

FCC RADIO TEST REPOR

No. 150704-RF

for

ZTE CORPORATION

WCDMA/GSM (GPRS) Dual-Mode Digital Mobile Phone

Model Name: ZTE Blade C340/ ZTE T220/

ZTE V812/ ZTE Blade Q2 3G/ZTE Open C2

Trade Name: ZTE

Issued Date: 2015-07-14

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of GCCT.

Test Laboratory:

GCCT, Guangdong Telecommunications Terminal Products Quality Supervision and Testing Center Technology Road, High-tech Zone, He Yuan, Guang Dong, PR China 517001
Tel:+86(0)762-3607221, Fax:+86(0)762-3603336 Email: ncctmail@126.com. www.ncct.org.cn

No. 150106-RF Page 2 of 22

CONTENTS

GENERAL SUMMARY	3
1.Test Laboratory	4
1.1Testing Location	4
1.2Testing Environment	4
1.3.Project Data	4
2.Client Information	5
2.1 Applicant Information	5
2.2Manufacturer Information	5
3.Equipment Under Test (EUT) and Ancillary Equipment (AE)	6
3.1 About EUT	6
3.2Internal Identification of EUT	6
3.3Internal Identification of AE	7
4.Test Results	8
4.1Summary of Test Results	8
4.2Statements	8
5.Test Equipments Utilized	9
5.1List of Measuring Equipment	9
5.2Climate Chamber	10
ANNEX A: Detailed Test Results	11
A.1 Output Power(22.913(a)/24.232(b))	11
A.3 Occupied Bandwidth(22.917(a)/24.238(b))	
A.4 Emission Limit(22.917(b)/ 24.238(b))	
A.5 Band Edge Compliance(22.917(b)/ 24.238)	
A.6 Conducted Spurious Emission(22.917(a)/24.238(a))	
A.7Peak-to-average ratio(24.232(d))	22
ANNEX B: Report Revision History	22

GENERAL SUMMARY

Product Name	WCDMA/GSM(GPRS)Dual-Mode Digital Mobile Phone		
Model Name	ZTE Blade C340/ ZTE T220/ ZTE V812/ ZTE Blade Q2 3G/ZTE Open C2		
Applicant	ZTE CORPORATION		
Manufacturer	ZTE CORPORATION		
Test	GCCT, Guangdong Telecommunications Terminal Products Quality Supervision		
Laboratory	and Testing Center		
Reference	FCC CFR 47 Part 22(2014-1-10):"Public Mobile Services"		
Standards	FCC CFR 47 Part 24(2014-1-10):"PERSONALCOMMUNICATIONS		
	SERVICES"		
	ANSI-TIA-603-C(2004): "Land Mobile FM or PM-Communication		
	Equipment-Measurement and Performance Standards"		
Test Conclusion	This portable wireless equipment has been measured in all cases requested by the		
	relevant standards. Test results in annex B of this test report are below limits		
	specified in the relevant standards.		
	General Judgment: Pass		
	Date of issue:2015.07.14		
Comment	The test results in this report apply only to the tested sample of the stated		
	device/equipment.		

Approved by: Reviewed by: Tested by:

tuo jian Xiayong ven xuan wu

LuoJianWen XiaoyongWu XuanManagerDeputy ManagerTest Engineer

1.Test Laboratory

1.1 Testing Location

Company Name:	GCCT, Guangdong Telecommunications Terminal Products Quality		
	Supervision and Testing Center		
FCC Registration No.	303878		
CNAS Registration No.	L4992		
Address:	Technology Road, High-tech Zone, Heyuan, Guangdong Province, PR.China		
Postal Code:	517001		
Telephone:	+86-762-3607181		
Fax:	+86-762-3603336		

1.2Testing Environment

Environment Data	Temperature($^{\circ}$ C)	Humidity(%)
Maximum Ambient	25.8	47
Minimum Ambient	22.3	43

EUT is under testing environment.

