

Test Laboratory: Sporton International Inc. SAR Testing Lab Date: 2007/10/10

Right Tilted_GSM850 Ch251_2D

DUT: 790604

Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:8.3

Medium: HSL_850 Medium parameters used: f = 849 MHz; $\sigma = 0.913$ mho/m; $\varepsilon_c = 40.3$; $\rho = 1000$ kg/m³

Test Report No : FA790604B

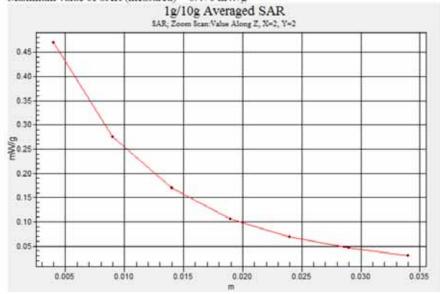
Ambient Temperature: 22.9 °C: Liquid Temperature: 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.58, 6.58, 6.58); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch251/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.476 mW/g


Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.5 V/m; Power Drift = -0.095 dB

Peak SAR (extrapolated) = 0.804 W/kg

SAR(1 g) = 0.433 mW/g; SAR(10 g) = 0.249 mW/g

Maximum value of SAR (measured) = 0.470 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date: 2007/10/10

Right Tilted_PCS Ch512_2D

DUT: 790604

Communication System: PCS; Frequency: 1850.2 MHz;Duty Cycle: 1:8.3

Medium: HSL_1900 Medium parameters used : f = 1850.2 MHz; $\sigma = 1.36$ mho/m; $\varepsilon_r = 39.8$; $\rho = 1000$ kg/m³

Test Report No : FA790604B

Ambient Temperature: 23.0 °C: Liquid Temperature: 21.4 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(5.16, 5.16, 5.16); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch512/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.26 mW/g

Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.7 V/m; Power Drift = -0.040 dB

Peak SAR (extrapolated) = 1.82 W/kg

SAR(1 g) = 1.14 mW/g; SAR(10 g) = 0.631 mW/g

Maximum value of SAR (measured) = 1.27 mW/g

Date: 2007/10/10 Test Laboratory: Sporton International Inc. SAR Testing Lab

Left Cheek_802.11b Ch1_2D

DUT: 790604

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: HSL_2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.82$ mho/m; $\epsilon_r = 38$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.0 °C: Liquid Temperature: 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.5, 4.5, 4.5); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

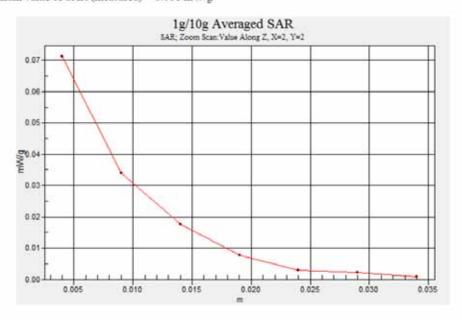
Ch1/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.065 mW/g

Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.39 V/m; Power Drift = 0.067 dB

Peak SAR (extrapolated) = 0.158 W/kg


SAR(1 g) = 0.065 mW/g; SAR(10 g) = 0.029 mW/gMaximum value of SAR (measured) = 0.071 mW/g

Ch1/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.39 V/m: Power Drift = 0.067 dB

Peak SAR (extrapolated) = 0.098 W/kg

SAR(1 g) = 0.046 mW/g; SAR(10 g) = 0.020 mW/gMaximum value of SAR (measured) = 0.061 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date: 2007/10/10

Body_GSM850 Ch251_Keypad Down with 1.5cm Gap_GPRS10_2D

DUT: 790604

Communication System: GSM850; Frequency: 848.8 MHz;Duty Cycle: 1:4

Medium: MSL_850 Medium parameters used: f = 849 MHz; $\sigma = 0.983$ mho/m; $\varepsilon_c = 55$; $\rho = 1000$ kg/m³

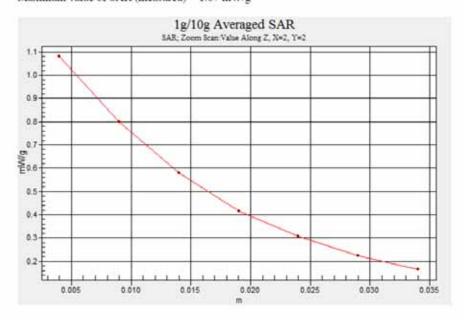
Test Report No : FA790604B

Ambient Temperature: 23.0 °C: Liquid Temperature: 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(6.1, 6.1, 6.1); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch128/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 1.09 mW/g

Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.1 V/m; Power Drift = -0.176 dB

Peak SAR (extrapolated) = 1.33 W/kg

SAR(1 g) = 1.01 mW/g; SAR(10 g) = 0.719 mW/gMaximum value of SAR (measured) = 1.07 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date: 2007/10/S

Body_PCS Ch512_Keypad Down with 1.5cm Gap_GPRS10_Bluetooth On_2D

DUT: 790604

Communication System: PCS; Frequency: 1850.2 MHz;Duty Cycle: 1:4

Medium: MSL_1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.46 \text{ mho/m}$; $\epsilon_c = 52.2$; $\rho = 1000 \text{ kg/m}^3$

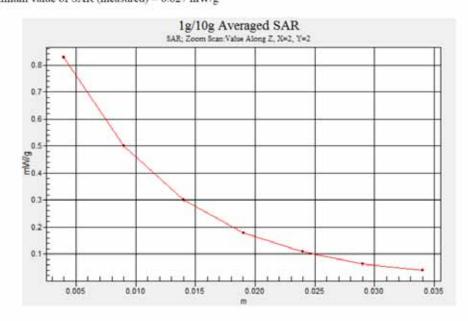
Test Report No : FA790604B

Ambient Temperature: 22.8 °C: Liquid Temperature: 21.4 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.68, 4.68, 4.68); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch512/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.856 mW/g

Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.2 V/m; Power Drift = -0.129 dB

Peak SAR (extrapolated) = 1.23 W/kg

SAR(1 g) = 0.750 mW/g; SAR(10 g) = 0.442 mW/gMaximum value of SAR (measured) = 0.827 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date: 2007/10/11

Body_802.11b Ch6_Keypad Down with 1.5cm Gap_2D

DUT: 790604

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.92$ mho/m; $\varepsilon_r = 51.4$; $\rho = 1000$ kg/m³

