

CETECOM ICT Services GmbH

Untertuerkheimer Str. 6-10, 66117 Saarbruecken, Germany Phone: +49 (0) 681 598-0
SAR-Laboratory Phone: +49 (0) 681 598-8454

Fax: -8475

Accredited testing laboratory

DAR registration number: DAT-P-176/94-D1

Test report no. : 1-0880-01-07/08
Type identification : TM5-E01
Test specification : IEEE 1528-2003
FCC-ID : SP2-TM5-E01

Table of Contents

1	General Information.....	3
1.1	Notes.....	3
1.1.1	Statement of Compliance.....	3
1.2	Testing laboratory.....	4
1.3	Details of applicant.....	4
1.4	Application details.....	4
1.5	Test item.....	5
1.6	Test specification(s)	6
1.6.1	RF exposure limits	6
2	Technical test.....	7
2.1	Summary of test results	7
2.2	Test environment.....	7
2.3	Measurement and test set-up	7
2.4	Measurement system	8
2.4.1	System Description	8
2.4.2	Test environment	9
2.4.3	Probe description	9
2.4.4	Phantom description.....	10
2.4.5	Device holder description	10
2.4.6	Scanning procedure.....	11
2.4.7	Spatial Peak SAR Evaluation.....	12
2.4.8	Data Storage and Evaluation.....	13
2.4.9	Test equipment utilized.....	15
2.4.10	Tissue simulating liquids: dielectric properties.....	16
2.4.11	Tissue simulating liquids: parameters	17
2.4.12	Measurement uncertainty evaluation for SAR test	18
2.4.13	Measurement uncertainty evaluation for system validation.....	19
2.4.14	System validation.....	20
2.4.15	Validation procedure.....	21
2.5	Test Results	22
2.5.1	Conducted power measurements	22
2.5.2	Conducted power measurements GSM 850 MHz.....	22
2.5.3	Conducted power measurements GSM 1900 MHz.....	23
2.5.4	Justification of SAR measurements in GSM mode.....	23
2.5.5	Conducted power measurements WLAN.....	24
2.5.6	Multiple Transmitter Information	24
2.6	Test results (Head and Body SAR).....	26
2.6.1	General description of test procedures.....	28
Annex 1	System performance verification	29
Annex 2	Measurement results (printout from DASY TM)	35
Annex 2.1	PCS 850 MHz head.....	35
Annex 2.2	PCS 850 MHz body	39
Annex 2.3	PCS 1900 MHz head.....	47
Annex 2.4	PCS 1900 MHz body	51
Annex 2.5	WLAN 2450 MHz head	57
Annex 2.6	WLAN 2450 MHz body.....	62
Annex 2.7	Z-axis scans.....	65
Annex 3	Photo documentation	68
Annex 4	Calibration parameters.....	68

1 General Information

1.1 Notes

The test results of this test report relate exclusively to the test item specified in 1.5. The CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

1.1.1 Statement of Compliance

The SAR values found for the TM5-E01 Handset / PDA are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1 g tissue according to the FCC rule §2.1093, the ANSI/IEEE C 95.1:1999, the NCRP Report Number 86 for uncontrolled environment, according to the Health Canada's Safety Code 6 and the Industry Canada Radio Standards Specification RSS-102 for General Population/Uncontrolled exposure.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and that positions the handset a minimum of 15 mm from the body. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The measurement together with the test system set-up is described in chapter 2.3 of this test report. A detailed description of the equipment under test can be found in chapter 1.5.

Test engineer:

2009-02-02

Oleksandr Hnatovskiy

Date

Name _____

Signature

John H. Dill

Technical responsibility for area of testing:

2009-02-02

Thomas Vogler

Date:

Name _____

Signature

Thomas Vay

1.2 Testing laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Straße 6-10,

66117 Saarbruecken

Germany

Telephone: + 49 681 598 - 0

Fax: + 49 681 598 - 8475

e-mail: info@ict.cetecom.de

Internet: <http://www.cetecom-ict.de>

State of accreditation: The Test laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025. DAR registration number: DAT-P-176/94-D1

Test location, if different from CETECOM ICT Services GmbH

Name: ---

Street: ---

Town: ---

Country: ---

Phone: ---

Fax: ---

1.3 Details of applicant

Name: Toshiba Information Systems (UK) Ltd.