1.3.Project Data

Project Leader:	Wen Xiaoyong
Testing Start Date:	2015-07-07
Testing End Date:	2015-07-14

2.Client Information

2.1Applicant Information

Company Name:	ZTE CORPORATION
Address:	ZTE Plaza, Keji Road South, Shenzhen, China
City:	Shenzhen
Postal Code:	/
Country:	China
Telephone:	+86 18616587757
Fax:	+86 021 50801070

2.2Manufacturer Information

Company Name:	ZTE CORPORATION
Address:	ZTE Plaza, Keji Road South, Shenzhen, China
City:	Shenzhen
Postal Code:	/
Country:	China
Telephone:	+86 18616587757
Fax:	+86 021 50801070

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1About EUT

Model Name	ZTE Blade C340/ ZTE T220/ ZTE V812/ ZTE Blade Q2		
1710 de 17 tunie	3G/ZTE Open C2		
FCC ID	SRQ-ZTEBLADEC340		
	GSM850:824~848 MHz		
	UMTS Band V: 826~846MHz		
	PCS1900 : 1850~1909MHz		
Tx Frequency	UMTS Band II: 1852~1907MHz		
	Bluetooth: 2402 ~ 2480 MHz		
	WIFI(802.11b/g/n-20): 2412 ~ 2462 MHz		
	WIFI(n-40): 2422 ~ 2452 MHz		
	GSM850:869~893 MHz		
	UMTS Band V : 871~891 MHz		
	PCS1900 : 1930~1989 MHz		
Rx Frequency	UMTS Band II: 1932~1987 MHz		
	Bluetooth: 2402 ~ 2480 MHz		
	WIFI(802.11b/g/n-20): 2412 ~ 2462 MHz		
	WIFI(n-40): 2422 ~ 2452 MHz		
	GSM850&WCDMA Band V:25		
	PCS1900&WCDMA Band II: 60		
Number of Channels	Bluetooth:79		
	WIFI(802.11b/g/n-20):11		
	WIFI(n-40):7		
	GSM&DCS:GMSK		
	WCDMA:BPSK/QPSK		
Modulation	Bluetooth: GFSK&\pi/4-DQPSK&8DPSK		
	WIFI:CCK/OFDM		
Normal Voltage	3.7V		
Extreme Low Voltage	3.5V		
Extreme High Voltage	4.2V		
Extreme Low Temperature	-10°C		
Extreme High Temperature	55°C		

Note: Photographs of EUT are shown in ANNEX A of this test report.

Note: high and low voltage values in extreme condition test are given by manufacturer

3.2Internal Identification of EUT

EUT ID* IM	EI HW Version	SW Version
------------	---------------	------------

No. 150704-RF Page 7 of 22

150704-M01	/	W59_MB_B	ZTE_CN_QD_P172R12V1.0.0
150704-M02	/	W59_MB_B	ZTE_CN_QD_P172R12V1.0.0

^{*}EUT ID: is used to identify the test sample in the lab internally.150704-M01and 150704-M02 are the same mobile phones.

3.3Internal Identification of AE

AE ID*	Description	Туре	SN
150704-C01	Charger	STC-A220501500USBA-2	/
150704-B01	Battery	Li3714T42P3h765039	/
150704-C02	Charger	STC-A220501500USBA-2	/
150704-B02	Battery	Li3714T42P3h765039	/

^{*}AE ID: is used to identify the test sample in the lab internally.150704-B01 and 150704-B02 are the same accessories, 150704-C01 and 150704-C02 are the same accessories.

4.Test Results

4.1Summary of Test Results

Items	List	Clause in FCC	Verdict
1	Output Power	22.913(a)/24.232(b)	Pass
2	Frequency Stability	22.355/24.235	N/A
3	Occupied Bandwidth	22.917(a)/24.238(b)	N/A
4	Emission Limit	22.917(b)/ 24.238(b)	Pass
5	Band Edge Compliance	22.917(b)/ 24.238	N/A
6	Conducted Spurious Emission	22.917(a)/24.238(a)	N/A
7	Peak-to-average ratio	24.232(d))	N/A

Note: please refer to Annex B in this test report for the detailed test results.

4.2Statements

GCCT has evaluated the test cases requested by the applicant/manufacturer as listed in section 4.1 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in general summary.

