12	7.38	7.24	7.31	8.15	8.33	7.89	7.95
11	7.96	7.12	7.75	7.65	7.72	8.50	7.59	7.45

The peak conducted power for Wi-Fi is as following:

802.11b (dBm)

Channel\data rate	1Mbps	2Mbps	5.5Mbps	11Mbps
1	16.75	16.66	16.73	18.08
6	17.12	16.98	16.85	18.10
11	16.84	16.81	16.79	17.35

802.11g (dBm)

Channel\data	6Mbp	9Mbp	12Mbp	18Mbp	24Mbp	36Mbp	48Mbp	54Mbp
rate	s	s	s	s	s	s	s	s
1	15.73	16.05	15.38	15.18	16.06	15.85	15.87	15.56
6	15.35	15.26	15.15	15.51	16.89	15.52	15.15	15.32
11	15.14	15.08	15.07	15.10	16.20	15.92	15.58	15.64

802.11n (dBm)

Channel\data rate	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
1	14.54	14.41	14.21	15.77	15.97	16.47	15.23	15.73
6	14.24	14.36	14.13	15.08	15.75	17.07	15.92	15.98
11	14.10	14.17	14.08	15.12	15.09	16.05	15.83	15.54

SAR is not required for 802.11g/n channels if the output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels, and for each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 0.25dB higher than those measured at the lowest data rate. According to the above conducted power, the EUT should be tested for "802.11b, 11Mbps, channel 1".

11 Simultaneous TX SAR Considerations

11.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. For this device, the BT and Wi-Fi can transmit simultaneous with other transmitters.

Report No.: 2014SR0007

11.2 Transmit Antenna Separation Distances

Picture 11.1 Antenna Locations

11.3 Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

Report No.: 2014SR0007

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

According to the KDB447498 D01, the SAR test exclusion threshold for distance < 5mm is defined by the following equation:

Based on the above equation, Bluetooth SAR was not required:

Evaluation=1.177<3.0

Based on the above equation, WiFi SAR was required:

Evaluation=7.37>3.0

12 Evaluation of Simultaneous

Table 12.1: Summary of Transmitters

Report No.: 2014SR0007

Band/Mode	F(GHz)	SAR test exclusion threshold (mW)	RF output power (mW)
Bluetooth	2.441	10	3.76
2.4GHz WLAN 802.11 b/g	2.45	10	23.55

Table 12.2 Simultaneous transmission SAR

Simult	aneous	Transmissi	on SAR(W	/Kg)					
Test Po	noition		GSM	GSM	WCDMA	WCDMA	WIFI	ВТ	SUM
lest Po	Silion		850	1900	ВV	BII	VVIFI	note	SUM
	Left	Cheek 0.567		0.778	0.474	0.967	0.257	0.16	1.224
Hood		Tilt 15°	0.395	0.288	0.302	0.384	0.190	0.16	0.585
Head	Right	Cheek	0.620	0.446	0.551	0.541	0.134	0.16	0.780
	rtigrit	Tilt 15°	0.414	0.213	0.340	0.308	0.128	0.16	0.574
	Phanto	m Side	1.012	0.501	0.580	0.563	0.176	0.08	1.188
	Ground	l Side	1.342	0.712	0.858	0.808	0.201	0.08	1.543
Dody	Left Sic	le	0.576	0.112	0.451	0.168	0.059	0.08	0.656
Body	Right S	ide	0.684	0.128	0.477	0.188	0.214	0.08	0.898
	Top Sid	le	N/A	N/A	N/A	N/A	0.175	0.08	N/A
	Bottom	Bottom Side		0.489	0.084	0.498	0.038	0.08	0.578

According to the conducted power measurement result, we can draw the conclusion that: stand-alone SAR for WiFi should be performed. Then, simultaneous transmission SAR for WiFi/BT is considered with measurement results of GSM/WCDMA and WiFi/BT. According to the above table, the sum of reported SAR values for GSM and WiFi <1.6W/kg. So the simultaneous transmission SAR is not required for WiFi/BT transmitter.

13 SAR Test Result

Table 13.1: Duty Cycle

Report No.: 2014SR0007

	Duty Cycle
Speech for GSM835/1900	1:8.3
GPRS for GSM835/1900	1:2
WCDMA850/1900 and WiFi	1:1

Table 13.2: SAR Values (GSM 835 MHz Band - Head)

Frequ	ency		- .	Maximum	Measured	o "	Measured	Reported	Power
MHz	Ch.	Side	Test Position	allowed Power (dBm)	average power (dBm)	Scaling factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
836.6	190	Left	Touch	32.0	31.97	1.007	0.563	0.567	0.12
836.6	190	Left	Tilt	32.0	31.97	1.007	0.392	0.395	0.02
836.6	190	Right	Touch	32.0	31.97	1.007	0.616	0.620	0.06
836.6	190	Right	Tilt	32.0	31.97	1.007	0.411	0.414	-0.11
824.2	128	Right	Touch	32.0	31.99	1.002	0.587	0.588	-0.18
848.8	251	Right	Touch	32.0	31.94	1.014	0.604	0.612	0.12

Table 13.3: SAR Values (GSM 835 MHz Band - Body)

	Table 10.0. OAK Values (Colli 000 Miliz Balla Body)										
Frequ	ency	Mode	Test	Maximum allowed	Measured	Scaling	Measured	Reported	Power		
MHz	Ch.	(number of timeslots)	Position	Power (dBm)	average power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)		
836.6	190	GPRS (4)	Phantom	29.0	28.95	1.012	1.000	1.012	-0.01		
836.6	190	GPRS (4)	Ground	29.0	28.95	1.012	1.270	1.285	0.06		
836.6	190	GPRS (4)	Left	29.0	28.95	1.012	0.569	0.576	-0.00		
836.6	190	GPRS (4)	Right	29.0	28.95	1.012	0.676	0.684	-0.11		
836.6	190	GPRS (4)	Bottom	29.0	28.95	1.012	0.097	0.098	-0.07		
848.8	251	GPRS (4)	Ground	29.0	28.91	1.021	1.250	1.276	0.04		
824.2	128	GPRS (4)	Ground	29.0	28.96	1.009	1.330	1.342	0.08		
824.2	128	Speech	Ground (Headset)	32.0	31.99	1.002	0.672	0.674	0.02		

Table 13.4: SAR Values (GSM 1900 MHz Band - Head)

	Table 10.4. SAIT Values (Com 1000 Mile Balla 1100a)										
Freque	ency		+ ,	Maximum	Measured	0 "	Measured	Reported	Power		
		Side	Test	allowed	average	Scaling	SAR(1g)	SAR(1g)	Drift		
MHz	Ch.		Position	Power	power	factor	(W/kg)	(W/kg)	(AD)		
				(dBm)	(dBm)		(vv/kg)	(vv/kg)	(dB)		
1880	661	Left	Touch	29.5	29.16	1.081	0.654	0.707	0.04		
1880	661	Left	Tilt	29.5	29.16	1.081	0.266	0.288	0.11		
1880	661	Right	Touch	29.5	29.16	1.081	0.412	0.446	0.13		
1880	661	Right	Tilt	29.5	29.16	1.081	0.197	0.213	0.05		
1909.8	810	Left	Touch	29.5	29.04	1.112	0.553	0.615	0.03		
1850.2	512	Left	Touch	29.5	29.28	1.052	0.740	0.778	0.05		

Table 13.5: SAR Values (GSM 1900 MHz Band - Body)

				•			- 31		
Freque	ency	Mode	Test	Maximum allowed	Measured average	Scaling	Measured	Reported	Power
MHz	Ch.	(number of timeslots)	Position	Power (dBm)	power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1880	661	GPRS (4)	Phantom	26.5	26.45	1.012	0.495	0.501	0.19
1880	661	GPRS (4)	Ground	26.5	26.45	1.012	0.617	0.624	0.02
1880	661	GPRS (4)	Left	26.5	26.45	1.012	0.111	0.112	0.08
1880	661	GPRS (4)	Right	26.5	26.45	1.012	0.127	0.128	-0.09
1880	661	GPRS (4)	Bottom	26.5	26.45	1.012	0.483	0.489	0.15
1909.8	810	GPRS (4)	Ground	26.5	26.36	1.033	0.574	0.593	-0.00
1850.2	512	GPRS (4)	Ground	26.5	26.48	1.005	0.705	0.712	-0.11
1850.2	512	Speech	Ground (Headset)	29.5	29.28	1.052	0.570	0.600	0.09

Table 13.6: SAR Values (WCDMA 850 MHz Band - Head)

	Table Telefor With Values (Westingtons Innie Sand Tieda)									
Frequ	iency		+ .	Maximum	Measured	0 "	Measured	Reported		
		Side	Test Position	allowed Power	average power	Scaling factor	SAR(1g)	SAR(1g)	Power Drift (dB)	
MHz	Ch.		1 03111011	(dBm)	(dBm)	iactor	(W/kg)	(W/kg)	Drift (GD)	
				(ubiii)	(ubiii)					
836.4	4182	Left	Touch	22.5	22.18	1.076	0.440	0.474	0.08	
836.4	4182	Left	Tilt	22.5	22.18	1.076	0.281	0.302	0.14	
836.4	4182	Right	Touch	22.5	22.18	1.076	0.512	0.551	-0.13	
836.4	4182	Right	Tilt	22.5	22.18	1.076	0.316	0.340	0.07	
846.6	4233	Right	Touch	22.5	22.17	1.079	0.426	0.467	0.16	
826.4	4132	Right	Touch	22.5	22.05	1.109	0.417	0.463	0.12	

Table 13.7: SAR Values (WCDMA 850 MHz Band - Body)

Frequ	ency	Test	Maximum allowed	Measured average	Scaling	Measured	Reported	Power
MHz	Ch.	Position	Power (dBm)	power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
836.4	4182	Phantom	22.5	22.18	1.076	0.539	0.580	0.02
836.4	4182	Ground	22.5	22.18	1.076	0.797	0.858	0.04
836.4	4182	Left	22.5	22.18	1.076	0.419	0.451	0.02
836.4	4182	Right	22.5	22.18	1.076	0.443	0.477	0.03
836.4	4182	Bottom	22.5	22.18	1.076	0.078	0.084	0.19
846.6	4233	Ground	22.5	22.17	1.079	0.794	0.857	0.03
826.4	4132	Ground	22.5	22.05	1.109	0.742	0.823	0.03
836.4	4182	Ground (Headset)	22.5	22.18	1.076	0.655	0.705	-0.01

Report No.: 2014SR0007

Table 13.8: SAR Values (WCDMA 1900 MHz Band - Head)

Frequ	ency		Test	Maximum	Measured	Cooling	Measured	Reported	Dower
MHz	Ch.	Side	Position	allowed Power (dBm)	average power (dBm)	Scaling factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Power Drift (dB)
1880	9400	Left	Touch	22.0	21.93	1.016	0.916	0.931	-0.09
1880	9400	Left	Tilt	22.0	21.93	1.016	0.378	0.384	0.01
1880	9400	Right	Touch	22.0	21.93	1.016	0.532	0.541	0.00
1880	9400	Right	Tilt	22.0	21.93	1.016	0.303	0.308	0.02
1907.6	9538	Left	Touch	22.0	21.73	1.064	0.881	0.938	0.15
1852.4	9262	Left	Touch	22.0	21.98	1.005	0.963	0.967	0.12

Table 13.9: SAR Values (WCDMA 1900 MHz Band - Body)

Frequ	ency	Test	Maximum allowed	Measured average	Scaling	Measured	Reported	Power
MHz	Ch.	Position	Power (dBm)	power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1880	9400	Phantom	22.0	21.93	1.016	0.554	0.563	0.01
1880	9400	Ground	22.0	21.93	1.016	0.735	0.747	0.02
1880	9400	Left	22.0	21.93	1.016	0.165	0.168	0.17
1880	9400	Right	22.0	21.93	1.016	0.185	0.188	0.11
1880	9400	Bottom	22.0	21.93	1.016	0.490	0.498	-0.18
1907.6	9538	Ground	22.0	21.73	1.064	0.759	0.808	0.03
1852.4	9262	Ground	22.0	21.98	1.005	0.764	0.768	-0.02
1852.4	9262	Ground (Headset)	22.0	21.98	1.005	0.758	0.762	-0.01

Table 13.10: SAR Values (Wi-Fi 802.11b - Head)

Frequ	ency			Maximum	Measured		Measured	Reported	Power	
		Side	Test	allowed	average	Scaling	SAR(1g)	SAR(1g)	Drift	
MHz	Ch.		Position	Power	power	factor	(W/kg)	(W/kg)	(dB)	
				(dBm)	(dBm)		(**************************************	(**************************************	(42)	
2412	1	Left	Touch	14.0	13.72	1.067	0.241	0.257	0.13	
2412	1	Left	Tilt	14.0	13.72	1.067	0.178	0.190	0.16	
2412	1	Right	Touch	14.0	13.72	1.067	0.126	0.134	0.08	
2412	1	Right	Tilt	14.0	13.72	1.067	0.120	0.128	0.09	

Table 13.11: SAR Values (Wi-Fi 802.11b - Body)

Frequency			Maximum	Measured				
		Toot			Measured	Reported	Power	
		Test	allowed	average	Scaling factor	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	Power	power		(W/kg)	(W/kg)	(dB)
			(dBm)	(dBm)		(Wing)	(VV/Ng)	(GD)
2412	1	Phantom	14.0	13.72	1.067	0.165	0.176	0.07
2412	1	Ground	14.0	13.72	1.067	0.188	0.201	0.07
2412	1	Left	14.0	13.72	1.067	0.055	0.059	0.08
2412	1	Right	14.0	13.72	1.067	0.201	0.214	0.06
2412	1	Тор	14.0	13.72	1.067	0.164	0.175	-0.08
2412	1	Bottom	14.0	13.72	1.067	0.036	0.038	-0.12

14 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

Report No.: 2014SR0007

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 14.1: SAR Measurement Variability for Head Value (1g)

Frequ	ency	Sido	Side Test Original First Re		First Repeated	The Ratio	
MHz	Ch.	Side	Position	SAR (W/kg)	SAR (W/kg)	THE RALIO	
1880	9400	Left	Touch	0.916	0.929	1.01	
1907.6	9538	Left	Touch	0.881	0.884	1.00	
1852.4	9262	Left	Touch	0.963	0.967	1.00	

Table 14.2: SAR Measurement Variability for Body Value (1g)

Report No.: 2014SR0007

Frequ	ency	Mode(number	Test	Spacin	Original	First	The
MHz	Ch.	of timeslots)	Position	g (mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio
836.6	190	GPRS (4)	Phantom	10	1.000	0.990	1.01
836.6	190	GPRS (4)	Ground	10	1.270	1.300	1.02
848.8	251	GPRS (4)	Ground	10	1.250	1.260	1.01
824.2	128	GPRS (4)	Ground	10	1.330	1.310	1.02
836.4	4182	WCDMA850	Ground	10	0.797	0.794	1.00
846.6	4233	WCDMA850	Ground	10	0.794	0.792	1.00
826.4	4132	WCDMA850	Ground	10	0.742	0.754	1.02
1907.6	9538	WCDMA1900	Ground	10	0.759	0.758	1.00

15 Measurement Uncertainty

Error Description	Unc.	Prob.	Div	Ci	Ci	Std.Unc.	Std.Unc.	Vi
	value	Dist.		1g	10g	±%,1g	±%,10g	V _{eff}
	, ±%							
Measurement System								
Probe Calibration	6.0	N	1	1	1	6.0	6.0	∞
Axial Isotropy	0.5	R	$\sqrt{3}$	0.7	0.7	0.2	0.2	∞
Hemispherical Isotropy	2.6	R	$\sqrt{3}$	0.7	0.7	1.1	1.1	∞
Boundary Effects	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
Linearity	0.6	R	$\sqrt{3}$	1	1	0.3	0.3	∞
System Detection Limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Readout Electronics	0.7	N	1	1	1	0.7	0.7	∞
Response Time	0	R	$\sqrt{3}$	1	1	0	0	∞
Integration Time	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
RF Ambient Noise	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
RF Ambient Reflections	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Probe Positioner	1.5	R	$\sqrt{3}$	1	1	0.9	0.9	∞
Probe Positioning	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Max. SAR Eval.	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	ω
Test Sample Related								
Device Positioning	2.9	N	1	1	1	2.9	2.9	145
Device Holder	3.6	N	1	1	1	3.6	3.6	5
Diople								
Power Drift	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Dipole Positioning	2.0	N	1	1	1	2.0	2.0	∞
Dipole Input Power	5.0	N	1	1	1	5.0	5.0	∞
Phantom and Setup								
Phantom Uncertainty	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
Liquid Conductivity	5.0	R	√3	0.64	0.43	1.8	1.2	∞
(target)								
Liquid Conductivity (meas.)	2.5	N	1	0.64	0.43	1.6	1.1	∞
Liquid Permittivity (target)	5.0	R	√3	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (meas.)	2.5	N	1	0.6	0.49	1.5	1.2	∞

Report No.: 2014SR0007

Combined Std			±11.2%	±10.9%	387
Uncertainty					
Expanded Std			±22.4%	±21.8%	
Uncertainty					

Report No.: 2014SR0007

Report No.: 2014SR0007

16 Main Test Instrument

Table 16.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	N5242A	MY51221755	May 21, 2013	One year	
02	Power meter	NRVD	102257	Aug 21, 2012	One year	
03	Power sensor	NRV-Z5	100644,100241	Aug 31, 2013	One year	
04	Signal Generator	E4438C	MY49072044	May 21, 2013	One Year	
05	Amplifier	NTWPA-0086010F	12023024	No Calibration Requeste	ed	
06	Coupler	778D	MY48220551	Aug 23, 2013	One year	
07	BTS	E5515C	MY50266468	May 21, 2013	One year	
08	E-field Probe	ES3DV3	3252	Aug 5, 2013	One year	
09	E-field Probe	EX3DV4	3754	Aug 8, 2013	One year	
10	DAE	SPEAG DAE4	1244	Jul 9, 2013	One year	
11	Dipole Validation Kit	SPEAG D835V2	4d092	Oct 9, 2013	One year	
12	Dipole Validation Kit	SPEAG D1900V2	5d134	Jul 12, 2013	One year	
13	Dipole Validation Kit	SPEAG D2450V2	858	Jul 13, 2013	One year	

ANNEX A GRAPH RESULTS

GSM 850MHz Left Cheek Middle

Date/Time: 2014/1/13 Electronics: DAE4 Sn1244 Medium: Head 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.919$ S/m; $\varepsilon_r = 40.986$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

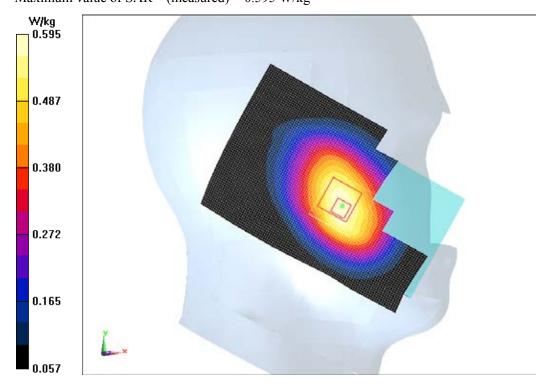
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 850MHz; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(6.1, 6.1, 6.1); Calibrated: 8/5/2013

GSM 850MHz Left Cheek Middle/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.601 W/kg

GSM 850MHz Left Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.122 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.736 W/kg

SAR(1 g) = 0.563 W/kg; SAR(10 g) = 0.412 W/kgMaximum value of SAR (measured) = 0.595 W/kg

GSM 850MHz Left Tilt Middle

Date/Time: 2014/1/13 Electronics: DAE4 Sn1244 Medium: Head 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.919$ S/m; $\varepsilon_r = 40.986$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

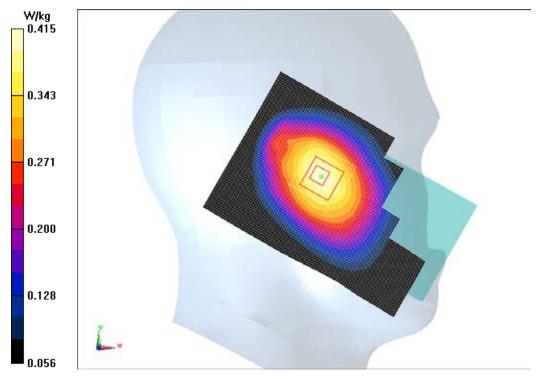
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 850MHz; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(6.1, 6.1, 6.1); Calibrated: 8/5/2013

GSM 850MHz Left Tilt Middle/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.407 W/kg

GSM 850MHz Left Tilt Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.589 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.493 W/kg

SAR(1 g) = 0.392 W/kg; SAR(10 g) = 0.293 W/kgMaximum value of SAR (measured) = 0.415 W/kg

GSM 850MHz Right Cheek Middle

Date/Time: 2014/1/13 Electronics: DAE4 Sn1244 Medium: Head 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.919$ S/m; $\varepsilon_r = 40.986$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

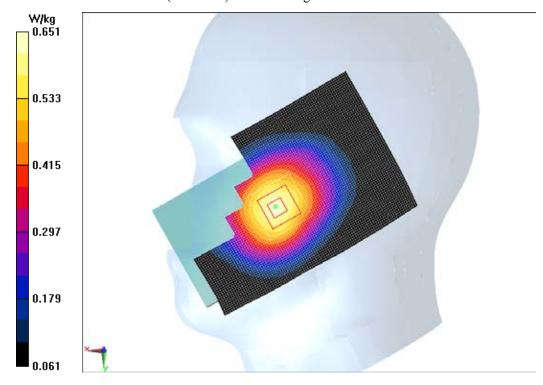
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 850MHz; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(6.1, 6.1, 6.1); Calibrated: 8/5/2013