Test Report No : FA790604B

Ambient Temperature: 23.2 °C: Liquid Temperature: 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.02, 4.02, 4.02); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

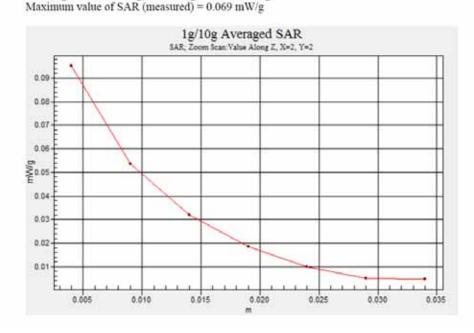
Ch6/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.097 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.91 V/m; Power Drift = -0.102 dB

Peak SAR (extrapolated) = 0.172 W/kg


SAR(1 g) = 0.088 mW/g; SAR(10 g) = 0.047 mW/gMaximum value of SAR (measured) = 0.095 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.91 V/m; Power Drift = +0.102 dB

Peak SAR (extrapolated) = 0.128 W/kg

SAR(1 g) = 0.063 mW/g; SAR(10 g) = 0.037 mW/g

Appendix C - Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurloh, Switzerland

Schweizerischer Kalibrierdienst s Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Test Report No : FA790604B

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Certificate No: D835V2-499_Mar06 Sporton (Auden) CALIBRATION CERTIFICATE D835V2 - SN: 499 QA CAL-05.v6 Calibration procedure(s) Calibration procedure for dipole validation kits March 15, 2006 Calibration date: Condition of the collarated item In Tolerance This calibration conflicate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70% Calibration Equipment used (M&TE official for calibration) Primary Standards ID# Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Power motor EPM-442A GB37480704 04-Oct-05 (METAS, No. 251-00516) Out-06 Power sensor HP 8481A US37292783 04-Oct-05 (METAS, No. 251-00515) Oct-06 Reference 20 dB Attenuator SN: 5086 (20g) 11-Aug-05 (METAS, No 251-00498) Аид-16 11-Aug-05 (METAS, No 251-00498) Aug-56 Reference 10 dB Attenuator SN: 5047.2 (10r) Reference Probe ET3DV6 28-Oct-05 (SPEAG, No. ET3-1507, Oct05) SN 1507 Oct-08 DAE4 SN 601 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Dec-56 Secondary Standards ID # Check Date (in house) Scheduled Check MY41092317 In house check: Oct-07 Power sensor HP 8481A 18-Oct-02 (SPEAG, in house check Oct-05) RF generator Aglient E4421B MY41000675 11-May-05 (SPEAG, in house sheek Nov-05) in house check: Nov-07 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (SPEAG, in house check Nov-05) In house check: Nov-06. Function Juden Miller Calibrated by: Laboratory Technician Technical Manager Approved by: Katja Pokovic Issued: March 16, 2006 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: D835V2-499_Mar06

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF

N/A

tissue simulating liquid

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-499_Mar06

Page 2 of 9

Measurement Conditions

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Area Scan resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy, dz. = 5 mm	
Frequency	835 MHz ± 1 MHz	

Test Report No : FA790604B

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.1 ± 6 %	0.94mho/m ± 6 %
Head TSL temperature during test	(22.2 ± 0.2) °C		-

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	condition	
SAR measured	250 mW input power	2.35 mW / g
SAR normalized	normalized to 1W	9.40 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	9.24 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm1 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.53 mW / g
SAR normalized	normalized to 1W	6.12 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	6.07 mW/g±16.5 % (k=2)

Certificate No: D835V2-499_Mar06

Page 3 of 9

[&]quot;Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) *C	56.8 ± 6 %	0.98 mho/m ± 6 %
Body TSL temperature during test	(21.4 ± 0.2) °C		_

Test Report No : FA790604B

SAR result with Body TSL

SAR averaged over 1 cm ² (1 g) of Body TSL	condition	
SAR measured	250 mW input power	2.45 mW / g
SAR normalized	normalized to 1W	9.80 mW/g
SAR for nominal Body TSL parameters 1	normalized to 1W	9.91 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.62 mW / g
SAR normalized	normalized to 1W	6.48 mW/g
SAR for nominal Body TSL parameters 1	normalized to 1W	6.55 mW / g ± 16.5 % (k=2)

Certificate No: DB35V2-499_Mar06

Page 4 of 9

³ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω - 2.9 μΩ
Return Loss	- 29.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.9 Ω - 5.1 jΩ	
Return Loss	- 24,9 dB	

General Antenna Parameters and Design

	- CHIEF CONT.
Electrical Delay (one direction)	1.391ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged,

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 10, 2003

Certificate No: D835V2-499_Mar06

Page 5 of 9

DASY4 Validation Report for Head TSL

Date/Time: 15.03.2006 12:51:44

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

Medium parameters used: f = 835 MHz; $\sigma = 0.942$ mho/m; $\epsilon_r = 42.1$; $\rho = 1000$ kg/m³

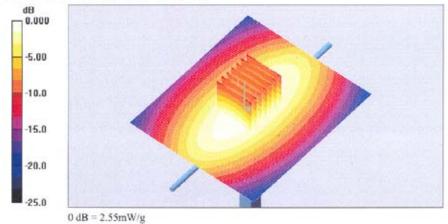
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507 (HF); ConvF(6.09, 6.09, 6.09); Calibrated: 28.10.2005
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 15.12.2005
- · Phantom: Flat Phantom 4.9L; Type: QD000P49AA; ;
- Measurement SW: DASY4, V4.7 Build 14; Postprocessing SW: SEMCAD, V1.8 Build 165

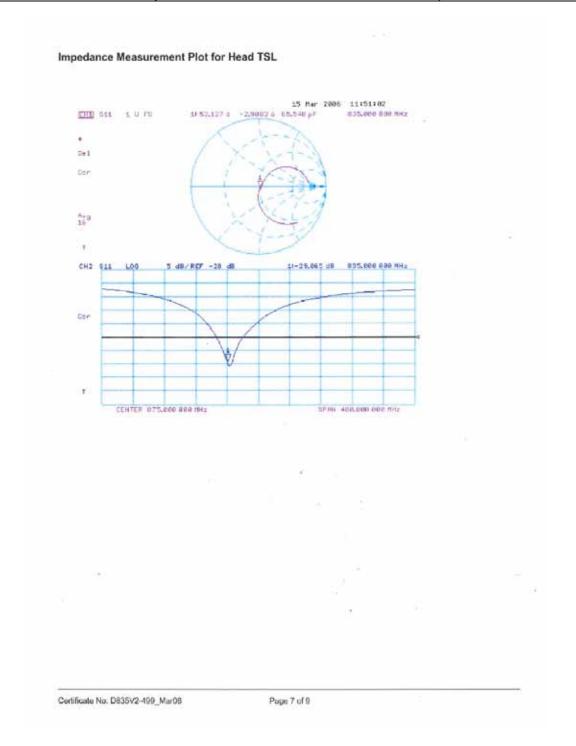
Pin = 250 mW; d = 10 mm/Area Scan (71x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.54 mW/g


