FCC SAR Test Report

Report No. : FA712302

APPLICANT : ZTE CORPORATION

EQUIPMENT : USB Data Card

BRAND NAME : ZTE **MODEL NAME** : MF861

FCC ID : SRQ-MF861

STANDARD : FCC 47 CFR Part 2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2013

We, SPORTON International (XI'AN) Inc. would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON International (XI'AN) Inc. the test report shall not be reproduced except in full.

Prepared by: Mark Qu / Manager

Mark Qu

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (XI'AN) INC.

No. 39 Building A3, Entrepreneurship Avenue, New industrial park, High-tech district, Xi'an City, Shaanxi Province, P. R. China

SPORTON INTERNATIONAL (XI'AN) INC.

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date: Feb. 28, 2017 FCC ID: SRQ-MF861 Form version.: 160427 Page 1 of 48

Table of Contents

1. Statement of Compliance	
2. Administration Data	
3. Guidance Applied	
4. Equipment Under Test (EUT) Information	
4.1 General Information	
4.2 General LTE SAR Test and Reporting Considerations	7
5. RF Exposure Limits	10
5.1 Uncontrolled Environment	10
5.2 Controlled Environment	10
6. Specific Absorption Rate (SAR)	11
6.1 Introduction	11
6.2 SAR Definition	11
7. System Description and Setup	12
7.1 E-Field Probe	13
7.2 Data Acquisition Electronics (DAE)	13
7.3 Phantom	14
7.4 Device Holder	
8. Measurement Procedures	16
8.1 Spatial Peak SAR Evaluation	16
8.2 Power Reference Measurement	17
8.3 Area Scan	
8.4 Zoom Scan	18
8.5 Volume Scan Procedures	18
8.6 Power Drift Monitoring	
9. Test Equipment List	
10. System Verification	20
10.1 Tissue Simulating Liquids	20
10.2 Tissue Verification	21
10.3 System Performance Check Results	22
11. RF Exposure Positions	
11.1 SAR Testing for USB Dongle	23
12. Conducted RF Output Power (Unit: dBm)	
13. Antenna Location	
14. SAR Test Results	41
14.1 Body SAR	42
14.2 Repeated SAR Measurement	
15. Uncertainty Assessment	46
16. References	48
Appendix A. Plots of System Performance Check	
Appendix B. Plots of High SAR Measurement	
Appendix C. DASY Calibration Certificate	
Appendix D. Test Setup Photos	

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

FCC ID: SRQ-MF861

Revision History

Report No. : FA712302

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FA712302	Rev. 01	Initial issue of report	Feb. 28, 2017

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date: Feb. 28, 2017 Form version. : 160427 FCC ID: SRQ-MF861 Page 3 of 48

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for ZTE CORPORATION, USB Data Card, MF861, are as follows.

Report No. : FA712302

Equipment Class		Frequency Band	Highest SAR Summary Body (Separation 5mm) 1g SAR (W/kg)		
	WCDMA	WCDMA Band V	0.95		
	WCDIVIA	WCDMA Band II	1.39		
	LTE	LTE Band 12	0.83		
Licensed		LTE Band 5	0.98		
		LTE Band 4	1.35		
		LTE Band 2	1.38		
		LTE Band 30	1.12		
	Date of Testing:				

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications.

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date: Feb. 28, 2017 Form version.: 160427 FCC ID: SRQ-MF861 Page 4 of 48

2. Administration Data

Testing Laboratory							
Test Site SPORTON INTERNATIONAL (XI'AN) INC.							
Test Site Location	No. 39 Building A3, Entrepreneurship Avenue, New industrial park, High-tech district, Xi'an City, Shaanxi Province, P. R. China TEL: +86-029-8860-8767 FAX: +86-029-8860-8791						

Report No.: FA712302

	Applicant
Company Name	ZTE CORPORATION
Address	ZTE Plaza, Keji Road South, Hi-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, 518057, P.R.China

	Manufacturer
Company Name	ZTE CORPORATION
	ZTE Plaza, Keji Road South, Hi-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, 518057, P.R.China

3. Guidance Applied

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2013
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 447498 D02 SAR Procedures for Dongle Xmtr v02r01
- FCC KDB 941225 D01 3G SAR Procedures v03r01
- FCC KDB 941225 D05 SAR for LTE Devices v02r05
- FCC KDB 941225 D05A Rel.10 LTE SAR Test Guidance v01r02

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date: Feb. 28, 2017 Form version.: 160427 FCC ID: SRQ-MF861 Page 5 of 48

4. Equipment Under Test (EUT) Information

4.1 General Information

Product Feature & Specification						
Equipment Name	USB Data Card					
Brand Name	ZTE					
Model Name	MF861					
FCC ID	SRQ-MF861					
IMEI Code	863832030001855					
Wireless Technology and Frequency Range	WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz LTE Band 2: 1850.7 MHz ~ 1909.3 MHz LTE Band 4: 1710.7 MHz ~ 1754.3 MHz LTE Band 5: 824.7 MHz ~ 848.3 MHz LTE Band 12: 699.7 MHz ~ 715.3 MHz LTE Band 30: 2307.5 MHz ~ 2312.5 MHz					
Mode	RMC 12.2Kbps HSDPA HSUPA HSPA+ (16QAM uplink is not supported) LTE: QPSK, 16QAM					
HW Version	MF861HW1.1					
SW Version	MF861V1.3					
EUT Stage	Identical Prototype					
Pomark:						

Report No. : FA712302

This device has no voice function.

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date: Feb. 28, 2017 FCC ID: SRQ-MF861 Form version. : 160427 Page 6 of 48

^{1.} The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

4.2 General LTE SAR Test and Reporting Considerations

Summarized r	necessary items	addres	sed in K	DB 941	225 D05	v02r05			
FCC ID	SRQ-MF861								
Equipment Name	USB Data Card								
	LTE Band 2: 185	50.7 MHz	z ~ 1909.	3 MHz					
Operating Frequency Range of each	LTE Band 4: 17	10.7 MHz	z ~ 1754.	3 MHz					
LTE transmission band	LTE Band 5: 824								
LIE (Iaiisiiiissioii baild	LTE Band 12: 69								
	LTE Band 30: 23								
	LTE Band 2:1.4N LTE Band 4:1.4N								
Channel Bandwidth	LTE Band 5:1.4N					IZ, ZUIVIN	Z		
Chamici Bandwidth	LTE Band 12:1.4								
	LTE Band 30: 5N			,					
uplink modulations used	QPSK, and 16QAM								
LTE Voice / Data requirements	Data only								
LTE Release Version	R11, Cat 6								
	Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3								
LTE MDD	Modulation	lation Channel bandwidth / Transmission bandwidth (RB)						MPR (dB)	
LTE MPR permanently built-in by design		1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz		
	QPSK	>5	>4	>8	> 12	> 16	> 18	≤ 1	
	16 QAM 16 QAM	≤ 5 > 5	≤ 4 > 4	≥8	≤ 12 > 12	≤ 16 > 16	≤ 18 > 18	≤ 1 ≤ 2	
				1					
LTE A-MPR	In the base station to disable A-MP all TTI frames (N	R during ⁄laximum	SAR tes	ting an	d the LTE	SAR te	sts was tr	ansmitting on	
	A properly confi								
Spectrum plots for RB configuration	measurement; therefore, spectrum plots for each RB allocation and offset								
	configuration are not included in the SAR report. Inter-Band possible combinations as below page and the detail power verification								
LTE Carrier Aggregation Combinations	please referred t	to page 3	39.						
LTE Carrier Aggregation Additional Information	This device does maximum of 2 identical to the F PCC. Due to cal The following LT MIMO, eICI, WiF SC-FDMA.	carriers Release 8 rrier capa E Relea	in the 8 Specific ability, on se featur	downling cations. If the content of	ik only. Uplink o combinati not supp	All uplinl ommunic ons listed orted: Re	c commu ations ard d above a elay, HetN	nications are e done on the ire supported. et, Enhanced	

Report No. : FA712302

FCC ID : SRQ-MF861 Page 7 of 48 Form version. : 160427

	Transmission (H, M, L) channel numb				nel numbe	rs and freq	uenc	ies in	each LTE	band					
								LTE Ba	nd 2						
	Bandwidth	า 1.4 N	ИHz	Bandwid	tth 3 MHz Bandwidth 5 MHz		Bandwidth 10 MHz Bandwidt		th 15 MHz Bandwidth		idth 20 MHz				
	Ch. #	Fre (MF	eq. Hz)	Ch. #	Freq. (MHz)	Ch	. #	Freq. (MHz)	Ch. #	Fre (MI	eq. Hz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)
L	18607	185	0.7	18615	1851.5	186	25	1852.5	18650	18	55	18675	1857.5	18700	1860
М	18900	188	80	18900	1880	189	000	1880	18900	18	80	18900	1880	18900	1880
Н	19193	190	9.3	19185	1908.5	191	75	1907.5	19150	19	05	19125	1902.5	19100	1900
	LTE Band 4														
	Bandwidth	า 1.4 N	ИHz	Bandwid	th 3 MHz	Bar	ndwid	th 5 MHz	Bandwidt	h 10 N	ЛНz	Bandwidt	h 15 MHz	Bandv	idth 20 MHz
	Ch. #	Fre (MF		Ch. #	Freq. (MHz)	Ch	. #	Freq. (MHz)	Ch. #	Fre (Mi		Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)
L	19957	171	0.7	19965	1711.5	199	75	1712.5	20000	17	15	20025	1717.5	20050	1720
М	20175	173	2.5	20175	1732.5	201	75	1732.5	20175	173	2.5	20175	1732.5	2017	1732.5
Н	20393	175	4.3	20385	1753.5	203	375	1752.5	20350	17	50	20325	1747.5	20300	1745
								LTE Ba	nd 5						
		dwidth				ndwidt			Bandwidth 5 MHz Bandwidth 10						
	Ch. #			q. (MHz)	Ch. #			eq. (MHz)		Ch. # Freq. (MHz)		Ch. #	:	Freq. (MHz)	
L	20407			824.7	20415			825.5	20425			20450		829	
M	20525			836.5	20525			836.5	20525			836.5	20525		836.5
Н	20643	3		848.3	20635	5		847.5	20625	5		846.5	20600)	844
						LTE Band 12									
		dwidth				ndwidt			Bandwidth 5 MHz			Bandwidth 10 MHz			
	Ch. #			q. (MHz)	Ch. #			eq. (MHz)	Ch. # Freq. (MHz)		1 (/	Ch. #		Freq. (MHz)	
L	23017			699.7	23025			700.5	23035 701.5			23060		704	
M	23095			707.5	23095			707.5		23095 707.5			23095		707.5
Н	23173	3		715.3	23165			714.5	23155 713.5		713.5	23130)	711	
				-				LTE Baı	nd 30			-			
		<u> </u>		Bandwid	th 5 MHz					<u> </u>		Bandwidt	h 10 MHz	- /	
		Chan				Freq.()		Chan	nel#			Freq.(M	HZ)
L		276				230				07-	740			0040	
М		277				23				277	10			2310	
Н		277	35			231	2.5								

Report No. : FA712302

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date : Feb. 28, 2017 Form version. : 160427 FCC ID: SRQ-MF861 Page 8 of 48

	LTE Carrier Aggregation Combinations										
	Inter-Band Combinations										
(PCC) B2	(SCC) B5	(PCC) B2	(SCC) B12	(PCC) B2	(SCC) B29	(PCC) B4	(SCC) B5	(PCC) B4	(SCC) B12	(PCC) B4	(SCC) B29
20M	+ 10M	20M	+ 10M	20M +	+ 10M	20M -	+ 10M	20M +	+ 10M	20M -	+ 10M
20M	+ 5M	20M	+ 5M	20M	+ 5M	20M	+ 5M	20M	+ 5M	20M	+ 5M
15M	+ 10M	20M	+ 3M	20M	+ 3M	15M -	+ 10M	20M	+ 3M	20M	+ 3M
15M	+ 5M	15M	+ 10M	15M -	+ 10M	15M	+ 5M	15M +	+ 10M	15M + 10M	
10M	+ 10M	15M	+ 5M	15M	+ 5M	10M -	+ 10M	15M + 5M		15M + 5M	
10M	10M + 5M		+ 3M	15M + 3M		10M + 5M		15M + 3M		15M + 3M	
5M -	+ 10M	10M	+ 10M	10M +	+ 10M	5M +	· 10M	10M + 10M		10M + 10M	
5M	+ 5M	10M	+ 5M	10M	+ 5M	5M -	+ 5M	10M + 5M		10M + 5M	
	10M + 3M		10M + 3M				10M + 3M		10M + 3M		
5M + 10M		5M + 10M		5M + 10		10M	5M +	10M			
	5M + 5M		5M +	+ 5M			5M +	+ 5M	5M -	+ 5M	
		5M	+ 3M	5M -	+ 3M			5M +	+ 3M	5M -	+ 3M
								3M +	10M		
								3M +	+ 5M		
								3M +	+ 3M		
								1.4M ·	+ 10M		
								1.4M	+ 5M		
								1.4M	+ 3M		

Report No. : FA712302

General Note:

This device supports LTE Carrier Aggregation (CA) in the downlink only.

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date: Feb. 28, 2017 Form version. : 160427 FCC ID: SRQ-MF861 Page 9 of 48

5. RF Exposure Limits

5.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Report No.: FA712302

5.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

6. Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

Report No. : FA712302

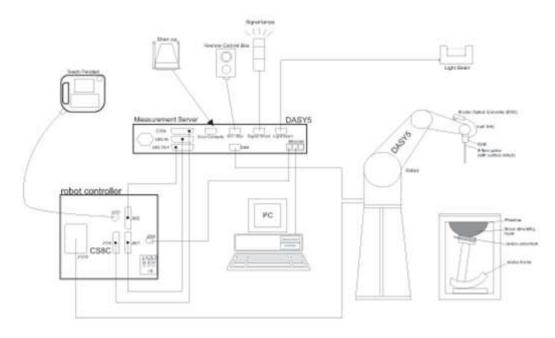
6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma |E|^2}{\rho}$$


Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date: Feb. 28, 2017 FCC ID: SRQ-MF861 Form version.: 160427 Page 11 of 48

7. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

Report No. : FA712302

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

FCC ID : SRQ-MF861 Page 12 of 48 Form version. : 160427

7.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

<EX3DV4 Probe>

Construction	Symmetric design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Frequency	10 MHz – >6 GHz Linearity: ±0.2 dB (30 MHz – 6 GHz)	
Directivity	±0.3 dB in TSL (rotation around probe axis) ±0.5 dB in TSL (rotation normal to probe axis)	
Dynamic Range	10 μW/g – >100 mW/g Linearity: ±0.2 dB (noise: typically <1 μW/g)	
Dimensions	Overall length: 337 mm (tip: 20 mm) Tip diameter: 2.5 mm (body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	

Report No. : FA712302

7.2 <u>Data Acquisition Electronics (DAE)</u>

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Fig 5.1 Photo of DAE

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date: Feb. 28, 2017 Form version.: 160427 FCC ID: SRQ-MF861 Page 13 of 48

7.3 Phantom

<SAM Twin Phantom>

Shell Thickness	2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	
Dimensions	Length: 1000 mm; Width: 500 mm; Height: adjustable feet	7 5
Measurement Areas	Left Hand, Right Hand, Flat Phantom	

Report No. : FA712302

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI Phantom>

*EEIT Haite		
Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

SPORTON INTERNATIONAL (XI'AN) INC.

7.4 Device Holder

<Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm.

Report No. : FA712302

Mounting Device for Hand-Held **Transmitters**

Mounting Device Adaptor for Wide-Phones

<Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Mounting Device for Laptops

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date: Feb. 28, 2017 Form version.: 160427 FCC ID: SRQ-MF861 Page 15 of 48

8. Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Report No. : FA712302

(b) Read the WWAN RF power level from the base station simulator.

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

8.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

 SPORTON INTERNATIONAL (XI'AN) INC.

 TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791
 Issued Date: Feb. 28, 2017

FCC ID : SRQ-MF861 Page 16 of 48 Form version. : 160427

8.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Report No. : FA712302

8.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

	≤ 3 GHz	> 3 GHz			
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$			
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°			
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm			
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.				

SPORTON INTERNATIONAL (XI'AN) INC.