GSM 850MHz Right Cheek Middle/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.633 W/kg

GSM 850MHz Right Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.491 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.741 W/kg

SAR(1 g) = 0.616 W/kg; SAR(10 g) = 0.464 W/kgMaximum value of SAR (measured) = 0.651 W/kg

GSM 850MHz Right Tilt Middle

Date/Time: 2014/1/13 Electronics: DAE4 Sn1244 Medium: Head 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.919$ S/m; $\varepsilon_r = 40.986$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

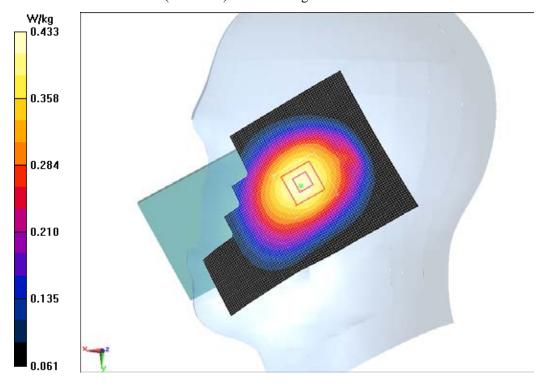
Communication System: GSM 850MHz; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(6.1, 6.1, 6.1); Calibrated: 8/5/2013

GSM 850MHz Right Tilt Middle/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.432 W/kg


GSM 850MHz Right Tilt Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.196 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.512 W/kg

SAR(1 g) = 0.411 W/kg; SAR(10 g) = 0.311 W/kgMaximum value of SAR (measured) = 0.433 W/kg

GSM 850MHz Right Cheek Low

Date/Time: 2014/1/13 Electronics: DAE4 Sn1244 Medium: Head 850MHz

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.91$ S/m; $\varepsilon_r = 41.32$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

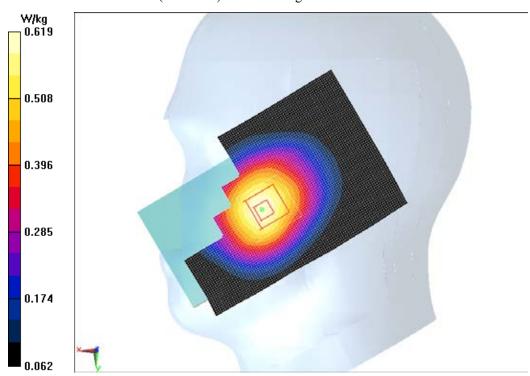
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 850MHz; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(6.1, 6.1, 6.1); Calibrated: 8/5/2013

GSM 850MHz Right Cheek Low/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.624 W/kg

GSM 850MHz Right Cheek Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.495 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.704 W/kg

SAR(1 g) = 0.587 W/kg; SAR(10 g) = 0.446 W/kgMaximum value of SAR (measured) = 0.619 W/kg

GSM 850MHz Right Cheek High

Date/Time: 2014/1/13 Electronics: DAE4 Sn1244 Medium: Head 850MHz

Medium parameters used: f = 849 MHz; $\sigma = 0.929$ S/m; $\varepsilon_r = 40.788$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

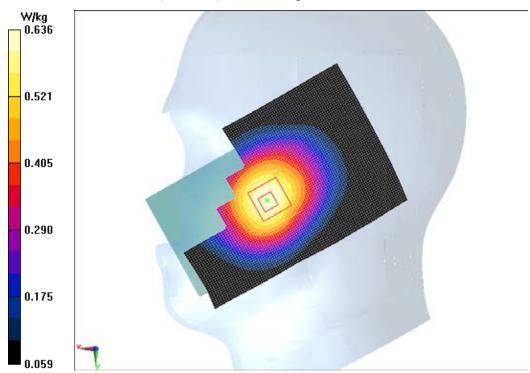
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 850MHz; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(6.1, 6.1, 6.1); Calibrated: 8/5/2013

GSM 850MHz Right Cheek High/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.644 W/kg

GSM 850MHz Right Cheek High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.988 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.722 W/kg

SAR(1 g) = 0.604 W/kg; SAR(10 g) = 0.455 W/kgMaximum value of SAR (measured) = 0.636 W/kg

GPRS 850MHz 4TS Phantom Mode Middle

Date/Time: 2014/1/14 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001$ S/m; $\varepsilon_r = 55.152$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

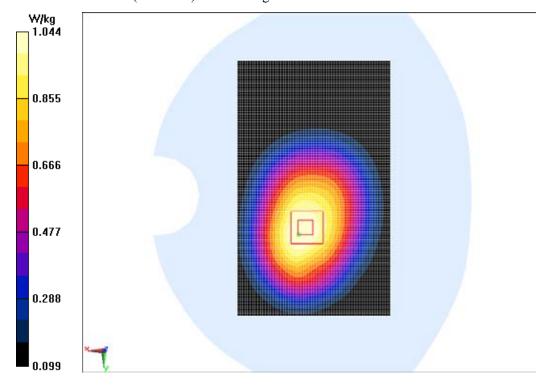
Communication System: GSM 850MHz GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle: 1:2

Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013 **GPRS 850MHz 4TS Phantom Mode Middle/Area Scan (61x101x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.07 W/kg


GPRS 850MHz 4TS Phantom Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 30.604 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.25 W/kg

SAR(1 g) = 1 W/kg; SAR(10 g) = 0.754 W/kgMaximum of SAR (measured) = 1.04 W/kg

GPRS 850MHz 4TS Ground Mode Middle

Date/Time: 2014/1/14 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001$ S/m; $\varepsilon_r = 55.152$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

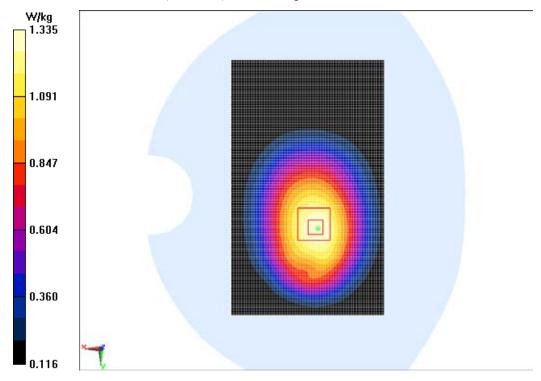
Communication System: GSM 850MHz GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle: 1:2

Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013 **GPRS 850MHz 4TS Ground Mode Middle/Area Scan (61x101x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.33 W/kg


GPRS 850MHz 4TS Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 33.300 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.59 W/kg

SAR(1 g) = 1.27 W/kg; SAR(10 g) = 0.943 W/kgMaximum value of SAR (measured) = 1.33 W/kg

GPRS 850MHz 4TS Left Mode Middle

Date/Time: 2014/1/14 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001$ S/m; $\varepsilon_r = 55.152$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 850MHz GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle: 1:2

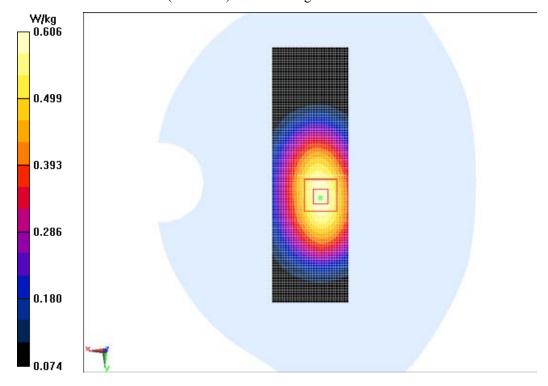
Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

GPRS 850MHz 4TS Left Mode Middle/Area Scan (31x101x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.606 W/kg


GPRS 850MHz 4TS Left Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 24.720 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 0.766 W/kg

SAR(1 g) = 0.569 W/kg; SAR(10 g) = 0.403 W/kgMaximum value of SAR (measured) = 0.606 W/kg

GPRS 850MHz 4TS Right Mode Middle

Date/Time: 2014/1/14 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001$ S/m; $\varepsilon_r = 55.152$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 850MHz GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle: 1:2

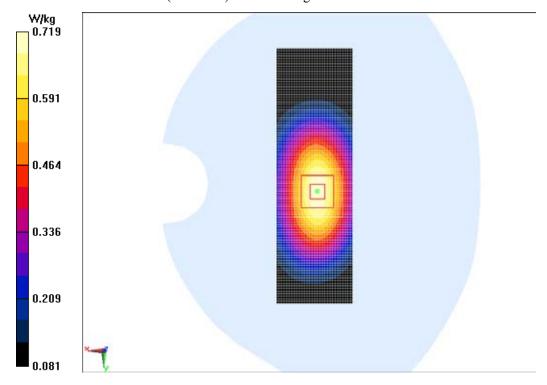
Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

GPRS 850MHz 4TS Right Mode Middle/Area Scan (31x101x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.720 W/kg


GPRS 850MHz 4TS Right Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.175 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.918 W/kg

SAR(1 g) = 0.676 W/kg; SAR(10 g) = 0.473 W/kgMaximum value of SAR (measured) = 0.719 W/kg

GPRS 850MHz 4TS Bottom Mode Middle

Date/Time: 2014/1/14 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001$ S/m; $\varepsilon_r = 55.152$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

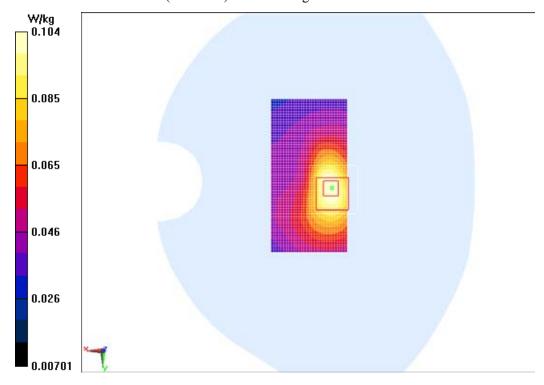
Communication System: GSM 850MHz GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle: 1:2

Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

GPRS 850MHz 4TS Bottom Mode Middle/Area Scan (31x61x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.106 W/kg

GPRS 850MHz 4TS Bottom Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.415 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.154 W/kg

SAR(1 g) = 0.097 W/kg; SAR(10 g) = 0.062 W/kgMaximum value of SAR (measured) = 0.104 W/kg

GPRS 850MHz 4TS Ground Mode Low

Date/Time: 2014/1/14 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.993 \text{ S/m}$; $\varepsilon_r = 55.149$; $\rho = 1000 \text{ kg/m}^3$

Report No.: 2014SR0007

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

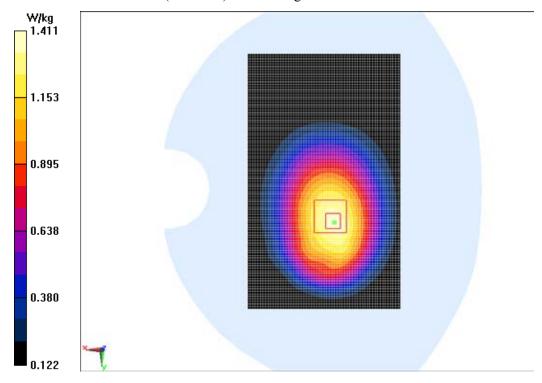
Communication System: GSM 850MHz GPRS 4TS; Frequency: 824.2 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

GPRS 850MHz 4TS Ground Mode Low 2/Area Scan (61x101x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.37 W/kg


GPRS 850MHz 4TS Ground Mode Low 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 33.717 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 1.73 W/kg

SAR(1 g) = 1.33 W/kg; SAR(10 g) = 0.980 W/kgMaximum value of SAR (measured) = 1.41 W/kg

GPRS 850MHz 4TS Ground Mode High

Date/Time: 2014/1/14 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 849 MHz; $\sigma = 1.015$ S/m; $\varepsilon_r = 55.205$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 850MHz GPRS 4TS (0); Frequency: 848.8 MHz; Duty Cycle: 1:2

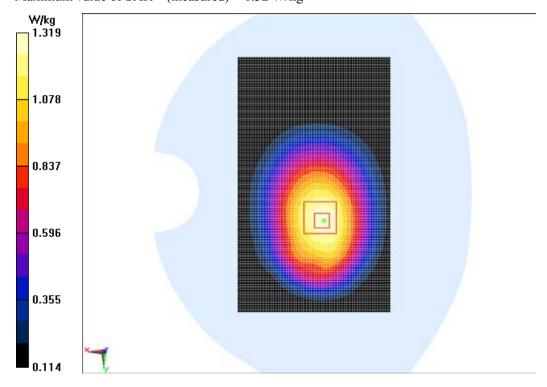
Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

GPRS 850MHz 4TS Ground Mode High/Area Scan (61x101x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.29 W/kg


GPRS 850MHz 4TS Ground Mode High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 33.501 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.58 W/kg

SAR(1 g) = 1.25 W/kg; SAR(10 g) = 0.928 W/kgMaximum value of SAR (measured) = 1.32 W/kg

GSM 850MHz Ground Mode Low With Headset

Date/Time: 2014/1/14 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.993 \text{ S/m}$; $\varepsilon_r = 55.149$; $\rho = 1000 \text{ kg/m}^3$

Report No.: 2014SR0007

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

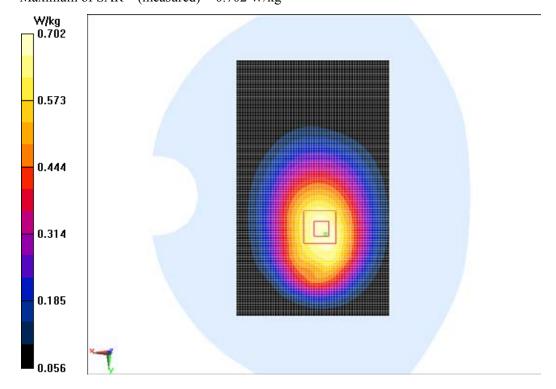
Communication System: GSM Professional 850MHz; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

GSM 850MHz Ground Mode Low With Headset/Area Scan (61x101x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.697 W/kg


GSM 850MHz Ground Mode Low With Headset/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.200 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.851 W/kg

SAR(1 g) = 0.672 W/kg; SAR(10 g) = 0.494 W/kgMaximum of SAR (measured) = 0.702 W/kg

GPRS 850MHz 4TS Phantom Mode Middle 2

Date/Time: 2014/1/14 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001$ S/m; $\varepsilon_r = 55.152$; $\rho = 1000$ kg/m³

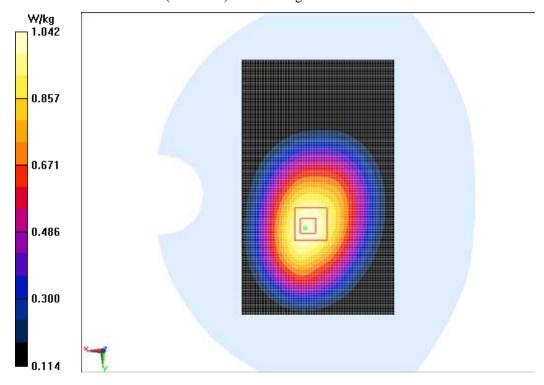
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 850MHz GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle: 1:2

Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013 **GPRS 850MHz 4TS Phantom Mode Middle 2/Area Scan (61x101x1):**

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 1.05 W/kg

GPRS 850MHz 4TS Phantom Mode Middle 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 30.100 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.990 W/kg; SAR(10 g) = 0.746 W/kgMaximum value of SAR (measured) = 1.04 W/kg

GPRS 850MHz 4TS Ground Mode Middle 2

Date/Time: 2014/1/14 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001$ S/m; $\varepsilon_r = 55.152$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

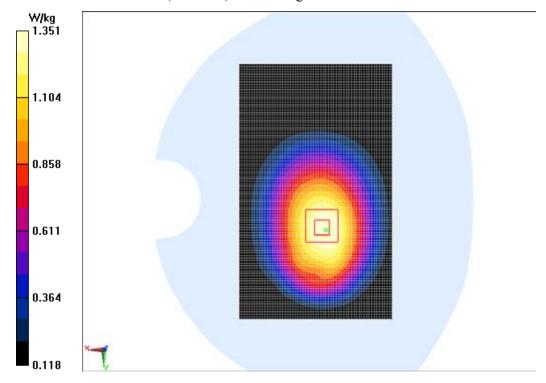
Communication System: GSM 850MHz GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle: 1:2

Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013 **GPRS 850MHz 4TS Ground Mode Middle 2/Area Scan (61x101x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.36 W/kg


GPRS 850MHz 4TS Ground Mode Middle 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 35.088 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.64 W/kg

SAR(1 g) = 1.3 W/kg; SAR(10 g) = 0.961 W/kgMaximum value of SAR (measured) = 1.35 W/kg

GPRS 850MHz 4TS Ground Mode Low 2

Date/Time: 2014/1/14 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.993 \text{ S/m}$; $\varepsilon_r = 55.149$; $\rho = 1000 \text{ kg/m}^3$

Report No.: 2014SR0007

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

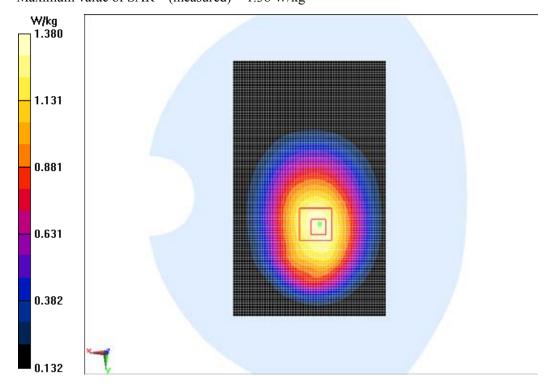
Communication System: GSM 850MHz GPRS 4TS; Frequency: 824.2 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

GPRS 850MHz 4TS Ground Mode Low 2/Area Scan (61x101x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.36 W/kg


GPRS 850MHz 4TS Ground Mode Low 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 33.990 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.65 W/kg

SAR(1 g) = 1.31 W/kg; SAR(10 g) = 0.978 W/kgMaximum value of SAR (measured) = 1.38 W/kg

GPRS 850MHz 4TS Ground Mode High 2

Date/Time: 2014/1/14 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 849 MHz; $\sigma = 1.015$ S/m; $\varepsilon_r = 55.205$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 850MHz GPRS 4TS (0); Frequency: 848.8 MHz; Duty Cycle: 1:2

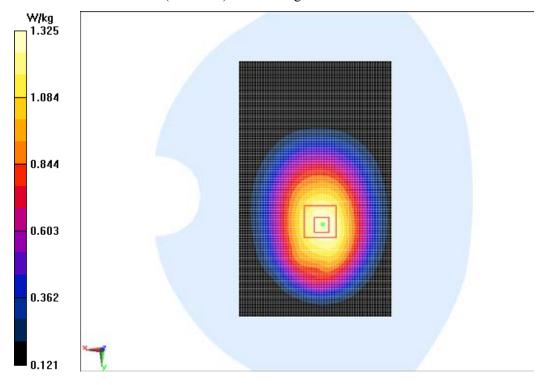
Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013 **GPRS 850MHz 4TS Ground Mode High 2/Area Scan (61x101x1):**

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.31 W/kg

GPRS 850MHz 4TS Ground Mode High 2/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 33.336 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.60 W/kg

SAR(1 g) = 1.26 W/kg; SAR(10 g) = 0.934 W/kg

Maximum value of SAR (measured) = 1.33 W/kg

GSM 1900MHz Left Cheek Middle

Date/Time: 2014/1/15 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.379$ S/m; $\varepsilon_r = 39.867$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

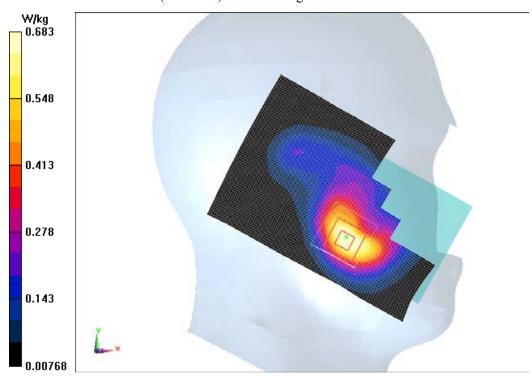
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 1900MHz; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 7/28/2013

GSM 1900MHz Left Cheek Middle/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.734 W/kg

GSM 1900MHz Left Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.375 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.654 W/kg; SAR(10 g) = 0.371 W/kgMaximum value of SAR (measured) = 0.683 W/kg

GSM 1900MHz Left Tilt Middle

Date/Time: 2014/1/15 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.379$ S/m; $\varepsilon_r = 39.867$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

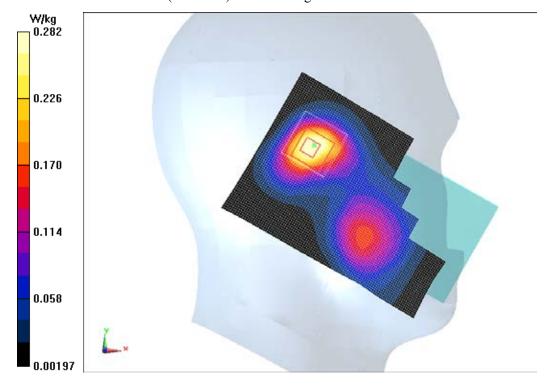
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 1900MHz; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 7/28/2013