5.Test Equipments Utilized

5.1List of Measuring Equipment

Table 1.RF Test Equipments

No.	Name	Туре	SN	Manufacturer	Cal Date	Cal Due Date
1	Signaling Tester	E5515E	E0111-8	Agilent	2014.08.13	2015.08.13
2	Spectrum Analyzer	N9020A	E0111-9	Agilent	2014.08.13	2015.08.13
3	Switching Unit	/	E0112	/	/	

Table 2. EMC Test Equipments

	Hardware									
No.	Name	Тур	oe .	SN		Manufact	urer	Cal Date	Cal Due Date	
1	Spectrum	E444	0A	MY48250	0641	Agilen	t	2014.08.13	2015.08.13	
2	RF Preselector	N903	9A	MY48260	0024	Agilen	t	2013-10-25	2015-10-25	
3	BiCoNilog	3142	2E	001420	15	ETS-Linds	gren	2013-10-25	2015-10-25	
4	Horn Antenna	311	7	001291	69	ETS-Linds	gren	2014.08.13	2015.08.13	
5	RF Notch filter	/		/		ETS-Linds	gren	2014.08.13	2015.08.13	
6	Power Meter	N191	3A	MY50000)213	Agilen	t	2014.08.13	2015.08.13	
7	Universal Radio Communication Tester	896	0	MY48367	7105	Agilen	t	2014.08.13	2015.08.13	
				Sof	tware					
1	Software		TI	LE4.5		/	ET	S-Lindgren	/	

Table 3. OTA Test Equipments

	Hardware									
No.	Name	Туре	SN	Manufacturer	Cal Date	Cal Due Date				
1	Spectrum	N9020A	MY49101012	Agilent	2014.08.13	2015.08.13				
2	Universal Radio	E5515C	MY48367103	Agilent	2014.08.13	2015.08.13				
3	Switch/Control Mainframe	3499C	MY42000534	Agilent	2014.08.13	2015.08.13				
4	Positioning	2090	00119389	ETS-Lindgren	2014.08.13	2015.08.13				

No. 150704-RF Page 10 of 22

	Software							
1	Software	EMQuest™	/	ETS-Lindgren	/			
2	Software	EMQ-108	/	ETS-Lindgren	/			

5.2Climate Chamber

No.	Name	Туре	SN	Manufacturer	Cal Date	Cal Due Date
1	Climate Chamber	MW3030	09114081	ESPEC	2014.08.13	2015.08.13

ANNEX A: Detailed Test Results

A.1 Output Power(22.913(a)/24.232(b))

A.1.1 Conducted Output Power Measurement

A.1.1.1 Description

A base station simulator was used to establish communication with the EUT. Its parameters were set to transmit the maximum power on the EUT. The measured power in the radio frequency on the transmitter output terminals shall be reported.

A. 1.1.2 Test Procedures

- 1. The transmitter output port was connected to base station.
- 2. Set EUT as maximum power through base station.
- 3. There measurements were done at 3 frequencies,824.2MHz, 836.6MHz and 848.8MHz for GSM850 band;1850.2MHz, 1880.0MHz and 1909.8MHz for PCS1900 band.

A.1.1.3 Test Setup

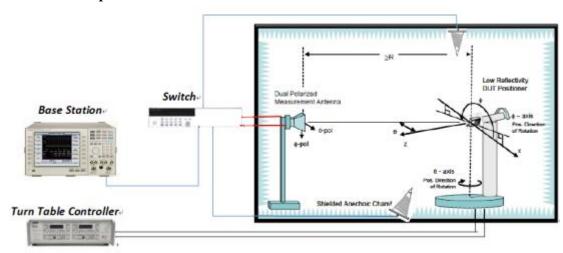
A.1.1.4 Test Results

N/A

A.1.2 Radiated Power

A.1.2.1 Description

This is the test for the maximum radiated power from the EUT. Rule Part 24.232(b) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak powerand 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."Rule Part 22.913(a) specifies "Maximum ERP. The effective radiated power (ERP) of base transmitters and cellular repeaters must not exceed 500 Watts. The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."