8.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Report No. : FA712302

Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

			≤3 GHz	> 3 GHz		
Maximum zoom scan s	spatial reso	olution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm*	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$		
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm		
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz}: \le 3 \text{ mm}$ $4 - 5 \text{ GHz}: \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz}: \le 2 \text{ mm}$		
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$			
Minimum zoom scan volume	X V 7		≥ 30 mm	$3 - 4 \text{ GHz: } \ge 28 \text{ mm}$ $4 - 5 \text{ GHz: } \ge 25 \text{ mm}$ $5 - 6 \text{ GHz: } \ge 22 \text{ mm}$		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

8.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

8.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

SPORTON INTERNATIONAL (XI'AN) INC.

FCC ID : SRQ-MF861 Page 18 of 48 Form version. : 160427

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9. Test Equipment List

Manufacture	Name of Employment	Towns (Mars de l	Os al al Novada au	Calib	ration
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date
SPEAG	750MHz System Validation Kit	D750V3	1087	2016/3/16	2017/3/15
SPEAG	835MHz System Validation Kit	D835V2	4d151	2016/3/16	2017/3/15
SPEAG	1750MHz System Validation Kit	D1750V2	1090	2016/3/22	2017/3/21
SPEAG	1900MHz System Validation Kit	D1900V2	5d170	2016/3/21	2017/3/20
SPEAG	2300MHz System Validation Kit	D2300V2	1055	2016/8/31	2017/8/30
SPEAG	Data Acquisition Electronics	DAE4	1358	2016/9/5	2017/9/4
SPEAG	Dosimetric E-Field Probe	EX3DV4	3935	2016/11/28	2017/11/27
SPEAG	SAM Twin Phantom	QD 000 P40 CD	TP-1753	NCR	NCR
SPEAG	SAM Twin Phantom	QD 000 P40 CD	TP-1754	NCR	NCR
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR
Agilent	Wireless Communication Test Set	E5515C	MY52102600	2016/12/5	2017/12/4
Anritus	Radio communication analyzer	MT8820C	6201074235	2016/12/5	2017/12/4
Agilent	ENA Series Network Analyzer	E5071C	MY46317418	2016/12/5	2017/12/4
Agilent	Dielectric Probe Kit	85070E	MY44300751	NCR	NCR
Anritsu	Power Senor	MA2411B	0917070	2016/3/25	2017/3/24
Anritsu	Power Meter	ML2495A	1005002	2016/3/25	2017/3/24
Anritsu	Power Sensor	MA2411B	1339206	2016/3/25	2017/3/24
Anritsu	Power Meter	ML2495A	1438004	2016/3/25	2017/3/24
R&S	Signal Generator	N5181A	MY50145381	2017/1/3	2018/1/2
R&S	Spectrum Analyzer	FSV 7	101632	2016/12/5	2017/12/4
ARRA	Power Divider	A3200-2	NA	No	ote
Agilent	Dual Directional Coupler	778D	50422	No	ote
AR	Amplifier	5S1G4	333096	No	ote
Woken	Attenuation1	WK0602-XX	N/A	No	ote
PE	Attenuation2	PE7005-10	N/A	No	ote
PE	Attenuation3	PE7005-3	N/A	No	ote
AR	Amplifier	5S1G4	342137	No	ote

Report No. : FA712302

Note:

Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date: Feb. 28, 2017 Form version. : 160427 FCC ID: SRQ-MF861 Page 19 of 48

10. System Verification

10.1 Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.1.

Report No.: FA712302

Fig 10.1 Photo of Liquid Height for Body SAR

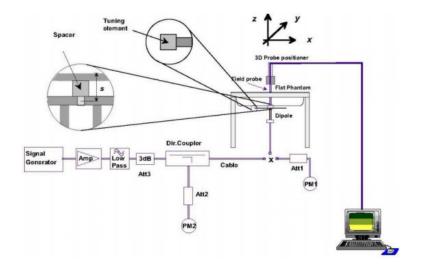
10.2 Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Report No. : FA712302

Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)			
For Body											
750	51.7	47.2	0	0.9	0.1	0	0.96	55.5			
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2			
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3			

<Tissue Dielectric Parameter Check Results>


Frequency (MHz)	Tissue Type	Liquid Temp. (°C)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
750	Body	22.7	0.959	54.174	0.96	55.5	-0.10	-2.39	±5	2017/2/21
835	Body	22.6	1.008	57.595	0.97	55.2	3.92	4.34	±5	2017/2/21
1750	Body	22.5	1.538	52.734	1.49	53.4	3.22	-1.25	±5	2017/2/20
1900	Body	22.4	1.578	53.828	1.52	53.3	3.82	0.99	±5	2017/2/20
2300	Body	22.5	1.741	52.313	1.81	52.9	-3.81	-1.11	±5	2017/2/21

FCC ID : SRQ-MF861 Page 21 of 48 Form version. : 160427

10.3 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

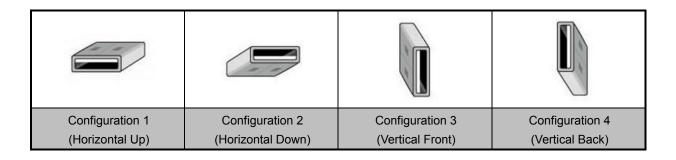
Date	Frequency (MHz)2	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)
2017/2/21	750	Body	250	1087	3935	1358	2.27	8.64	9.08	5.09
2017/2/21	835	Body	250	4d151	3935	1358	2.57	9.52	10.28	7.98
2017/2/20	1750	Body	250	1090	3935	1358	9.61	35.9	38.44	7.08
2017/2/20	1900	Body	250	5d170	3935	1358	10.0	38.9	40.00	2.83
2017/2/21	2300	Body	250	1055	3935	1358	12.4	49.4	49.6	0.40

Report No.: FA712302

Fig 8.3.1 System Performance Check Setup

Fig 8.3.2 Setup Photo

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791


Issued Date: Feb. 28, 2017 Form version. : 160427 FCC ID: SRQ-MF861 Page 22 of 48

11. RF Exposure Positions

11.1 SAR Testing for USB Dongle

Test all USB orientations [see figure below: (A) Horizontal-Up, (B) Horizontal-Down, (C) Vertical-Front, and (D) Vertical-Back] with a device-to-phantom separation distance of 5 mm or less, according to KDB Publication 447498 D01 requirements. These test orientations are intended for the exposure conditions found in typical laptop/notebook/netbook or tablet computers with either horizontal or vertical USB connector configurations at various locations in the keyboard section of the computer. Current generation portable host computers should be used to establish the required SAR measurement separation distance. The same test separation distance must be used to test all frequency bands and modes in each USB orientation. The typical Horizontal-Up USB connection (A), found in the majority of host computers, must be tested using an appropriate host computer. A host computer with either Vertical-Front (C) or Vertical Back (D) USB connection should be used to test one of the vertical USB orientations. If a suitable host computer is not available for testing the Horizontal-Down (B) or the remaining Vertical USB orientation, a high quality USB cable, 12 inches or less, may be used for testing these other orientations. It must be documented that the USB cable does not influence the radiating characteristics and output power of the transmitter.

Report No. : FA712302

12. Conducted RF Output Power (Unit: dBm)

<WCDMA Conducted Power>

- 1. The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification.
- 2. The procedures in KDB 941225 D01v03r01 are applied for 3GPP Rel. 6 HSPA to configure the device in the required sub-test mode(s) to determine SAR test exclusion.

Report No. : FA712302

A summary of these settings are illustrated below:

HSDPA Setup Configuration:

- a. The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting:
 - i. Set Gain Factors (β_c and β_d) and parameters were set according to each
 - ii. Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121
 - iii. Set RMC 12.2Kbps + HSDPA mode.
 - iv. Set Cell Power = -86 dBm
 - v. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - vi. Select HSDPA Uplink Parameters
 - vii. Set Delta ACK, Delta NACK and Delta CQI = 8
 - viii. Set Ack-Nack Repetition Factor to 3
 - ix. Set CQI Feedback Cycle (k) to 4 ms
 - x. Set CQI Repetition Factor to 2
 - xi. Power Ctrl Mode = All Up bits
- d. The transmitted maximum output power was recorded.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βο	βd	βd (SF)	β₀/βd	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)	
1	2/15	15/15	64	2/15	4/15	0.0	0.0	
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0	
3	15/15	8/15	64	15/8	30/15	1.5	0.5	
4	15/15	4/15	64	15/4	30/15	1.5	0.5	

- Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 30/15 with β _{Iss} = 30/15 * β _C.
- Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, Δ_{ACK} and Δ_{NACK} = 30/15 with β_{hs} = 30/15 * β_c , and Δ_{CQI} = 24/15

with
$$\beta_{hs} = 24/15 * \beta_c$$
.

- Note 3: CM = 1 for β_c/β_d =12/15, β_{hs}/β_c=24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.
- Note 4: For subtest 2 the β_d/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15.

Setup Configuration

HSUPA Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting *:
 - i. Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
 - ii. Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121

Report No. : FA712302

- iii. Set Cell Power = -86 dBm
- iv. Set Channel Type = 12.2k + HSPA
- v. Set UE Target Power
- vi. Power Ctrl Mode= Alternating bits
- vii. Set and observe the E-TFCI
- viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- d. The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βς	βα	β _d (SF)	βε/βα	βнs (Note1)	βес	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15	15/15	64	11/15	22/15	209/2	1309/225	4	1	1.0	0.0	20	75
	(Note 3)	(Note		(Note		25							
		3)		3)									
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15	4	2	2.0	1.0	15	92
							β _{ed} 2: 47/15	4					
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15	15/15	64	15/15	30/15	24/15	134/15	4	1	1.0	0.0	21	81
	(Note 4)	(Note		(Note									
		4)		4)									

- Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c .
- Note 2: CM = 1 for β_0/β_d =12/15, β_{1s}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
- Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15.
- Note 4: For subtest 5 the β_d/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15.
- Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.
- Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value.

Setup Configuration

<WCDMA Conducted Power>

General Note:

Per KDB 941225 D01v03r01, for SAR testing is measured using a 12.2 kbps RMC with TPC bits configured to all "1's".

Report No.: FA712302

Per KDB 941225 D01v03r01, RMC 12.2kbps setting is used to evaluate SAR. If the maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA is ≤ ¼ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA.

	Band	W	CDMA Ban	d II		W	CDMA Band	l V	Tune-up Limit
Tx	Channel	9262	9400	9538	Tune-up	4132	4182	4233	
Rx	9662	9800	9938	Limit (dBm)	4357	4407	4458	(dBm)	
Frequ	1852.4	1880	1907.6		826.4	836.4	846.6		
3GPP Rel 99	RMC 12.2Kbps	21.20	21.27	<mark>21.45</mark>	22.00	<mark>22.59</mark>	22.55	22.52	23.70
3GPP Rel 6	HSDPA Subtest-1	19.86	20.04	20.20	20.50	21.24	21.23	21.16	21.50
3GPP Rel 6	HSDPA Subtest-2	19.88	20.08	20.23	20.50	21.28	21.25	21.18	21.50
3GPP Rel 6	HSDPA Subtest-3	19.46	19.64	19.85	20.00	20.75	20.68	20.71	21.00
3GPP Rel 6	HSDPA Subtest-4	19.40	19.62	19.88	20.00	20.71	20.70	20.64	21.00
3GPP Rel 6	HSUPA Subtest-1	19.91	20.10	20.16	20.50	20.91	20.88	20.75	21.00
3GPP Rel 6	HSUPA Subtest-2	19.24	19.06	19.45	19.50	19.26	19.31	19.13	19.50
3GPP Rel 6	HSUPA Subtest-3	19.17	19.32	19.35	19.50	20.18	20.24	20.08	20.50
3GPP Rel 6	HSUPA Subtest-4	18.16	18.33	18.49	18.50	19.34	19.33	19.24	19.50
3GPP Rel 6	HSUPA Subtest-5	20.10	20.16	20.22	20.50	20.87	20.97	20.88	21.00

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date: Feb. 28, 2017 Form version.: 160427 FCC ID: SRQ-MF861 Page 26 of 48

<LTE Conducted Power>

General Note:

1. Anritsu MT8820C base station simulator was used to setup the connection with EUT; the frequency band, channel bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUT transmitting at maximum power and at different configurations which are requested to be reported to FCC, for conducted power measurement and SAR testing.

Report No. : FA712302

- 2. Per KDB 941225 D05v02r05, when a properly configured base station simulator is used for the SAR and power measurements, spectrum plots for each RB allocation and offset configuration is not required.
- 3. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 4. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 5. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- 6. Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required.
- 7. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required.
- 8. For LTE B12 / B5 / B4 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

 SPORTON INTERNATIONAL (XI'AN) INC.

 TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791
 Issued Date: Feb. 28, 2017

FCC ID : SRQ-MF861 Page 27 of 48 Form version. : 160427

<LTE Band 2>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Chani	nel		18700	18900	19100	(dBm)	(dB)
	Frequency	(MHz)		1860	1880	1900		
20	QPSK	1	0	<mark>21.41</mark>	21.28	21.22		
20	QPSK	1	49	21.28	21.19	21.13	22	0
20	QPSK	1	99	21.40	21.22	21.16		
20	QPSK	50	0	20.31	20.26	20.26		
20	QPSK	50	24	20.27	20.31	20.36	21	1
20	QPSK	50	50	20.38	20.24	20.29	21	•
20	QPSK	100	0	20.38	20.21	20.28		
20	16QAM	1	0	20.78	20.76	20.56		
20	16QAM	1	49	20.49	20.45	20.52	21	1
20	16QAM	1	99	20.68	20.48	20.58		
20	16QAM	50	0	19.25	19.29	19.22		
20	16QAM	50	24	19.23	19.28	19.30	20	2
20	16QAM	50	50	19.30	19.22	19.24		
20	16QAM	100	0	19.33	19.19	19.23		
	Chani	nel		18675	18900	19125	Tune-up limit (dBm)	MPR (dB)
	Frequency	(MHz)		1857.5	1880	1902.5		
15	QPSK	1	0	21.39	21.27	21.28		
15	QPSK	1	37	21.35	21.23	21.39	22	0
15	QPSK	1	74	21.30	21.16	21.29		
15	QPSK	36	0	20.43	20.23	20.34		
15	QPSK	36	20	20.23	20.15	20.37	04	,
15	QPSK	36	39	20.35	20.13	20.36	21	1
15	QPSK	75	0	20.31	20.22	20.30		
15	16QAM	1	0	20.77	20.50	20.66		
15	16QAM	1	37	20.52	20.39	20.56	21	1
15	16QAM	1	74	20.54	20.37	20.55		
15	16QAM	36	0	19.38	19.21	19.27		
15	16QAM	36	20	19.18	19.15	19.33	1	
15	16QAM	36	39	19.27	19.07	19.30	20	2
15	16QAM	75	0	19.26	19.15	19.22		

Report No. : FA712302

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date : Feb. 28, 2017 Form version. : 160427 FCC ID: SRQ-MF861 Page 28 of 48