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.7 V/m; Power Drift = -0.008 dB

Peak SAR (extrapolated) = 3.53 W/kg

SAR(1 g) = 2.35 mW/g; SAR(10 g) = 1.53 mW/g


Maximum value of SAR (measured) = 2.55 mW/g

Certificate No: D835V2-499_Mar06

Page 6 of 9

DASY4 Validation Report for Body TSL

Date/Time: 14.03.2006 12:37:15

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL U10;

Medium parameters used: f = 835 MHz; $\sigma = 0.972$ mho/m; $\varepsilon_i = 56.9$; $\rho = 1000$ kg/m³

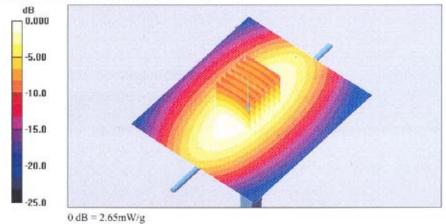
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507 (HF); ConvF(5.84, 5.84, 5.84); Calibrated: 28.10.2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 15,12,2005
- · Phantom: Flat Phantom 4.9L; Type: QD000P49AA; ;
- Measurement SW: DASY4, V4.7 Build 14; Postprocessing SW: SEMCAD, V1.8 Build 165

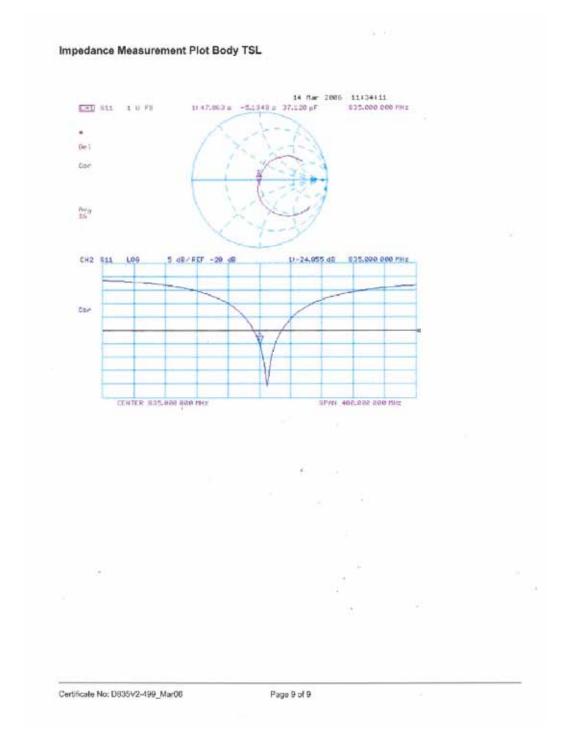
Pin = 250 mW; d = 10 mm/Area Scan (71x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.63 mW/g


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.3 V/m; Power Drift = 0.026 dB

Peak SAR (extrapolated) = 3:51 W/kg

SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.62 mW/g


Maximum value of SAR (measured) = 2.65 mW/g

Certificate No: D835V2-499_Mar06

Page 8 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

Sporton (Auden)

Accreditation No.: SCS 108

Certificate No: D1900V2-5d041_Mar06

CALIBRATION CERTIFICATE D1900V2 - SN: 5d041 Object Calibration procedure(s) QA CAL-05.v6 Calibration procedure for dipole validation kits March 21, 2006 Calibration date: Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 04-Oct-05 (METAS, No. 251-00516) Oct-06 Power sensor HP 8481A US37292783 04-Oct-05 (METAS, No. 251-00516) Oct-06 Reference 20 dB Attenuator SN: 5086 (20g) 11-Aug-05 (METAS, No 251-00498) Aug-06 SN: 5047.2 (10r) Reference 10 dB Attenuator 11-Aug-05 (METAS, No 251-00498) Aug-06 Reference Probe ET3DV6 SN: 1507 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) Oct-06 DAE4 SN: 601 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Dec-06 Secondary Standards ID# Check Date (in house) Scheduled Check MY41092317 Power sensor HP 8481A 18-Oct-02 (SPEAG, in house check Oct-05) In house check: Oct-07 RF generator Agilent E4421B MY41000675 11-May-05 (SPEAG, in house check Nov-05) In house check: Nov-07 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (SPEAG, in house check Nov-05) In house check: Nov-06 Function Calibrated by: Judith Müller Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: March 22, 2006 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d041_Mar06

Page 1 of 9

Calibration Laboratory of Schmid & Partner

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d041	_Mar06
-------------------------------	--------

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Area Scan resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Test Report No : FA790604B

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 6 %	1.42 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C	-	: sino

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	9.75 mW / g
SAR normalized	normalized to 1W	39.0 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	38.4 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.17 mW / g
SAR normalized	normalized to 1W	20.7 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	20.5 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d041_Mar06

Page 3 of 9

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.7 ± 6 %	1.54 mho/m ± 6 %
Body TSL temperature during test	(21.6 ± 0.2) °C		

Test Report No : FA790604B

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR normalized	normalized to 1W	40.8 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	41.1 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.40 mW / g
SAR normalized	normalized to 1W	21.6 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	21.8 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d041_Mar06

Page 4 of 9

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5 Ω + 5.1 jΩ	
Return Loss	- 24.8 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$47.9 \Omega + 6.3 J\Omega$	
Return Loss	- 23.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.200 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	July 4, 2003	

Certificate No: D1900V2-5d041_Mar06

Page 5 of 9

DASY4 Validation Report for Head TSL

Date/Time: 14.03.2006 16:18:53

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

Medium parameters used: f = 1900 MHz; $\sigma = 1.42$ mho/m; $\epsilon_r = 39.4$; $\rho = 1000$ kg/m³