GSM 1900MHz Left Tilt Middle/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.302 W/kg

GSM 1900MHz Left Tilt Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.870 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.415 W/kg

SAR(1 g) = 0.266 W/kg; SAR(10 g) = 0.152 W/kgMaximum value of SAR (measured) = 0.282 W/kg

GSM 1900MHz Right Cheek Middle

Date/Time: 2014/1/15 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.379$ S/m; $\varepsilon_r = 39.867$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

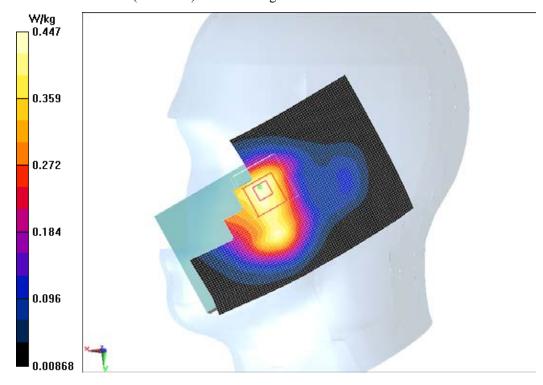
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 1900MHz; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 7/28/2013

GSM 1900MHz Right Cheek Middle/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.446 W/kg

GSM 1900MHz Right Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.338 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.613 W/kg

SAR(1 g) = 0.412 W/kg; SAR(10 g) = 0.257 W/kgMaximum of SAR (measured) = 0.447 W/kg

GSM 1900MHz Right Tilt Middle

Date/Time: 2014/1/15 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.379$ S/m; $\varepsilon_r = 39.867$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

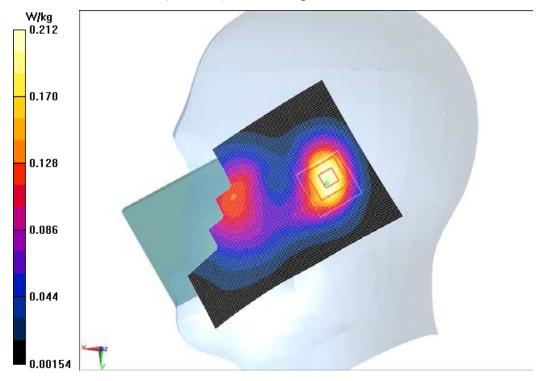
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 1900MHz; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 7/28/2013

GSM 1900MHz Right Tilt Middle/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.217 W/kg

GSM 1900MHz Right Tilt Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.245 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.305 W/kg

SAR(1 g) = 0.197 W/kg; SAR(10 g) = 0.114 W/kgMaximum value of SAR (measured) = 0.212 W/kg

GSM 1900MHz Left Cheek Low

Date/Time: 2014/1/15 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.372 \text{ S/m}$; $\varepsilon_r = 40.172$; $\rho = 1000 \text{ kg/m}^3$

Report No.: 2014SR0007

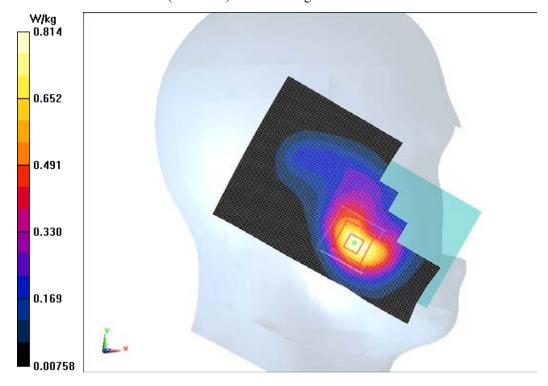
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 1900MHz; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 7/28/2013

GSM 1900MHz Left Cheek Low/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.829 W/kg

GSM 1900MHz Left Cheek Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.153 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.19 W/kg

SAR(1 g) = 0.740 W/kg; SAR(10 g) = 0.416 W/kgMaximum value of SAR (measured) = 0.814 W/kg

GSM 1900MHz Left Cheek High

Date/Time: 2014/1/15 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.393$ S/m; $\varepsilon_r = 39.622$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

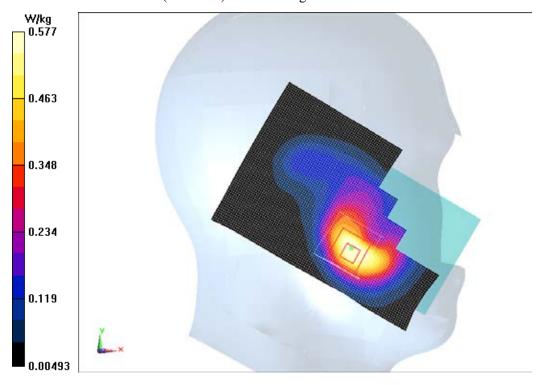
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 1900MHz; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 7/28/2013

GSM 1900MHz Left Cheek High/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.624 W/kg

GSM 1900MHz Left Cheek High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.511 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.901 W/kg

SAR(1 g) = 0.553 W/kg; SAR(10 g) = 0.312 W/kgMaximum value of SAR (measured) = 0.577 W/kg

GPRS 1900MHz 4TS Phantom Mode Middle

Date/Time: 2014/1/16 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504$ S/m; $\varepsilon_r = 53.319$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

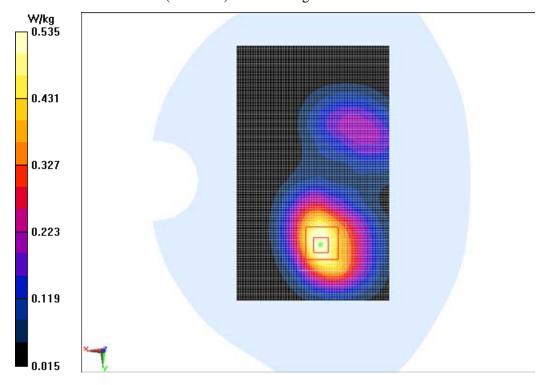
Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle: 1:2

Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 7/26/2013

GPRS 1900MHz 4TS Phantom Mode Middle/Area Scan (61x101x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.567 W/kg

GPRS 1900MHz 4TS Phantom Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.466 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.772 W/kg

SAR(1 g) = 0.495 W/kg; SAR(10 g) = 0.304 W/kgMaximum value of SAR (measured) = 0.535 W/kg

GPRS 1900MHz 4TS Ground Mode Middle

Date/Time: 2014/1/16 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504$ S/m; $\varepsilon_r = 53.319$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

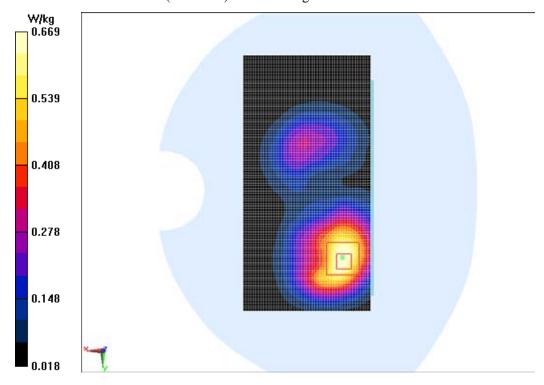
Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle: 1:2

Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 7/26/2013

GPRS 1900MHz 4TS Ground Mode Middle/Area Scan (51x101x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.691 W/kg

GPRS 1900MHz 4TS Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.100 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.976 W/kg

SAR(1 g) = 0.617 W/kg; SAR(10 g) = 0.371 W/kgMaximum value of SAR (measured) = 0.669 W/kg

GPRS 1900MHz 4TS Left Mode Middle

Date/Time: 2014/1/16 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504$ S/m; $\varepsilon_r = 53.319$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

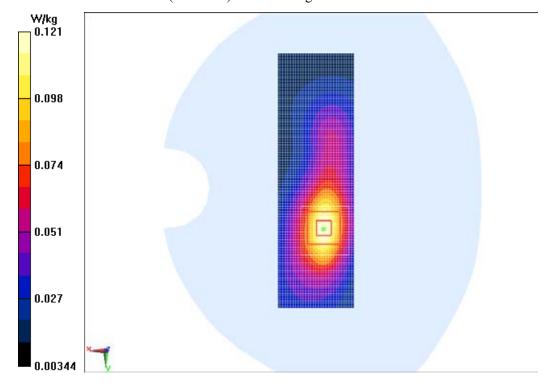
Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle: 1:2

Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 7/26/2013

GPRS 1900MHz 4TS Left Mode Middle/Area Scan (31x101x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.124 W/kg

GPRS 1900MHz 4TS Left Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.207 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.178 W/kg

SAR(1 g) = 0.111 W/kg; SAR(10 g) = 0.067 W/kgMaximum value of SAR (measured) = 0.121 W/kg

GPRS 1900MHz 4TS Right Mode Middle

Date/Time: 2014/1/16 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504$ S/m; $\varepsilon_r = 53.319$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

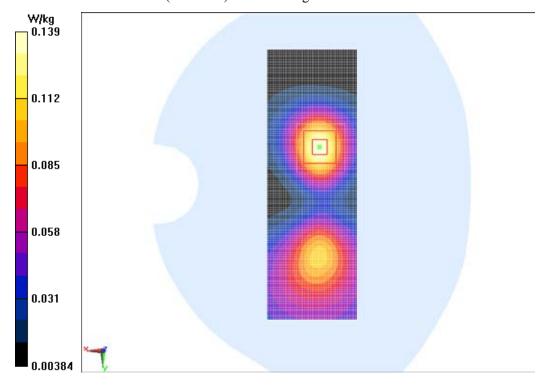
Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle: 1:2

Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 7/26/2013

GPRS 1900MHz 4TS Right Mode Middle/Area Scan (61x181x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.140 W/kg

GPRS 1900MHz 4TS Right Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.135 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.195 W/kg

SAR(1 g) = 0.127 W/kg; SAR(10 g) = 0.077 W/kgMaximum value of SAR (measured) = 0.139 W/kg

GPRS 1900MHz 4TS Bottom Mode Middle

Date/Time: 2014/1/16 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504$ S/m; $\varepsilon_r = 53.319$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

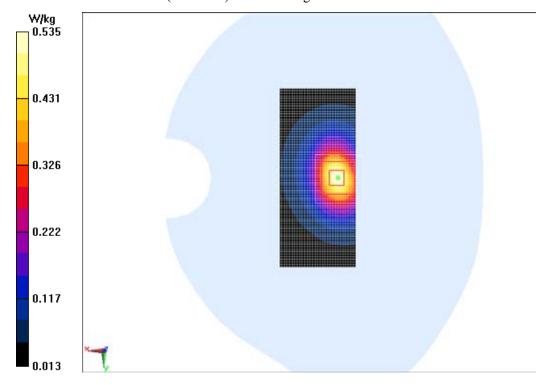
Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle: 1:2

Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 7/26/2013

GPRS 1900MHz 4TS Bottom Mode Middle/Area Scan (31x71x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.539 W/kg

GPRS 1900MHz 4TS Bottom Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.595 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.777 W/kg

SAR(1 g) = 0.483 W/kg; SAR(10 g) = 0.271 W/kgMaximum value of SAR (measured) = 0.535 W/kg

GPRS 1900MHz 4TS Ground Mode High

Date/Time: 2014/1/16 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.534$ S/m; $\varepsilon_r = 53.187$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1909.8 MHz; Duty Cycle: 1:2

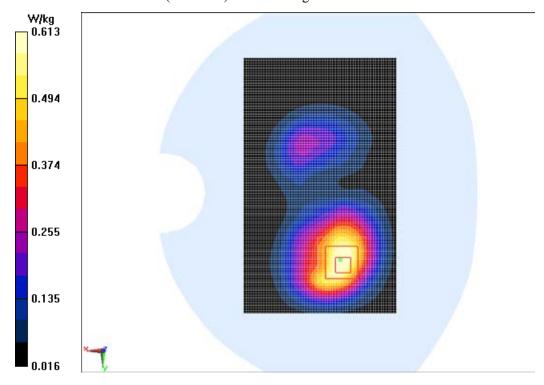
Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 7/26/2013

GPRS 1900MHz 4TS Ground Mode High/Area Scan (61x101x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.645 W/kg


GPRS 1900MHz 4TS Ground Mode High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.779 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 0.937 W/kg

SAR(1 g) = 0.574 W/kg; SAR(10 g) = 0.343 W/kgMaximum value of SAR (measured) = 0.613 W/kg

GPRS 1900MHz 4TS Ground Mode Low

Date/Time: 2014/1/16 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.475 \text{ S/m}$; $\varepsilon_r = 53.44$; $\rho = 1000 \text{ kg/m}^3$

Report No.: 2014SR0007

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

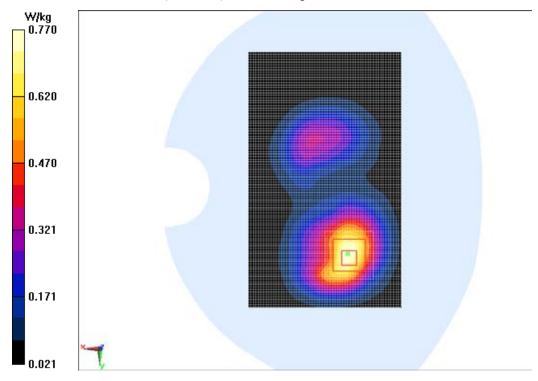
Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1850.2 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 7/26/2013

GPRS 1900MHz 4TS Ground Mode Low/Area Scan (61x101x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.778 W/kg


GPRS 1900MHz 4TS Ground Mode Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.521 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 1.13 W/kg

SAR(1 g) = 0.705 W/kg; SAR(10 g) = 0.420 W/kgMaximum value of SAR (measured) = 0.770 W/kg

GSM 1900MHz Ground Mode Low With Headset

Date/Time: 2014/1/16 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.475 \text{ S/m}$; $\varepsilon_r = 53.44$; $\rho = 1000 \text{ kg/m}^3$

Report No.: 2014SR0007

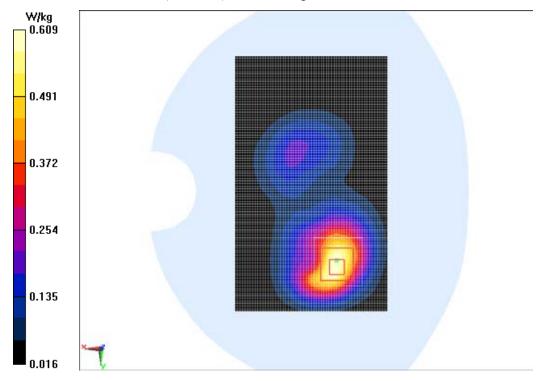
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM Professional 1900MHz; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 7/26/2013

GSM 1900MHz Ground Mode Low With Headset/Area Scan (61x101x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.598 W/kg

GSM 1900MHz Ground Mode Low With Headset/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.798 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.937 W/kg

SAR(1 g) = 0.570 W/kg; SAR(10 g) = 0.332 W/kgMaximum value of SAR (measured) = 0.609 W/kg

WCDMA Band5 Left Cheek Middle

Date/Time: 2014/1/13 Electronics: DAE4 Sn1244 Medium: Head 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.919$ S/m; $\varepsilon_r = 40.986$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

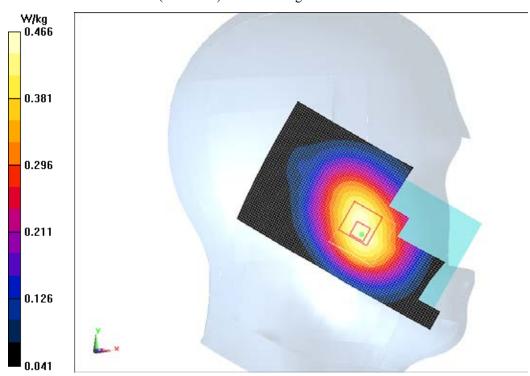
Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(6.1, 6.1, 6.1); Calibrated: 8/5/2013

WCDMA Band5 Left Cheek Middle/Area Scan (111x61x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.460 W/kg

WCDMA Band5 Left Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.894 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.580 W/kg

SAR(1 g) = 0.440 W/kg; SAR(10 g) = 0.323 W/kgMaximum value of SAR (measured) = 0.466 W/kg

WCDMA Band5 Left Tilt Middle

Date/Time: 2014/1/13 Electronics: DAE4 Sn1244 Medium: Head 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.919$ S/m; $\varepsilon_r = 40.986$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

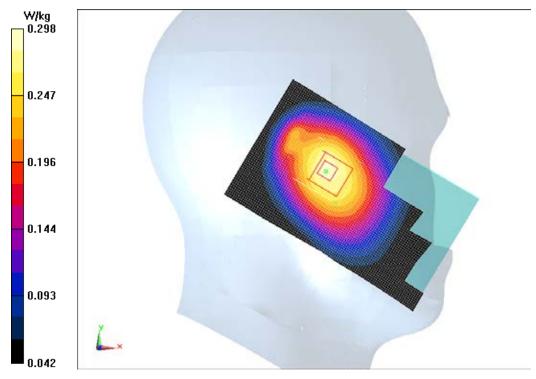
Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(6.1, 6.1, 6.1); Calibrated: 8/5/2013

WCDMA Band5 Left Tilt Middle/Area Scan (111x61x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.291 W/kg

WCDMA Band5 Left Tilt Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.376 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.351 W/kg

SAR(1 g) = 0.281 W/kg; SAR(10 g) = 0.211 W/kgMaximum value of SAR (measured) = 0.298 W/kg

WCDMA Band5 Right Cheek Middle

Date/Time: 2014/1/13 Electronics: DAE4 Sn1244 Medium: Head 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.919$ S/m; $\varepsilon_r = 40.986$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

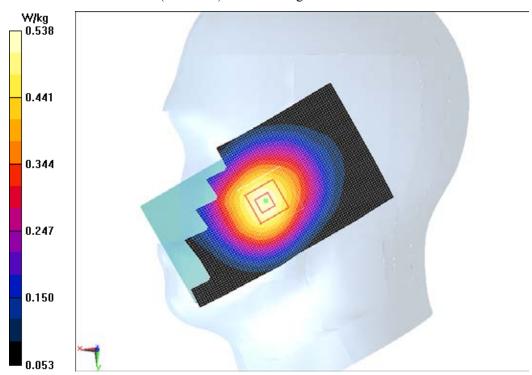
Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(6.1, 6.1, 6.1); Calibrated: 8/5/2013

WCDMA Band5 Right Cheek Middle/Area Scan (111x61x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.535 W/kg

WCDMA Band5 Right Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.753 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.619 W/kg

SAR(1 g) = 0.512 W/kg; SAR(10 g) = 0.384 W/kgMaximum value of SAR (measured) = 0.538 W/kg

WCDMA Band5 Right Tilt Middle

Date/Time: 2014/1/13 Electronics: DAE4 Sn1244 Medium: Head 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 0.919$ S/m; $\varepsilon_r = 40.986$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

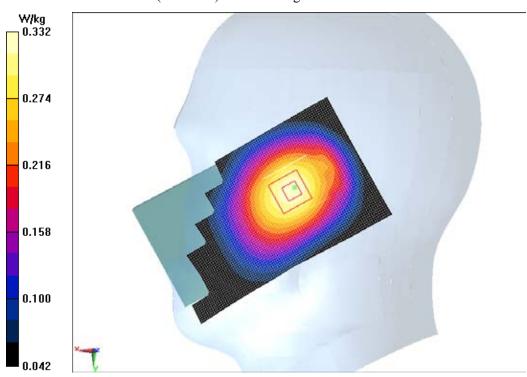
Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(6.1, 6.1, 6.1); Calibrated: 8/5/2013

WCDMA Band5 Right Tilt Middle/Area Scan (111x61x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.332 W/kg

WCDMA Band5 Right Tilt Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.039 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.395 W/kg

SAR(1 g) = 0.316 W/kg; SAR(10 g) = 0.238 W/kgMaximum value of SAR (measured) = 0.332 W/kg

WCDMA Band5 Right Cheek Low

Date/Time: 2014/1/13 Electronics: DAE4 Sn1244 Medium: Head 850MHz

Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.911 \text{ S/m}$; $\varepsilon_r = 41.264$; $\rho = 1000 \text{ kg/m}^3$

Report No.: 2014SR0007

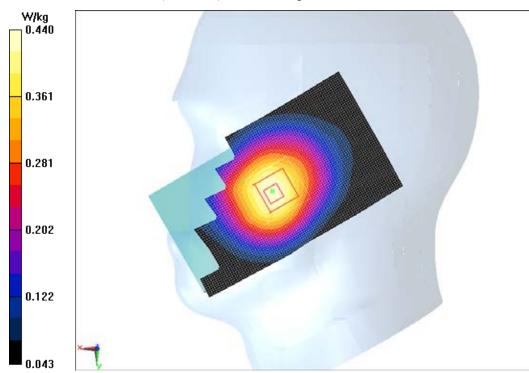
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Band V; Frequency: 826.4 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.1, 6.1, 6.1); Calibrated: 8/5/2013

WCDMA Band5 Right Cheek Low/Area Scan (111x61x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.438 W/kg

WCDMA Band5 Right Cheek Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.913 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.504 W/kg

SAR(1 g) = 0.417 W/kg; SAR(10 g) = 0.316 W/kgMaximum value of SAR (measured) = 0.440 W/kg

WCDMA Band5 Right Cheek High

Date/Time: 2014/1/13 Electronics: DAE4 Sn1244 Medium: Head 850MHz

Medium parameters used: f = 847 MHz; $\sigma = 0.927$ S/m; $\varepsilon_r = 40.809$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