	CC SAR Te	•		40050	40000		eport No. :		
	Chani			18650	18900	19150	limit	MPR (dB)	
	Frequency	1		1855	1880	1905	(dBm)	— (ub)	
10	QPSK	1	0	21.30	21.29	21.28			
10	QPSK	1	25	21.21	20.98	21.07	22	0	
10	QPSK	1	49	21.16	21.04	21.19			
10	QPSK	25	0	20.35	20.30	20.34			
10	QPSK	25	12	20.35	20.11	20.23	21	1	
10	QPSK	25	25	20.32	20.12	20.31			
10	QPSK	50	0	20.30	20.19	20.26			
10	16QAM	1	0	20.78	20.67	20.75			
10	16QAM	1	25	20.49	20.33	20.42	21	1	
10	16QAM	1	49	20.49	20.36	20.55			
10	16QAM	25	0	19.30	19.27	19.28			
10	16QAM	25	12	19.30	19.10	19.19	20	2	
10	16QAM	25	25	19.23	19.10	19.29	20		
10	16QAM	50	0	19.27	19.19	19.24			
	Channel				18900	19175	Tune-up limit	MPR	
	Frequency	/ (MHz)		1852.5	1880	1907.5	(dBm)	(dB)	
5	QPSK	1	0	21.07	21.11	21.08			
5	QPSK	1	12	21.11	20.97	21.14	22	0	
5	QPSK	1	24	21.06	21.00	21.12			
5	QPSK	12	0	20.23	20.06	20.28			
5	QPSK	12	7	20.16	20.07	20.26	1	1	
5	QPSK	12	13	20.17	19.96	20.26	21		
5	QPSK	25	0	20.16	20.03	20.21			
5	16QAM	1	0	20.50	20.44	20.49			
5	16QAM	1	12	20.45	20.29	20.46	21	1	
5	16QAM	1	24	20.34	20.27	20.43			
5	16QAM	12	0	19.21	19.10	19.29			
5	16QAM	12	7	19.18	19.07	19.25	1		
5	16QAM	12	13	19.17	18.98	19.26	20	2	
5	16QAM	25	0	19.17	19.01	19.26			
	Chani	nel		18615	18900	19185	Tune-up	MPR	
	Frequency	/ (MHz)		1851.5	1880	1908.5	limit (dBm)	(dB)	
3	QPSK	1	0	21.05	20.87	21.06	(dBIII)		
3	QPSK	1	8	21.10	20.96	21.11	22	0	
3	QPSK	1	14	20.98	20.95	21.05			
3	QPSK	8	0	20.17	20.01	20.21			
3	QPSK	8	4	20.16	20.01	20.25			
3	QPSK	8	7	20.13	19.97	20.19	21	1	
3	QPSK	15	0	20.14	19.98	20.23			
3	16QAM	1	0	20.37	20.25	20.47			
3	16QAM	1	8	20.39	20.26	20.48	21	1	
3	16QAM	1	14	20.39	20.22	20.40			
3	16QAM	8	0	19.22	19.09	19.31			
3	16QAM	8	4	19.22	19.09	19.31			
3	16QAM	8	7	19.26	19.10	19.32	20	2	
	_								
3	16QAM	15	0	19.18	19.02	19.24			

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date : Feb. 28, 2017 Form version. : 160427 FCC ID: SRQ-MF861 Page 29 of 48

SPORTON LAB. FCC SAR Test Report

	Chan	nel		18607	18900	19193	Tune-up	MPR
	Frequency	/ (MHz)		1850.7	1880	1909.3	limit (dBm)	(dB)
1.4	QPSK	1	0	21.02	20.80	20.99		
1.4	QPSK	1	3	21.09	20.96	21.10		0
1.4	QPSK	1	5	21.00	20.84	21.03	22	
1.4	QPSK	3	0	21.12	20.97	21.16	22	
1.4	QPSK	3	1	21.18	21.01	21.17		
1.4	QPSK	3	3	21.12	20.97	21.15		
1.4	QPSK	6	0	20.06	19.92	20.13	21	1
1.4	16QAM	1	0	20.33	20.14	20.34		
1.4	16QAM	1	3	20.39	20.22	20.39		
1.4	16QAM	1	5	20.27	20.11	20.31	21	1
1.4	16QAM	3	0	20.11	19.95	20.13	21	1
1.4	16QAM	3	1	20.15	19.99	20.18		
1.4	16QAM	3	3	20.12	19.92	20.12		
1.4	16QAM	6	0	19.13	19.01	19.18	20	2

Report No.: FA712302

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date : Feb. 28, 2017 Form version. : 160427 FCC ID: SRQ-MF861 Page 30 of 48

<LTE Band 4>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		20050	20175	20300	(dBm)	(dB)
	Frequen	cy (MHz)		1720	1732.5	1745		
20	QPSK	1	0	21.19	<mark>21.30</mark>	21.14		
20	QPSK	1	49	21.15	21.24	21.09	22.5	0
20	QPSK	1	99	20.92	20.86	20.92		
20	QPSK	50	0	20.15	20.14	20.06		
20	QPSK	50	24	20.24	20.21	20.21	21.5	1
20	QPSK	50	50	20.10	19.94	20.03	21.5	1
20	QPSK	100	0	20.06	19.99	20.03		
20	16QAM	1	0	20.25	20.37	20.17		
20	16QAM	1	49	20.50	20.46	20.53	21.5	1
20	16QAM	1	99	20.14	20.09	20.14		
20	16QAM	50	0	19.13	19.11	19.03		
20	16QAM	50	24	19.20	19.15	19.20	20.5	2
20	16QAM	50	50	19.08	18.93	18.97		2
20	16QAM	100	0	19.04	18.96	18.97		
	Cha	nnel		20025	20175	20325	Tune-up	MPR
	Frequen	cy (MHz)		1717.5	1732.5	1747.5	limit (dBm)	(dB)
15	QPSK	1	0	20.90	21.00	20.90		
15	QPSK	1	37	21.22	21.14	21.29	22.5	0
15	QPSK	1	74	20.88	21.02	21.07		
15	QPSK	36	0	20.06	20.16	20.08		
15	QPSK	36	20	20.17	20.09	20.26	24.5	4
15	QPSK	36	39	20.18	19.96	20.13	21.5	1
15	QPSK	75	0	20.05	19.98	20.10		
15	16QAM	1	0	20.10	20.23	20.11		
15	16QAM	1	37	20.38	20.30	20.49	21.5	1
15	16QAM	1	74	20.12	20.05	20.03		
15	16QAM	36	0	19.03	19.05	19.03		
15	16QAM	36	20	19.14	19.07	19.22	20.5	0
15	16QAM	36	39	19.08	18.89	19.03	20.5	2
15	16QAM	75	0	19.03	18.95	19.08		

Report No. : FA712302

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date : Feb. 28, 2017 Form version. : 160427 FCC ID: SRQ-MF861 Page 31 of 48

LAB.	CC SAR T		· · · · · · · · · · · · · · · · · · ·			Report No. : FA				
	Cha	nnel		20000	20175	20350	Tune-up limit	MPR		
	Frequenc	cy (MHz)		1715	1732.5	1750	(dBm)	(dB)		
10	QPSK	1	0	21.23	21.29	21.21				
10	QPSK	1	25	21.09	21.16	21.16	22.5	0		
10	QPSK	1	49	21.22	21.24	21.26				
10	QPSK	25	0	20.08	20.25	20.25				
10	QPSK	25	12	20.15	20.17	20.24	21.5	1		
10	QPSK	25	25	20.13	20.18	20.22	21.5	'		
10	QPSK	50	0	20.17	20.22	20.22				
10	16QAM	1	0	20.62	20.57	20.56				
10	16QAM	1	25	20.36	20.40	20.43	21.5	1		
10	16QAM	1	49	20.56	20.58	20.51				
10	16QAM	25	0	19.05	19.18	19.18				
10	16QAM	25	12	19.14	19.13	19.21	20.5	2		
10	16QAM	25	25	19.12	19.14	19.15	20.5	2		
10	16QAM	50	0	19.15	19.16	19.18				
	Cha	nnel		19975	20175	20375	Tune-up limit	MPR		
	Frequenc	cy (MHz)		1712.5	1732.5	1752.5	(dBm)	(dB)		
5	QPSK	1	0	21.26	21.29	21.22				
5	QPSK	1	12	20.99	21.15	21.19	22.5	0		
5	QPSK	1	24	21.04	21.08	21.14				
5	QPSK	12	0	20.13	20.24	20.18				
5	QPSK	12	7	20.02	20.14	20.14	21.5	1		
5	QPSK	12	13	19.96	20.00	20.16	21.5			
5	QPSK	25	0	19.98	20.10	20.11				
5	16QAM	1	0	20.51	20.50	20.48				
5	16QAM	1	12	20.24	20.37	20.45	21.5	1		
5	16QAM	1	24	20.29	20.26	20.35				
5	16QAM	12	0	19.17	19.22	19.15				
5	16QAM	12	7	19.04	19.14	19.11	20.5	2		
5	16QAM	12	13	18.99	19.00	19.14	20.5	2		
5	16QAM	25	0	19.02	19.11	19.09				
	Cha	nnel		19965	20175	20385	Tune-up limit	MPR		
	Frequenc	cy (MHz)		1711.5	1732.5	1753.5	(dBm)	(dB)		
3	QPSK	1	0	21.15	21.21	21.12				
3	QPSK	1	8	21.06	21.13	21.14	22.5	0		
3	QPSK	1	14	20.89	20.97	21.05				
3	QPSK	8	0	20.08	20.12	20.14				
3	QPSK	8	4	20.08	20.12	20.19	21.5	1		
3	QPSK	8	7	20.04	20.09	20.10	21.0			
3	QPSK	15	0	20.05	20.10	20.17				
3	16QAM	1	0	20.43	20.43	20.38				
3	16QAM	1	8	20.33	20.38	20.40	21.5	1		
3	16QAM	1	14	20.13	20.21	20.32				
3	16QAM	8	0	19.15	19.14	19.18				
3	16QAM	8	4	19.17	19.19	19.21	20.5	2		
3	16QAM	8	7	19.12	19.11	19.12	20.5	2		
	16QAM	15	0	19.10	19.11	19.17				

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date : Feb. 28, 2017 Form version. : 160427 FCC ID: SRQ-MF861 Page 32 of 48

SPORTON LAB. FCC SAR Test Report

RTON LAB. F	CC SAR T	est Repo	rt			F	Report No. :	FA712302
	Chai	nnel		19957	20175	20393	Tune-up	MPR
	Frequenc	cy (MHz)		1710.7	1732.5	1754.3	limit (dBm)	(dB)
1.4	QPSK	1	0	21.08	21.02	21.06		
1.4	QPSK	1	3	21.01	21.10	21.05		0
1.4	QPSK	1	5	20.96	21.04	21.05	22.5	
1.4	QPSK	3	0	21.14	21.08	21.08	22.5	
1.4	QPSK	3	1	21.17	21.13	21.10		
1.4	QPSK	3	3	21.03	21.09	21.14		
1.4	QPSK	6	0	20.09	20.03	20.03	21.5	1
1.4	16QAM	1	0	20.33	20.27	20.34		
1.4	16QAM	1	3	20.29	20.36	20.32		
1.4	16QAM	1	5	20.19	20.28	20.31	24.5	4
1.4	16QAM	3	0	20.11	20.08	20.09	21.5	1
1.4	16QAM	3	1	20.16	20.15	20.13		
1.4	16QAM	3	3	19.99	20.10	20.12		
1.4	16QAM	6	0	19.16	19.08	19.05	20.5	2

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date : Feb. 28, 2017 Form version. : 160427 FCC ID: SRQ-MF861 Page 33 of 48

<LTE Band 5>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Cha			20450	20525	20600	(dBm)	(dB)
	Frequen	cy (MHz)		829	836.5	844		
10	QPSK	1	0	22.30	22.16	22.31		
10	QPSK	1	25	22.33	22.36	22.54	23.7	0
10	QPSK	1	49	22.13	22.17	22.25		
10	QPSK	25	0	21.25	21.33	21.37		
10	QPSK	25	12	21.33	21.45	21.41	22.7	1
10	QPSK	25	25	21.33	21.39	21.41	22.1	'
10	QPSK	50	0	21.32	21.35	21.40		
10	16QAM	1	0	21.85	21.70	21.76		
10	16QAM	1	25	21.60	21.99	22.01	22.7	1
10	16QAM	1	49	21.58	21.71	21.87		
10	16QAM	25	0	20.32	20.34	20.46		
10	16QAM	25	12	20.32	20.33	20.43	21.7	2
10	16QAM	25	25	20.38	20.40	20.39	21.7	2
10	16QAM	50	0	20.33	20.28	20.38		
	Cha	nnel		20425	20525	20625	Tune-up	MPR
	Frequen	cy (MHz)		826.5	836.5	846.5	limit (dBm)	(dB)
5	QPSK	1	0	22.33	22.30	22.26		
5	QPSK	1	12	22.38	22.26	22.17	23.7	0
5	QPSK	1	24	22.14	22.25	22.20		
5	QPSK	12	0	21.36	21.28	21.31		
5	QPSK	12	7	21.28	21.29	21.41	22.7	4
5	QPSK	12	13	21.33	21.28	21.25	22.7	1
5	QPSK	25	0	21.31	21.31	21.34		
5	16QAM	1	0	21.58	21.49	21.79		
5	16QAM	1	12	21.41	21.54	21.63	22.7	1
5	16QAM	1	24	21.36	21.35	21.43		
5	16QAM	12	0	20.33	20.26	20.40		
5	16QAM	12	7	20.36	20.33	20.41	04.7	2
5	16QAM	12	13	20.39	20.25	20.25	21.7	2
5	16QAM	25	0	20.40	20.34	20.43		

Report No. : FA712302

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date : Feb. 28, 2017 Form version. : 160427 FCC ID: SRQ-MF861 Page 34 of 48

TON LAB.	CC SAR 1	est Repo	T L			F	Report No. :	FA/12302
	Cha	nnel		20415	20525	20635	Tune-up	MPR
	Frequen	cy (MHz)		825.5	836.5	847.5	limit (dBm)	(dB)
3	QPSK	1	0	22.23	22.14	22.26		
3	QPSK	1	8	22.20	22.25	22.32	23.7	0
3	QPSK	1	14	22.21	22.13	22.32		
3	QPSK	8	0	21.28	21.31	21.27		
3	QPSK	8	4	21.38	21.34	21.28	22.7	1
3	QPSK	8	7	21.27	21.26	21.35	22.1	
3	QPSK	15	0	21.28	21.25	21.39		
3	16QAM	1	0	21.45	21.40	21.63		
3	16QAM	1	8	21.47	21.56	21.50	22.7	1
3	16QAM	1	14	21.47	21.58	21.42		
3	16QAM	8	0	20.38	20.11	20.38		
3	16QAM	8	4	20.36	20.33	20.39	21.7	2
3	16QAM	8	7	20.37	20.27	20.40	21.7	2
3	16QAM	15	0	20.25	20.33	20.24		
	Channel		20407	20525	20643	Tune-up limit	MPR	
	Frequen	cy (MHz)		824.7	836.5	848.3	(dBm)	(dB)
1.4	QPSK	1	0	22.25	22.30	22.29	,	
1.4	QPSK	1	3	22.34	22.29	22.29		
1.4	QPSK	1	5	22.30	22.18	22.24	00.7	0
1.4	QPSK	3	0	22.32	22.29	22.30	23.7	0
1.4	QPSK	3	1	22.34	22.33	22.37		
1.4	QPSK	3	3	22.37	22.36	22.38		
1.4	QPSK	6	0	21.23	21.29	21.27	22.7	1
1.4	16QAM	1	0	21.72	21.70	21.71		
1.4	16QAM	1	3	21.75	21.77	21.79		
1.4	16QAM	1	5	21.34	21.74	21.76	22.7	1
1.4	16QAM	3	0	21.31	21.29	21.20		1
1.4	16QAM	3	1	21.45	21.31	21.39		
1.4	16QAM	3	3	21.26	21.23	21.35		
1.4	16QAM	6	0	20.36	20.31	20.32	21.7	2

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date : Feb. 28, 2017 Form version. : 160427 FCC ID: SRQ-MF861 Page 35 of 48

<LTE Band 12>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
		nnel		23060	23095	23130	(dBm)	(dB)
		cy (MHz)		704	707.5	711		
10	QPSK	1	0	22.27	22.30	22.25		
10	QPSK	1	25	22.31	22.37	22.25	23.7	0
10	QPSK	1	49	22.50	<mark>22.75</mark>	22.30		
10	QPSK	25	0	21.41	21.57	21.69		
10	QPSK	25	12	21.19	21.61	21.67	22.7	1
10	QPSK	25	25	21.46	21.58	21.68	22.1	'
10	QPSK	50	0	21.36	21.50	21.77		
10	16QAM	1	0	21.41	21.76	21.42		
10	16QAM	1	25	21.43	21.54	21.91	22.7	1
10	16QAM	1	49	21.62	21.85	21.70		
10	16QAM	25	0	20.41	20.61	20.63		
10	16QAM	25	12	20.86	20.57	20.46	21.7	2
10	16QAM	25	25	20.46	20.63	20.75		
10	16QAM	50	0	20.65	20.53	20.78		
	Cha	nnel		23035	23095	23155	Tune-up	MPR
	Frequen	cy (MHz)		701.5	707.5	713.5	limit (dBm)	(dB)
5	QPSK	1	0	22.20	22.25	22.20		
5	QPSK	1	12	22.35	22.41	22.33	23.7	0
5	QPSK	1	24	22.46	22.38	22.68		
5	QPSK	12	0	21.58	21.49	21.31		
5	QPSK	12	7	21.53	21.58	21.68	22.7	4
5	QPSK	12	13	21.74	21.49	21.63	22.7	1
5	QPSK	25	0	21.58	21.57	21.58		
5	16QAM	1	0	21.43	21.60	21.35		
5	16QAM	1	12	21.64	21.50	21.81	22.7	1
5	16QAM	1	24	21.66	21.65	21.76		
5	16QAM	12	0	20.56	20.46	20.24		
5	16QAM	12	7	20.59	20.56	20.57	04.7	•
5	16QAM	12	13	20.52	20.50	20.59	21.7	2
5	16QAM	25	0	20.68	20.48	20.58		