Mobile Communications Division

Street: Delta House, The Crescent, Southwood Business Park

Town: Farnborough, Hampshire, GU14 0NL

Country: United Kingdom

Contact: Mr. Adrian Coyle

Telephone: +44 1252 532-309

1.4 Application details

Date of receipt of application: 2008-11-11

Date of receipt of test item: 2009-01-28

Start/Date of test: 2009-01-28

End of test: 2009-01-31

Person(s) present during the test: ---

1.5 Test item

Description of the test item: Handset / PDA
 Type identification: TM5-E01
 FCC-ID : SP2-TM5-E01
 IC-ID :
 Serial number: 359238020000348

Manufacturer:
 Name: Toshiba Corporation
 Street: 1-1, Asahigaoka 3-Chome, Hino-Shi
 Town: Tokyo 191-8555
 Country: Japan

additional information on the DUT:		
device type :	portable device	
IMEI No :	359238020000348	
exposure category:	uncontrolled environment / general population	
test device production information	identical prototype	
device operating configurations :		
operating mode(s)	GSM, DCS, PCS, UMTS/WCDMA, WLAN, Bluetooth	
modulation	GMSK, 8-PSK, 2*BPSK/HPSK(ul)	
GPRS mobile station class :	B	
GPRS multislot class :	12	voice mode : ---
EGPRS multislot class	12	voice mode : ---
maximum no. of timeslots in uplink:	4	
operating frequency range(s)	transmitter frequency range	receiver frequency range
PCS 1900 (tested):	1850.2 MHz ~ 1909.8 MHz	1930.2 MHz ~ 1989.8 MHz
PCS 850 (tested):	824.2 MHz ~ 848.8 MHz	869.2 MHz ~ 893.8 MHz
DCS 1800	1710 MHz ~ 1785 MHz	1805 MHz ~ 1880 MHz
GSM 900	880 MHz ~ 915 MHz	925 MHz ~ 960 MHz
FDD I	1922.4 MHz ~ 1977.6 MHz	2112.4 MHz ~ 2167.6 MHz
WLAN IEEE 802.11b/g (tested)	2412 MHz ~ 2462 MHz	
Power class :	1, tested with power level 0 (1900 MHz band) 4, tested with power level 5 (850 MHz band)	
measured conducted output power:	850 MHz band: 32.2 dBm (GMSK slotted peak) 1900 MHz band: 30.0 dBm (GMSK slotted peak) WLAN 2450 MHz band: 18.7 dBm (avg. max.802.11b) 23.6 dBm (802.11g spectral max.)	
test channels (mid) :	128-190-251 (850 MHz band) 661 (1900 MHz band) 6 (2450 MHz band)	
hardware version :	CS-2	
software version :	CS3-1	
antenna type :	Integrated antenna	
accessories/body-worn configurations:	Stereo headset	
battery options :	Standart battery 3.7V / 1000mAh	

1.6 Test specification(s)

Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01)

IEEE 1528-2003 (April 21, 2003)

RSS-102: Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands (Issue 2 of November 2005)

Canada's Safety Code 6: Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz (99-EHD-237)

IEEE Std C95.3 – 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave.

IEEE Std C95.1 – 1999, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.