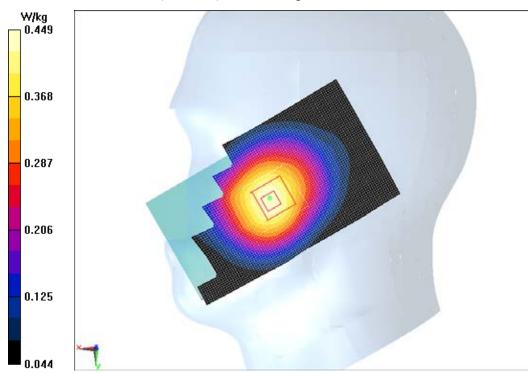
Communication System: WCDMA Band V; Frequency: 846.6 MHz; Duty Cycle: 1:1

Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(6.1, 6.1, 6.1); Calibrated: 8/5/2013

WCDMA Band5 Right Cheek High/Area Scan (111x61x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.443 W/kg

WCDMA Band5 Right Cheek High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.810 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.513 W/kg

SAR(1 g) = 0.426 W/kg; SAR(10 g) = 0.322 W/kgMaximum value of SAR (measured) = 0.449 W/kg

WCDMA Band5 Phantom Mode Middle

Date/Time: 2014/1/14 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001$ S/m; $\varepsilon_r = 55.152$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

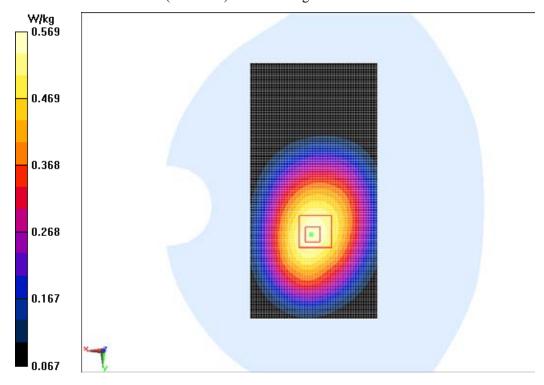
Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

WCDMA Band5 Phantom Mode Middle/Area Scan (51x101x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.566 W/kg


WCDMA Band5 Phantom Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.345 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.670 W/kg

SAR(1 g) = 0.539 W/kg; SAR(10 g) = 0.406 W/kgMaximum value of SAR (measured) = 0.569 W/kg

WCDMA Band5 Ground Mode Middle

Date/Time: 2014/1/14 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001$ S/m; $\varepsilon_r = 55.152$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

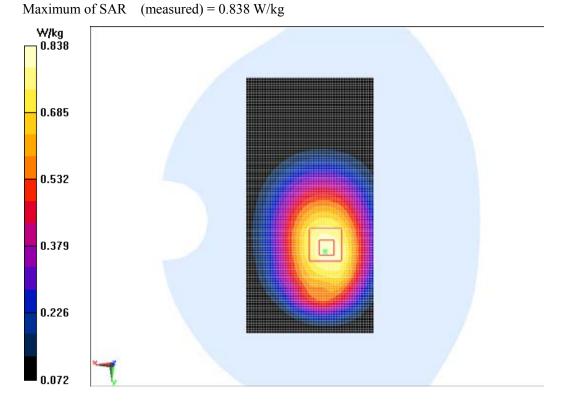
Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

WCDMA Band5 Ground Mode Middle/Area Scan (51x101x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.830 W/kg

WCDMA Band5 Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 27.086 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.797 W/kg; SAR(10 g) = 0.589 W/kg

WCDMA Band5 Right Mode Middle

Date/Time: 2014/1/14 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001$ S/m; $\varepsilon_r = 55.152$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

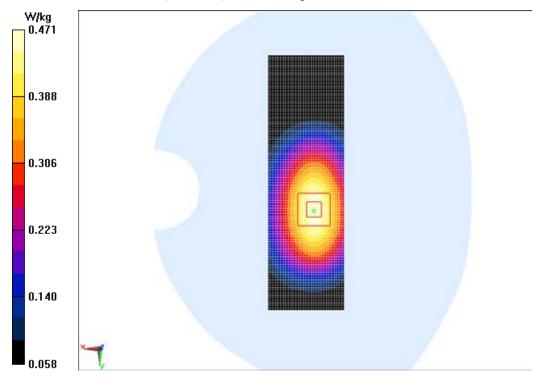
Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

WCDMA Band5 Right Mode Middle/Area Scan (31x101x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.470 W/kg


WCDMA Band5 Right Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.346 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.591 W/kg

SAR(1 g) = 0.443 W/kg; SAR(10 g) = 0.314 W/kgMaximum value of SAR (measured) = 0.471 W/kg

WCDMA Band5 Left Mode Middle

Date/Time: 2014/1/14 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001$ S/m; $\varepsilon_r = 55.152$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

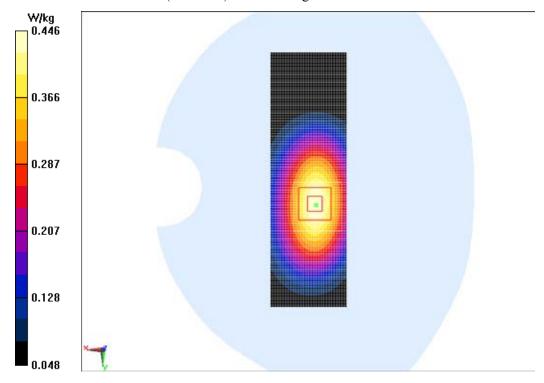
Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

WCDMA Band5 Left Mode Middle/Area Scan (31x101x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.447 W/kg

WCDMA Band5 Left Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 20.921 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.567 W/kg

SAR(1 g) = 0.419 W/kg; SAR(10 g) = 0.293 W/kgMaximum value of SAR (measured) = 0.446 W/kg

WCDMA Band5 Bottom Mode Middle

Date/Time: 2014/1/14 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001 \text{ S/m}$; $\varepsilon_r = 55.152$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

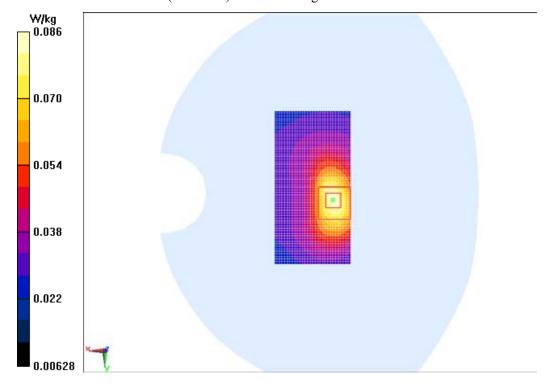
Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

WCDMA Band5 Bottom Mode Middle/Area Scan (31x61x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.0830 W/kg

WCDMA Band5 Bottom Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.294 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.127 W/kg

SAR(1 g) = 0.078 W/kg; SAR(10 g) = 0.049 W/kgMaximum value of SAR (measured) = 0.0859 W/kg

WCDMA Band5 Ground Mode Low

Date/Time: 2014/1/14 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.994 \text{ S/m}$; $\varepsilon_r = 55.147$; $\rho = 1000 \text{ kg/m}^3$

Report No.: 2014SR0007

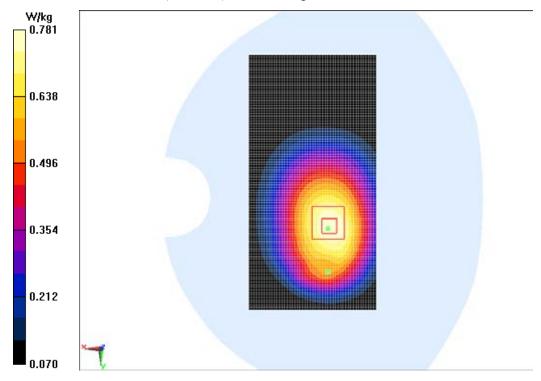
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Band V; Frequency: 826.4 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

WCDMA Band5 Ground Mode Low/Area Scan (51x101x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.780 W/kg

WCDMA Band5 Ground Mode Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 26.018 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.947 W/kg

SAR(1 g) = 0.742 W/kg; SAR(10 g) = 0.549 W/kgMaximum value of SAR (measured) = 0.781 W/kg

WCDMA Band5 Ground Mode High

Date/Time: 2014/1/14 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 847 MHz; $\sigma = 1.012$ S/m; $\varepsilon_r = 55.214$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

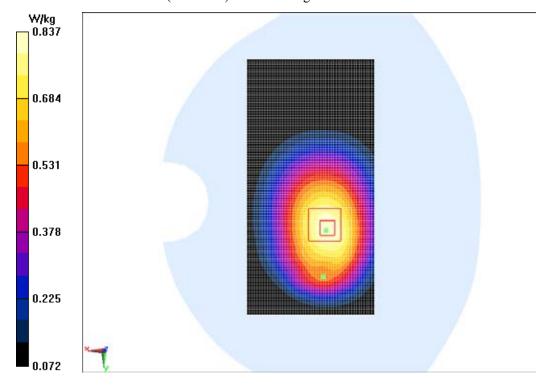
Communication System: WCDMA Band V; Frequency: 846.6 MHz; Duty Cycle: 1:1

Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

WCDMA Band5 Ground Mode High/Area Scan (51x101x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.828 W/kg

WCDMA Band5 Ground Mode High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 27.124 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.01 W/kg

SAR(1 g) = 0.794 W/kg; SAR(10 g) = 0.587 W/kgMaximum value of SAR (measured) = 0.837 W/kg

WCDMA Band5 Ground Mode Middle With Headset

Date/Time: 2014/1/14 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001$ S/m; $\varepsilon_r = 55.152$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Professional Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

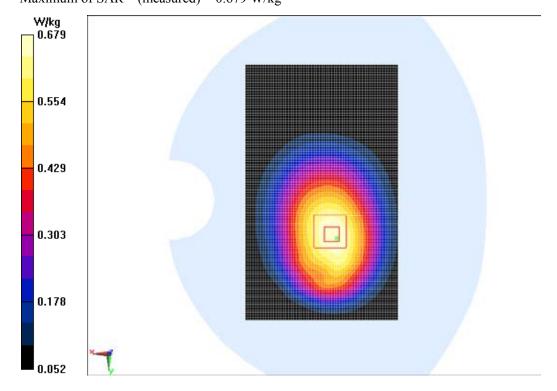
Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

WCDMA Band5 Ground Mode Middle With Headset/Area Scan (61x101x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.685 W/kg


WCDMA Band5 Ground Mode Middle With Headset/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.493 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.838 W/kg

SAR(1 g) = 0.655 W/kg; SAR(10 g) = 0.482 W/kgMaximum of SAR (measured) = 0.679 W/kg

WCDMA Band5 Ground Mode Middle 2

Date/Time: 2014/1/14 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001$ S/m; $\varepsilon_r = 55.152$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

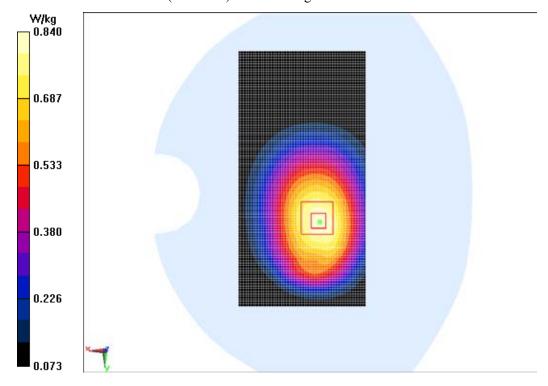
Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

WCDMA Band5 Ground Mode Middle 2/Area Scan (51x101x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.825 W/kg

WCDMA Band5 Ground Mode Middle 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 26.982 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.794 W/kg; SAR(10 g) = 0.586 W/kgMaximum value of SAR (measured) = 0.840 W/kg

WCDMA Band5 Ground Mode Low 2

Date/Time: 2014/1/14 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.994$ S/m; $\varepsilon_r = 55.147$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

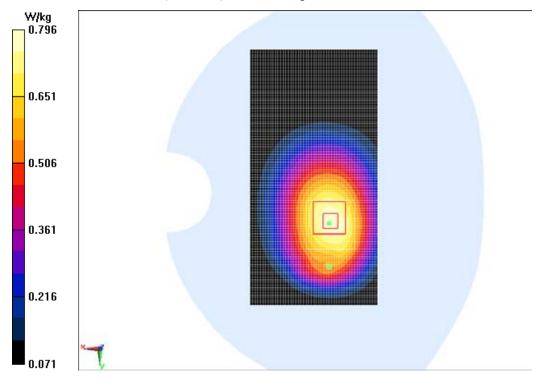
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Band V; Frequency: 826.4 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

WCDMA Band5 Ground Mode Low 2/Area Scan (51x101x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.787 W/kg

WCDMA Band5 Ground Mode Low 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 26.283 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.962 W/kg

SAR(1 g) = 0.754 W/kg; SAR(10 g) = 0.557 W/kgMaximum value of SAR (measured) = 0.796 W/kg

WCDMA Band5 Ground Mode High 2

Date/Time: 2014/1/14 Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 847 MHz; $\sigma = 1.012$ S/m; $\varepsilon_r = 55.214$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

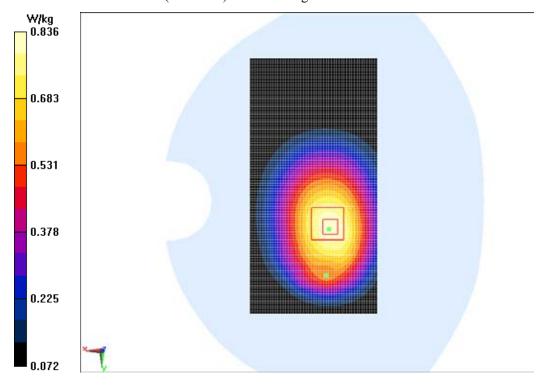
Communication System: WCDMA Band V; Frequency: 846.6 MHz; Duty Cycle: 1:1

Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013

WCDMA Band5 Ground Mode High 2/Area Scan (51x101x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.829 W/kg

WCDMA Band5 Ground Mode High 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 27.100 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.01 W/kg

SAR(1 g) = 0.792 W/kg; SAR(10 g) = 0.585 W/kgMaximum value of SAR (measured) = 0.836 W/kg

WCDMA Band2 Left Cheek Middle

Date/Time: 2014/1/15 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.379$ S/m; $\varepsilon_r = 39.867$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

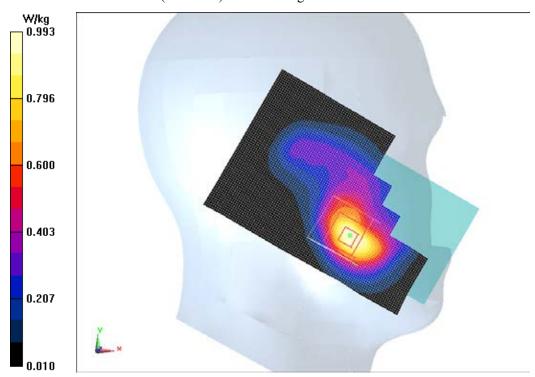
Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 7/28/2013

WCDMA Band2 Left Cheek Middle/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 1.02 W/kg


WCDMA Band2 Left Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.250 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.45 W/kg

SAR(1 g) = 0.916 W/kg; SAR(10 g) = 0.523 W/kgMaximum value of SAR (measured) = 0.993 W/kg

WCDMA Band2 Left Tilt Middle

Date/Time: 2014/1/15 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.379$ S/m; $\varepsilon_r = 39.867$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

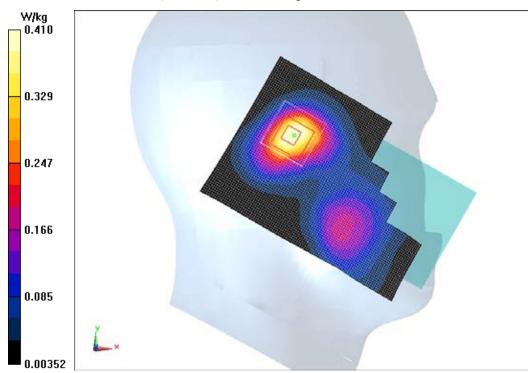
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 7/28/2013

WCDMA Band2 Left Tilt Middle/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.440 W/kg

WCDMA Band2 Left Tilt Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.218 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.606 W/kg

SAR(1 g) = 0.378 W/kg; SAR(10 g) = 0.217 W/kgMaximum value of SAR (measured) = 0.410 W/kg

WCDMA Band2 Right Cheek Middle

Date/Time: 2014/1/15 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.379$ S/m; $\varepsilon_r = 39.867$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

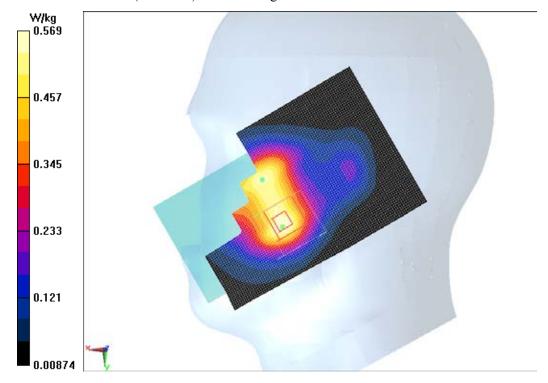
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 7/28/2013

WCDMA Band2 Right Cheek Middle/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.592 W/kg

WCDMA Band2 Right Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.180 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.800 W/kg

SAR(1 g) = 0.532 W/kg; SAR(10 g) = 0.328 W/kgMaximum of SAR (measured) = 0.569 W/kg

WCDMA Band2 Right Tilt Middle

Date/Time: 2014/1/15 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.379$ S/m; $\varepsilon_r = 39.867$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

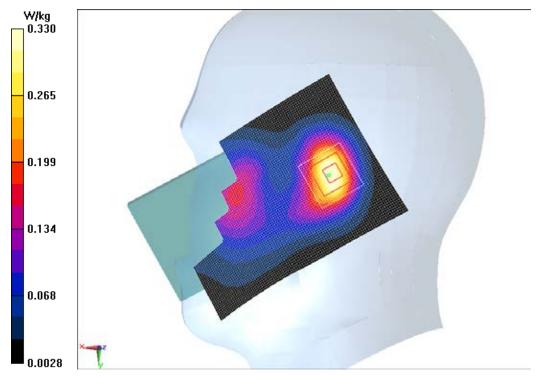
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 7/28/2013

WCDMA Band2 Right Tilt Middle/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.344 W/kg

WCDMA Band2 Right Tilt Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.418 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.474 W/kg

SAR(1 g) = 0.303 W/kg; SAR(10 g) = 0.177 W/kgMaximum value of SAR (measured) = 0.330 W/kg

WCDMA Band2 Left Cheek Low

Date/Time: 2014/1/15 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.373$ S/m; $\varepsilon_r = 40.159$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

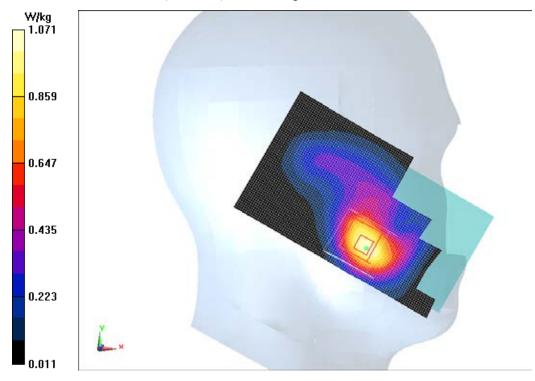
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Band II; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 7/28/2013

WCDMA Band2 Left Cheek Low/Area Scan (111x61x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 1.07 W/kg

WCDMA Band2 Left Cheek Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.496 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.53 W/kg

SAR(1 g) = 0.963 W/kg; SAR(10 g) = 0.551 W/kgMaximum value of SAR (measured) = 1.07 W/kg

WCDMA Band2 Left Cheek High

Date/Time: 2014/1/15 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1908 MHz; $\sigma = 1.391$ S/m; $\varepsilon_r = 39.62$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

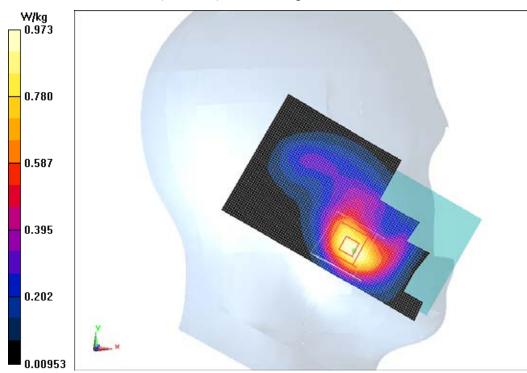
Communication System: WCDMA Band II; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 7/28/2013

WCDMA Band2 Left Cheek High/Area Scan (111x61x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.989 W/kg

WCDMA Band2 Left Cheek High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.788 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 1.43 W/kg

SAR(1 g) = 0.881 W/kg; SAR(10 g) = 0.501 W/kgMaximum value of SAR (measured) = 0.973 W/kg

WCDMA Band2 Phantom Mode Middle

Date/Time: 2014/1/16 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504$ S/m; $\varepsilon_r = 53.319$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