Report No. : FA712302

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date : Feb. 28, 2017 Form version. : 160427 FCC ID: SRQ-MF861 Page 36 of 48

TON LAB.	CC SAR 1	F	Report No. : FA712302					
	Cha	nnel		23025	23095	23165	Tune-up limit	MPR
	Frequen	cy (MHz)		700.5	707.5	714.5	(dBm)	(dB)
3	QPSK	1	0	22.02	22.18	22.43		
3	QPSK	1	8	22.21	22.20	22.22	23.7	0
3	QPSK	1	14	22.04	22.27	22.11		
3	QPSK	8	0	21.35	21.48	21.57		
3	QPSK	8	4	21.55	21.62	21.35	22.7	4
3	QPSK	8	7	21.48	21.57	21.82	22.1	1
3	QPSK	15	0	21.50	21.54	21.41		
3	16QAM	1	0	21.33	21.55	21.65		
3	16QAM	1	8	21.56	21.71	21.72	22.7	1
3	16QAM	1	14	21.58	21.60	21.73		
3	16QAM	8	0	20.47	20.61	20.68		
3	16QAM	8	4	20.66	20.63	20.41	21.7	2
3	16QAM	8	7	20.52	20.58	20.71	21.7	
3	16QAM	15	0	20.48	20.65	20.75		
	Cha	nnel		23017	23095	23173	Tune-up	MPR
	Frequen	cy (MHz)		699.7	707.5	715.3	limit (dBm)	(dB)
1.4	QPSK	1	0	22.13	22.07	22.15	,	
1.4	QPSK	1	3	22.25	22.22	22.27		
1.4	QPSK	1	5	22.35	22.38	22.54	00.7	
1.4	QPSK	3	0	22.42	22.42	22.53	23.7	0
1.4	QPSK	3	1	22.37	22.44	22.72		
1.4	QPSK	3	3	22.32	22.55	22.54		
1.4	QPSK	6	0	21.29	21.33	21.25	22.7	1
1.4	16QAM	1	0	21.80	21.79	22.16		
1.4	16QAM	1	3	21.92	21.93	21.94		
1.4	16QAM	1	5	21.77	21.98	22.01	22.7	1
1.4	16QAM	3	0	21.19	21.36	21.22	22.1	
1.4	16QAM	3	1	21.32	21.31	21.25		
1.4	16QAM	3	3	21.22	21.42	21.14		
1.4	16QAM	6	0	20.28	20.44	20.39	21.7	2

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date : Feb. 28, 2017 Form version. : 160427 FCC ID: SRQ-MF861 Page 37 of 48

<LTE Band 30>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up Iimit	MPR (dB)
		nnel			27710		(dBm)	(UD)
40	Frequen		0		2310 21.85			
10	QPSK	1	0				00.0	0
10	QPSK	1	25		21.78		22.2	0
10	QPSK QPSK	1 25	49		20.79			
10	QPSK	25	12		20.77		21.2	1
10	QPSK	25	25		20.66			
10	QPSK	50	0		20.73			
10	16QAM	1	0		21.14		04.0	_
10	16QAM	1	25		21.03		21.2	1
10	16QAM	1	49		20.89			
10	16QAM	25	0		19.77			
10	16QAM	25	12		19.78		20.2	2
10	16QAM	25	25		19.64			
10	16QAM	50	0	07007	19.72	07707	Tune-up	
		nnel		27685	27710	27735	limit	MPR
	Frequen	· ' '		2307.5	2310	2312.5	(dBm)	(dB)
5	QPSK	1	0	21.60	21.72	21.77		
5	QPSK	1	12	21.64	21.81	21.67	22.2	0
5	QPSK	1	24	21.80	21.71	21.65		
5	QPSK	12	0	20.79	20.83	20.80		
5	QPSK	12	7	20.79	20.87	20.78	21.2	1
5	QPSK	12	13	20.79	20.77	20.75		·
5	QPSK	25	0	20.77	20.83	20.74		
5	16QAM	1	0	21.00	21.13	21.11		
5	16QAM	1	12	21.02	21.18	21.04	21.2	1
5	16QAM	1	24	21.11	20.97	20.93		
5	16QAM	12	0	19.82	19.87	19.84		
5	16QAM	12	7	19.83	19.91	19.82	20.2	2
5	16QAM	12	13	19.81	19.79	19.82	20.2	2
5	16QAM	25	0	19.81	19.88	19.78		

Report No. : FA712302

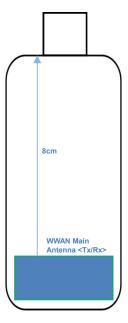
TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date : Feb. 28, 2017 Form version. : 160427 FCC ID: SRQ-MF861 Page 38 of 48

LTE Carrier Aggregation Conducted Power

General Note:

i. According to KDB941225 D05A v01r02, Uplink maximum output power measurement with downlink carrier aggregation active should be measured, using the highest output channel measured without downlink carrier aggregation, to confirm that uplink maximum output power with downlink carrier aggregation active remains within the specified tune-up tolerance limits and not more than ½ dB higher than the maximum output measured without downlink carrier aggregation active.


Report No. : FA712302

- ii. Uplink maximum output power with downlink carrier aggregation active does not show more than ¼ dB higher than the maximum output power without downlink carrier aggregation active, therefore SAR evaluation with downlink carrier aggregation active can be excluded.
- iii. The device supports downlink carrier aggregation only. Uplink carrier aggregation is not supported. For power measurement were control and acknowledge data is sent on uplink channels that operate identical to specifications when downlink carrier aggregation is inactive.
- iv. Selected highest measured power when downlink carrier aggregation is inactive for conducted power comparison with downlink carrier aggregation is active, to confirm that when downlink carrier aggregation is active uplink maximum output power remains within the specified tune-up tolerance limits and not more than ¼ dB higher than the maximum output power measured when downlink carrier aggregation inactive.
- v. For inter-band CA, the SCC selected highest bandwidth and near the middle of its transmission band. For SCC DL RB size and offset will base on the PCC corresponding RB allocation.

				P	CC				SC	CC		Measured Power		
	Configure	LTE Band	BW (MHz)	Freq. (MHz)	Channel	UL# RB	UL RB Offset	LTE Band	BW (MHz)	Freq. (MHz)	Channel	LTE Rel 10 Tx. Power (dBm)	LTE Rel 8 Tx. Power (dBm)	
		Band 2	20M	1860	18700	1	0	Band 5	10M	881.5	2525	21.40	21.41	
١		Band 2	20M	1860	18700	1	0	Band 12	10M	737.5	5095	21.41	21.41	
	Inter-	Band 2	20M	1860	18700	1	0	Band 29	10M	722.5	9715	21.37	21.41	
	Band	Band 4	20M	1732.5	20175	1	0	Band 5	10M	881.5	2525	21.27	21.30	
		Band 4	20M	1732.5	20175	1	0	Band 12	10M	737.5	5095	21.28	21.30	
		Band 4	20M	1732.5	20175	1	0	Band 29	10M	722.5	9715	21.26	21.30	

FCC ID : SRQ-MF861 Page 39 of 48 Form version. : 160427

13. Antenna Location

Back View

Report No. : FA712302

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

FCC ID: SRQ-MF861

Issued Date : Feb. 28, 2017 Form version. : 160427

Page 40 of 48

14. SAR Test Results

General Note:

- 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Report No. : FA712302

- b. Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 3. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.
- 4. According to TCB workshop October 2016, when the highest reported SAR of an antenna is > 1.2 W/kg, holder perturbation verification is required for each antenna, using the highest SAR configuration among all applicable frequency bands.
- For the body SAR measurement was used a low-loss foam block performed testing, the relative permittivity and loss tangent of the foam material is 1.0 and 10⁻⁵, respectively, therefore holder perturbation verification is not required even highest reported SAR is >1.2W/kg.

UMTS Note:

- 1. Per KDB 941225 D01v03r01, for SAR testing is measured using a 12.2 kbps RMC with TPC bits configured to all "1's".
- Per KDB 941225 D01v03r01, RMC 12.2kbps setting is used to evaluate SAR. If the maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA is ≤ ¼ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA.

LTE Note:

- 1. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 2. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 3. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required.
- Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required.
- For LTE B12 / B5 / B4 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791 Issued Date: Feb. 28, 2017 Form version.: 160427 FCC ID: SRQ-MF861 Page 41 of 48

SPORTON INTERNATIONAL (XI'AN) INC.

14.1 **Body SAR**

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
01	WCDMA Band V	RMC 12.2Kbps	Horizontal Up	5	4132	826.4	22.59	23.7	1.291	-0.02	0.739	<mark>0.954</mark>
	WCDMA Band V	RMC 12.2Kbps	Horizontal Down	5	4132	826.4	22.59	23.7	1.291	0.02	0.536	0.692
	WCDMA Band V	RMC 12.2Kbps	Vertical Front	5	4132	826.4	22.59	23.7	1.291	-0.01	0.511	0.660
	WCDMA Band V	RMC 12.2Kbps	Vertical Back	5	4132	826.4	22.59	23.7	1.291	0.01	0.421	0.544
	WCDMA Band V	RMC 12.2Kbps	Tip mode	5	4132	826.4	22.59	23.7	1.291	0.01	0.174	0.225
	WCDMA Band V	RMC 12.2Kbps	Horizontal Up	5	4182	836.4	22.55	23.7	1.303	-0.08	0.723	0.942
	WCDMA Band V	RMC 12.2Kbps	Horizontal Up	5	4233	846.6	22.52	23.7	1.312	-0.04	0.687	0.901
	WCDMA Band II	RMC 12.2Kbps	Horizontal Up	5	9538	1907.6	21.45	22	1.135	-0.04	0.694	0.788
	WCDMA Band II	RMC 12.2Kbps	Horizontal Down	5	9538	1907.6	21.45	22	1.135	0.07	0.732	0.831
	WCDMA Band II	RMC 12.2Kbps	Vertical Front	5	9538	1907.6	21.45	22	1.135	0.06	0.249	0.283
02	WCDMA Band II	RMC 12.2Kbps	Vertical Back	5	9538	1907.6	21.45	22	1.135	-0.07	1.220	<mark>1.385</mark>
	WCDMA Band II	RMC 12.2Kbps	Tip Mode	5	9538	1907.6	21.45	22	1.135	0.08	0.437	0.496
	WCDMA Band II	RMC 12.2Kbps	Horizontal Down	5	9262	1852.4	21.2	22	1.202	0.07	0.712	0.856
	WCDMA Band II	RMC 12.2Kbps	Horizontal Down	5	9400	1880	21.27	22	1.183	0.07	0.676	0.800
_	WCDMA Band II	RMC 12.2Kbps	Vertical Back	5	9262	1852.4	21.2	22	1.202	-0.01	1.080	1.298
	WCDMA Band II	RMC 12.2Kbps	Vertical Back	5	9400	1880	21.27	22	1.183	0.01	1.130	1.337

Report No. : FA712302

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date: Feb. 28, 2017 Form version. : 160427 FCC ID: SRQ-MF861 Page 42 of 48

<LTE SAR>

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
03	LTE Band 12	10M	QPSK	1RB	49offset	Horizontal Up	5	23095	707.5	22.75	23.7	1.245	-0.03	0.667	0.830
	LTE Band 12	10M	QPSK	1RB	49offset	Horizontal Down	5	23095	707.5	22.75	23.7	1.245	-0.01	0.403	0.502
	LTE Band 12	10M	QPSK	1RB	49offset	Vertical Front	5	23095	707.5	22.75	23.7	1.245	0.05	0.392	0.488
	LTE Band 12	10M	QPSK	1RB	49offset	Vertical Back	5	23095	707.5	22.75	23.7	1.245	-0.1	0.377	0.469
	LTE Band 12	10M	QPSK	1RB	49offset	Tip mode	5	23095	707.5	22.75	23.7	1.245	0.01	0.150	0.187
	LTE Band 12	10M	QPSK	25RB	0offset	Horizontal Up	5	23095	707.5	21.57	22.7	1.297	-0.01	0.567	0.736
	LTE Band 12	10M	QPSK	25RB	0offset	Horizontal Down	5	23095	707.5	21.57	22.7	1.297	-0.05	0.316	0.410
	LTE Band 12	10M	QPSK	25RB	0offset	Vertical Front	5	23095	707.5	21.57	22.7	1.297	-0.02	0.317	0.411
	LTE Band 12	10M	QPSK	25RB	0offset	Vertical Back	5	23095	707.5	21.57	22.7	1.297	-0.07	0.304	0.394
	LTE Band 12	10M	QPSK	25RB	0offset	Tip mode	5	23095	707.5	21.57	22.7	1.297	0.08	0.121	0.157
	LTE Band 12	10M	QPSK	50RB	0offset	Horizontal Up	5	23095	707.5	21.5	22.7	1.318	-0.01	0.556	0.733
04	LTE Band 5	10M	QPSK	1RB	25offset	Horizontal Up	5	20525	836.5	22.36	23.7	1.361	-0.04	0.716	0.975
	LTE Band 5	10M	QPSK	1RB	25offset	Horizontal Down	5	20525	836.5	22.36	23.7	1.361	0.02	0.576	0.784
	LTE Band 5	10M	QPSK	1RB	25offset	Vertical Front	5	20525	836.5	22.36	23.7	1.361	0.01	0.425	0.579
	LTE Band 5	10M	QPSK	1RB	25offset	Vertical Back	5	20525	836.5	22.36	23.7	1.361	0.02	0.466	0.634
	LTE Band 5	10M	QPSK	1RB	25offset	Tip mode	5	20525	836.5	22.36	23.7	1.361	0.02	0.188	0.256
	LTE Band 5	10M	QPSK	25RB	12offset	Horizontal Up	5	20525	836.5	21.45	22.7	1.334	-0.05	0.571	0.761
	LTE Band 5	10M	QPSK	25RB	12offset	Horizontal Down	5	20525	836.5	21.45	22.7	1.334	0.01	0.449	0.599
	LTE Band 5	10M	QPSK	25RB	12offset	Vertical Front	5	20525	836.5	21.45	22.7	1.334	0.01	0.339	0.452
	LTE Band 5	10M	QPSK	25RB	12offset	Vertical Back	5	20525	836.5	21.45	22.7	1.334	0.07	0.377	0.503
	LTE Band 5	10M	QPSK	25RB	12offset	Tip mode	5	20525	836.5	21.45	22.7	1.334	0.06	0.147	0.196
	LTE Band 5	10M	QPSK	50RB	0offset	Horizontal Up	5	20525	836.5	21.35	22.7	1.365	0.03	0.570	0.778
	LTE Band 4	20M	QPSK	1RB	0offset	Horizontal Up	5	20175	1732.5	21.3	22.5	1.318	-0.03	0.605	0.798
	LTE Band 4	20M	QPSK	1RB	0offset	Horizontal Down	5	20175	1732.5	21.3	22.5	1.318	0.07	0.730	0.962
	LTE Band 4	20M	QPSK	1RB	0offset	Vertical Front	5	20175	1732.5	21.3	22.5	1.318	0.09	0.221	0.291
05	LTE Band 4	20M	QPSK	1RB	0offset	Vertical Back	5	20175	1732.5	21.3	22.5	1.318	-0.03	1.020	1.345
	LTE Band 4	20M	QPSK	1RB	0offset	Tip Mode	5	20175	1732.5	21.3	22.5	1.318	0.07	0.367	0.484
	LTE Band 4	20M	QPSK	50RB	24offset	Horizontal Up	5	20175	1732.5	20.21	21.5	1.346	-0.07	0.514	0.692
	LTE Band 4	20M	QPSK	50RB	24offset	Horizontal Down	5	20175	1732.5	20.21	21.5	1.346	0.07	0.608	0.818
	LTE Band 4	20M	QPSK	50RB	24offset	Vertical Front	5	20175	1732.5	20.21	21.5	1.346	0.05	0.183	0.246
	LTE Band 4	20M	QPSK	50RB	24offset	Vertical Back	5	20175	1732.5	20.21	21.5	1.346	0.02	0.864	1.163
	LTE Band 4	20M	QPSK	50RB	24offset	Tip Mode	5	20175	1732.5	20.21	21.5	1.346	0.03	0.308	0.415
	LTE Band 4	20M	QPSK	100RB	0offset	Horizontal Down	5	20175	1732.5	19.99	21.5	1.416	-0.17	0.585	0.828
	LTE Band 4	20M	QPSK	100RB	0offset	Vertical Back	5	20175	1732.5	19.99	21.5	1.416	-0.05	0.816	1.155