1.6.1 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain)	1.60 mW/g	8.00 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g

Table 1: RF exposure limits

The limit applied in this test report is shown in **bold** letters

Notes:

* The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time

** The Spatial Average value of the SAR averaged over the whole body.

*** The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

2 Technical test

2.1 Summary of test results

No deviations from the technical specification(s) were ascertained in the course of the tests performed.	<input checked="" type="checkbox"/>
The deviations as specified in 2.5 were ascertained in the course of the tests performed.	<input type="checkbox"/>

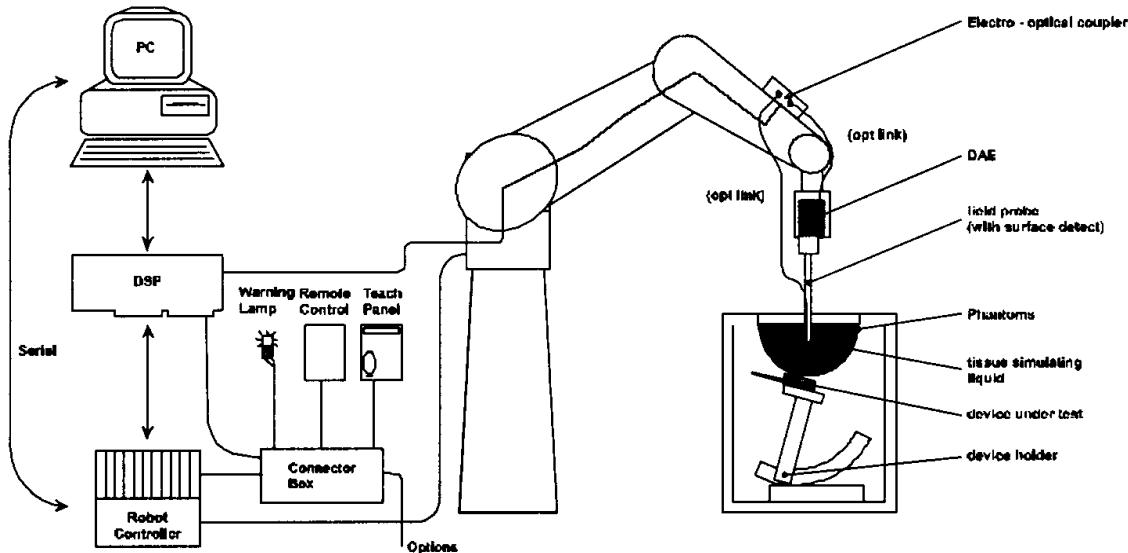
2.2 Test environment

General Environment conditions in the test area are as follows:

Ambient temperature: 20°C – 24°C
Tissue simulating liquid: 20°C – 24°C
Humidity: 40% – 50%

Exact temperature values for each test are shown in the table(s) under 2.5. and/or on the measurement plots.

2.3 Measurement and test set-up


The measurement system is described in chapter 2.4.

The test setup for the system validation can be found in chapter 2.4.14.

A description of positioning and test signal control can be found in chapter 2.5 together with the test results.

2.4 Measurement system

2.4.1 System Description

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY4 measurement server.
- The DASY4 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2000
- DASY4 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

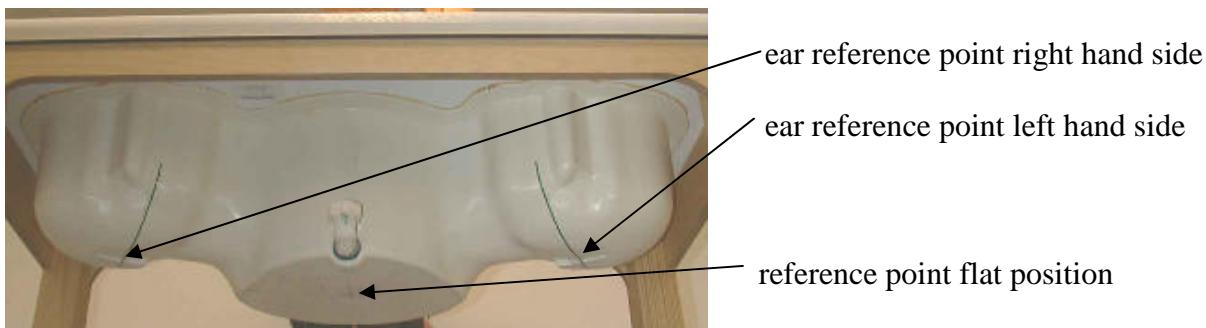
2.4.2 Test environment

The DASY4 measurement system is placed at the head end of a room with dimensions: 5 x 2.5 x 3 m³, the SAM phantom is placed in a distance of 75 cm from the side walls and 1.1m from the rear wall. Above the test system a 1.5 x 1.5 m² array of pyramid absorbers is installed to reduce reflections from the ceiling.