A.1.2.2 Test Procedures

- 1. In an anechoic antenna test chamber, a half-wave dipole antenna for the frequency band of interest is placed at the reference centre of the chamber. An RF Signal source for thefrequency band of interest is connected to the dipole with a cable that has been constructed tonot interfere with the radiation pattern of the antenna. A known (measured) power (Pin) isapplied to the input of the dipole, and the power received (Pr) at the chamber's probe antennais recorded.
- 2. A "reference path loss" is established as Pin + 2.15 Pr.
- 3. The EUT is substituted for the dipole at the reference centre of the chamber and a scan is performed to obtain the radiation pattern.
- 4. From the radiation pattern, the co-ordinates where the maximum antenna gain occurs are identified.
- 5. The EUT is then put into pulse mode at its maximum power level (Power Step 0 for PCS1900,5 for GSM 850).
- 6. "Gated mode" power measurements are performed with the receiving antenna placed at the coordinates determined in Step 3 to determine the output power as defined in Rule 24.232 (b) and

- (c). The "reference path loss" from Step1 is added to this result.
- 7. This value is EIRP since the measurement is calibrated using a half-wave dipole antenna of known gain (2.15 dBi) and known input power (Pin).
- 8. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.

A.1.2.3 Test Setup

A.1.2.4 Test Result of ERP

GSM850

Frequency(MHz)	Channel No.	Power Step	ERP(dBm)	Verdict
824.2	128	5	28.84	Pass
836.6	190	5	29.74	Pass
848.8	251	5	30.57	Pass

WCDMA Band V

Frequency(MHz)	Channel No.	Power Step	ERP(dBm)	Verdict
826.6	4133	3	20.33	Pass
835	4175	3	21.20	Pass
846.4	4232	3	20.66	Pass

A1.2.4 Test Result of EIRP

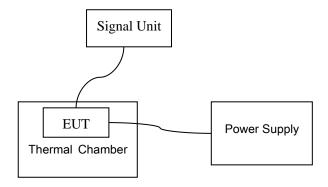
GSM1900

Frequency(MHz)	Channel	Power Step	EIRP(dBm)	Verdict
1850.2	512	0	31.10	Pass
1880.0	661	0	30.68	Pass
1909.8	810	0	30.60	Pass

WCDMA Band II

Frequency(MHz)	Channel	Power Class	EIRP(dBm)	Verdict
1852.6	9263	3	24.11	Pass
1880.0	9400	3	24.35	Pass
1907.6	9538	3	24.39	Pass

A.2 Frequency Stability(22.355/24.235)

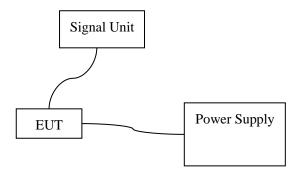

A.2.1 Description

The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that fundamental emission stays within the authorized frequency block. The frequency stability of transmitter shall be maintained within $\pm 0.00023\%$ (± 2.5 ppm) of the center frequency.

A.2.2 Test Procedure for Temperature Variation

- 1. The EUT was set up in the thermal chamber and connected with the base station.
- 2. With power OFF, the temperature was decreased to -20° C and the EUT was stabilized for three hours. Power was applied and maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10° C step to 50° C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.
- 4. if the EUT cannot be turned on at -30 $^{\circ}$ C, the testing lowest temperature will be raised in 10 $^{\circ}$ C step until the EUT can be turned on.

A.2.2.1 Test Setup


A.2.2.2 Test Results

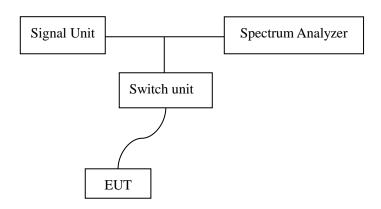
N/A

A.2.3 Test Procedure for Voltage Variation

- 1. The EUT was placed in a temperature chamber at 25±5°C and connected with the base station.
- 2. The power supply voltage to the EUT was varied from BEP to 115% of the nominal value measured at the input to the EUT.
 - 3. The variation in frequency was measured.

A.2.3.1 Test Setup

A.2.3.2 Test Results:


N/A

A.3 Occupied Bandwidth(22.917(a)/24.238(b))

A.3.1 Description

Similar to conducted emissions; occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the USPCS frequency band. The table below lists the measured -20dBc BW(99%). Spectrum analyzer plots are included on the following pages.