Report No. : FA712302

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date : Feb. 28, 2017 Form version. : 160427 FCC ID: SRQ-MF861 Page 43 of 48

SPORTON LAB. FCC SAR Test Report

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	LTE Band 2	20M	QPSK	1RB	0offset	Horizontal Up	5	18700	1860	21.41	22	1.146	0.01	0.616	0.706
	LTE Band 2	20M	QPSK	1RB	0offset	Horizontal Down	5	18700	1860	21.41	22	1.146	0.01	0.811	0.929
	LTE Band 2	20M	QPSK	1RB	0offset	Vertical Front	5	18700	1860	21.41	22	1.146	-0.08	0.178	0.204
	LTE Band 2	20M	QPSK	1RB	0offset	Vertical Back	5	18700	1860	21.41	22	1.146	-0.03	1.190	1.363
	LTE Band 2	20M	QPSK	1RB	0offset	Tip mode	5	18700	1860	21.41	22	1.146	0.06	0.408	0.467
	LTE Band 2	20M	QPSK	1RB	0offset	Horizontal Down	5	18900	1880	21.28	22	1.180	0.09	0.782	0.923
	LTE Band 2	20M	QPSK	1RB	0offset	Horizontal Down	5	19100	1900	21.22	22	1.197	0.04	0.721	0.863
06	LTE Band 2	20M	QPSK	1RB	0offset	Vertical Back	5	18900	1880	21.28	22	1.180	0.04	1.170	1.381
	LTE Band 2	20M	QPSK	1RB	0offset	Vertical Back	5	19100	1900	21.22	22	1.197	-0.01	1.090	1.304
	LTE Band 2	20M	QPSK	50RB	50offset	Horizontal Up	5	18700	1860	20.38	21	1.153	-0.01	0.461	0.532
	LTE Band 2	20M	QPSK	50RB	50offset	Horizontal Down	5	18700	1860	20.38	21	1.153	0.07	0.576	0.664
	LTE Band 2	20M	QPSK	50RB	50offset	Vertical Front	5	18700	1860	20.38	21	1.153	0.11	0.136	0.157
	LTE Band 2	20M	QPSK	50RB	50offset	Vertical Back	5	18700	1860	20.38	21	1.153	0.04	0.941	1.085
	LTE Band 2	20M	QPSK	50RB	50offset	Tip mode	5	18700	1860	20.38	21	1.153	0.07	0.315	0.363
	LTE Band 2	20M	QPSK	50RB	50offset	Vertical Back	5	18900	1880	20.24	21	1.191	0.01	0.869	1.035
	LTE Band 2	20M	QPSK	50RB	50offset	Vertical Back	5	19100	1900	20.29	21	1.178	0.03	0.829	0.976
	LTE Band 2	20M	QPSK	100RB	0offset	Horizontal Down	5	18700	1860	20.38	21	1.153	0.01	0.571	0.659
	LTE Band 2	20M	QPSK	100RB	0offset	Vertical Back	5	18700	1860	20.38	21	1.153	0.02	0.948	1.093
	LTE Band 30	10M	QPSK	1RB	0offset	Horizontal Up	5	27710	2310	21.85	22.2	1.084	-0.05	0.813	0.881
	LTE Band 30	10M	QPSK	1RB	0offset	Horizontal Down	5	27710	2310	21.85	22.2	1.084	0.08	0.806	0.874
	LTE Band 30	10M	QPSK	1RB	0offset	Vertical Front	5	27710	2310	21.85	22.2	1.084	-0.04	0.319	0.346
07	LTE Band 30	10M	QPSK	1RB	0offset	Vertical Back	5	27710	2310	21.85	22.2	1.084	0.04	1.030	1.116
	LTE Band 30	10M	QPSK	1RB	0offset	Tip Mode	5	27710	2310	21.85	22.2	1.084	0.06	0.405	0.439
	LTE Band 30	10M	QPSK	25RB	0offset	Horizontal Up	5	27710	2310	20.79	21.2	1.099	-0.11	0.663	0.729
	LTE Band 30	10M	QPSK	25RB	0offset	Horizontal Down	5	27710	2310	20.79	21.2	1.099	0.05	0.635	0.698
	LTE Band 30	10M	QPSK	25RB	0offset	Vertical Front	5	27710	2310	20.79	21.2	1.099	0.07	0.256	0.281
	LTE Band 30	10M	QPSK	25RB	0offset	Vertical Back	5	27710	2310	20.79	21.2	1.099	-0.04	0.818	0.899
	LTE Band 30	10M	QPSK	25RB	0offset	Tip Mode	5	27710	2310	20.79	21.2	1.099	0.05	0.319	0.351
	LTE Band 30	10M	QPSK	50RB	0offset	Horizontal Up	5	27710	2310	20.73	21.2	1.114	-0.04	0.662	0.738
	LTE Band 30	10M	QPSK	50RB	0offset	Horizontal Down	5	27710	2310	20.73	21.2	1.114	0.02	0.622	0.693
	LTE Band 30	10M	QPSK	50RB	0offset	Vertical Back	5	27710	2310	20.73	21.2	1.114	-0.03	0.781	0.870

Report No. : FA712302

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date : Feb. 28, 2017 Form version. : 160427 FCC ID: SRQ-MF861 Page 44 of 48

14.2 Repeated SAR Measurement

No.	Band	BW (MHz)	Modulation	Mode	RB Size	RB offset	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Ratio	Reported 1g SAR (W/kg)
1st	WCDMA Band II			RMC 12.2Kbps	-	-	Vertical Back	5	9538	1907.6	21.45	22	1.135	-0.07	1.220	1	1.385
2nd	WCDMA Band II	-		RMC 12.2Kbps	ı		Vertical Back	5	9538	1907.6	21.45	22	1.135	-0.02	1.190	1.025	1.351
1st	LTE Band 4	20M	QPSK	ı	1RB	0offset	Vertical Back	5	20175	1732.5	21.3	22.5	1.318	-0.03	1.020	1	1.345
2nd	LTE Band 4	20M	QPSK	ı	1RB	0offset	Vertical Back	5	20175	1732.5	21.3	22.5	1.318	0.03	1.010	1.010	1.331
1st	LTE Band 30	10M	QPSK		1RB	0offset	Vertical Back	5	27710	2310	21.85	22.2	1.084	0.04	1.030	1	1.116
2nd	LTE Band 30	10M	QPSK	-	1RB	0offset	Vertical Back	5	27710	2310	21.85	22.2	1.084	-0.01	0.965	1.067	1.046

Report No. : FA712302

General Note:

- 1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.
- 2. Per KDB 865664 D01v01r04, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required.
- 3. The ratio is the difference in percentage between original and repeated measured SAR.
- 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant.

Test Engineer: Kat Yin

SPORTON INTERNATIONAL (XI'AN) INC. TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791 FCC ID: SRQ-MF861 Page 45 of 48

Issued Date: Feb. 28, 2017 Form version.: 160427

15. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

Report No.: FA712302

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below.

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

- (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Table 15.1. Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

Error Description	Uncertainty Value (±%)	Probability	Divisor	(Ci) 1g	(Ci) 10g	Standard Uncertainty (1g) (±%)	Standard Uncertainty (10g) (±%)
Measurement System							
Probe Calibration	6.0	N	1	1	1	6.0	6.0
Axial Isotropy	4.7	R	1.732	0.7	0.7	1.9	1.9
Hemispherical Isotropy	9.6	R	1.732	0.7	0.7	3.9	3.9
Boundary Effects	1.0	R	1.732	1	1	0.6	0.6
Linearity	4.7	R	1.732	1	1	2.7	2.7
System Detection Limits	1.0	R	1.732	1	1	0.6	0.6
Modulation Response	3.2	R	1.732	1	1	1.8	1.8
Readout Electronics	0.3	N	1	1	1	0.3	0.3
Response Time	0.0	R	1.732	1	1	0.0	0.0
Integration Time	2.6	R	1.732	1	1	1.5	1.5
RF Ambient Noise	3.0	R	1.732	1	1	1.7	1.7
RF Ambient Reflections	3.0	R	1.732	1	1	1.7	1.7
Probe Positioner	0.4	R	1.732	1	1	0.2	0.2
Probe Positioning	2.9	R	1.732	1	1	1.7	1.7
Max. SAR Eval.	2.0	R	1.732	1	1	1.2	1.2
Test Sample Related							
Device Positioning	3.0	N	1	1	1	3.0	3.0
Device Holder	3.6	N	1	1	1	3.6	3.6
Power Drift	5.0	R	1.732	1	1	2.9	2.9
Power Scaling	0.0	R	1.732	1	1	0.0	0.0
Phantom and Setup							
Phantom Uncertainty	6.1	R	1.732	1	1	3.5	3.5
SAR correction	0.0	R	1.732	1	0.84	0.0	0.0
Liquid Conductivity Repeatability	0.2	N	1	0.78	0.71	0.1	0.1
Liquid Conductivity (target)	5.0	R	1.732	0.78	0.71	2.3	2.0
Liquid Conductivity (mea.)	2.5	R	1.732	0.78	0.71	1.1	1.0
Temp. unc Conductivity	3.4	R	1.732	0.78	0.71	1.5	1.4
Liquid Permittivity Repeatability	0.15	N	1	0.23	0.26	0.0	0.0
Liquid Permittivity (target)	5.0	R	1.732	0.23	0.26	0.7	0.8
Liquid Permittivity (mea.)	2.5	R	1.732	0.23	0.26	0.3	0.4
Temp. unc Permittivity	0.83	R	1.732	0.23	0.26	0.1	0.1
Cor	nbined Std. Ur	ncertainty				11.4%	11.4%
Co	verage Factor	for 95 %				K=2	K=2
Exp	anded STD Ur	ncertainty				22.9%	22.7%

Report No. : FA712302

Table 15.2. Uncertainty Budget for frequency range 300 MHz to 3 GHz

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date: Feb. 28, 2017 Form version. : 160427 FCC ID: SRQ-MF861 Page 47 of 48

16. References

[1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"

Report No. : FA712302

- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- SPEAG DASY System Handbook [4]
- [5] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [6] FCC KDB 447498 D02 v02r01, "SAR Measurement Procedures for USB Dongle Transmitters", Oct 2015.
- [7] FCC KDB 941225 D01 v03r01, "3G SAR MEAUREMENT PROCEDURES", Oct 2015
- [8] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015
- [9] FCC KDB 941225 D05A v01r02, "Rel. 10 LTE SAR Test Guidance and KDB Inquiries", Oct 2015
- [10] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015.
- [11] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.

TEL: 86-029-8860-8767 / FAX: 86-029-8860-8791

Issued Date: Feb. 28, 2017 Form version.: 160427 FCC ID: SRQ-MF861 Page 48 of 48

Appendix A. Plots of System Performance Check

Report No.: FA712302

The plots are shown as follows.

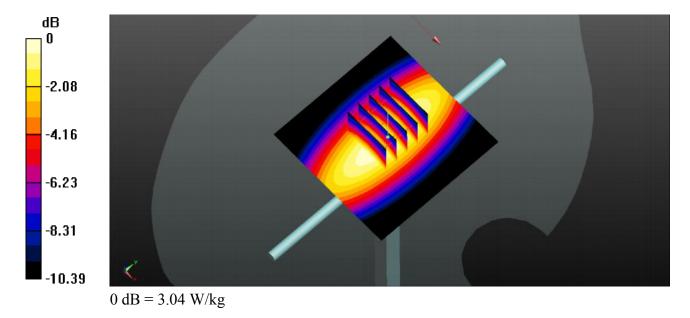
SPORTON INTERNATIONAL (XI'AN) INC.

System Check Body 750MHz 20170221

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1

Medium: MSL_750_2017/02/21 Medium parameters used: f = 750 MHz; $\sigma = 0.959$ S/m; $\epsilon_r = 54.174$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(10.68, 10.68, 10.68); Calibrated: 2016/11/28;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2016/9/5
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 3.05 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 50.33 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.46 W/kg SAR(1 g) = 2.27 W/kg; SAR(10 g) = 1.5 W/kg

Maximum value of SAR (measured) = 3.04 W/kg

System Check Body 835MHz 20170221

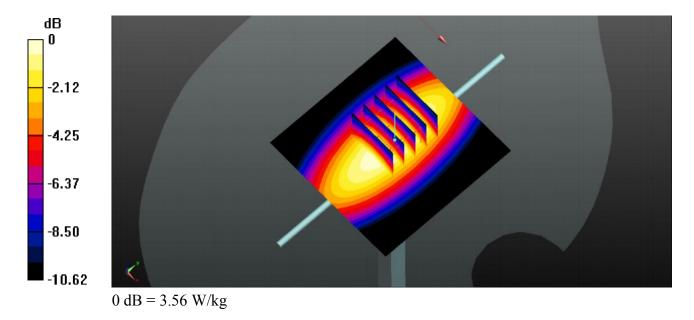
Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL_835_2017/02/21 Medium parameters used: f = 835 MHz; σ = 1.008 S/m; $ε_r = 57.595$;

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.4°C; Liquid Temperature: 22.6°C

DASY5 Configuration:


- Probe: EX3DV4 SN3935; ConvF(10.48, 10.48, 10.48); Calibrated: 2016/11/28;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2016/9/5
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 3.60 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 52.86 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 4.06 W/kg

SAR(1 g) = 2.57 W/kg; SAR(10 g) = 1.75 W/kg

Maximum value of SAR (measured) = 3.56 W/kg

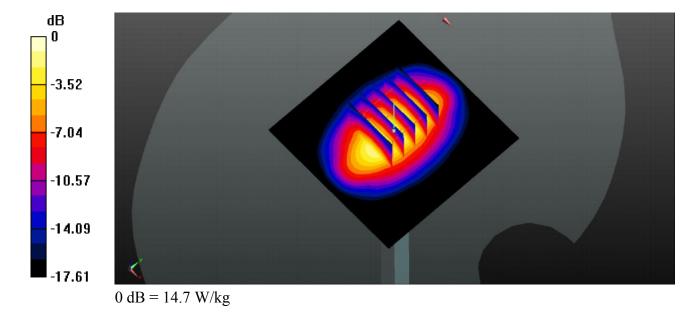
System Check Body 1750MHz 20170220

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: MSL_1750_2017/02/20 Medium parameters used: f = 1750 MHz; $\sigma = 1.538$ S/m; $\varepsilon_r =$

52.734; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.5 °C; Liquid Temperature : 22.5 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(8.46, 8.46, 8.46); Calibrated: 2016/11/28;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2016/9/5
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 14.6 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 94.75 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 17.5 W/kg

SAR(1 g) = 9.61 W/kg; SAR(10 g) = 5.04 W/kgMaximum value of SAR (measured) = 14.7 W/kg

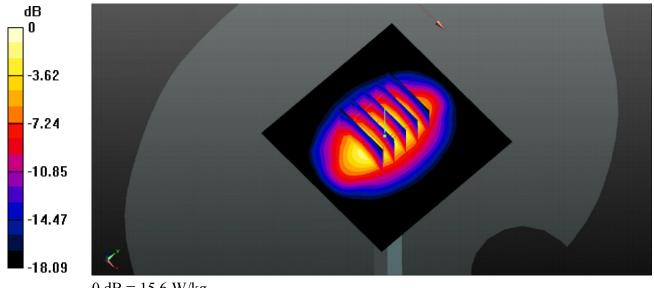
System Check Body 1900MHz 20170220

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL 1900 2017/02/20 Medium parameters used: f = 1900 MHz; $\sigma = 1.578$ S/m; $\varepsilon_r =$

53.828; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 22.4 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(8.18, 8.18, 8.18); Calibrated: 2016/11/28;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2016/9/5
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 15.5 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 83.43 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 10.0 W/kg; SAR(10 g) = 5.15 W/kgMaximum value of SAR (measured) = 15.6 W/kg

0 dB = 15.6 W/kg

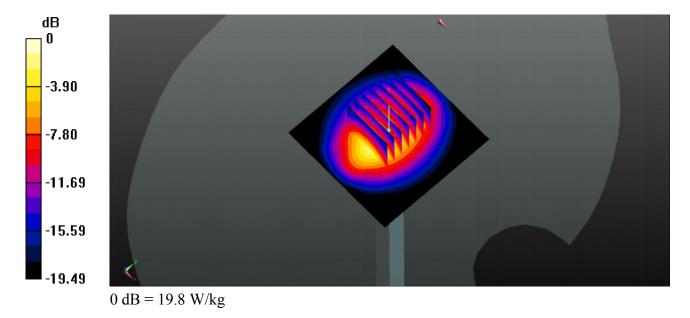
System Check Body 2300MHz 20170221

Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1

Medium: MSL_2300_2017/02/21 Medium parameters used: f = 2300 MHz; $\sigma = 1.741$ S/m; $\epsilon_r = 1.741$ S/m; $\epsilon_$

52.313; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 22.5 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(7.99, 7.99, 7.99); Calibrated: 2016/11/28;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2016/9/5
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 19.7 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.2 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 23.8 W/kg SAR(1 g) = 12.4 W/kg; SAR(10 g) = 6.07 W/kg

Maximum value of SAR (measured) = 19.8 W/kg

Appendix B. Plots of High SAR Measurement

Report No.: FA712302

The plots are shown as follows.