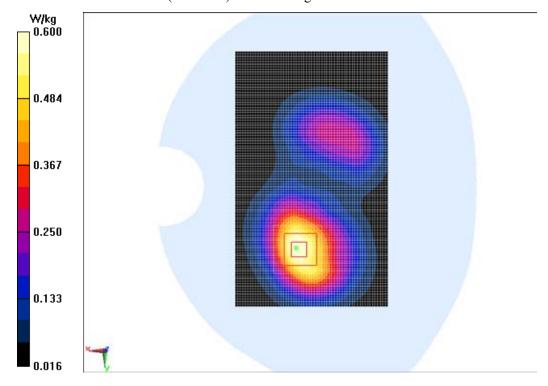
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 7/26/2013

WCDMA Band2 Phantom Mode Middle/Area Scan (61x101x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.619 W/kg

WCDMA Band2 Phantom Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.693 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.865 W/kg

SAR(1 g) = 0.554 W/kg; SAR(10 g) = 0.341 W/kgMaximum value of SAR (measured) = 0.600 W/kg

WCDMA Band2 Ground Mode Middle

Date/Time: 2014/1/16 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504$ S/m; $\varepsilon_r = 53.319$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

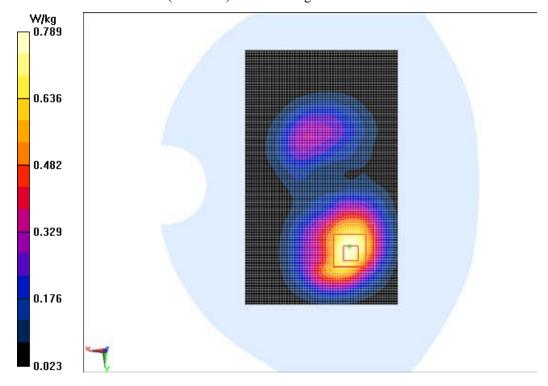
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 7/26/2013

WCDMA Band2 Ground Mode Middle/Area Scan (61x101x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.804 W/kg

WCDMA Band2 Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.751 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.18 W/kg

SAR(1 g) = 0.735 W/kg; SAR(10 g) = 0.440 W/kgMaximum value of SAR (measured) = 0.789 W/kg

WCDMA Band2 Left Mode Middle

Date/Time: 2014/1/16 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504$ S/m; $\varepsilon_r = 53.319$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

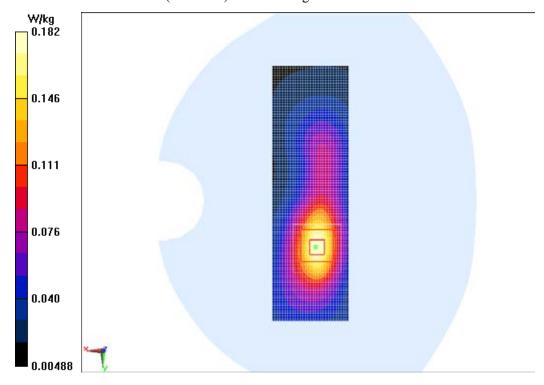
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 7/26/2013

WCDMA Band2 Left Mode Middle/Area Scan (31x101x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.183 W/kg

WCDMA Band2 Left Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.188 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.260 W/kg

SAR(1 g) = 0.165 W/kg; SAR(10 g) = 0.098 W/kgMaximum value of SAR (measured) = 0.182 W/kg

WCDMA Band2 Right Mode Middle

Date/Time: 2014/1/16 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504$ S/m; $\varepsilon_r = 53.319$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

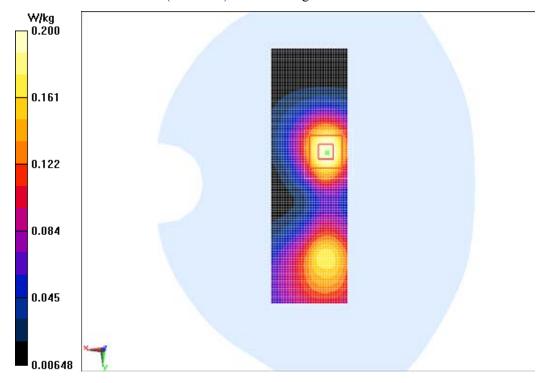
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 7/26/2013

WCDMA Band2 Right Mode Middle/Area Scan (31x101x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.206 W/kg

WCDMA Band2 Right Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.120 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.286 W/kg

SAR(1 g) = 0.185 W/kg; SAR(10 g) = 0.112 W/kgMaximum value of SAR (measured) = 0.200 W/kg

WCDMA Band2 Bottom Mode Middle

Date/Time: 2014/1/16 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.504$ S/m; $\varepsilon_r = 53.319$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

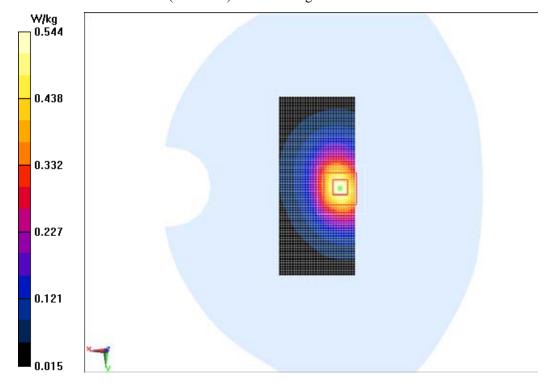
Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 7/26/2013

WCDMA Band2 Bottom Mode Middle/Area Scan (31x71x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.549 W/kg


WCDMA Band2 Bottom Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.335 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.785 W/kg

SAR(1 g) = 0.490 W/kg; SAR(10 g) = 0.281 W/kgMaximum value of SAR (measured) = 0.544 W/kg

WCDMA Band2 Ground Mode Low

Date/Time: 2014/1/16 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.477$ S/m; $\varepsilon_r = 53.431$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

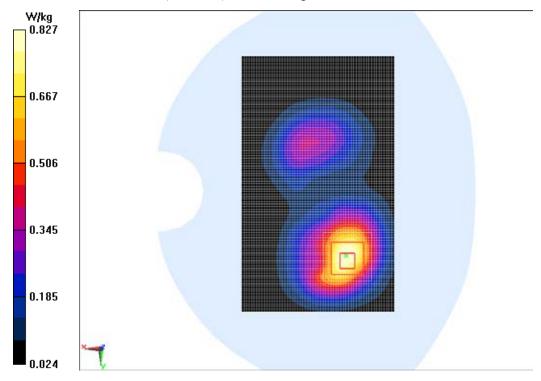
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Band II; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 7/26/2013

WCDMA Band2 Ground Mode Low/Area Scan (61x101x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.834 W/kg

WCDMA Band2 Ground Mode Low/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.511 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.764 W/kg; SAR(10 g) = 0.457 W/kgMaximum value of SAR (measured) = 0.827 W/kg

WCDMA Band2 Ground Mode High

Date/Time: 2014/1/16 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1908 MHz; $\sigma = 1.532$ S/m; $\varepsilon_r = 53.199$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

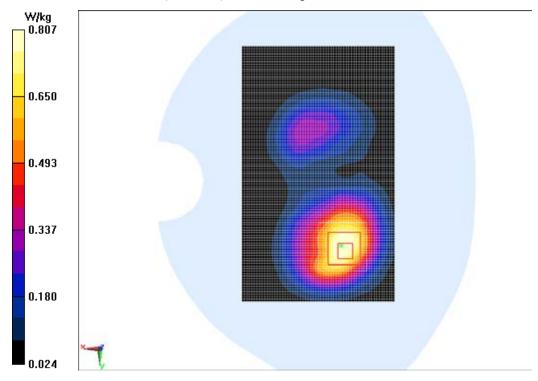
Communication System: WCDMA Band II; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 7/26/2013

WCDMA Band2 Ground Mode High/Area Scan (61x101x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.852 W/kg

WCDMA Band2 Ground Mode High/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.875 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.759 W/kg; SAR(10 g) = 0.456 W/kgMaximum value of SAR (measured) = 0.807 W/kg

WCDMA Band2 Ground Mode Low With Headset

Date/Time: 2014/1/16 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.477$ S/m; $\varepsilon_r = 53.431$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

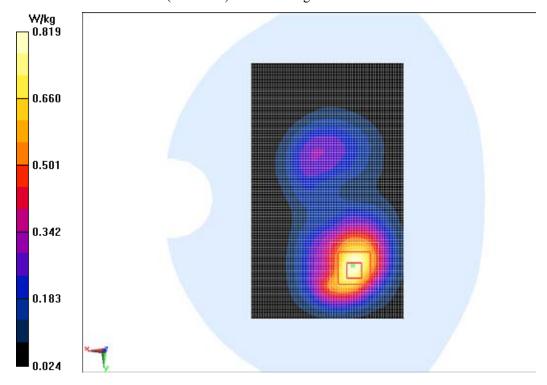
Communication System: WCDMA Professional Band II; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 7/26/2013

WCDMA Band2 Ground Mode Low With Headset/Area Scan (61x101x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.824 W/kg


WCDMA Band2 Ground Mode Low With Headset/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.822 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.758 W/kg; SAR(10 g) = 0.449 W/kgMaximum value of SAR (measured) = 0.819 W/kg

WCDMA Band2 Left Cheek Middle 2

Date/Time: 2014/1/15 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.379$ S/m; $\varepsilon_r = 39.867$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

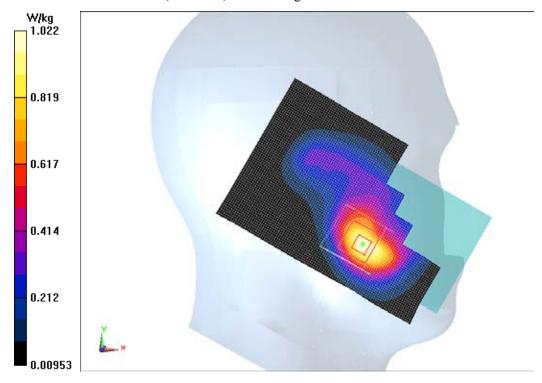
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 7/28/2013

WCDMA Band2 Left Cheek Middle 2/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 1.03 W/kg

WCDMA Band2 Left Cheek Middle 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.595 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.48 W/kg

SAR(1 g) = 0.929 W/kg; SAR(10 g) = 0.528 W/kgMaximum value of SAR (measured) = 1.02 W/kg

WCDMA Band2 Left Cheek High 2

Date/Time: 2014/1/15 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1908 MHz; $\sigma = 1.391$ S/m; $\varepsilon_r = 39.62$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

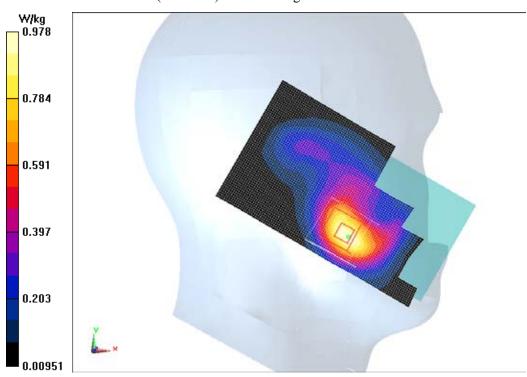
Communication System: WCDMA Band II; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 7/28/2013

WCDMA Band2 Left Cheek High 2/Area Scan (111x61x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.990 W/kg

WCDMA Band2 Left Cheek High 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.753 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 1.43 W/kg

SAR(1 g) = 0.884 W/kg; SAR(10 g) = 0.503 W/kgMaximum value of SAR (measured) = 0.978 W/kg

WCDMA Band2 Left Cheek Low 2

Date/Time: 2014/1/15 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.373$ S/m; $\varepsilon_r = 40.159$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

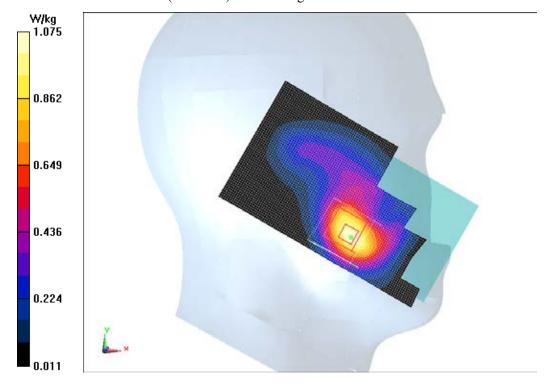
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Band II; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 7/28/2013

WCDMA Band2 Left Cheek Low 2/Area Scan (111x61x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 1.08 W/kg

WCDMA Band2 Left Cheek Low 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.023 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.53 W/kg

SAR(1 g) = 0.967 W/kg; SAR(10 g) = 0.555 W/kgMaximum value of SAR (measured) = 1.08 W/kg

WCDMA Band2 Ground Mode High 2

Date/Time: 2014/1/16 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1908 MHz; $\sigma = 1.532$ S/m; $\varepsilon_r = 53.199$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Band II; Frequency: 1907.6 MHz; Duty Cycle: 1:1

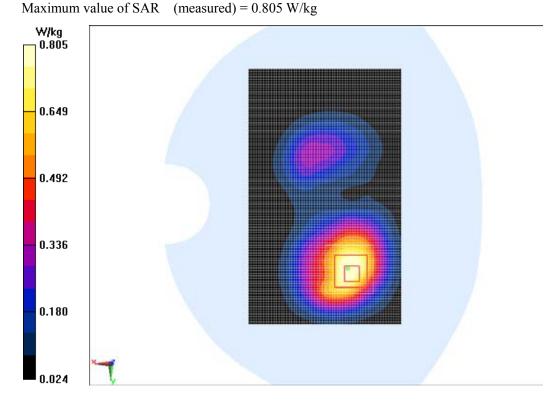
Report No.: 2014SR0007

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 7/26/2013

WCDMA Band2 Ground Mode High 2/Area Scan (61x101x1):

Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (Measurement) = 0.848 W/kg


WCDMA Band2 Ground Mode High 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.853 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.758 W/kg; SAR(10 g) = 0.455 W/kg

WiFi 802.11b Left Cheek Middle

Date/Time: 2014/1/17 Electronics: DAE4 Sn1244 Medium: Head 2450MHz

Medium parameters used: f = 2412 MHz; $\sigma = 1.787$ S/m; $\epsilon r = 39.095$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

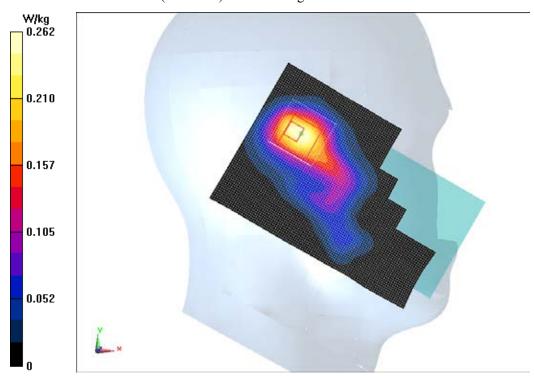
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WiFi 2450MHz; Frequency: 2412 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3754ConvF(7.09, 7.09, 7.09); Calibrated: 8/9/2013

WiFi 802.11b Left Cheek Middle/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.268 W/kg

WiFi 802.11b Left Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.074 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.500 W/kg

SAR(1 g) = 0.241 W/kg; SAR(10 g) = 0.120 W/kgMaximum value of SAR (measured) = 0.262 W/kg

WiFi 802.11b Left Tilt Middle

Date/Time: 2014/1/17 Electronics: DAE4 Sn1244 Medium: Head 2450MHz

Medium parameters used: f = 2412 MHz; $\sigma = 1.787$ S/m; $\epsilon r = 39.095$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

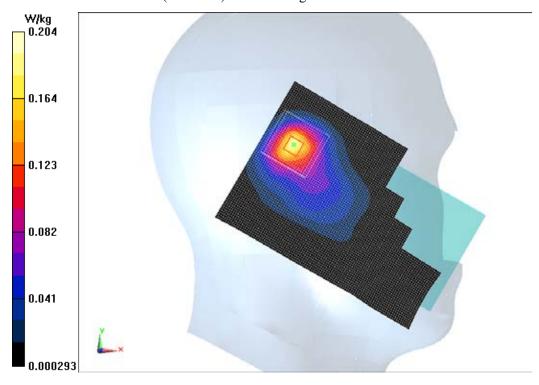
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WiFi 2450MHz; Frequency: 2412 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3754ConvF(7.09, 7.09, 7.09); Calibrated: 8/9/2013

WiFi 802.11b Left Tilt Middle/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.187 W/kg

WiFi 802.11b Left Tilt Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.827 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.387 W/kg

SAR(1 g) = 0.178 W/kg; SAR(10 g) = 0.081 W/kgMaximum value of SAR (measured) = 0.204 W/kg

WiFi 802.11b Right Cheek Middle

Date/Time: 2014/1/17 Electronics: DAE4 Sn1244 Medium: Head 2450MHz

Medium parameters used: f = 2412 MHz; $\sigma = 1.787$ S/m; $\epsilon r = 39.095$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

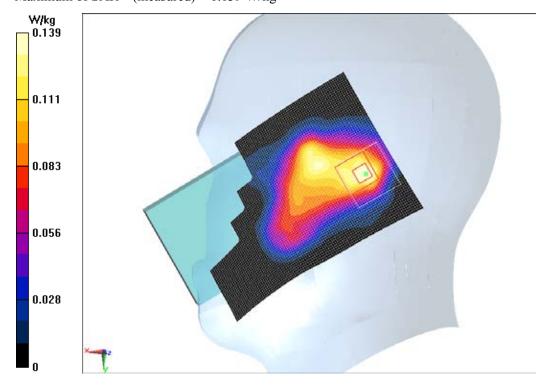
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WiFi 2450MHz; Frequency: 2412 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3754ConvF(7.09, 7.09, 7.09); Calibrated: 8/9/2013

WiFi 802.11b Right Cheek Middle/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.151 W/kg

WiFi 802.11b Right Cheek Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.582 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.245 W/kg

SAR(1 g) = 0.126 W/kg; SAR(10 g) = 0.066 W/kgMaximum of SAR (measured) = 0.139 W/kg

WiFi 802.11b Right Tilt Middle

Date/Time: 2014/1/17 Electronics: DAE4 Sn1244 Medium: Head 2450MHz

Medium parameters used: f = 2412 MHz; $\sigma = 1.787$ S/m; $\epsilon r = 39.095$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

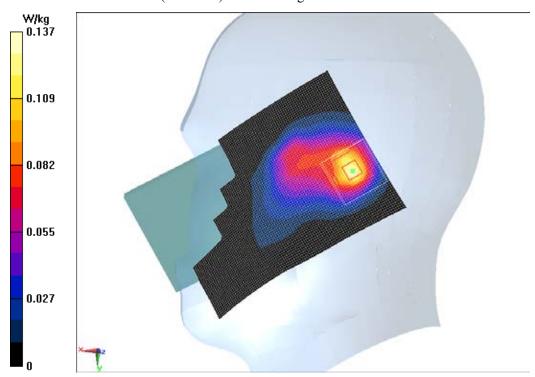
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WiFi 2450MHz; Frequency: 2412 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3754ConvF(7.09, 7.09, 7.09); Calibrated: 8/9/2013

WiFi 802.11b Right Tilt Middle/Area Scan (121x71x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.132 W/kg

WiFi 802.11b Right Tilt Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.429 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.246 W/kg

SAR(1 g) = 0.120 W/kg; SAR(10 g) = 0.058 W/kgMaximum value of SAR (measured) = 0.137 W/kg

WiFi 802.11b Phantom Mode Middle

Date/Time: 2014/1/17 Electronics: DAE4 Sn1244 Medium: Body 2450MHz

Medium parameters used: f = 2412 MHz; $\sigma = 1.869 \text{ S/m}$; $\epsilon r = 53.925$; $\rho = 1000 \text{ kg/m}^3$

Report No.: 2014SR0007

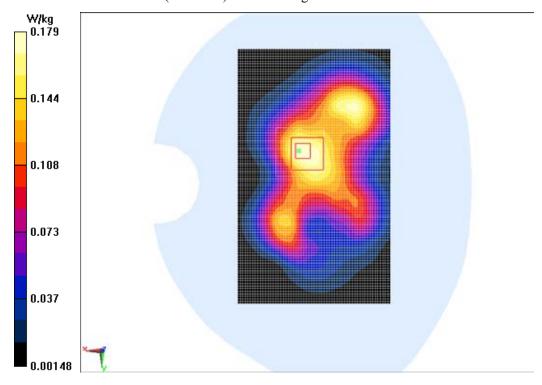
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WiFi 2450MHz; Frequency: 2412 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3754ConvF(6.66, 6.66, 6.66); Calibrated: 8/9/2013

WiFi 802.11b Phantom Mode Middle/Area Scan (61x101x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.180 W/kg

WiFi 802.11b Phantom Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.685 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.271 W/kg

SAR(1 g) = 0.165 W/kg; SAR(10 g) = 0.097 W/kgMaximum value of SAR (measured) = 0.179 W/kg

WiFi 802.11b Ground Mode Middle

Date/Time: 2014/1/17 Electronics: DAE4 Sn1244 Medium: Body 2450MHz

Medium parameters used: f = 2412 MHz; $\sigma = 1.869$ S/m; $\epsilon r = 53.925$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

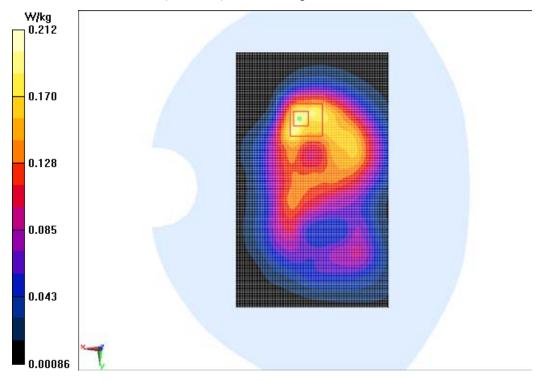
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WiFi 2450MHz; Frequency: 2412 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3754ConvF(6.66, 6.66, 6.66); Calibrated: 8/9/2013