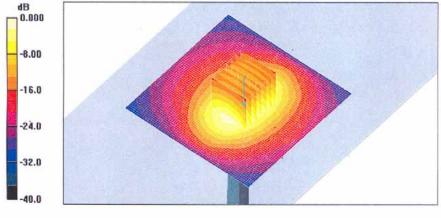
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507 (HF); ConvF(4.74, 4.74, 4.74); Calibrated: 28.10.2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 15.12.2005
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;;
- Measurement SW: DASY4, V4.7 Build 14; Postprocessing SW: SEMCAD, V1.8 Build 165

Pin = 250 mW; d = 10 mm/Area Scan (71x71x1): Measurement grid: dx=15 mm, dy=15 mm Maximum value of SAR (interpolated) = 11.7 mW/g

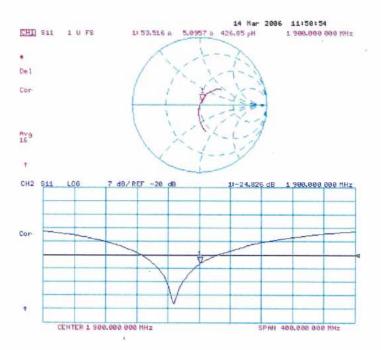

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.9 V/m; Power Drift = -0.093 dB

Peak SAR (extrapolated) = 16.6 W/kg

SAR(1 g) = 9.75 mW/g; SAR(10 g) = 5.17 mW/g

Maximum value of SAR (measured) = 11.1 mW/g


0 dB = 11.1 mW/g

Certificate No: D1900V2-5d041_Mar06

Page 6 of 9

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d041_Mar06

Page 7 of 9

DASY4 Validation Report for Body TSL

Date/Time: 21.03.2006 13:59:55

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U10;

Medium parameters used: f = 1900 MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³

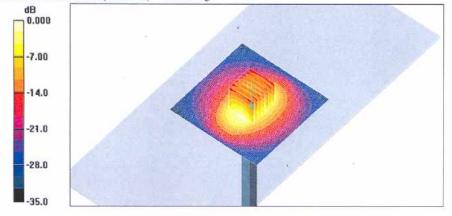
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507 (HF); ConvF(4.3, 4.3, 4.3); Calibrated: 28.10.2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 15.12.2005
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Pin = 250 mW; d = 10 mm/Area Scan (71x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = <math>11.8 mW/g

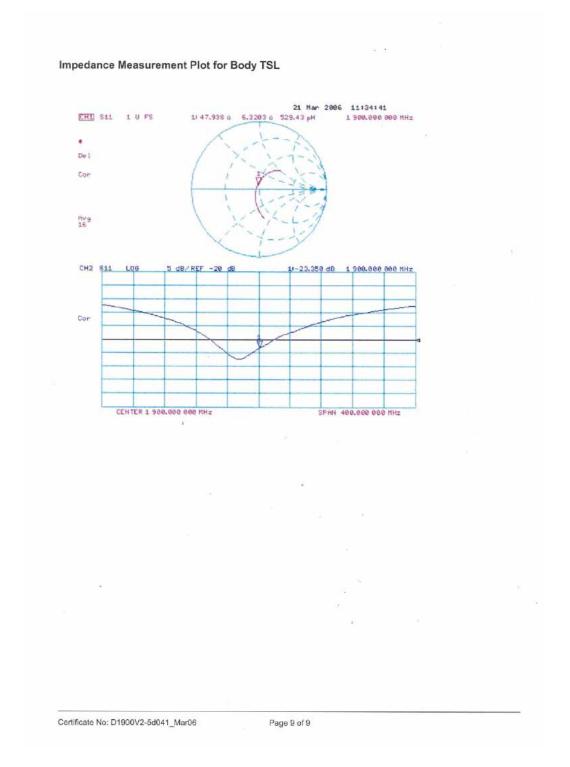

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

Reference Value = 89.3 V/m; Power Drift = 0.045 dB

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.4 mW/g

Maximum value of SAR (measured) = 11.6 mW/g



0 dB = 11.6 mW/g

Certificate No: D1900V2-5d041_Mar06

Page 8 of 9

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Sporton (Auden)

Accreditation No.: SCS 108

Certificate No: D2450V2-736_Jul07

CALIBRATION CERTIFICATE D2450V2 - SN: 736 Object Calibration procedure(s) QA CAL-05.v6 Calibration procedure for dipole validation kits Calibration date: July 12, 2007 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Power mater EPM-442A GB37480704 03-Oct 06 (METAS, No. 217-00608) Oct-07 Power sensor HP 8481A 03-Oct-08 (METAS, No. 217-00008) US37292783 Oct-07 Reference 20 dB Attenuator SN: 5086 (20g) 10-Aug-06 (METAS, No 217-00591) Aug-07 Reference 10 dB Attenualor SN: 5047.2 (10r) 10-Aug-06 (MÉTAS, No 217-00591) Aug-07 Reference Probe ES3DV3 SN 3025 19-Oct-06 (SPEAG, No. ES3-3025_Oct06) Oct-07 DAE4 SN 601 30-Jan-07 (SPEAG, No. DAE4-601_Jan07) Jan-08 Secondary Standards Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (SPEAG, in house check Oct-05) In house check, Oct-07 RF generator Aglient E4421B MY41000675 11-May-05 (SPEAG, in house check Nov-05) In house check: Nov-07 US37390585 S4206 Network Analyzer HP 8753E 18-Oct-01 (SPEAG, in house check Oct-06) In house check: Oct-07 Name Function Signature Calibrated by: Mice Melt Laboratory Technician Approved by: Katja Pokovio Technical Manager Issued: July 12, 2007 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-736_Jul07

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage

Test Report No : FA790604B

Servizio avizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swess Federal Office of Metrology and Accreditation.

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates.