SPORTON INTERNATIONAL (XI'AN) INC.

01_WCDMA Band V_RMC 12.2Kbps_Horizontal Up_5mm_Ch4132

Communication System: UID 0, WCDMA (0); Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium: MSL_835_2017/02/21 Medium parameters used: f = 826.4 MHz; $\sigma = 0.999$ S/m; $\varepsilon_r =$

Date: 2017/2/21

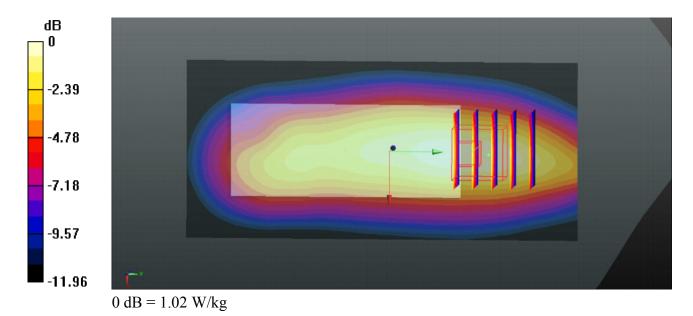
57.658; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.4°C; Liquid Temperature: 22.6°C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(10.48, 10.48, 10.48); Calibrated: 2016/11/28;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2016/9/5
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch4132/Area Scan (51x111x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.01 W/kg


Ch4132/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.90 V/m; Power Drift = -0.02 dB

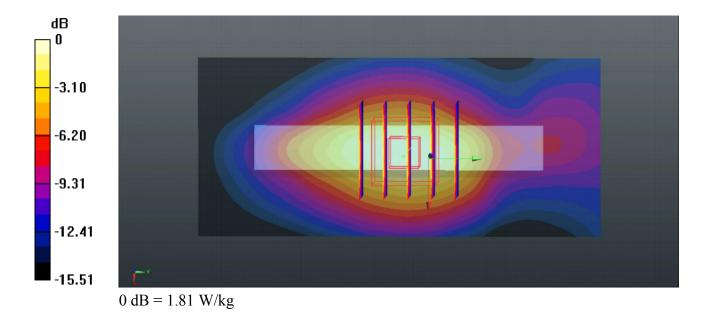
Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.739 W/kg; SAR(10 g) = 0.475 W/kg

Maximum value of SAR (measured) = 1.02 W/kg

Communication System: UID 0, WCDMA (0); Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: MSL_1900_2017/02/20 Medium parameters used: f = 1907.6 MHz; $\sigma = 1.587$ S/m; $\varepsilon_r = 53.803$; $\rho = 1000$ kg/m³

Date: 2017/2/20


Ambient Temperature : 23.6 °C; Liquid Temperature : 22.4 °C

DASY5 Configuration:

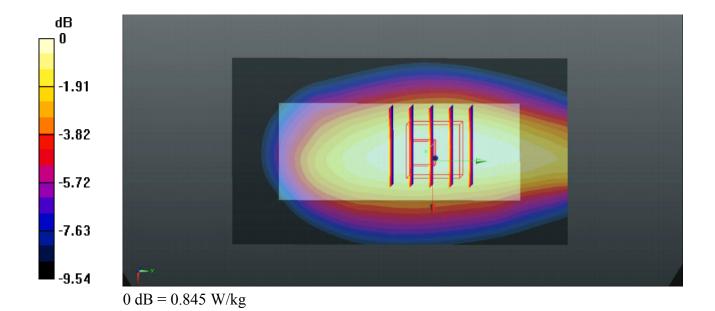
- Probe: EX3DV4 SN3935; ConvF(8.18, 8.18, 8.18); Calibrated: 2016/11/28;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2016/9/5
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch9538/Area Scan (41x91x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.90 W/kg

Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 28.85 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 2.13 W/kg SAR(1 g) = 1.220 W/kg; SAR(10 g) = 0.691 W/kg Maximum value of SAR (measured) = 1.81 W/kg

Communication System: UID 0, FDD-LTE (0); Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: MSL_750_2017/02/21 Medium parameters used: f = 707.5 MHz; $\sigma = 0.927$ S/m; $\varepsilon_r = 54.633$; $\rho = 1000$ kg/m³

Date: 2017/2/21


Ambient Temperature : 23.3 °C; Liquid Temperature : 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(10.68, 10.68, 10.68); Calibrated: 2016/11/28;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2016/9/5
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

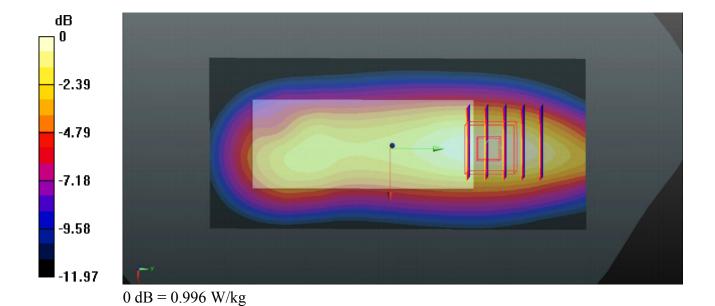
Ch23095/Area Scan (51x91x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.864 W/kg

Ch23095/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.92 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.960 W/kg SAR(1 g) = 0.667 W/kg; SAR(10 g) = 0.473 W/kg Maximum value of SAR (measured) = 0.845 W/kg

04_LTE Band 5_10M_QPSK_1RB_25offset_Horizontal Up_5mm_Ch20525

Communication System: UID 0, FDD-LTE (0); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: MSL_835_2017/02/21 Medium parameters used: f = 836.5 MHz; $\sigma = 1.009$ S/m; $\epsilon_r = 57.581$; $\rho = 1000$ kg/m³

Date: 2017/2/21


Ambient Temperature : 23.4 °C; Liquid Temperature : 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(10.48, 10.48, 10.48); Calibrated: 2016/11/28;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2016/9/5
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch20525/Area Scan (51x111x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.999 W/kg

Ch20525/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.08 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.18 W/kg SAR(1 g) = 0.716 W/kg; SAR(10 g) = 0.458 W/kg Maximum value of SAR (measured) = 0.996 W/kg

Communication System: UID 0, FDD-LTE (0); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: MSL_1750_2017/02/20 Medium parameters used: f = 1732.5 MHz; $\sigma = 1.52$ S/m; $\epsilon_r = 52.807$; $\rho = 1000$ kg/m³

Date: 2017/2/20

Ambient Temperature : 23.5 °C; Liquid Temperature : 22.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(8.46, 8.46, 8.46); Calibrated: 2016/11/28;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2016/9/5
- Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch20175/Area Scan (41x91x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.50 W/kg

Ch20175/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.63 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.75 W/kg
SAR(1 g) = 1.020 W/kg; SAR(10 g) = 0.584 W/kg
Maximum value of SAR (measured) = 1.45 W/kg

Communication System: UID 0, FDD-LTE (0); Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL_1900_2017/02/20 Medium parameters used: f = 1880 MHz; $\sigma = 1.556$ S/m; $\epsilon_r =$

Date: 2017/2/20

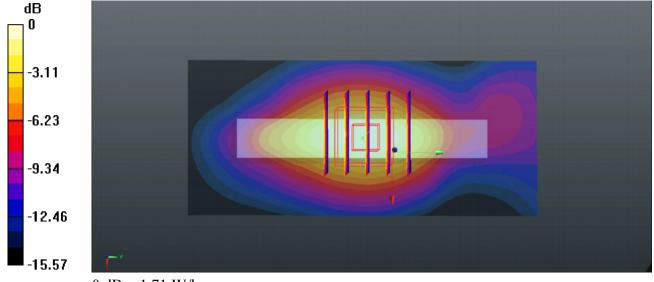
53.898; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 22.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(8.18, 8.18, 8.18); Calibrated: 2016/11/28;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2016/9/5
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch18900/Area Scan (41x91x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.79 W/kg


Ch18900/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.68 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.99 W/kg

SAR(1 g) = 1.170 W/kg; SAR(10 g) = 0.661 W/kg

Maximum value of SAR (measured) = 1.71 W/kg

0 dB = 1.71 W/kg

Communication System: UID 0, FDD-LTE (0); Frequency: 2310 MHz; Duty Cycle: 1:1

Medium: MSL_2300_2017/02/21 Medium parameters used: f = 2310 MHz; σ = 1.751 S/m; ϵ_r =

Date: 2017/2/21

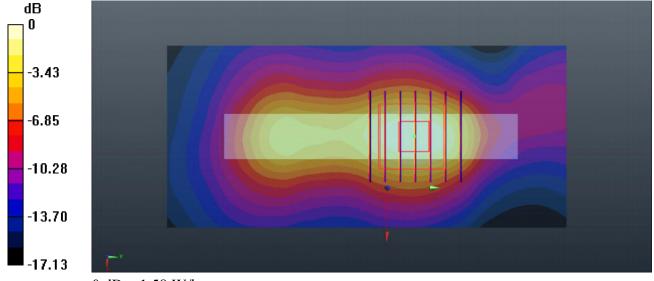
52.302; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 22.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3935; ConvF(7.99, 7.99, 7.99); Calibrated: 2016/11/28;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1358; Calibrated: 2016/9/5
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch27710/Area Scan (51x111x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.73 W/kg


Ch27710/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.22 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.90 W/kg

SAR(1 g) = 1.030 W/kg; SAR(10 g) = 0.535 W/kg

Maximum value of SAR (measured) = 1.58 W/kg

0 dB = 1.58 W/kg

Appendix C. DASY Calibration Certificate

Report No.: FA712302

The DASY calibration certificates are shown as follows.

SPORTON INTERNATIONAL (XI'AN) INC.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton-CN (Auden)

CALIBRATION CERTIFICATE

Certificate No: D750V3-1087_Mar16

Object	D750V3 - SN:10	87	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	edure for dipole validation kits abo	ove 700 MHz
Calibration date:	March 16, 2016		
This calibration certificate docume	ents the traceability to nati	onal standards, which realize the physical un	nits of measurements (SI)
The measurements and the uncer	tainties with confidence p	robability are given on the following pages an	nd are part of the certificate.
All calibrations have been conduct	ted in the closed laborator	ry facility: environment temperature (22 ± 3)°(C and humidity < 70%.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-15 (No. 217-02222)	Oct-16
Power sensor HP 8481A	US37292783	07-Oct-15 (No. 217-02222)	Oct-16
Power sensor HP 8481A	MY41092317	07-Oct-15 (No. 217-02223)	Oct-16
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe EX3DV4	SN: 7349	31-Dec-15 (No. EX3-7349_Dec15)	Dec-16
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100972	15-Jun-15 (in house check Jun-15)	In house check: Jun-18
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	(2
Approved by:	Katja Pokovic	Technical Manager	SCH
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory.	Issued: March 16, 2016
		The second of the sabolatory.	

Certificate No: D750V3-1087_Mar16

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	
Extrapolation	Advanced Extrapolation	V52.8.8
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	054001
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.9 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.30 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.45 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.7 ± 6 %	0.98 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.20 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.64 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.46 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.75 W/kg ± 16.5 % (k=2)

Certificate No: D750V3-1087_Mar16 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.0 Ω - 1.8 jΩ
Return Loss	- 29.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.8 Ω - 3.5 jΩ
Return Loss	- 28.5 dB

General Antenna Parameters and Design

Flooring D. J. C. III	
Electrical Delay (one direction)	1 004
	1.031 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 04, 2013

Certificate No: D750V3-1087_Mar16

DASY5 Validation Report for Head TSL

Date: 16.03.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1087

Communication System: UID 0 - CW; Frequency: 750 MHz

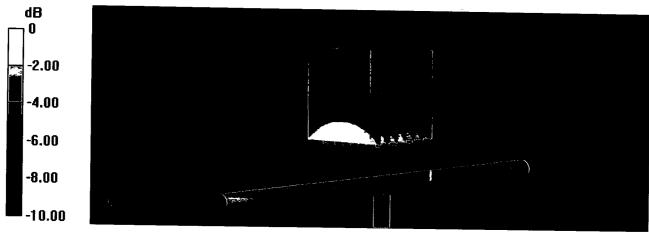
Medium parameters used: f = 750 MHz; $\sigma = 0.91$ S/m; $\varepsilon_r = 41.9$; $\rho = 1000$ kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

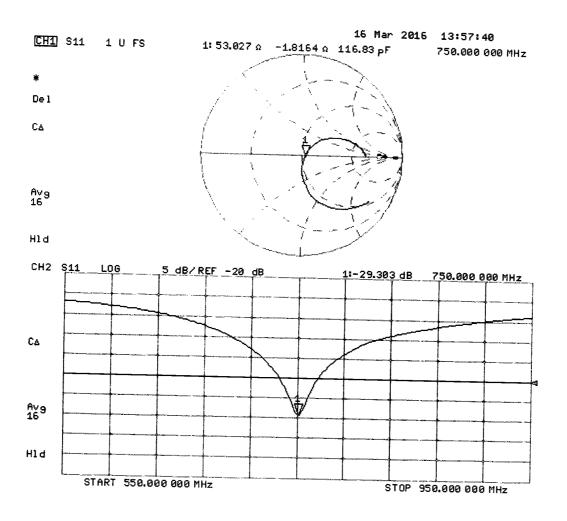
- Probe: EX3DV4 SN7349; ConvF(10.28, 10.28, 10.28); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom Type: QD000P49AA
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue EX-Probe/Pin=250 mW, d=15mm/Zoom Scan


(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.15 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.14 W/kg


SAR(1 g) = 2.11 W/kg; SAR(10 g) = 1.38 W/kg

Maximum value of SAR (measured) = 2.79 W/kg

0 dB = 2.79 W/kg = 4.46 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 16.03.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1087

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.98$ S/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.99, 9.99, 9.99); Calibrated: 31.12.2015;

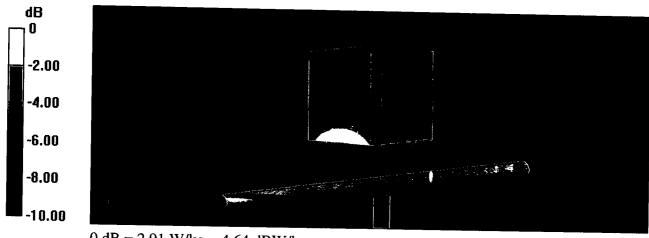
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom Type: QD000P49AA