A.3.2 Test Setup

A.3.3 Test Results

N/A

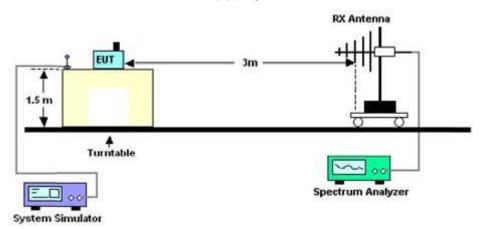
A.4 Emission Limit(22.917(b)/24.238(b))

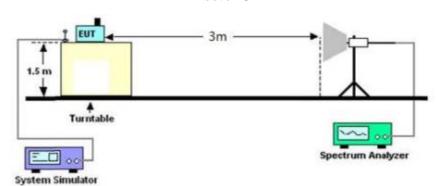
A.4.1 Description

The radiated spurious emission was measured by substitution method according to TIA-603C-2004. This method does not require calibration of all measuring components. Instead, the spurious output power is recorded from measuring device. Then this power level is matched by a signal from a calibrated signal generator which is substituted for the EUT. The power supplied by the generator is then equal to the power of the spurious domain emission. The power of any emission outside of the authorized operating frequency ranges must be lower than transmitter power by a factor of at least 43+10log(P) dB. The spectrum is scanned from 30MHz up to a frequency including its 10th harmonic...

A.4.2Test Procedure

- 1.All possible modes of operation were investigated. Only the 6 worst case emissions measured using the correct CISPR detectors, are reported. All other emission were relatively insignificant.
- 2.A"-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
 - 3. Radiated Emissions Measurement Uncertainty


All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2,in the range 1GHz-40GH is ±6.0dB (for EUTs<0.5m X 0.5m X 0.5m)


- 4. The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.
- 5. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 6.Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution.
 - 7. Sample Calculation:
- EUT Field Strength(dBm)=Reading(Signal generator)+Antenna Gain(substitution antenna)-Cable loss(From Signal Generator to substitution antenna)
 - 8. The limit is derived from 43+10log(p)dB below transmitter power P(Watts)
 - $=p(w)-[43+10\log(p)](dB)$
 - $=[30+10 \log(p)] (dBm)-[43+10 \log(p)] (dB)$
 - =-13dBm

A.4.3 Test Setup

<Below 1GHz>

<Above 1GHz>

A.4.4Test Results

Band	CH Frequency(MHz	Result	Verdict
------	------------------	--------	---------

No. 150704-RF Page 16 of 22

CCM950	190	926.6	Fig.1	Pass
GSM850	189	836.6	Fig.2	Pass
GSM1900	661	1880.0	Fig.3	Pass
GSW1900	001		Fig.4	Pass
WCDMA Band V	4175	925	Fig.5	Pass
WCDMA Band v	4175	835	Fig.6	Pass
WCDMA Dand II	9400	1000 0	Fig.7	Pass
WCDMA Band II		1880.0	Fig.8	Pass

Fig.1 GSM850 on Channel 189 30MHz~3GHz

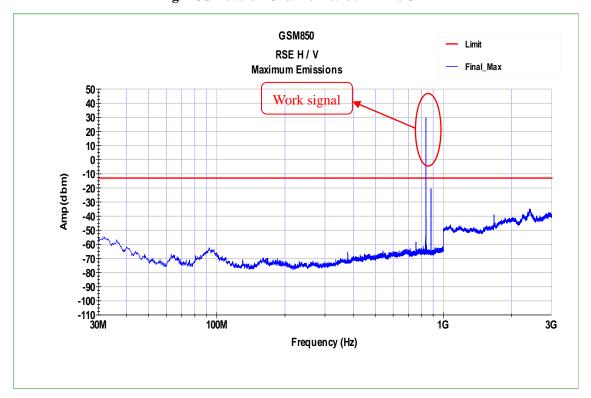
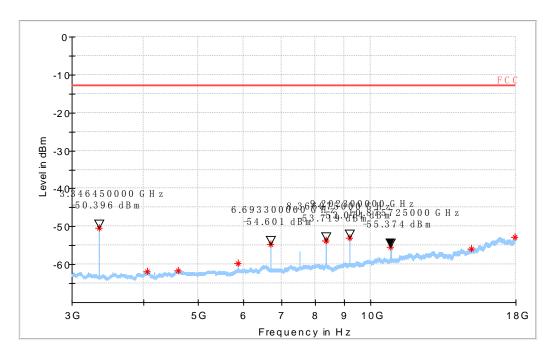