Glossary:

TSL_

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenne Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-736 Jul07

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mhc/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.6 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	condition	
SAR measured	250 mW input power	13.3 mW / g
SAR normalized	normalized to 1W	53.2 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	52.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.17 mW / g
SAR normalized	normalized to 1W	24.7 mW / g
SAR for nominal Hoad TSL parameters 1	normalized to 1W	24.5 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-736_Jul07

Page 3 of 9

^{*} Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.5 ± 6 %	1.94 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C	*****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	62.0 mW / g
SAR for nominal Body TSL parameters 1	normalized to 1W	52.5 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.05 mW / g
SAR normalized	normalized to 1W	24,2 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	24.4 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-738_Jul07

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.1 Ω + 3.0 jΩ	
Return Loss	~ 27.6 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.7 Ω + 4.6 jΩ	
Return Loss	- 26.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.158 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signais.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 26, 2003

Certificate No: D2450V2-736_Jul07

Page 5 of 9

DASY4 Validation Report for Head TSL

Date/Time: 12.07,2007 11:00:03

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

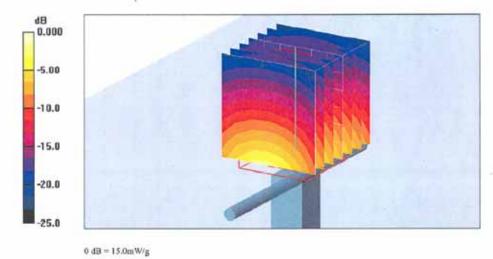
Medium parameters used: f = 2450 MHz; $\sigma = 1.81$ mho/m; $\varepsilon_r = 38.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

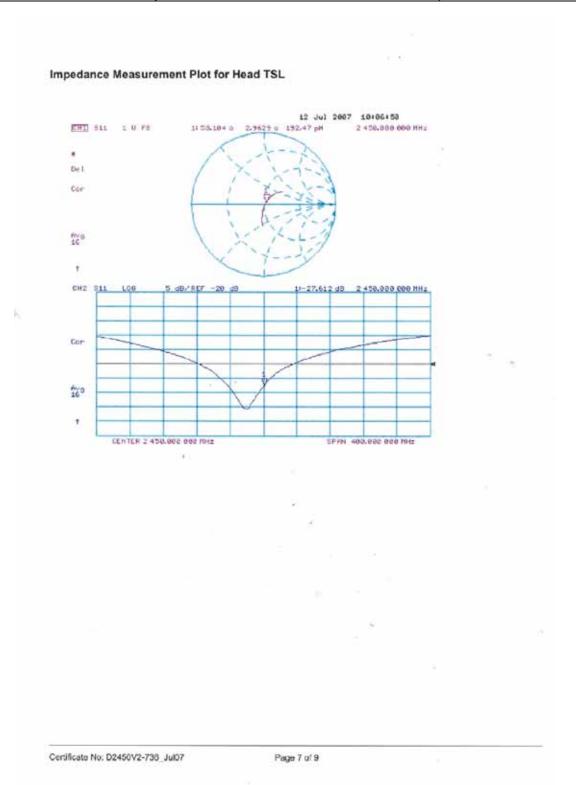
- Probe: ES3DV2 SN3025 (HF); ConvF(4.5, 4.5, 4.5); Calibrated: 19.10.2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.01.2007
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx-5mm, dy-5mm, dz-5mm Reference Value = 93.0 V/m; Power Drift = -0.004 dB

Peak SAR (extrapolated) = 28.1 W/kg

SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.17 mW/g


Maximum value of SAR (measured) = 15.0 mW/g

Certificate No. D2450V2-736_Jul07

Page 6 of 9

DASY4 Validation Report for Body TSL

Date/Time: 12.07,2007 12:28:49

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB;

Medium parameters used: f = 2450 MHz; $\sigma = 1.94 \text{ mho/m}$; $\varepsilon_r = 53.5$; $\rho = 1000 \text{ kg/m}^3$

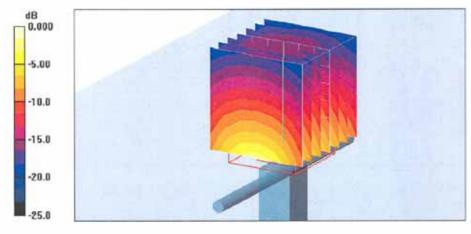
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 SN3025 (HF); ConvF(4.16, 4.16, 4.16); Calibrated: 19.10.2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.01.2007
- Phanton: Flat Phantom 5.0 (back); Type: QD000P50AA.
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

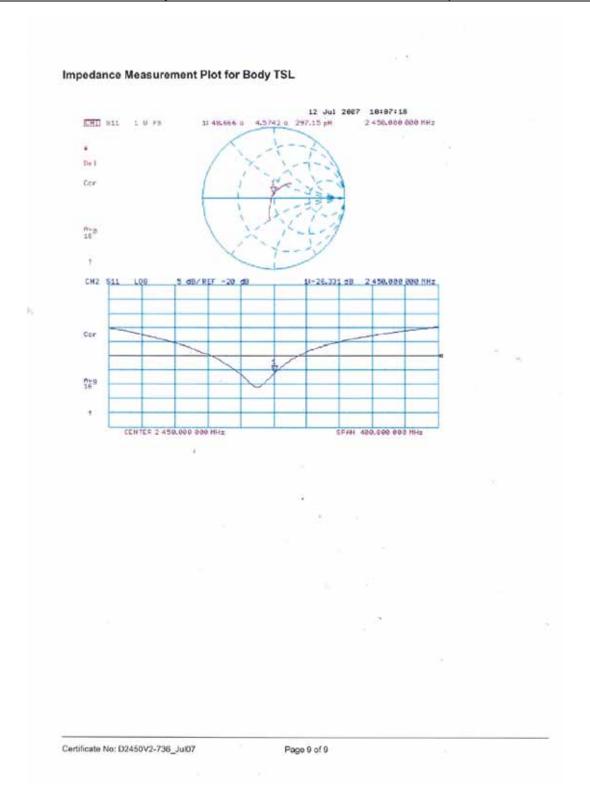

Measurement grid: dx-5mm, dy-5mm, dz-5mm

Reference Value = 88.6 V/m; Power Drift = 0.005 dB

Peak SAR (extrapolated) = 27.0 W/kg

SAR(1 g) = 13 mW/g; SAR(10 g) = 6.05 mW/g

Maximum value of SAR (measured) = 14.8 mW/g



0 dB = 14.8mW/g

Certificate No: D2450V2-736_Jul07

Page 8 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Certificate No: DAE3-577_Nov06 Sporton (Auden) CALIBRATION CERTIFICATE DAE3 - SD 000 D03 AA - SN: 577 Object QA CAL-06.v12 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) November 21, 2006 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Fluke Process Calibrator Type 702 SN: 6295803 13-Oct-06 (Elcal AG, No: 5492) Oct-07 Keithley Multimeter Type 2001 SN: 0810278 03-Oct-06 (Elcal AG, No: 5478) Oct-07 Secondary Standards Check Date (in house) Scheduled Check Calibrator Box V1.1 SE UMS 006 AB 1002 15-Jun-06 (SPEAG, in house check) In house check Jun-07 Name Function Calibrated by: Eric Hainfeld Technician R&D Director Approved by: Fin Bomholt Knadalf Issued: November 21, 2006 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE3-577_Nov06