WiFi 802.11b Ground Mode Middle/Area Scan (61x101x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.201 W/kg

WiFi 802.11b Ground Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.657 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.347 W/kg

SAR(1 g) = 0.188 W/kg; SAR(10 g) = 0.099 W/kgMaximum value of SAR (measured) = 0.212 W/kg

WiFi 802.11b Top Mode Middle

Date/Time: 2014/1/17 Electronics: DAE4 Sn1244 Medium: Body 2450MHz

Medium parameters used: f = 2412 MHz; $\sigma = 1.869$ S/m; $\epsilon r = 53.925$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

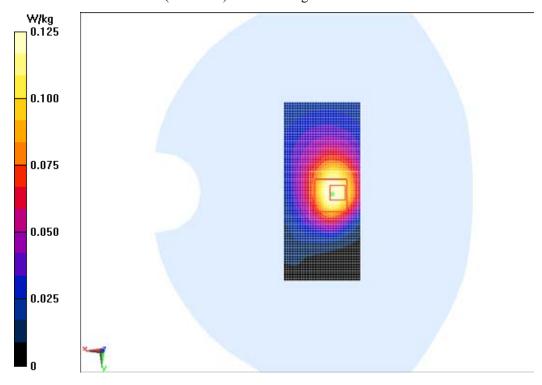
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WiFi 2450MHz; Frequency: 2412 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3754ConvF(6.66, 6.66, 6.66); Calibrated: 8/9/2013

WiFi 802.11b Top Mode Middle/Area Scan (31x71x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.133 W/kg

WiFi 802.11b Top Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.082 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.479 W/kg

SAR(1 g) = 0.164 W/kg; SAR(10 g) = 0.069 W/kgMaximum value of SAR (measured) = 0.125 W/kg

WiFi 802.11b Bottom Mode Middle

Date/Time: 2014/1/17 Electronics: DAE4 Sn1244 Medium: Body 2450MHz

Medium parameters used: f = 2412 MHz; $\sigma = 1.869$ S/m; $\epsilon r = 53.925$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

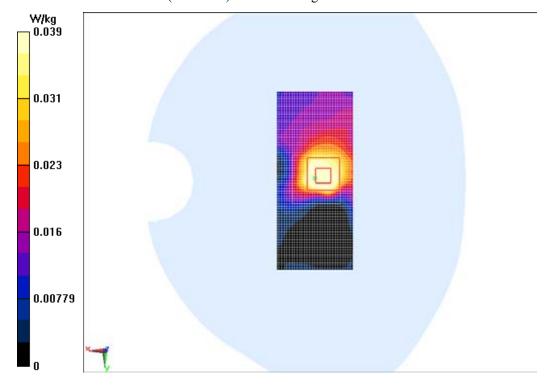
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WiFi 2450MHz; Frequency: 2412 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3754ConvF(6.66, 6.66, 6.66); Calibrated: 8/9/2013

WiFi 802.11b Bottom Mode Middle/Area Scan (31x71x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.0492 W/kg

WiFi 802.11b Bottom Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.475 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.0590 W/kg

SAR(1 g) = 0.036 W/kg; SAR(10 g) = 0.019 W/kgMaximum value of SAR (measured) = 0.0390 W/kg

WiFi 802.11b Left Mode Middle

Date/Time: 2014/1/17 Electronics: DAE4 Sn1244 Medium: Body 2450MHz

Medium parameters used: f = 2412 MHz; $\sigma = 1.869$ S/m; $\epsilon r = 53.925$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

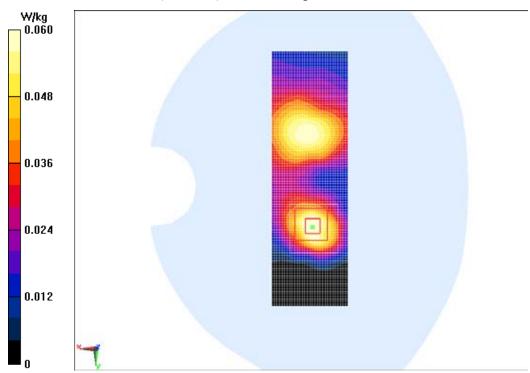
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WiFi 2450MHz; Frequency: 2412 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3754ConvF(6.66, 6.66, 6.66); Calibrated: 7/22/2013

WiFi 802.11b Left Mode Middle/Area Scan (31x101x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.0687 W/kg

WiFi 802.11b Left Mode Middle/Zoom Scan 2 (5x5x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.514 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.0950 W/kg

SAR(1 g) = 0.055 W/kg; SAR(10 g) = 0.029 W/kgMaximum value of SAR (measured) = 0.0601 W/kg

WiFi 802.11b Right Mode Middle

Date/Time: 2014/1/17 Electronics: DAE4 Sn1244 Medium: Body 2450MHz

Medium parameters used: f = 2412 MHz; $\sigma = 1.869$ S/m; $\epsilon r = 53.925$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

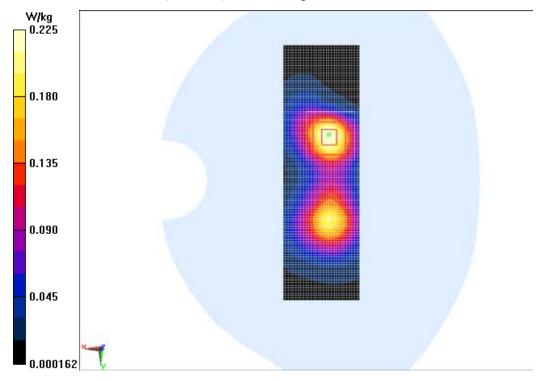
Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WiFi 2450MHz; Frequency: 2412 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3754ConvF(6.66, 6.66, 6.66); Calibrated: 7/22/2013

WiFi 802.11b Right Mode Middle/Area Scan (31x101x1):

Measurement grid: dx=10 mm, dy=10 mm


Maximum value of SAR (Measurement) = 0.242 W/kg

WiFi 802.11b Right Mode Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.399 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.360 W/kg

SAR(1 g) = 0.201 W/kg; SAR(10 g) = 0.104 W/kgMaximum value of SAR (measured) = 0.225 W/kg

ANNEX B SYSTEM VALIDATION RESULTS

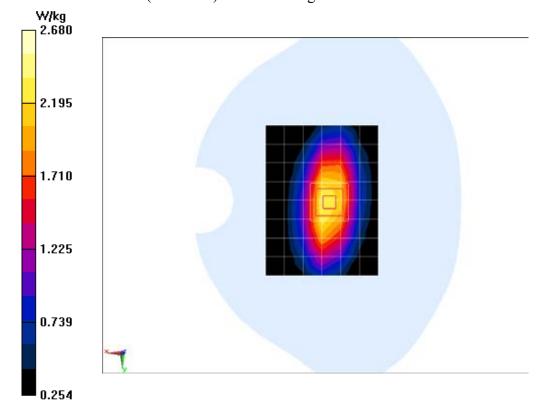
835MHz-Head

Date/Time: 1/13/2014 Electronics: DAE4 Sn1244 Medium: Head 835MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.917$ mho/m; $\epsilon r = 41.04$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

Ambient Temperature:22.5° C Liquid Temperature:22.5° C Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(6.1, 6.1, 6.1); Calibrated: 8/5/2013


System Validation/Area Scan(101x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 3.262 mW/g

System Validation/Zoom Scan(7x7x7)/Cube 0:Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.214 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 3.957 mW/g

SAR(1 g) = 2.40 mW/g; SAR(10 g) = 1.56 mW/gMaximum value of SAR (measured) = 2.680 mW/g

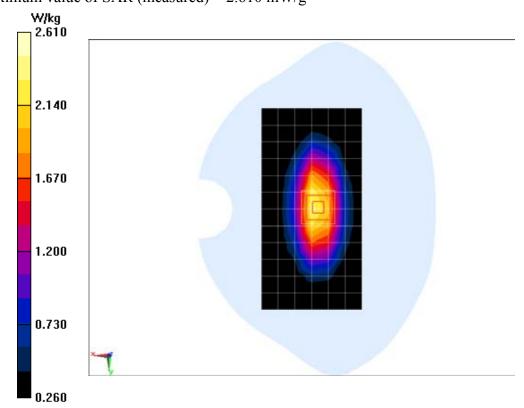
835MHz-Body

Date/Time: 1/14/2014 Electronics: DAE4 Sn1244 Medium: Body 850 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.999$ mho/m; $\epsilon r = 55.15$; $\rho = 1000$ kg/m³

Report No.: 2014SR0007

Ambient Temperature:22.5° C Liquid Temperature:22.5° C Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14); Calibrated: 8/5/2013


System Validation/Area Scan(101x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.849 mW/g

System Validation/Zoom Scan(7x7x7)/Cube 0:Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.389 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.729 mW/g

SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.58 mW/gMaximum value of SAR (measured) = 2.610 mW/g

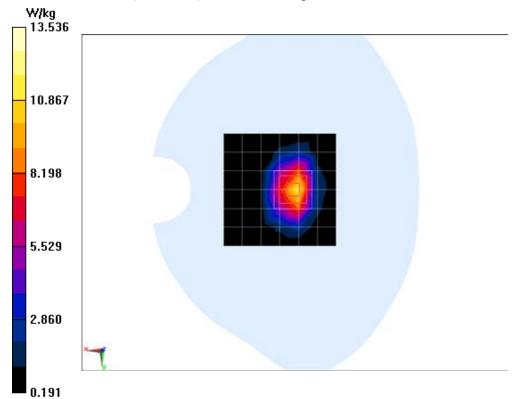
1900MHz-Head

Date/Time: 1/15/2014 Electronics: DAE4 Sn1244 Medium: Head 1900MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.385 \text{ mho/m}$; $\epsilon r = 39.64$; $\rho = 1000 \text{ kg/m}3$

Report No.: 2014SR0007

Ambient Temperature:22.5° C Liquid Temperature:22.5° C Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(5.24, 5.24, 5.24); Calibrated: 7/26/2013


System Validation/Area Scan(101x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 11.986 mW/g

System Validation/Zoom Scan(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.225 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 17.569 mW/g

SAR(1 g) = 10.09 mW/g; SAR(10 g) = 5.39 mW/gMaximum value of SAR (measured) = 13.536 mW/g

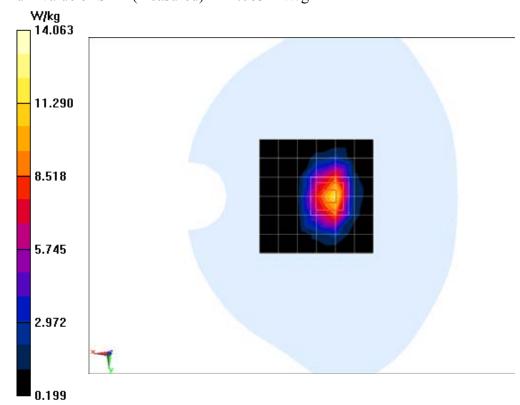
1900MHz-Body

Date/Time: 1/16/2014 Electronics: DAE4 Sn1244 Medium: Body 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.524 \text{ mho/m}$; $\epsilon r = 53.237$; $\rho = 1000 \text{ kg/m}3$

Report No.: 2014SR0007

Ambient Temperature:22.5° C Liquid Temperature:22.5° C Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03); Calibrated: 7/26/2013


System Validation/Area Scan(101x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 9.875 mW/g

System Validation/Zoom Scan(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 75.148 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 18.584 mW/g

SAR(1 g) = 10.21 mW/g; SAR(10 g) = 5.44 mW/gMaximum value of SAR (measured) = 14.063 mW/g

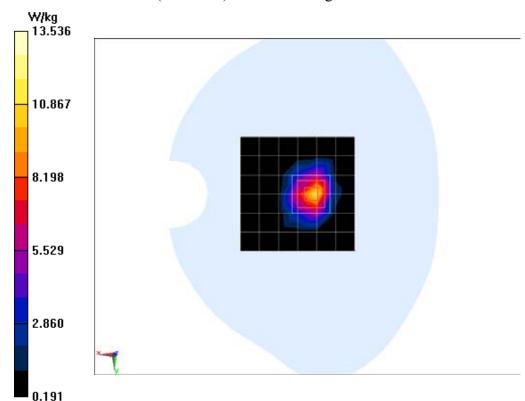
2450MHz-Head

Date/Time: 1/17/2014 Electronics: DAE4 Sn1244 Medium: Head 2450MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.824 \text{ mho/m}$; $\epsilon r = 38.87$; $\rho = 1000 \text{ kg/m}3$

Report No.: 2014SR0007

Ambien Temperature:22.5° C Liquid Temperature:22.5° C Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Probe: EX3DV4 - SN3754ConvF(7.09, 7.09, 7.09); Calibrated: 7/20/2013


System Validation/ Area Scan (101x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 11.68 mW/g

System Validation/Zoom Scan (7x7x7)/Cube 0:Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 83.163 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 16.473 mW/g

SAR(1 g) = 12.86 mW/g; SAR(10 g) = 6.18 mW/gMaximum value of SAR (measured) = 13.536 mW/g

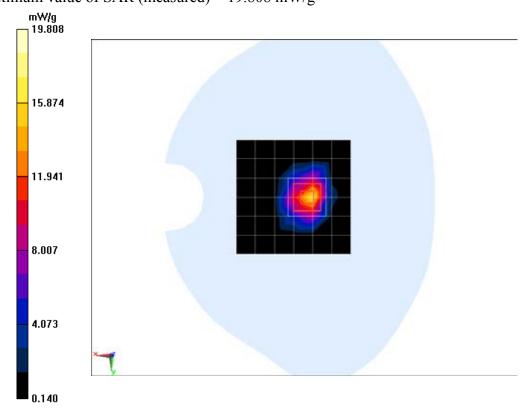
2450MHz-Body

Date/Time: 1/17/2014 Electronics: DAE4 Sn1244 Medium: Body 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.918 \text{ mho/m}$; $\epsilon r = 53.946$; $\rho = 1000 \text{ kg/m}3$

Report No.: 2014SR0007

Ambien Temperature:22.5° C Liquid Temperature:22.5° C Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Probe: EX3DV4 - SN3754ConvF(6.66, 6.66, 6.66); Calibrated: 7/22/2013

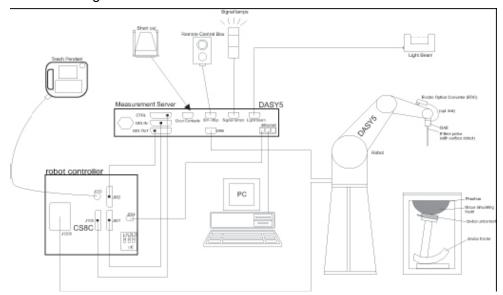

System Validation/ Area Scan (101x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 12.962 mW/g

System Validation/Zoom Scan (7x7x7)/Cube 0:Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 84.174 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 26.396 mW/g

SAR(1 g) = 12.03 mW/g; SAR(10 g) = 5.69 mW/gMaximum value of SAR (measured) = 19.808 mW/g



ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Report No.: 2014SR0007

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals
 for the digital communication to the DAE. To use optical surface detection, a special version of
 the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2 DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection durning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model: ES3DV3, EX3DV4

Frequency 2.0GHz — 3.0GHz(EX3DV4)
Range: 700MHz — 2.0GHz(ES3DV3)

Calibration: In head and body simulating tissue at

Frequencies from 835 up to 2450MHz

Linearity: ± 0.2 dB(2.0GHz — 3.0GHz) for EX3DV4

± 0.2 dB(700MHz — 2.0GHz) for ES3DV3

Dynamic Range: 10 mW/kg — 100W/kg

Probe Length: 330 mm

Probe Tip

Length: 20 mm Body Diameter: 12 mm

Tip Diameter: 2.5 mm (3.9 mm for ES3DV3)
Tip-Center: 1 mm (2.0mm for ES3DV3)
Application: SAR Dosimetry Testing

Compliance tests of mobile phones

Dosimetry in strong gradient fields

Report No.: 2014SR0007

Picture C.2 Near-field Probe

Picture C.3 E-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This

calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm².

Report No.: 2014SR0007

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Page 133 of 195

PictureC.4: DAE

Report No.: 2014SR0007

C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY5: RX90L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- ➤ High precision (repeatability 0.02mm)
- > High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5 DASY 5

C.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128MB), RAM (DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface

detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the

Report No.: 2014SR0007

Picture C.6 Server for DASY 5

C.4.4 Device Holder for Phantom

measurement server.

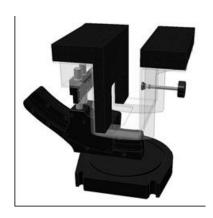
The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss

POM material having the following dielectric

parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.


<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Report No.: 2014SR0007

Picture C.8: Laptop Extension Kit

C.4.5 Phantom

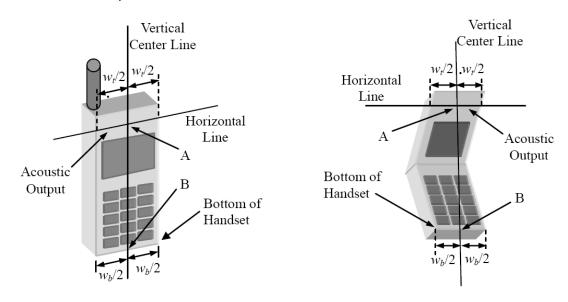
The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness: 2 ± 0. 2 mm Filling Volume: Approx. 25 liters

Dimensions: 810 x 1000 x 500 mm (H x L x W)

Available: Special

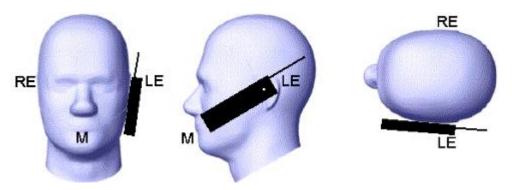

Picture C.9: SAM Twin Phantom

ANNEX D Position of the wireless device in relation to the phantom

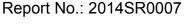
Report No.: 2014SR0007

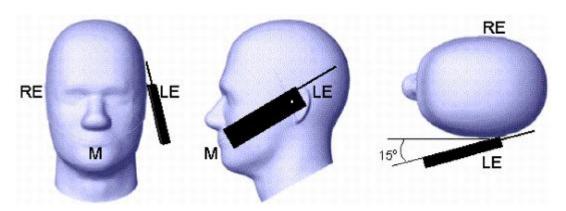
D.1 General considerations

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.


 W_t Width of the handset at the level of the acoustic

 W_b Width of the bottom of the handset


A Midpoint of the width w_i of the handset at the level of the acoustic output


B Midpoint of the width w_b of the bottom of the handset

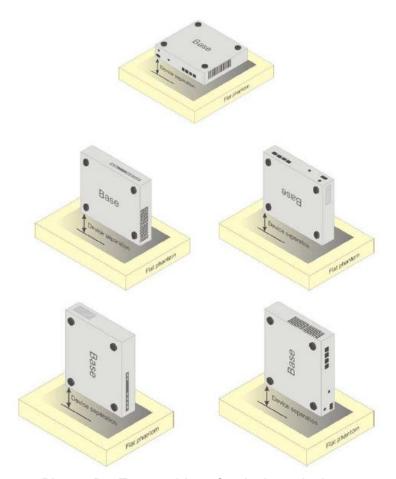
Picture D.1-a Typical "fixed" case handset
Picture D.1-b Typical "clam-shell" case handset

Picture D.2 Cheek position of the wireless device on the left side of SAM

Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.


Picture D.4 Test positions for body-worn devices

D.3 Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for desktop devices

D.4 DUT Setup Photos

Report No.: 2014SR0007

Picture D.6 DSY5 system Set-up

Note:

The photos of test sample and test positions show in additional document.

ANNEX E Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

Report No.: 2014SR0007

Table E.1: Composition of the Tissue Equivalent Matter

Fraguency (MIII)	835	835	1900	1900	2450	2450
Frequency (MHz)	Head	Body	Head	Body	Head	Body
Ingredients (% by	weight)					
Water	41.45	52.5	55.242	69.91	58.79	72.60
Sugar	56.0	45.0	\	1	1	\
Salt	1.45	1.4	0.306	0.13	0.06	0.18
Preventol	0.1	0.1	\	/	\	/
Cellulose	1.0	1.0	\	/	\	/
Glycol Monobutyl	\	\	44.452	29.96	41.15	27.22
Dielectric	ε=41.5	ε=55.2	ε=40.0	ε=53.3	ε=39.2	ε=52.7
Parameters	ε=41.5 σ=0.90	ε=33.2 σ=0.97	ε=40.0 σ=1.40	ε=55.5 σ=1.52	ε=39.2 σ=1.80	ε=32.7 σ=1.95
Target Value	0-0.90	0-0.97	0-1.40	0-1.52	0-1.00	0-1.95

ANNEX F System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

Report No.: 2014SR0007

Table F.1: System Validation

System	Probe	Liquid name	Validation	Frequency	Status (OK or
No.	SN.	Liquid Harrie	date	point	Not)
1	3252	Head 835MHz	Aug 1,2013	835MHz	OK
2	3252	Head 1900MHz	Aug 1,2013	1900MHz	OK
3	3754	Head 2450MHz	Aug 1,2013	2450MHz	OK
4	3252	Body 835MHz	Aug 1,2013	835MHz	OK
5	3252	Body 1900MHz	Aug 1,2013	1900MHz	OK
6	3754	Body 2450MHz	Aug 1,2013	2450MHz	OK

NOTE: The parameters of tissue simulating liquids can be found in chapter 7 of this test report.