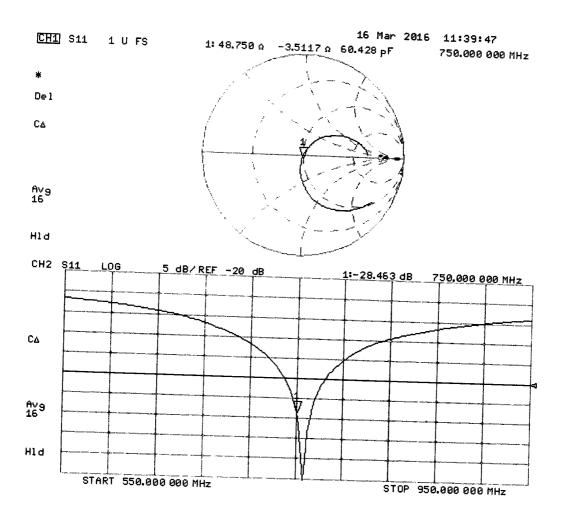
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue EX-Probe/Pin=250 mW, d=15mm/Zoom Scan


(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.44 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 3.26 W/kg


SAR(1 g) = 2.2 W/kg; SAR(10 g) = 1.46 W/kg

Maximum value of SAR (measured) = 2.91 W/kg

0 dB = 2.91 W/kg = 4.64 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton-CN (Auden)

Certificate No: D835V2-4d151_Mar16

CALIBRATION CERTIFICATE

Object

D835V2 - SN:4d151

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

March 16, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-15 (No. 217-02222)	Oct-16
Power sensor HP 8481A	US37292783	07-Oct-15 (No. 217-02222)	Oct-16
Power sensor HP 8481A	MY41092317	07-Oct-15 (No. 217-02223)	Oct-16
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe EX3DV4	SN: 7349	31-Dec-15 (No. EX3-7349_Dec15)	Dec-16
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100972	15-Jun-15 (in house check Jun-15)	In house check: Jun-18
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Calibrated by:

Name Jeton Kastrati Function Laboratory Technician Signature

Approved by:

Katja Pokovic

Technical Manager

Issued: March 16, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d151_Mar16

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage

Servizio svizzero di taratura

Accreditation No.: SCS 0108

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d151_Mar16

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	Vicinia Coppletion
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	->50000000 € 1000 2000
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.7 ± 6 %	0.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	2000	924

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.26 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.05 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.5 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	2,522 /	anna s

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.46 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.52 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition		
SAR measured	250 mW input power	1.61 W/kg	
SAR for nominal Body TSL parameters	normalized to 1W	6.28 W/kg ± 16.5 % (k=2)	

Certificate No: D835V2-4d151_Mar16 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.2 Ω - 3.3 jΩ - 28.3 dB	
Return Loss		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.9 Ω - 4.5 jΩ	
Return Loss	- 25.9 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.390 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	March 27, 2012	

Certificate No: D835V2-4d151_Mar16

DASY5 Validation Report for Head TSL

Date: 16.03.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d151

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.93$ S/m; $\varepsilon_r = 41.7$; $\rho = 1000$ kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.83, 9.83, 9.83); Calibrated: 31.12.2015;

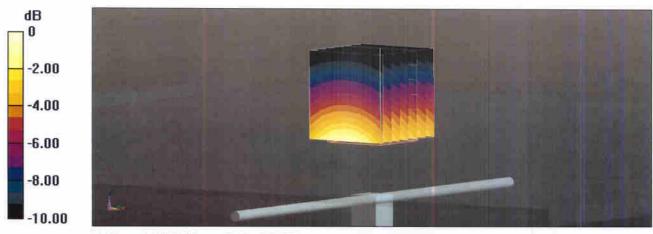
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom Type: QD000P49AA

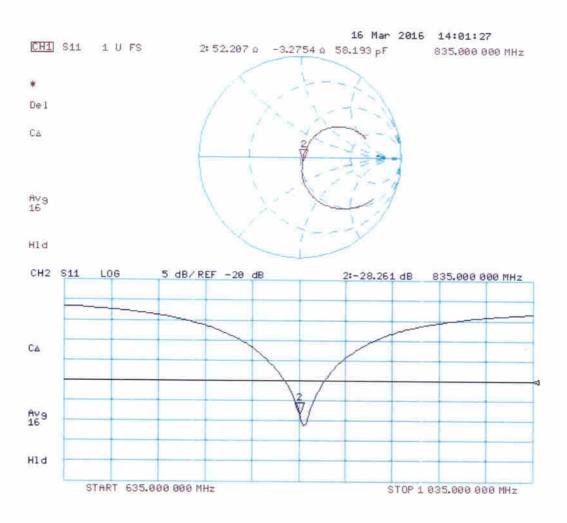
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue EX-Probe/Pin=250 mW, d=15mm/Zoom Scan


(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 61.40 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.57 W/kg


SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.54 W/kg

Maximum value of SAR (measured) = 3.18 W/kg

0 dB = 3.18 W/kg = 5.02 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 16.03.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d151

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\epsilon_r = 54.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.73, 9.73, 9.73); Calibrated: 31.12.2015;

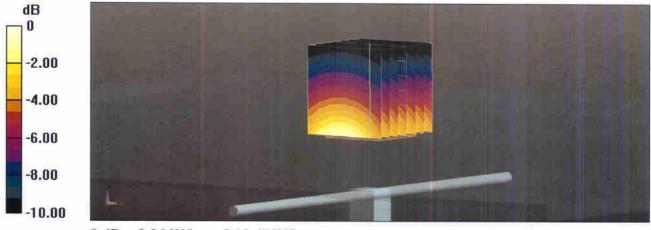
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

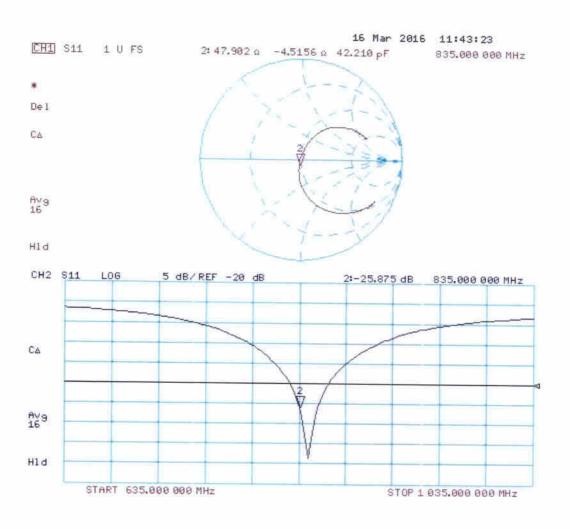
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue EX-Probe/Pin=250 mW, d=15mm/Zoom Scan


(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.04 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.65 W/kg


SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.61 W/kg

Maximum value of SAR (measured) = 3.26 W/kg

0 dB = 3.26 W/kg = 5.13 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client Sporton-CN (Auden)

Certificate No: D1750V2-1090 Mar16

CALIBRATION CERTIFICATE

Object

D1750V2 - SN: 1090

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

March 22, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-15 (No. 217-02222)	Oct-16
Power sensor HP 8481A	US37292783	07-Oct-15 (No. 217-02222)	Oct-16
Power sensor HP 8481A	MY41092317	07-Oct-15 (No. 217-02223)	Oct-16
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe EX3DV4	SN: 7349	31-Dec-15 (No. EX3-7349_Dec15)	Dec-16
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100972	15-Jun-15 (in house check Jun-15)	In house check: Jun-18
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
	Name	Function	Signative /

Laboratory Technician

Technical Manager

Issued: March 22, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Claudio Leubler

Katja Pokovic

Certificate No: D1750V2-1090_Mar16

Calibrated by:

Approved by:

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1750V2-1090_Mar16

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9 ± 6 %	1.35 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	8.71 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	35.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.63 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	18.6 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.0 ± 6 %	1.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	8.88 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	35.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.73 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.1 W/kg ± 16.5 % (k=2)

Page 3 of 8

Certificate No: D1750V2-1090_Mar16

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.3 Ω - 3.5 jΩ
Return Loss	- 27.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.4 Ω - 3.0 jΩ
Return Loss	- 24.8 dB

General Antenna Parameters and Design

Floatrical Dalou (and dispetion)	
Electrical Delay (one direction)	1.221 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 07, 2012

Certificate No: D1750V2-1090_Mar16

DASY5 Validation Report for Head TSL

Date: 22.03.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1090

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.35$ S/m; $\varepsilon_r = 39.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.54, 8.54, 8.54); Calibrated: 31.12.2015;

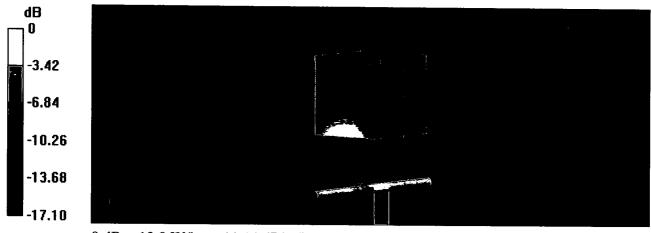
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

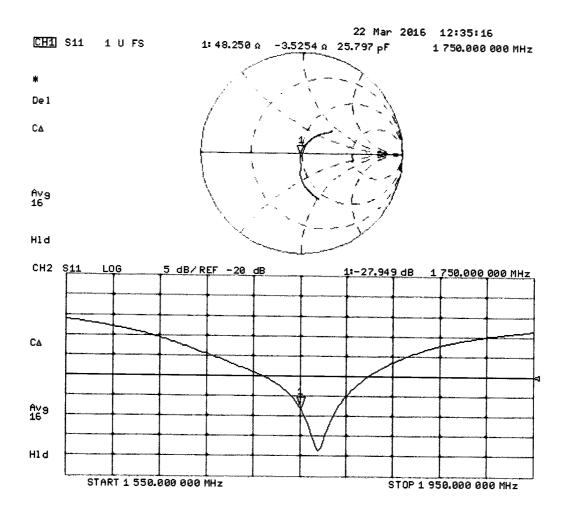
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.4 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 15.8 W/kg


SAR(1 g) = 8.71 W/kg; SAR(10 g) = 4.63 W/kg

Maximum value of SAR (measured) = 13.0 W/kg

0 dB = 13.0 W/kg = 11.14 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 22.03.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1090

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.46$ S/m; $\epsilon_r = 53$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.25, 8.25, 8.25); Calibrated: 31.12.2015;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

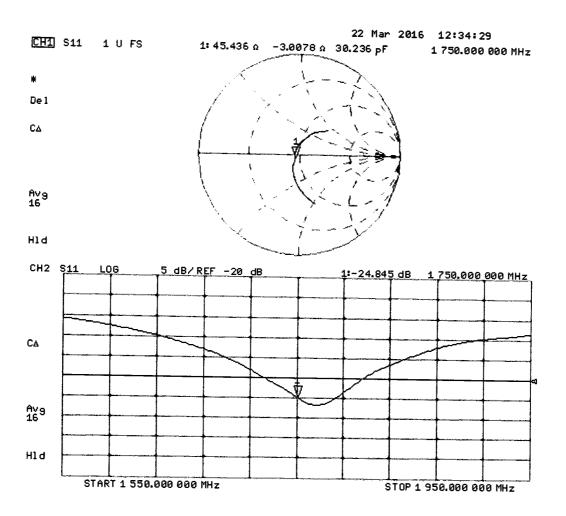
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.20 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 15.6 W/kg


SAR(1 g) = 8.88 W/kg; SAR(10 g) = 4.73 W/kg

Maximum value of SAR (measured) = 13.2 W/kg

0 dB = 13.2 W/kg = 11.21 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

Sporton-CN (Auden)

Certificate No: D1900V2-5d170_Mar16

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 5d170

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

March 21, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-15 (No. 217-02222)	Oct-16
Power sensor HP 8481A	US37292783	07-Oct-15 (No. 217-02222)	Oct-16
Power sensor HP 8481A	MY41092317	07-Oct-15 (No. 217-02223)	Oct-16
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe EX3DV4	SN: 7349	31-Dec-15 (No. EX3-7349_Dec15)	Dec-16
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100972	15-Jun-15 (in house check Jun-15)	In house check: Jun-18
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	1/1//

Approved by:

Katja Pokovic

Technical Manager

Issued: March 21, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d170_Mar16

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.50 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	38.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.99 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.0 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.71 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	38.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.15 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d170_Mar16

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.2 Ω + 5.3 jΩ
Return Loss	- 23.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.0 Ω + 7.8 jΩ
Return Loss	- 22.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns
	1.201118

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 08, 2012

Certificate No: D1900V2-5d170_Mar16

DASY5 Validation Report for Head TSL

Date: 21.03.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d170

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.39$ S/m; $\epsilon_r = 39.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.2, 8.2, 8.2); Calibrated: 31.12.2015;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

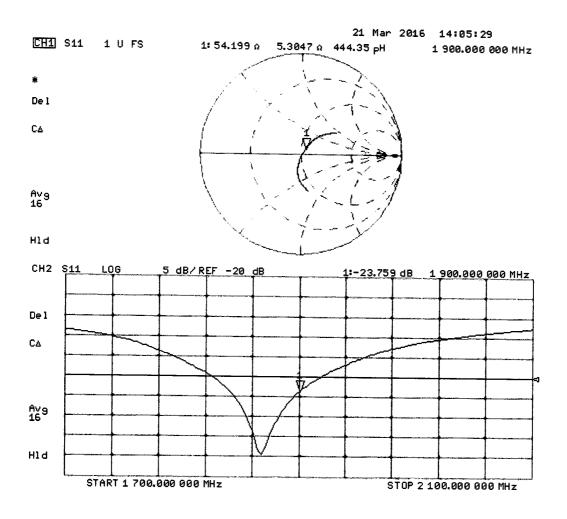
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 105.8 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 17.4 W/kg


SAR(1 g) = 9.5 W/kg; SAR(10 g) = 4.99 W/kg

Maximum value of SAR (measured) = 14.3 W/kg

0 dB = 14.3 W/kg = 11.55 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 21.03.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d170

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.51$ S/m; $\varepsilon_r = 52.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.03, 8.03, 8.03); Calibrated: 31.12.2015;

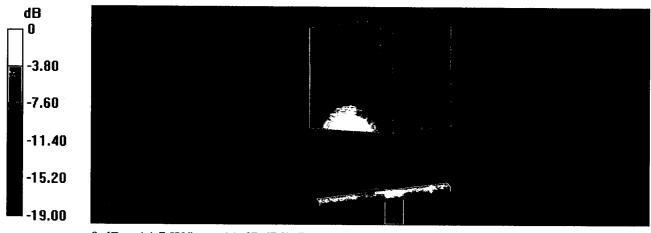
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

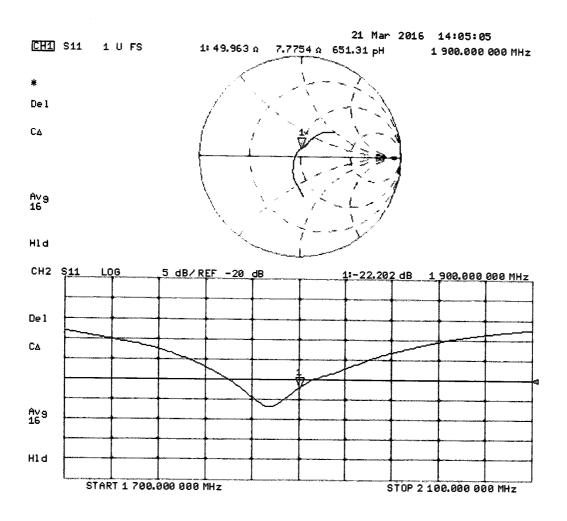
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.8 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 17.0 W/kg


SAR(1 g) = 9.71 W/kg; SAR(10 g) = 5.15 W/kg

Maximum value of SAR (measured) = 14.7 W/kg

0 dB = 14.7 W/kg = 11.67 dBW/kg

Impedance Measurement Plot for Body TSL

In Collaboration with

CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Client

Sporton KS

Certificate No:

Z16-97137

RATION CERTIFICATE

Tel: +86-10-62304633-2079

E-mail: cttl@chinattl.com

Object

D2300V2 - SN: 1055

Calibration Procedure(s)