Page 1 of 5

ilac

S Schweizerischer Kalibrierdien:
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Test Report No : FA790604B

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Calibration Laboratory of

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE connector angle ii

data acquisition electronics

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters contain technical information as a result from the performance test and require no uncertainty.
- DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
- Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
- Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
- AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
- Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
- Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
- Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
- Low Battery Alarm Voltage: Typical value for information: Below this voltage, a battery alarm signal is generated.
- Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-577_Nov06

Page 2 of 5

C SAR Test Report Test Report No : FA790604B

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1......+3 mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.355 ± 0.1% (k=2)	403.806 ± 0.1% (k=2)	404.276 ± 0.1% (k=2)
Low Range	3.92854 ± 0.7% (k=2)	3.93862 ± 0.7% (k=2)	3.93591 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	268 ° ± 1 °
Controller range to be deed in Brief Cyclein	

Certificate No: DAE3-577_Nov06

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	Input (μV)	Reading (µV)	Error (%)
Channel X + Input	200000	199999.5	0.00
Channel X + Input	20000	20005.87	0.03
Channel X - Input	20000	-19998.71	-0.01
Channel Y + Input	200000	200000	0.00
Channel Y + Input	20000	20004.22	0.02
Channel Y - Input	20000	-20003.23	0.02
Channel Z + Input	200000	200000.6	0.00
Channel Z + Input	20000	20005.24	0.03
Channel Z - Input	20000	-20001.80	0.01

Low Range		Input (μV)	Reading (µV)	Error (%)
Channel X -	+ Input	2000	1999.9	0.00
Channel X -	+ Input	200	200.27	0.13
Channel X -	- Input	200	-200.73	0.36
Channel Y -	+ Input	2000	2000.1	0.00
Channel Y .	+ Input	200	199.22	-0.39
Channel Y -	- Input	- 200	-200.86	0.43
Channel Z -	+ Input	2000	1999.9	0.00
Channel Z -	+ Input	200	199.28	-0.36
Channel Z -	- Input	200	-200.94	0.47

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	14.24	12,49
	- 200	-12.13	-12.92
Channel Y	200	-6.51	-7.06
	- 200	6.05	5.81
Channel Z	200	1.09	0.86
	- 200	-2.86	-2.63

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200		2.51	0.09
Channel Y	200	0.43	2:	3.37
Channel Z	200	-0.55	0.96	191

Certificate No: DAE3-577_Nov06

Page 4 of 5

4. AD-Converter Values with inputs shorted

	High Range (LSB)	Low Range (LSB)
Channel X	15970	16306
Channel Y	15851	16305
Channel Z	16208	17068

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

18.	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.51	-1.55	0.47	0.50
Channel Y	-2.06	-4.32	-0.65	0.60
Channel Z	-1.63	-2.56	-0.15	0.35

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2000	199.8
Channel Y	0.2000	200.7
Channel Z	0.2000	199.8

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7,9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE3-577_Nov06

Page 5 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8064 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swisa Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton (Auden)