ANNEX G Probe and DAE Calibration Certificate

Report No.: 2014SR0007

Client :	TR-SH	Certifi	cate No:JZ13-2-2040
CALIBRATION	10000000	TE	
Object	DAE4	4 - SN: 1244	
Calibration Procedure(s)	IMC	OS-E-01-198 rasion Procedure for the Dasa A	acquisition Electronics
Calibration date:	July 9	9, 2013	
numidity<70%.		the closed laboratory facility: e	manorment temperature(2213) C
	100	for calibration) al Date(Calibrated by, Certificate N	No.) Scheduled Calibration
Calibration Equipment us Primary Standards Documenting Process Calibrator 753	100	<u></u>	
Primary Standards	ID# C	al Date(Calibrated by, Certificate N) July-14
Primary Standards Documenting Process Calibrator 753	ID# C	al Date(Calibrated by, Certificate N 01-July-13 (TMC, No:JW13-049) Function	
Primary Standards	ID# C	al Date(Calibrated by, Certificate N) July-14
Primary Standards Documenting Process Calibrator 753 Calibrated by:	ID # C	al Date(Calibrated by, Certificate N 01-July-13 (TMC, No:JW13-049) Function SAR Test Engineer	July-14 Signature 変更

Report No.: 2014SR0007

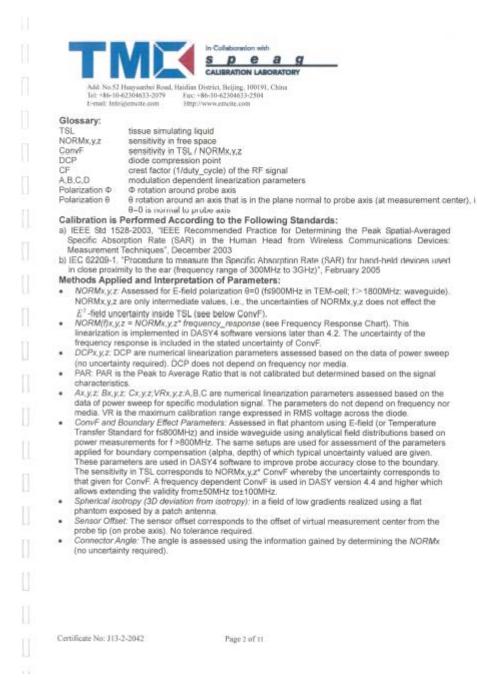
	In Collaboration with
	S P E S G CALIBRATION LABORATORY
Add: No.52 Huayuanb Tel: +86-10-62304633 E-mail: Info@emcile.c	
Glossary: DAE	data acquisition electronics
Connector angle	information used in DASY system to align probe sensor X to the robot coordinate system.
 DC Voltage Measurement system by comp standards. The 	and Interpretation of Parameters: asurement: Calibration Factor assessed for use in DASY parison with a calibrated instrument traceable to national figure given corresponds to the full scale range of the respective range.
	e: The angle of the connector is assessed measuring the ally by a tool inserted. Uncertainty is not required.
 The report provi performance test 	ide only calibration results for DAE, it does not contain other st results.

DC Voltage Measurement

A/D - Converter Resolution nominal
High Range: 1LSB = 6.1µV, full range = -100...+300 mV
Low Range: 1LSB = 61nV, full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	z
High Range	403.907 ± 0.15% (k=2)	403,655 ± 0.15% (k=2)	404.564 ± 0.15% (k=2)
Low Range	3.98600 ± 0.7% (k=2)	3.96971 ± 0.7% (k=2)	4.01324 ± 0.7% (k=2)


Connector Angle

Connector Angle to be used in DASY system	46° ± 1.°

Certificate No: JZ13-2-2040

Page 3 of 3

Probe ES3DV3

SN: 3252

Calibrated: August 5, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: J13-2-2042

Page 3 of 11

DASY - Parameters of Probe: ES3DV3 - SN: 3252

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)2) ^	1.29	1.34	1.32	±10.8%
DCP(mV) ⁸	103.4	104.6	102.4	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc E (k=2)
0 CW		X	0.0	0.0	1.0	0.00	207.8	±3.3%
	1.00.00	Y	0.0	0.0	1.0		209.7	
		Z	0.0	0.0	1.0		209.5	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: 113-2-2042

Page 4 of 11

The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).

Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max: deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY - Parameters of Probe: ES3DV3 - SN: 3252

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
850	41.5	0.92	6.10	6.10	6.10	0.27	1.98	±12%
900	41.5	0.97	6.19	6.19	6.19	0.31	1.79	±12%
1750	40.1	1.37	5.58	5.58	5.58	0.37	1.87	±12%
1900	40.0	1.40	5.24	5.24	5.24	0.43	1.82	±12%

⁶ Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ⁶ At frequency below 3 GHz, the validity of tissue parameters (x and o) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (x and rt) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: J13-2-2042

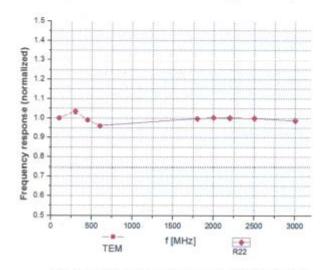
Page 5 of 11

DASY - Parameters of Probe: ES3DV3 - SN: 3252

Calibration Parameter Determined in Body Tissue Simulating Media

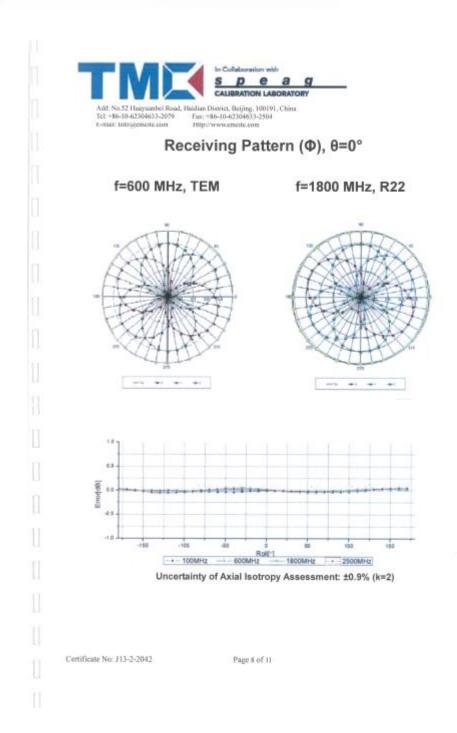
f [MHz] [©]	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
850	55.2	0.99	6.14	6.14	6.14	0.40	1.69	±12%
900	55.0	1.05	6.11	6.11	6.11	0.39	1.60	±12%
1750	53.4	1.49	5.20	5.20	5.20	0.43	1.94	±12%
1900	53.3	1.52	5.03	5.03	5.03	0.46	1.85	±12%

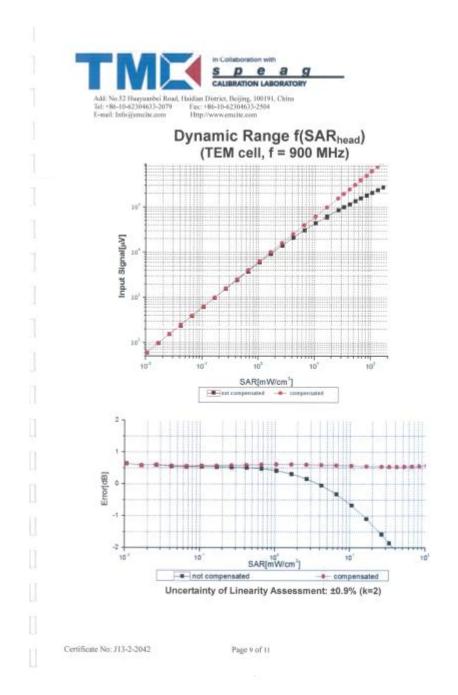
⁶ Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of CornF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.


⁷ At frequency below 3 GHz, the validity of tissue parameters (z and o) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (z and d) is restricted to ±5%. The uncertainty is the RSS of the CornF uncertainty for indicated target tissue parameters.

Certificate No: J13-2-2042

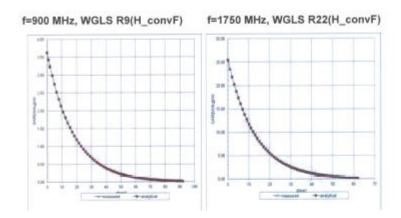
Page 6 of 11

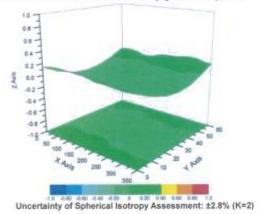

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

Certificate No. J13-2-2042


Page 7 of 11



Conversion Factor Assessment

Deviation from Isotropy in Liquid

Certificate No: J13-2-2042

Page 10 of 11

DASY - Parameters of Probe: ES3DV3 - SN: 3252

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	129.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm

Certificate No: J13-2-2042

Page 11 of 11

Certificate No: J13-2-2041

Page 1 of 11

mbei Road, Haidian District, Beijing, 190191, China 33-2079 Fax: #86-10-62304833-2304 6.com HRp://www.emestc.com Del +86-10-62304633-2079

Glossary:

tissue simulating liquid TSL NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx, y.z. ConvF DCP diode compression point

crest factor (1/duty_cycle) of the RF signal A.B.C.D modulation dependent linearization parameters

Polarization Φ Φ rotation around probe axis

θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ=0 is normal to probe axis Polarization 6

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1. "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y.z. Assessed for E-field polarization 8=0 (fs900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the
- E^2 -field uncertainty inside TSL (see below ConvF). NORM(f)x, y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.

 DCPx,y,z; DCP are numerical linearization parameters assessed based on the data of power sweep
- (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media, VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat
- phantom exposed by a patch antenna.

 Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
- probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: J13-2-2041 Page 2 of 11

Probe EX3DV4

SN: 3754

Calibrated: August 8, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: J13-2-2041

Page 3 of 11

DASY - Parameters of Probe: EX3DV4 - SN: 3754

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)2) ^	0.40	0.45	0.45	±10.8%
DCP(mV) ⁸	104.0	104.0	103.1	

Modulation Calibration Parameters

UID	Communication System Name		A dD	B dBõV	С	D dB	VR mV	Unc E (k=2)
0 CW		Х	0.0	0.0	1.0	0.00	108.0	±3.2%
	102000	Y	0.0	0.0	1.0		115.1	
		Z	0.0	0.0	1.0		115.7	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: J13-2-2041

Page 4 of 11

A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).
Numerical linearization parameter: uncertainty not required.
E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY - Parameters of Probe: EX3DV4 - SN: 3754

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] [©]	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
2000	40.0	1.40	7.57	7.57	7.57	0.13	3.89	±12%
2300	39.5	1.67	7.33	7.33	7.33	0.17	2.17	±12%
2450	39.2	1.80	7.09	7.09	7.09	0.14	2.92	±12%
2600	39.0	1.96	6.72	6.72	6.72	0.14	2.89	±12%

^C Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
^FAt frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

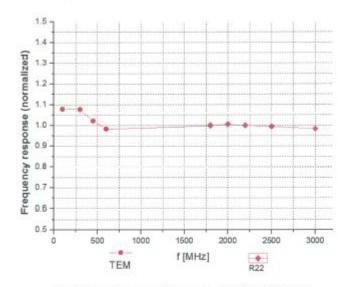
Certificate No: J13-2-2041

Page 5 of 11

DASY - Parameters of Probe: EX3DV4 - SN: 3754

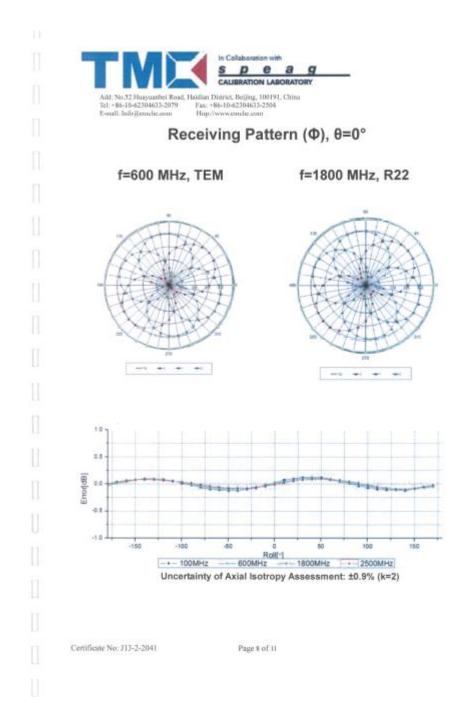
Calibration Parameter Determined in Body Tissue Simulating Media

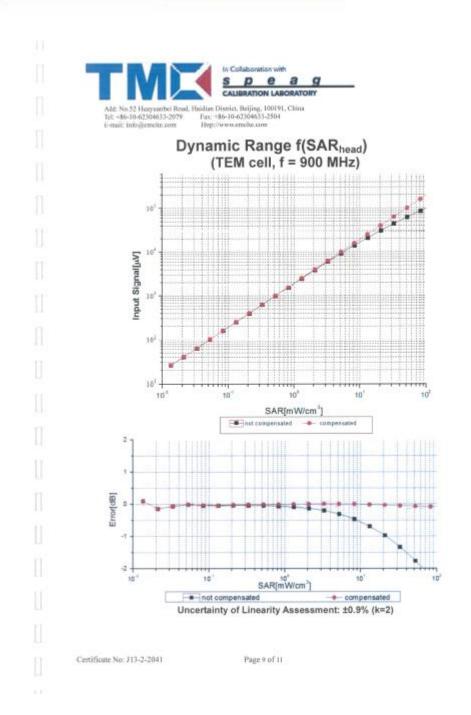
f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
2000	53.3	1.52	7.61	7.61	7.61	0.17	2.87	±12%
2300	52.9	1.81	7.20	7.20	7.20	0.19	2.05	±12%
2450	52.7	1.95	6.66	6.66	6.66	0.17	3.22	±12%
2600	52.5	2.16	6.29	6.29	6.29	0.14	3.23	±12%

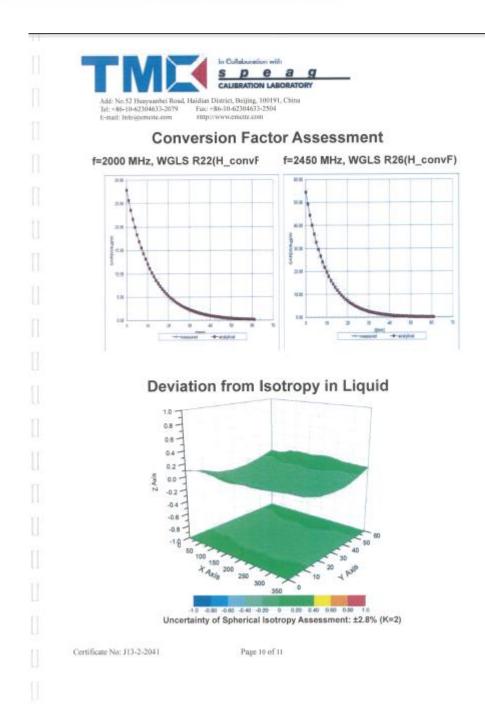

^C Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
^P At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: J13-2-2041

Page 6 of 11


Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)




Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

Certificate No: J13-2-2041

Page 7 of 11

DASY - Parameters of Probe: EX3DV4 - SN: 3754

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	15.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	2mm

Certificate No: J13-2-2041

Page 11 of 11

ANNEX H Dipole Calibration Certificate

Add: No.52 Husyuanbei Road, Haidian District, Beijing, 100191, China Tel: #86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)". February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- . SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: J13-2-2032

Page 2 of 8

Add: No.52 Husyuanbel Road, Haidlan District, Beijing, 100191, China Tel: +86-10-82304633-2079 Fax: +86-10-82304633-2504 E-mail: Info@emcite.com Http://www.emcite.com Tel: +96-10-62304633-2079 E-mail: Info@emcite.com

Measurement Conditions

ASY system configuration, as far as DASY Version	DASY52	52.8.7.1137
Extrapolation	Advanced Extrapolation	
Phantom	Twin Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.3 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	<0.5 °C		ania .

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2,31 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.12 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.51 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	5.98 mW/g ± 20.4 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	56.1 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	<0.5 °C	-	-

SAR result with Body TSL

Condition	
250 mW input power	2.26 mW / g
normalized to 1W	9.15 mW /g ± 20.8 % (k=2)
Condition	
250 mW input power	1.5 mW/g
normalized to 1W	6.06 mW /g ± 20.4 % (k=2)
	250 mW input power normalized to 1W Condition 250 mW input power

Certificate No: J13-2-2032

Add: No.52 Huayuanbel Road, Haldian District, Beijing, 100191, China Tel: +88-10-62304633-2079 Fax: +88-10-82304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	46.0Ω - 4.61jΩ	
Return Loss	- 24.1dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	42.6Ω - 5.07jΩ	
Return Loss	- 20.4dB	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
The state of the s	

Certificate No: J13-2-2032

Page 4 of 8

dd: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China el: +86-10-62304633-2078 Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 E-mail: Info@emcite.com Http://www.emcite.com

DASY5 Validation Report for Head TSL

Test Laboratory: TMC, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d112

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.914$ mho/m; $\epsilon r = 41.328$; $\rho = 1000$

Date: 09.10.2013

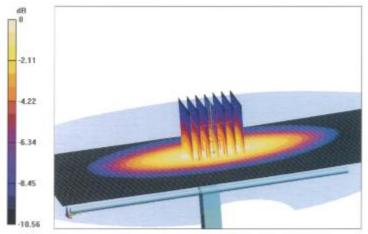
kg/m3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(9.32,9.32,9.32); Calibrated: 2013/9/3
- Sensor-Surface: 2mm (Mechanical Surface Detection); 1.0, 31.0
- Electronics: DAE4 Sn777; Calibrated: 22/2/2013
- Phantom: SAM 1593;Type: QD000P40CC;
- Measurement SW: DASY52 52.8.7(1137); SEMCAD X Version 14.6.10

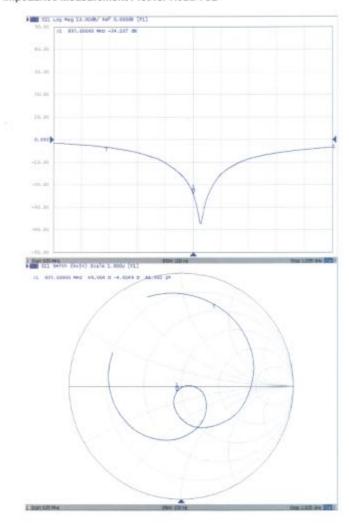

Dipole Calibration for Head Tissue/Pin=250mW, d=15mm/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.960 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 3.46 W/kg

SAR(1 g) = 2.31 W/kg; SAR(10 g) = 1.51 W/kg Maximum value of SAR (measured) = 2.93 W/kg


0 dB = 2.93 W/kg = 4.67 dBW/kg

Certificate No: J13-2-2032 Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: J13-2-2032

Page 6 of 8

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

DASY5 Validation Report for Body TSL

Test Laboratory: TMC, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d112

Communication System: CW; Frequency: 835 MHz;

Medium parameters used: f = 835 MHz; $\sigma = 0.959$ mho/m; $\epsilon r = 56.13$; $\rho = 1000$ kg/m³

Date: 09.10.2013

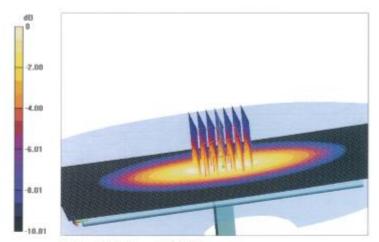
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(8.96,8.96,8.96); Calibrated: 2013/9/3
- Sensor-Surface: 2mm (Mechanical Surface Detection); 1.0, 31.0
- · Electronics: DAE4 Sn777; Calibrated: 22/2/2013
- Phantom: SAM 1186; Type: QD000P40CC;
- Measurement SW: DASY52 52.8.7(1137); SEMCAD X Version 14.6.10 (7164)

Dipole Calibration for Body Tissue/Pin=250mW, d=15mm/Zoom Scan


(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

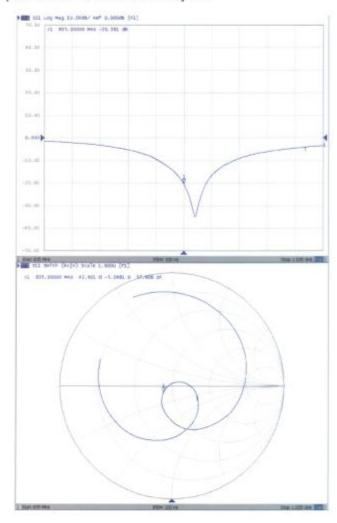
Reference Value = 53.919 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 3.37 W/kg

SAR(1 g) = 2.26 W/kg; SAR(10 g) = 1.5 W/kg

Maximum value of SAR (measured) = 2.85 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg


Certificate No: J13-2-2032

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: J13-2-2032

Page 8 of 8

Acceptable Conditions for SAR Measurements Using Probes and Dipoles Calibrated under the SPEAG-TMC Dual-Logo Calibration Program to Support FCC Equipment Certification

The acceptable conditions for SAR measurements using probes, dipoles and DAEs calibrated by TMC (Telecommunication Metrology Center of MITT in Beijing, China), under the Dual-Logo Calibration Certificate program and quality assurance (QA) protocols established between SPEAG (Schmid & Partner Engineering AG, Switzerland) and TMC, to support FCC (U.S. Federal Communications Commission) equipment certification are defined and described in the following.