Fig.2GSM850 on Channel 189 3GHz~9GHz

GSM 850

Fig.3 GSM1900 on Channel 661 30MHz~3GHz

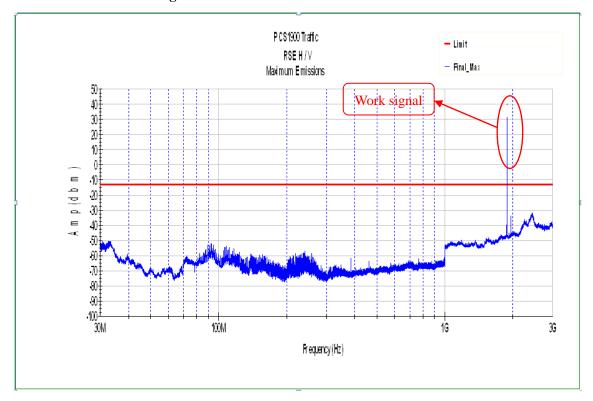
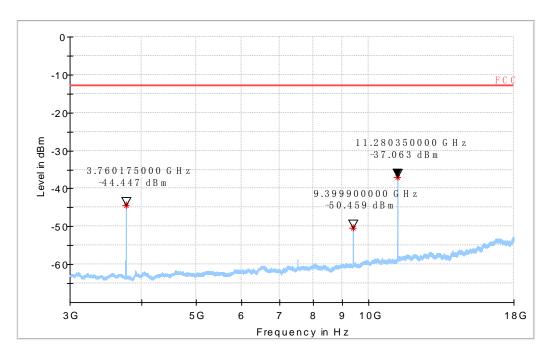



Fig.4 GSM1900 on Channel 661 3GHz~19.1GHz

PCS 1900

Fig.5 WCDMA Band V on Channel 4175 30MHz~3GHz

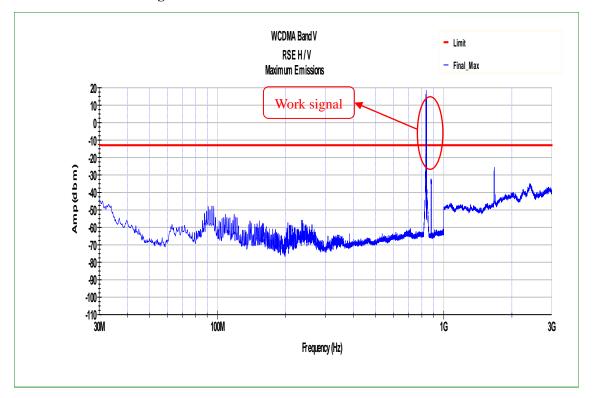
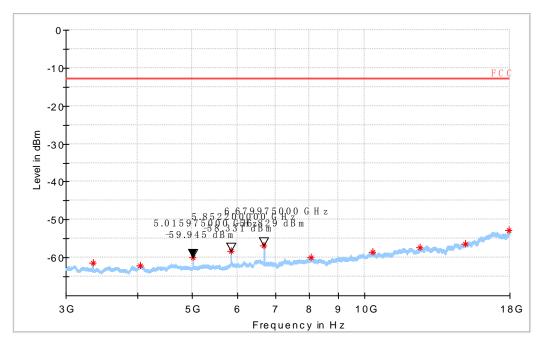