Certificate No: ET3-1787_Aug07

Accreditation No.: SCS 108

C

Object	ET3DV6 - SN:1	787	11 12 3 30
Calibration procedure(s)	QA CAL-01.v6 Calibration proc	redure for dosimetric E-field probes	
Calibration date:	August 28, 2007		CALL BUILD
Condition of the calibrated item	In Tolerance		The State
All calibrations have been condu	cted in the closed laborate	ory featility: environment temperature (22 ± 3)°C and	c humicity < 70%.
Calibration Equipment used (M& Primary Standards	TE critical for calibration)	Cal Date (Calibrated by, Cartificate No.)	Scheduled Calibration
Primary Standards Fower meter E4419B	NI.		Scheduled Calibration Mar-08
Primary Standards Power meter E4419B Power seasor E4412A	ID # GB41293874 MY41495277	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670)	Mar-08 Mar-08
Primary Standards Power meter 644198 Power sensor 64412A Power sensor 64412A	ID # GB41293874 MY41495277 MY41495087	Cal Date (Calibrated by, Certricale No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670)	Mar-08 Mar-08 Mar-08
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Aftenuator	ID # GB41293874 MY41495277 MY41498087 SN 85054 (3c)	Cal Date (Calibrated by, Certificate No.) 29-Mar-Q7 (METAS, No. 217-00670) 29-Mar-Q7 (METAS, No. 217-00670) 29-Mar-Q7 (METAS, No. 217-00670) 8-Aug-Q7 (METAS, No. 217-00719)	Mar-08 Mar-08 Mar-08 Aug-08
Primary Standards Power mater E44198 Power sensor E4412A Power sensor E4412A Reference 3 d5 Attenuator Reference 20 d8 Attenuator	ID # GB41293874 MY41495277 MY4149587 SN \$5054 (3c) SN \$5056 (206)	Cal Date (Calibrated by, Certificate No.) 29-Mar-Q7 (METAS, No. 217-00670) 29-Mar-Q7 (METAS, No. 217-00670) 29-Mar-Q7 (METAS, No. 217-00670) 8-Aug-Q7 (METAS, No. 217-00719) 29-Mar-Q7 (METAS, No. 217-00671)	Mar-08 Mar-08 Mar-08 Aug-08 Mar-08
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 d5 Aftenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ID # GB41293874 MY41495277 MY41495087 SN \$5054 (3c) SN \$5036 (20b) SN \$5129 (30b)	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00671) 6-Aug-07 (METAS, No. 217-00720)	Mar-OB Mar-OB Mar-OB Aug-OB Mar-OB
Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe E830V2	ID # GB41293874 MY41495277 MY4149587 SN \$5054 (3c) SN \$5056 (206)	Cal Date (Calibrated by, Certificate No.) 29-Mar-Q7 (METAS, No. 217-00670) 29-Mar-Q7 (METAS, No. 217-00670) 29-Mar-Q7 (METAS, No. 217-00670) 8-Aug-Q7 (METAS, No. 217-00719) 29-Mar-Q7 (METAS, No. 217-00671)	Mar-08 Mar-08 Mar-08 Aug-08 Mar-08
	ID # GB41293874 MY41495277 MY4149987 SN 85054 (3c) SN 85036 (20b) SN 85129 (30b) SN 3013	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-0071) 6-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07)	Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08
Primary Standards Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 3 d5 Attenuator Reference 20 d8 Attenuator Reference Probe ES30V2 DAE4 Secondary Standards	ID # GB41293874 MY41495277 MY41495087 SN 85054 (3c) SN 85036 (20b) SN 85129 (30b) SN 3013 SN 664	Cal Date (Calibrated by, Certificate No.) 29-Mar-Q7 (METAS, No. 217-00670) 29-Mar-Q7 (METAS, No. 217-00670) 29-Mar-Q7 (METAS, No. 217-00670) 8-Aug-Q7 (METAS, No. 217-00719) 29-Mar-Q7 (METAS, No. 217-0071) 6-Aug-Q7 (METAS, No. 217-0072) 4-Jan-Q7 (SPEAG, No. ES3-3013_JanQ7) 20-Apr-Q7 (SPEAG, No. DAE4-654_AprQ7)	Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Asr-08
Primary Standards Power sensor E4412A Power sensor E4412A Reference 3 d5 Attenuator Reference 20 d8 Attenuator Reference Probe ES30V2 DAE4 Secondary Standards RF generator HP 6648C	ID # GB41293874 MY41495277 MY41495087 SN \$5034 (3c) SN \$5036 (20b) SN \$5129 (30b) SN 3013 SN 654	Cal Date (Calibrated by, Certificate No.) 29-Mar-Q7 (METAS, No. 217-00670) 29-Mar-Q7 (METAS, No. 217-00670) 29-Mar-Q7 (METAS, No. 217-00670) 8-Aug-Q7 (METAS, No. 217-00719) 29-Mar-Q7 (METAS, No. 217-0071) 6-Aug-Q7 (METAS, No. 217-00720) 4-Jan-Q7 (SPEAG, No. ES3-3013_JanQ7) 20-Apr-Q7 (SPEAG, No. DAE4-654_Apr07) Check Date (in house)	Mar-OB Mar-OB Mar-OB Aug-CB Mar-OB Jan-OB Acr-OB Scheduled Check
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 db Attenuator Reference 20 db Attenuator Reference 20 db Attenuator Reference Probe E530V2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID # GB41293874 MY41495277 MY4149507 SN 85054 (3c) SN 85036 (20b) SN 3013 SN 654 ID # US3642U01700 US37390585 Name	Cal Date (Calibrated by, Certificate No.) 29-Mar-Q7 (METAS, No. 217-00670) 29-Mar-Q7 (METAS, No. 217-00670) 29-Mar-Q7 (METAS, No. 217-00670) 8-Aug-Q7 (METAS, No. 217-00719) 29-Mar-Q7 (METAS, No. 217-00719) 4-Jan-Q7 (METAS, No. 217-0072) 4-Jan-Q7 (METAS, No. 217-00671) 4-Jan-Q7 (METAS, No. 217-00671) 4-Jan-Q7 (METAS, No. 217-00670) 4-Jan-Q7 (METAS, No. 217-0070) 4-Jan-Q7 (METAS, No. 217-0070) 4-Jan-Q7 (METAS, No. 217-0070) 4-Jan-Q7 (METAS, No. 217-0070)	Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Aur-08 Scheduled Check In house check: Nov-07
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 db Attenuator Reference 20 db Attenuator Reference 20 db Attenuator Reference Probe E530V2 DAE4 Secondary Standards RF generator HP 6648C Venwork Analyzer HP 8753E	ID # GB41293874 MY41495277 MY4149507 SN \$5054 (3c) SN \$5036 (20b) SN \$5138 (30b) SN \$013 SN 664 ID # US3642U01700 US37390585	Cal Date (Calibrated by, Certificate No.) 29-Mar-Q7 (METAS, No. 217-00670) 29-Mar-Q7 (METAS, No. 217-00670) 29-Mar-Q7 (METAS, No. 217-00670) 8-Aug-Q7 (METAS, No. 217-0070) 8-Aug-Q7 (METAS, No. 217-0071) 8-Aug-Q7 (METAS, No. 217-0071) 8-Aug-Q7 (METAS, No. 217-0072) 4-Jan-Q7 (SPEAG, No. E53-3013_Jan07) 20-Apr-Q7 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-S9 (SPEAG, in house check Nov-05) 16-Oct-Q1 (SPEAG, in house check Oct-06)	Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Aug-08 Jan-08 Scheduled Check In house check: Nov-07 In house check: Oct-07
Primary Standards Fower meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 d5 Attenuator Reference 20 d8 Attenuator Reference 20 d8 Attenuator Reference Probe E830V2 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41495277 MY4149507 SN 85054 (3c) SN 85036 (20b) SN 3013 SN 654 ID # US3642U01700 US37390585 Name	Cal Date (Calibrated by, Certificate No.) 29-Mar-Q7 (METAS, No. 217-00670) 29-Mar-Q7 (METAS, No. 217-00670) 29-Mar-Q7 (METAS, No. 217-00670) 8-Aug-Q7 (METAS, No. 217-00719) 29-Mar-Q7 (METAS, No. 217-00719) 4-Jan-Q7 (METAS, No. 217-0072) 4-Jan-Q7 (METAS, No. 217-00671) 4-Jan-Q7 (METAS, No. 217-00671) 4-Jan-Q7 (METAS, No. 217-00670) 4-Jan-Q7 (METAS, No. 217-0070) 4-Jan-Q7 (METAS, No. 217-0070) 4-Jan-Q7 (METAS, No. 217-0070) 4-Jan-Q7 (METAS, No. 217-0070)	Mar-08 Mar-08 Mar-08 Aug-08 Mar-08 Aug-08 Jan-08 Aug-08 Jan-08 Scheduled Check In house check: Nov-07 In house check: Oct-07

Certificate No: ET3-1787_Aug07

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConF sensitivity in TSL / NOR
DCP diode compression poin

sensitivity in TSL / NORMx,y,z diode compression point φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 8 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f < 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1787_Aug07

Page 2 of 9

ET3DV6 SN:1787

August 28, 2007

Test Report No : FA790604B

Probe ET3DV6

SN:1787

Manufactured:

May 28, 2003

Last calibrated:

May 31, 2006

Recalibrated:

August 28, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1787_Aug07

Page 3 of 9

ET3DV6 SN:1787

August 28, 2007

DASY - Parameters of Probe: ET3DV6 SN:1787

Sensitivity in Free Space ^a			Diode C	compression
NormX	1.63 ± 10.1%	$\mu V/(V/m)^2$	DCP X	92 mV
NormY	1.66 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	96 mV
Norm7	2.08 + 10.1%	$uV/(V/m)^2$	DCP 7	91 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL	900 MHz	Typical SAR gradient:	5 % per mm

Sensor Cente	r to Phantom Surface Distance	3,7 mm	4.7 mm
SAR ₆₀ [%]	Without Correction Algorithm	4.7	2.0
SAR _{be} [%]	With Correction Algorithm	0.1	0.0

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Cente	r to Phantom Surface Distance	3.7 mm	4.7 mm
SAR [%]	Without Correction Algorithm	11.8	7.0
SAR _{be} [%]	With Correction Algorithm	0.2	0.4

Sensor Offset

Probe Tip to Sensor Center 2.7 mm

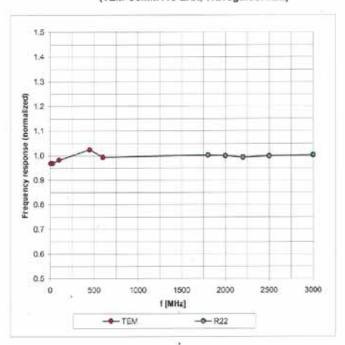
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1787_Aug07

Page 4 of 9

 $^{^{\}circ}$ The uncertainties of NormX,Y Z do not affect the E field uncertainty inside TSL (see Page 8).

Numerical linearization parameter: uncertainty sot required.



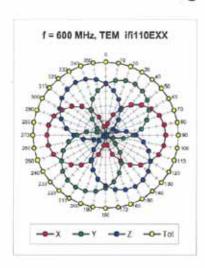
August 28, 2007

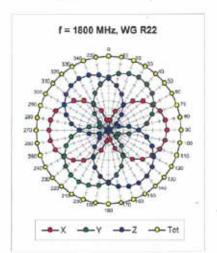
Frequency Response of E-Field

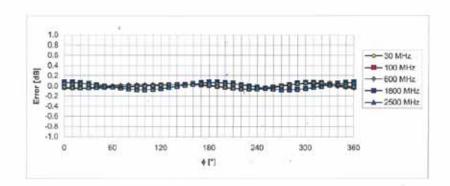
(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Cortificate No: ET3-1787_Aug07

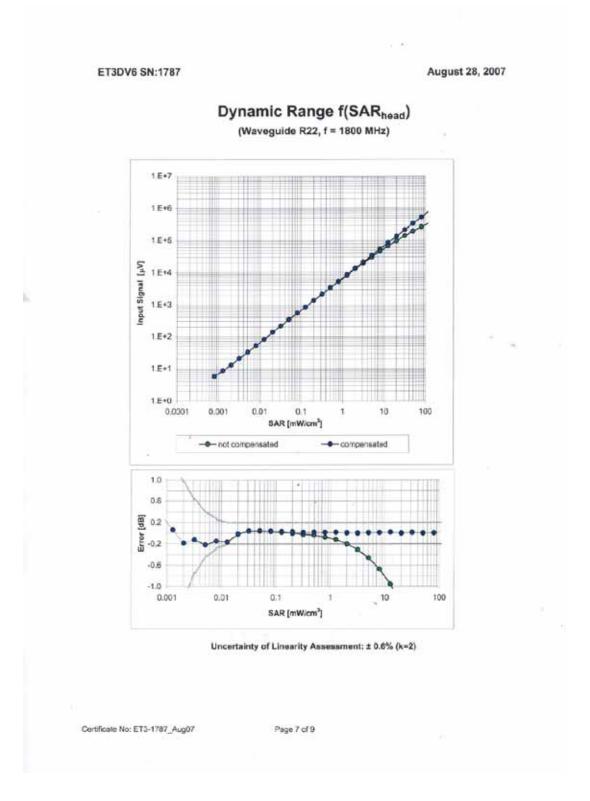

Page 5 of 9





August 28, 2007

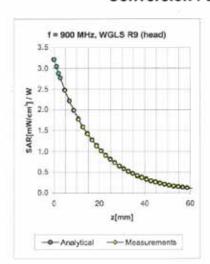
Receiving Pattern (ϕ), θ = 0°

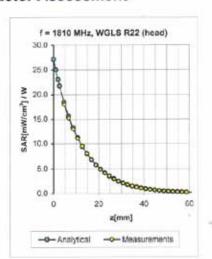


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1767_Aug07

Page 6 of 9





ET3DV6 SN:1787

August 28, 2007

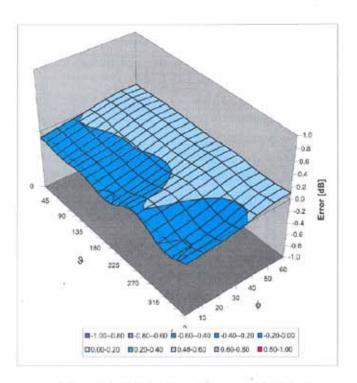
Conversion Factor Assessment

f [MHz]	Validity [MHz] ⁵	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	±50/±100	Head	41.5 ± 5%	0.97 ± 5%	0.32	2.42	6.58 ± 11.0% (x=2)
1810	±50/±100	Head	40.0 ± 5%	1.40 ± 5%	0.50	2.61	5.16 ± 11.0% (k=2)
2000	±50/±100	Head	$40.0 \pm 5\%$	1.40 ± 5%	0.55	2.45	4.80 ± 11.0% (K=2)
2450	±50/±100	Head	$39.2\pm5\%$	1.80 ± 5%	0.67	1.81	4.50 ± 11.8% (k=2)
				- 8			
900	±50/±100	Body	55.0 ± 5%	1.05 ± 5%	0.36	2.52	6.10 ± 11.0% (k=2)
1810	±50/±100	Body	$53.3 \pm 5\%$	1.52 ± 5%	0.61	2.56	4.68 ± 11.0% (k=2)
2000	±50/±100	Body	$53.3\pm5\%$	1.52 ± 5%	0.60	2.40	4.30 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.65	2.15	4.02 ± 11.8% (k=2)

Certificate No: ET3-1787_Aug07

Page 8 of 9

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at palibration frequency and the uncertainty for the indicated frequency band.



ET3DV6 SN:1787

August 28, 2007

Deviation from Isotropy in HSL

Error (o, 3), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1787_Aug07

Page 9 of 9