- 1) The agreement established between SPEAG and TMC is only applicable to calibration services performed by TMC where its clients (companies and divisions of such companies) are headquartered in the Greater China Region, including Taiwan and Hong Kong. This agreement is subject to renewal at the end of each calendar year between SPEAG and TMC. TMC shall inform the FCC of any changes or early termination to the agreement.
- 2) Only a subset of the calibration services specified in the SPEAG-TMC agreement, while it remains valid, are applicable to SAR measurements performed using such equipment for supporting FCC equipment certification. These are identified in the following.
 - Calibration of dosimetric (SAR) probes EX3DVx, ET3DVx and ES3DVx.
 - Free-space E-field and H-field probes, including those used for HAC (hearing aid compatibility) evaluation, temperature probes, other probes or equipment not identified in this document, when calibrated by TMC, are excluded and cannot be used for measurements to support FCC equipment certification.
 - ii) Signal specific and bundled probe calibrations based on PMR (probe modulation response) characteristics are handled according to the requirements of KDB 865664; that is, "Until standardized procedures are available to make such determination, the applicability of a signal specific probe calibration for testing specific wireless modes and technologies is determined on a case-by-case basis through KDB inquiries, including SAR system verification requirements."
 - b) Calibration of SAR system validation dipoles, excluding HAC dipoles.
 - Calibration of data acquisition electronics DAE3Vx, DAE4Vx and DAEasyVx.
 - d) For FCC equipment certification purposes, the frequency range of SAR probe and dipole calibrations is limited to 700 MHz - 6 GHz and provided it is supported by the equipment identified in the TMC QA protocol (a separate attachment to this document).
 - e) The identical system and equipment setup, measurement configurations, hardware, evaluation algorithms, calibration and QA protocols, including the format of calibration certificates and reports used by SPEAG shall be applied by TMC.
- The calibrated items are only applicable to SPEAG DASY 4 and DASY 5 or higher version systems.

- 3) The SPEAG-TMC agreement includes specific protocols identified in the following to ensure the quality of calibration services provided by TMC under this SPEAG-TMC Dual-Logo calibration agreement are equivalent to the calibration services provided by SPEAG. TMC shall, upon request, provide copies of documentation to the FCC to substantiate program implementation.
 - a) The Inter-laboratory Calibration Evaluation (ILCE) stated in the TMC QA protocol shall be performed between SPEAG and TMC at least once every 12 months. The ILCE acceptance criteria defined in the TMC QA protocol shall be satisfied for the TMC, SPEAG and FCC agreements to remain valid.
 - b) Check of Calibration Certificate (CCC) shall be performed by SPEAG for all calibrations performed by TMC. Written confirmation from SPEAG is required for TMC to issue calibration certificates under the SPEAG-TMC Dual-Logo calibration program. Quarterly reports for all calibrations performed by TMC under the program are also issued by SPEAG.
 - c) The calibration equipment and measurement system used by TMC shall be verified before each calibration service according to the specific reference SAR probes, dipoles, and DAE calibrated by SPEAG. The results shall be reproducible and within the defined acceptance criteria specified in the TMC QA protocol before each actual calibration can commence. TMC shall maintain records of the measurement and calibration system verification results for all calibrations.
 - d) Quality Check of Calibration (QCC) certificates shall be performed by SPEAG at least once every 12 months. SPEAG shall visit TMC facilities to verify the laboratory, equipment, applied procedures and plausibility of randomly selected certificates.
- A copy of this document, to be updated annually, shall be provided to TMC clients that accept calibration services according to the SPEAG-TMC Dual-Logo calibration program, which should be presented to a TCB (Telecommunication Certification Body), to facilitate FCC equipment approval.
- TMC shall address any questions raised by its clients or TCBs relating to the SPEAG-TMC Dual-Logo calibration program and inform the FCC and SPEAG of any critical issues.

Change Note: Revised on June 26 to clarify the applicability of PMR and Bundled probe calibrations according to the requirements of KDB 865664.

Certificate No: J13-2-2035 CATR-SH **CALIBRATION CERTIFICATE** Object D1900V2 - SN: 5d134 Calibration Procedure(s) TMC-OS-E-02-194 Calibration procedure for dipose validation kits Calibration date: July 12, 2013 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Primary Standards Sep-13 11-Sep-12 (TMC, No.JZ12-443) Power Meter NRVD 102083 Sep -13 11-Sep-12 (TMC, No. JZ12-443) Power sensor NRV-Z5 100595 Dec-13 20- Dec-12 (SPEAG, No.EX3-3846_Dec12) Reference Probe EX3DV4 SN 3846 22-Feb-13 (SPEAG, DAE4-777_Feb13) Feb -14 SN 777 DAF4 MY49070393 13-Nov-12 (TMC, No.JZ12-394) Nov-13 Signal Generator E4438C MY43021135 19-Oct-12 (TMC, No.JZ13-278) Oct-13 Network Analyzer E8362B Signature Function Calibrated by: 红到 Zhao Jing SAR Test Engineer Reviewed by: Qi Dianyuan SAR Project Leader Approved by: Xiao Li Deputy Director of the laboratory Issued: July 26, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: J13-2-2035

Page 1 of 8

In Collaboration with S. P. B. S. G. CALIBRATION LABORATORY

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tal: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mai: info@emcire.com Hitp://www.waruliv.cucii

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KD8865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms
 oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized; SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: J13-2-2035

Page 2 of 8

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tet. +86-10-62304633-2079 Fax: +86-10-62304633-2654 E-mail: Info@emoite.com Http://www.emotes.com

Measurement Conditions

DASY Version	DASY52	52.8.7.1137
Extrapolation	Advanced Extrapolation	
Phantom	Twin Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.6±6%	1.37 mha/m ± 6 %
Head TSL temperature change during test	<0.5 °C	8=8	

SAR result with Head TSL

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.6 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	42.7 mW/g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.52 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.2 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.8 ± 6 %	1.50 mho/m ± 6 %
Body TSL temperature change during test	<0.5 °C	- laser 1	Takes .

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.9 mW / g
SAR for nominal Body TSL parameters	normalized to TW	43.4 mW/g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.7 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	22.7 mW/g ± 20.4 % (k=2)

Certificate No: J13-2-2035

Page 3 of 8

Add: No.52 Husyuanbei Road, Haidian District, Beşing, 100191, China Tet +88-10-82304833-2479
E-mair Integrements com

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.5Ω+0.78jΩ	
Return Loss	- 26.8dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.9Ω+ 3.49jΩ	
Return Loss	- 24.3dB	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 14, 2010

Certificate No: J13-2-2035

Page 4 of 8

Date: 12.07.2013

Add. No.52 Huayuanbel Road, Haidian District, Belling, 100191, China Tel: +85-10-62304633-2079 Fax: +85-10-62304633-2604 Http://www.emidle.com

DASY5 Validation Report for Head TSL

Test Laboratory: TMC, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d134

Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.365 mho/m; ϵ r = 38.576; ρ = 1000

kg/m3

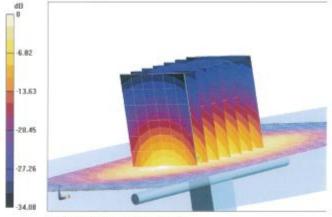
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(8.01,8.01,8.01); Calibrated:20,12,2012
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- . Electronics: DAE4 Sn777; Calibrated: 22/2/2013
- · Phantom: Flat Phantom; Type: QD000P40CC;
- Measurement SW: DASY52 52.8.7(1137); SEMCAD X Version 14.6.10

Dipole Calibration for Head Tissue/Pin=250mW, d=10mm/Zoom Scan

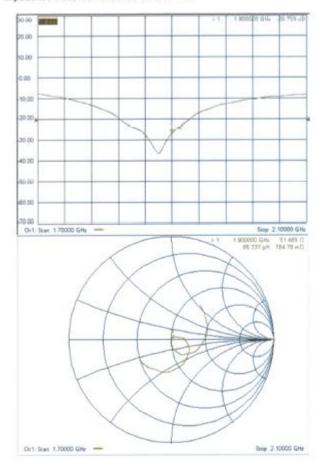

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.229 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 19.8 W/kg

SAR(1 g) = 10.6 W/kg; SAR(10 g) = 5.52 W/kg

Maximum value of SAR (measured) = 12.0 W/kg


0 dB = 12.3 W/kg = 10.91 dBW/kg

Certificate No: J13-2-2035

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: J13-2-2035

Page 6 of 8

-86-10-62304633-2079 st: Infotpemote.com

ei Roed, Haidian District, Baijing, 100191, China -2079 Fax: +85-10-62304633-2504 om HID //www.emcke.com

DASY5 Validation Report for Body TSL

Date: 12.07.2013

Report No.: 2014SR0007

Test Laboratory: TMC, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d134

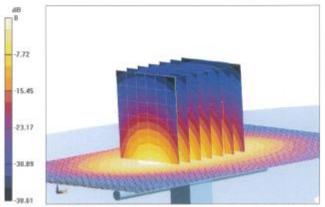
Communication System: CW; Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; σ = 1.502 mho/m; ϵr = 50.787; ρ = 1000 kg/m³

Phantom section: Flat Phantom

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

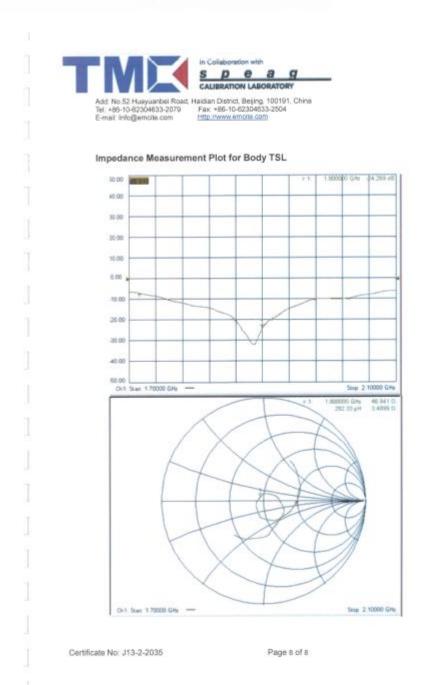
- Probe: EX3DV4 SN3846; ConvF(7.37,7.37,7.37); Calibrated:20.12.2012
 Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 22/2/2013
- . Phantom: Flat Phantom; Type: QD000P40CC
- Measurement SW: DASY52 52.8.7(1137); SEMCAD X Version 14.6.10 (7164)


Dipole Calibration for Body Tissue/Pin=250mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 74.485 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 19.8 W/kg

SAR(1 g) = 10.9 W/kg; \$AR(10 g) = 5.7 W/kg


Maximum value of SAR (measured) = 12.3 W/kg

0 dB = 12.4 W/kg = 10.95 dBW/kg

Certificate No: J13-2-2035

Page 7 of 8

Glossary:	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured
a) IEEE Std 1: Spatial-Ave Communica b) IEC 62209- devices use	s Performed According to the Following Standards: 528-2003, "IEEE Recommended Practice for Determining the Peak raged Specific Absorption Rate (SAR) in the Human Head from Wireless stions Devices: Measurement Techniques", December 2003 -1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-he ed in close proximity to the ear (frequency range of 300MHz to 3GHz)",
February 2 c) KDB86566	005 4, SAR Measurement Requirements for 100 MHz to 6 GHz
Additional Do	ocumentation:
d) DASY4/5 S	ystem Handbook
Measuren end of the indicated. Antenna F point exac oriented p Feed Point dipole pos from the n ensures ic Electrical point. No s SAR meas SAR nor connector. SAR for ni	blied and Interpretation of Parameters: nent Conditions: Further details are available from the Validation Report at certificate. All figures stated in the certificate are valid at the frequency Parameters with TSL: The dipole is mounted with the spacer to position its fitty below the center marking of the flat phantom section, with the arms arallel to the body axis. Impedance and Return Loss: These parameters are measured with the sitioned under the liquid filled phantom. The impedance stated is transform neasurement at the SMA connector to the feed point. The Return Loss is reflected power. No uncertainty required. Delay: One-way delay between the SMA connector and the antenna feed uncertainty required. Sured: SAR measured at the stated antenna input power. salized: SAR as measured, normalized to an input power of 1 W at the antennal SAR result.

Add: No.52 Huayuanbel Road, Haidian District, Beijing, 100191, China Tal: +85-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail. Info@emcite.com Http://www.emcite.com

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.7.1137
Extrapolation	Advanced Extrapolation	
Phantom	Twin Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz × 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

38	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.6 ± 6 %	1.78 mho/m ± 6 %
Head TSL temperature change during test	<0.5 °C		S+++

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.4 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	49.5 mW/g ± 20.8 % (k=2)
SAR averaged over 10 cm ² (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.76 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.0 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.9 ± 6 %	1.93 mho/m ± 6 %
Body TSL temperature change during test	<0.5 °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	11.9 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	47.7 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ⁻¹ (10 g) of Body TSL.	Condition	
SAR measured	250 mW input power	5.55 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	22.2 mW /g ± 20.4 % (k=2)

Certificate No: J13-2-2038

Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.9Ω+4.50jΩ	
Return Loss	- 24.0dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.9Ω+ 5.86jΩ	
Return Loss	- 24.6dB	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 23, 2010

Certificate No: J13-2-2038

Page 4 of 8

Date: 13.07.2013

Add: No.52 Huayuanbei Road, Haidlan District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2604 E-mail: Info@emoite.com Http://www.emoite.com

DASY5 Validation Report for Head TSL

Test Laboratory: TMC, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 858

Communication System: CW; Frequency: 2450 MHz.

Medium parameters used: f = 2450 MHz, σ = 1.777 mho/m; εr = 37.61; p = 1000

kg/m³

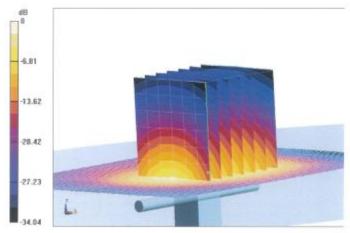
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(7.13,7.13,7.13); Calibrated:20,12,2012
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- . Electronics: DAE4 Sn777; Calibrated: 22/2/2013
- · Phantom: Flat Phantom; Type: QD000P40CC;
- Measurement SW: DASY52 52.8.7(1137); SEMCAD X Version 14.6.10 (7164)

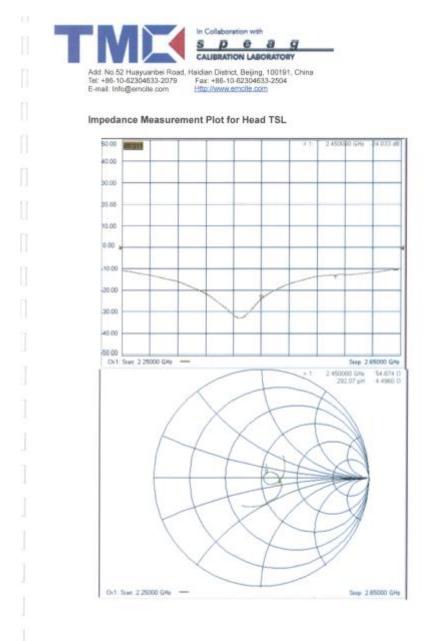
Dipole Calibration for Head Tissue/Pin=250mW, d=10mm/Zoom Scan


(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 82.927 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 26.0 W/kg

SAR(1 g) = 12.4 W/kg; SAR(10 g) = 5.76 W/kg


Maximum value of SAR (measured) = 14.2 W/kg

0 dB = 14.4 W/kg = 11.57 dBW/kg

Certificate No: J13-2-2038

Page 5 of 8

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tet: +86-10-82304633-2079 Fax: +86-10-82304633-2504 E-mail: Info@emcite.com Http://www.emcite.com E-mail: Info@emcite.com

DASY5 Validation Report for Body TSL

Date: 11.07.2013

Test Laboratory: TMC, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 858
Communication System: CVV; Frequency: 2450 MHz;
Medium parameters used: f = 2450 MHz; σ = 1.927 mho/m; εr = 51.858; ρ = 1000 kg/m³

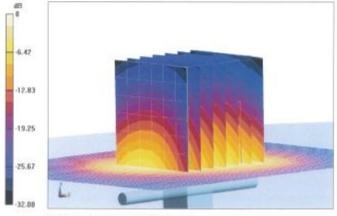
Phantom section: Flat Phantom

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(7,7,7); Calibrated:20.12.2012
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 22/2/2013
- . Phantom: Flat Phantom; Type: QD000P40CC
- Measurement SW: DASY52 52.8.7(1137); SEMCAD X Version 14.6.10 (7164)

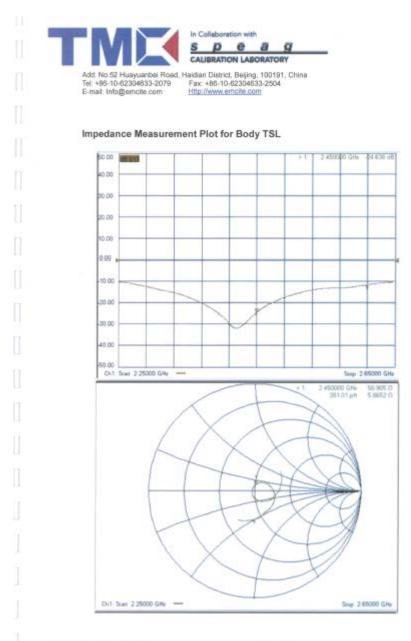
Dipole Calibration for Body Tissue/Pin=250mW, d=10mm/Zoom Scan


(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 83.465 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 24.1 W/kg

SAR(1 g) = 11.9 W/kg; SAR(10 g) = 5.55 W/kg

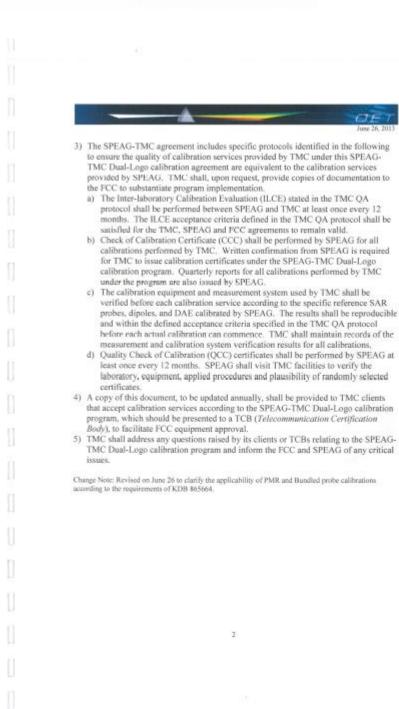

Maximum value of SAR (measured) = 13.7 W/kg

0 dB = 13.6 W/kg = 11.32 dBW/kg

Certificate No: J13-2-2038

Page 7 of 8

Certificate No: J13-2-2038


Page 8 of 8

Acceptable Conditions for SAR Measurements Using Probes and Dipoles Calibrated under the SPEAG-TMC Dual-Logo Calibration Program to Support FCC Equipment Certification

The acceptable conditions for SAR measurements using probes, dipoles and DAEs calibrated by TMC (Telecommunication Metrology Center of MITT in Beijing, China), under the Dual-Logo Calibration Certificate program and quality assurance (QA) protocols established between SPEAG (Schmid & Partner Engineering AG, Switzerland) and TMC, to support FCC (U.S. Federal Communications Commission) equipment certification are defined and described in the following.

- The agreement established between SPEAG and TMC is only applicable to calibration services performed by TMC where its clients (companies and divisions of such companies) are headquartered in the Greater China Region, including Taiwan and Hong Kong. This agreement is subject to renewal at the end of each calendar year between SPEAG and TMC. TMC shall inform the FCC of any changes or early termination to the agreement.
- Only a subset of the calibration services specified in the SPEAG-TMC agreement, while it remains valid, are applicable to SAR measurements performed using such equipment for supporting FCC equipment certification. These are identified in the following.
 - a) Calibration of dosimetric (SAR) probes EX3DVx, ET3DVx and ES3DVx.
 - Free-space E-field and H-field probes, including those used for HAC (hearing aid computibility) evaluation, temperature probes, other probes or equipment not identified in this document, when calibrated by TMC, are excluded and cannot be used for measurements to support FCC equipment certification.
 - ii) Signal specific and bundled probe calibrations based on PMR (probe modulation response) characteristics are handled according to the requirements of KDB 865664; that is, "Until standardized procedures are available to make such determination, the applicability of a signal specific probe calibration for testing specific wireless modes and technologies is determined on a case-by-case basis through KDB inquiries, including SAR system verification requirements."
 - b) Calibration of SAR system validation dipoles, excluding HAC dipoles.
 - c) Calibration of data acquisition electronics DAE3Vx, DAE4Vx and DAEasyVx.
 - d) For FCC equipment certification purposes, the frequency range of SAR probe and dipole calibrations is limited to 700 MHz - 6 GHz and provided it is supported by the equipment identified in the TMC QA protocol (a separate attachment to this document).
 - The identical system and equipment setup, measurement configurations, hardware, evaluation algorithms, calibration and QA protocols, including the format of calibration certificates and reports used by SPEAG shall be applied by TMC
 - The calibrated items are only applicable to SPEAG DASY 4 and DASY 5 or higher version systems.

The end of report