Fig.6 WCDMA Band V on Channel 4175 3GHz~9GHz

W CDMA B5

Fig.7 WCDMA Band II Channel 9400 30MHz~3GHz

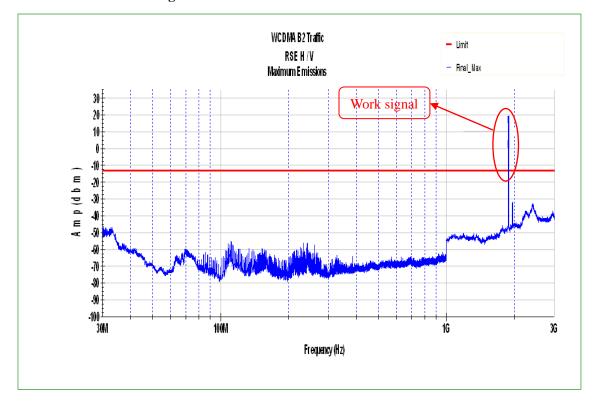
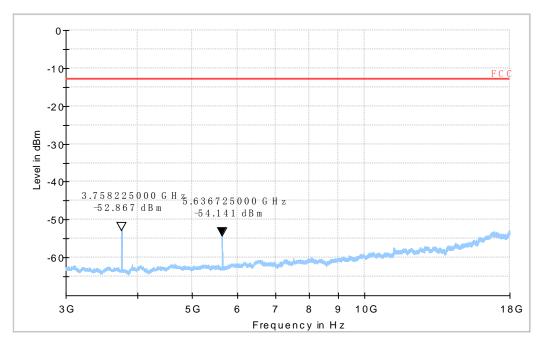
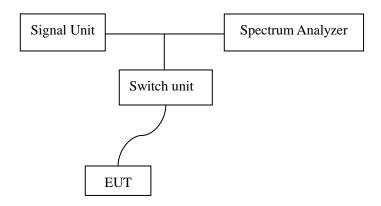



Fig.8 WCDMA Band II Channel 9400 3GHz~19.1GHz

W CDMA B2

A.5 Band Edge Compliance(22.917(b)/ 24.238)


A.5.1 Description

The power of any emission outside of the authorized operating frequency ranges must be lower than transmitter power by a factor of at least 43+10log(P) dB.

A.5.2 Test Procedure

- 1. The EUT was connected to Spectrum Analyzer and Base Station.
- 2. The band edge of low and high channel for maximum RF power was measured. Setting RBW is as roughly BW/100.

A.5.3 Test Setup

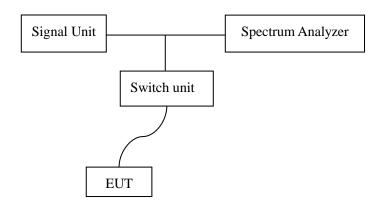
A.5.4 Test Results

N/A

A.6 Conducted Spurious Emission(22.917(a)/24.238(a))

A.6.1 Description

The power of any emission outside of the authorized operating frequency ranges must be lower than transmitter power by a factor of at least 43+10log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm. It is measured by means of spectrum analyzer and scanned from 30MHz up to a frequency including its 10th harmonic.


For the equipment of PCS1900 band, this equates to a frequency range of 30MHz to 19.1GHz, data is taken from 30 MHz to 20 GHz. For GSM 850, data is taken from 30 MHz to 9 GHz.

A.6.2 Test Procedures

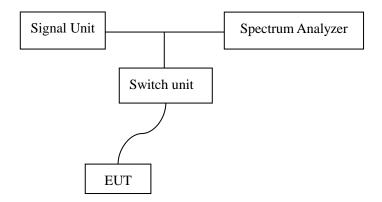
- 1. The EUT was connected to Spectrum Analyzer and Base Station.
- 2. The middle channel for maximum RF power within the transmitting frequency was measured.
- 3. The conducted spurious emission for the whole frequency range was taken.

A.6.3 Test Setup

A.6.4 Test Results

N/A

A.7Peak-to-average ratio(24.232(d))


A.8.1 Description

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks f a digitally modulated signal on a statistical basic. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level.

A.8.2 Test Procedure

- 1. The EUT was connected to Spectrum Analyzer and Base Station.
- 2. The CCDF of middle channel for the highest powers were measured.

A.8.3 Test Setup

A.7.4 Test Results

N/A

ANNEX B: Report Revision History

Report No.	Report Version	Description	Issue Date
150701-GRF	None	Original	2015.07.10

*** END OF REPORT***