FD-Z11-2-003-01

Calibration Procedures for dipole validation kits

Calibration date:

August 31, 2016

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Power sensor NRP-Z91	101547	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Reference Probe EX3DV4	SN 7307	19-Feb-16(SPEAG,No.EX3-7307_Feb16)	Feb-17
DAE4	SN 777	22-Aug-16(CTTL-SPEAG,No.Z16-97138)	Aug-17
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-16 (CTTL, No.J16X00893)	Jan-17
Network Analyzer E5071C	MY46110673	26-Jan-16 (CTTL, No.J16X00894)	Jan-17

Name

Function

Calibrated by:

Zhao Jing

SAR Test Engineer

Reviewed by:

Qi Dianyuan

SAR Project Leader

Approved by:

Lu Bingsong

Deputy Director of the laboratory

Issued: September 2, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z16-97137

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORMx,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z16-97137 Page 2 of 8

In Collaboration with

S D E A G CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1258
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2300 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.5	1.67 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.7 ± 6 %	1.66 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.1 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	48.6 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.87 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.5 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.9	1.81 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.1 ± 6 %	1.83 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.4 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	49.4 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.04 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.1 mW /g ± 20.4 % (k=2)

Certificate No: Z16-97137 Page 3 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.4Ω- 3.16jΩ	
Return Loss	- 29.8dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.0Ω- 2.60jΩ
Return Loss	- 26.0dB

General Antenna Parameters and Design

1.081 hs	Electrical Delay (one direction)	1.061 ns
----------	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
<u></u>	

Certificate No: Z16-97137 Page 4 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1055

Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2300 MHz; $\sigma = 1.663$ S/m; $\epsilon r = 39.72$; $\rho = 1000$ kg/m³

Phantom section: Right Section

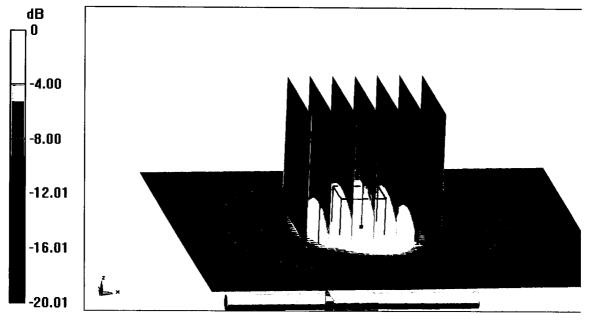
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(7.65, 7.65, 7.65); Calibrated: 2/19/2016;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/22/2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Date: 08.31.2016

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 104.0 V/m; Power Drift = 0.02 dB

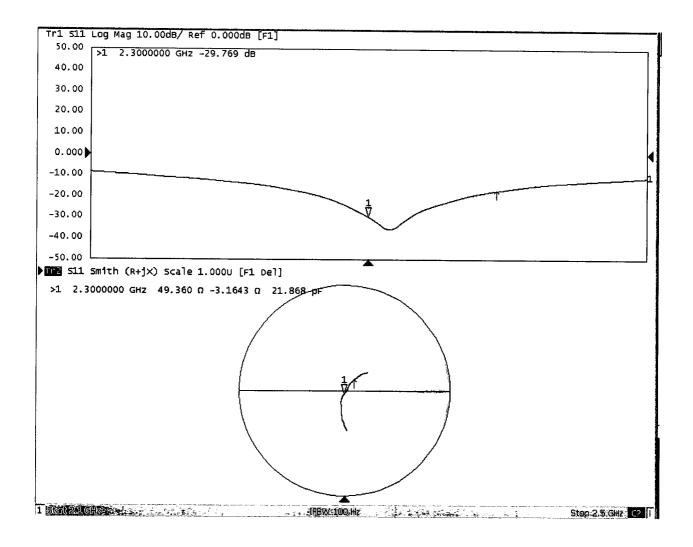
Peak SAR (extrapolated) = 23.3 W/kg

SAR(1 g) = 12.1 W/kg; SAR(10 g) = 5.87 W/kg

Maximum value of SAR (measured) = 17.8 W/kg

0 dB = 17.8 W/kg = 12.50 dBW/kg

Certificate No: Z16-97137 Page 5 of 8



In Collaboration with

S P E A G CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1055

Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2300 MHz; $\sigma = 1.829$ S/m; $\epsilon_r = 53.14$; $\rho = 1000$ kg/m³

Phantom section: Center Section

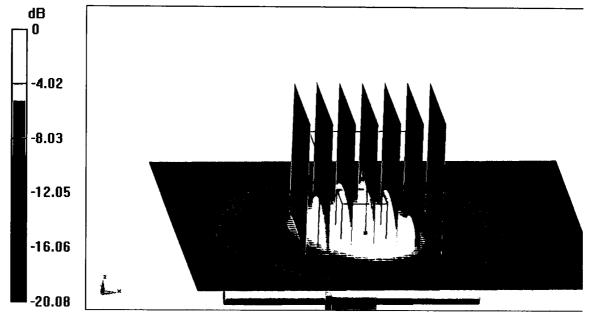
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(7.41, 7.41,7.41); Calibrated: 2/19/2016;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/22/2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Date: 08.31.2016

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dx=5mm, dx=5mm

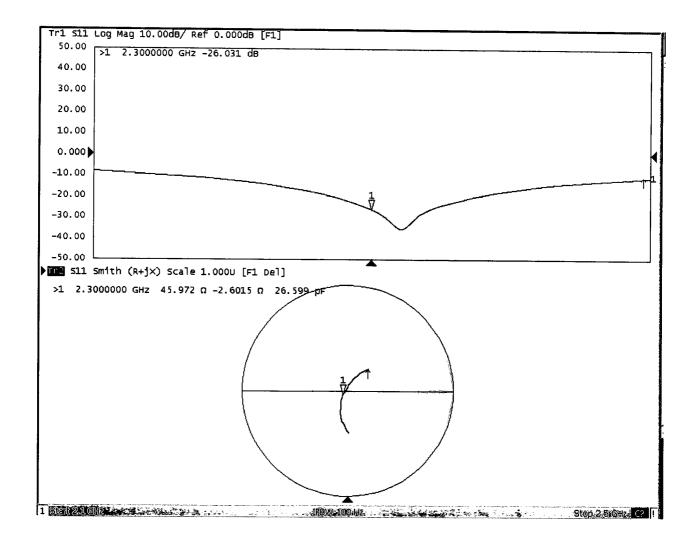

dy=5mm, dz=5mm

Reference Value = 99.93 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 23.7 W/kg

SAR(1 g) = 12.4 W/kg; SAR(10 g) = 6.04 W/kg

Maximum value of SAR (measured) = 18.1 W/kg


0 dB = 18.1 W/kg = 12.58 dBW/kg

Certificate No: Z16-97137

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com

Http://www.chinattl.cn

Client:

Sporton XA

Certificate No: Z16-97144

CALIBRATION CERTIFICATE

Object

DAE4 - SN: 1358

Calibration Procedure(s)

FD-Z11-2-002-01

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date:

September 05, 2016

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Process Calibrator 753	1971018	27-June-16 (CTTL, No:J16X04778)	June-17
•			

Name

Function

Calibrated by:

Yu Zongying

SAR Test Engineer

Reviewed by:

Qi Dianyuan

SAR Project Leader

Approved by:

Lu Bingsong

Deputy Director of the laboratory

Issued! September 06, 2016

Signature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z16-97144

Page 1 of 3

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

 DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.

- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z16-97144

Page 2 of 3

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1\mu V$, Low Range: 1LSB = 61nV,

full range = -100...+300 mV

Low Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Υ	Z
High Range	403.508 ± 0.15% (k=2)	403.540 ± 0.15% (k=2)	403.540 ± 0.15% (k=2)
Low Range	3.96197 ± 0.7% (k=2)	3.98804 ± 0.7% (k=2)	3.99223 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	134° ± 1 °

Certificate No: Z16-97144 Page 3 of 3

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton-XA (Auden) Certificate No: EX3-3935 Nov16

GP-01-01-7-14 (F-12-01-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1								
CALIBRATION	CERTIFICAT	'E						
Object	EX3DV4 - SN:3	935						
Calibration procedure(s)	QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes							
Calibration date:	November 28, 2	2016						
		ational standards, which realize the physical unite probability are given on the following pages and						
All calibrations have been cor	ducted in the closed labora	tory facility: environment temperature (22 ± 3)°C	and humidity < 70%.					
Calibration Equipment used (I	M&TE critical for calibration)							
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration					
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17					

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: S5277 (20x)	05-Apr-16 (No. 217-02293)	Apr-17
Reference Probe ES3DV2	SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
DAE4	SN: 660	23-Dec-15 (No. DAE4-660_Dec15)	Dec-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	in house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17

	Name	Function	Signature	
Calibrated by:	Leif Klysner	Laboratory Technician	Sef Myr	
Approved by:	Katja Pokovic	Technical Manager	R. U.S.	AND A SECURE

Issued: November 28, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point

CF

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

A, B, C, D Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:3935

Manufactured:

July 24, 2013

Calibrated:

November 28, 2016

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m)²) ^A	0.48	0.52	0.47	± 10.1 %
DCP (mV) ^B	103.3	100.8	106.1	

Modulation Calibration Parameters

UID	Communication System Name		A	В	С	D	VR	Unc
			dB	dB√μV		d₿	mV	(k=2)
0	CW	Х	0.0	0.0	1.0	0.00	134.4	±3.5 %
		Υ	0.0	0.0	1.0		144.8	
		Z	0.0	0.0	1.0		133.6	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.92	10.92	10.92	0.41	1.07	± 12.0 %
835	41.5	0.90	10.61	10.61	10.61	0.24	1.49	± 12.0 %
900	41.5	0.97	10.52	10.52	10.52	0.23	1.56	± 12.0 %
1750	40.1	1.37	9.03	9.03	9.03	0.38	0.80	± 12.0 %
1900	40.0	1.40	8.64	8.64	8.64	0.38	0.80	± 12.0 %
2000	40.0	1.40	8.48	8.48	8.48	0.37	0.80	± 12.0 %
2300	39.5	1.67	8.18	8.18	8.18	0.38	0.81	± 12.0 %
2450	39.2	1.80	7.81	7.81	7.81	0.28	1.00	± 12.0 %
2600	39.0	1.96	7.60	7.60	7.60	0.36	0.80	± 12.0 %
3500	37.9	2.91	7.37	7.37	7.37	0.26	1.20	± 13.1 %
5250	35.9	4.71	5.32	5.32	5.32	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.84	4.84	4.84	0.40	1.80	± 13.1 %
5750	35.4	5.22	4.78	4.78	4.78	0.40	1.80	± 13.1 %

 $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

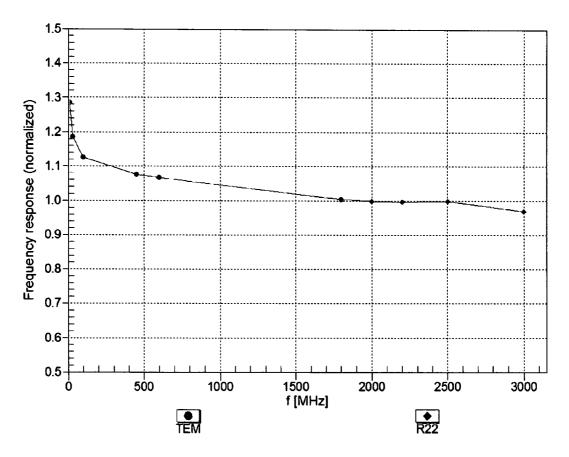
validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

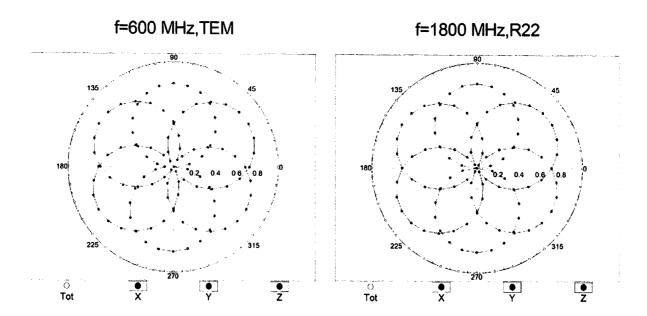
Calibration Parameter Determined in Body Tissue Simulating Media

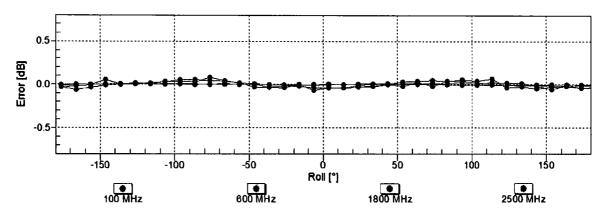

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	10.68	10.68	10.68	0.44	0.85	± 12.0 %
835	55.2	0.97	10.48	10.48	10.48	0.41	0.80	± 12.0 %
1750	53.4	1.49	8.46	8.46	8.46	0.45	0.80	± 12.0 %
1900	53.3	1.52	8.18	8.18	8.18	0.45	0.80	± 12.0 %
2300	52.9	1.81	7.99	7.99	7.99	0.41	0.80	± 12.0 %
2450	52.7	1.95	7.89	7.89	7.89	0.39	0.80	± 12.0 %
2600	52.5	2.16	7.67	7.67	7.67	0.36	0.80	± 12.0 %
3500	51.3	3.31	7.13	7.13	7.13	0.26	1.20	± 13.1 %
5250	48.9	5.36	4.84	4.84	4.84	0.35	1.90	± 13.1 %
5600	48.5	5.77	4.00	4.00	4.00	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.23	4.23	4.23	0.50	1.90	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

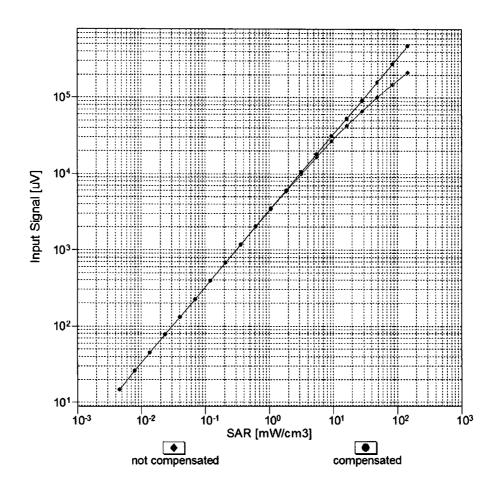
⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

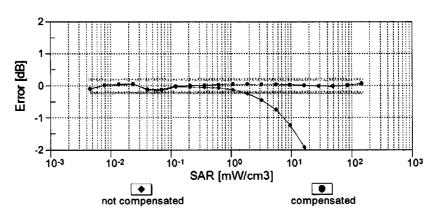

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



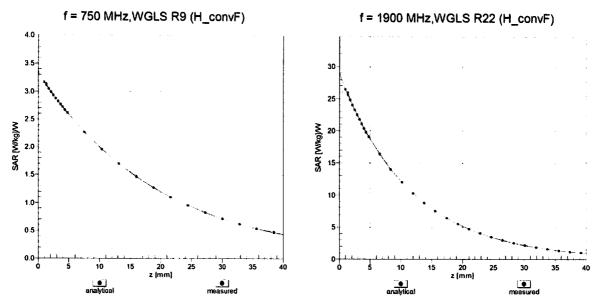
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

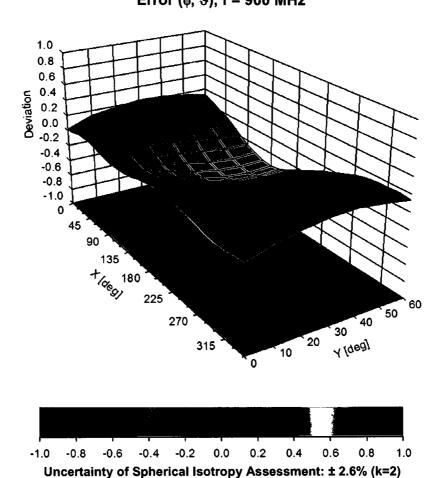
EX3DV4-SN:3935


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ, θ) , f = 900 MHz

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	43.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm