

MPE evaluation

Calculation

Given $E = \frac{\sqrt{30xPxG}}{d}$ & $S = \frac{E^2}{3770}$

Where **E** = Field strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power density in milliwatts /square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30xPxG}{3770d^2}$$

Changing to units of mW and cm, using:

P (mW) = **P(W)** / 1000 and

d (cm) = **d(m)** / 100

Yields

$$S = \frac{30x(P/1000)xG}{3770x(d/100)^2} = 0.0796x \frac{PxG}{d^2} \quad \text{Equation 1}$$

Where **d** = Distance in cm

P = Power in mW

G = Numeric antenna gain

S = Power density in mW / cm²

Maximum Permissible Exposure

EUT output power = 77.8mW

Antenna Gain = 7.943 (Numeric gain) (9dBi)

Antenna Gain = 63.096 (Numeric gain) (18dBi)

Substituting the MPE safe distance using **d** = 20 cm into Equation 1:

Yields

$$S = 0.000199 \times P \times G$$

Where **P** = Power in mW

G = Numeric antenna gain

S = Power density in mW / cm²

→ Power density = 0.123mW/cm² (9dBi)

→ Power density = 0.977mW/cm² (18dBi)

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.)