Picture 1 of the photo documentation shows a complete view of the test environment.

The system allows the measurement of SAR values larger than 0.005 mW/g.

2.4.3 Probe description


Isotropic E-Field Probe ET3DV6 for Dosimetric Measurements

Technical data according to manufacturer information	
Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection system Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., glycoether)
Calibration	In air from 10 MHz to 2.5 GHz In head tissue simulating liquid (HSL) at 900 (800-1000) MHz and 1.8 GHz (1700-1910 MHz) (accuracy \pm 9.5%; k=2) Calibration for other liquids and frequencies upon request
Frequency	10 MHz to 3 GHz (dosimetry); Linearity: \pm 0.2 dB (30 MHz to 3 GHz)
Directivity	\pm 0.2 dB in HSL (rotation around probe axis) \pm 0.4 dB in HSL (rotation normal to probe axis)
Dynamic range	5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB
Optical Surface Detection	\pm 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces (ET3DV6 only)
Dimensions	Overall length: 330 mm Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm
Application	General dosimetry up to 3 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms (ET3DV6)

2.4.4 Phantom description

The used SAM Phantom meets the requirements specified in Edition 01-01 of Supplement C to OET Bulletin 65 for Specific Absorption Rate (SAR) measurements.

The phantom consists of a fibreglass shell integrated in a wooden table. It allows left-hand and right-hand head as well as body-worn measurements with a maximum liquid depth of 18 cm in head position and 22 cm in planar position (body measurements). The thickness of the Phantom shell is 2 mm +/- 0.1 mm.

2.4.5 Device holder description

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. This device holder is used for standard mobile phones or PDA's only. If necessary an additional support of polystyrene material is used.

Larger DUT's (e.g. notebooks) cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values.

Therefore those devices are normally only tested at the flat part of the SAM.

2.4.6 Scanning procedure

The DASY4 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The „reference“ and „drift“ measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT’s output power and should vary max. +/- 5 %.
- The „surface check“ measurement tests the optical surface detection system of the DASY4 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above $\pm 0.1\text{mm}$). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^\circ$.)
- The „area scan“ measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The standard scan uses large grid spacing for faster measurement. Standard grid spacing for head measurements is 15 mm in x- and y- dimension. If a finer resolution is needed, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation.
Results of this coarse scan are shown in annex 2.
- A „7x7x7 zoom scan“ measures the field in a volume around the 2D peak SAR value acquired in the previous „coarse“ scan. This is a fine 7x7 grid where the robot additionally moves the probe in 7 steps along the z-axis away from the bottom of the Phantom. Grid spacing for the cube measurement is 5 mm in x and y-direction and 5 mm in z-direction. DASY4 is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in annex 2. Test results relevant for the specified standard (see chapter 1.6.) are shown in table form in chapter 2.5.
- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 2mm steps. This measurement shows the continuity of the liquid and can - depending in the field strength – also show the liquid depth. A z-axis scan of the measurement with maximum SAR value is shown in annex 2.

2.4.7 Spatial Peak SAR Evaluation

The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of 7 x 7 x 7 points. The algorithm that finds the maximal averaged volume is separated into three different stages.

- The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting 'Graph Evaluated'.
- The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum the SAR - values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the boundary of the measurement area) the evaluation will be started on the corners of the bottom plane of the cube.
- All neighboring volumes are evaluated until no neighboring volume with a higher average value is found.

Extrapolation

The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other.

Interpolation

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff].

Volume Averaging

At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average.

Advanced Extrapolation

DASY4 uses the advanced extrapolation option which is able to compensate boundary effects on E-field probes.

2.4.8 Data Storage and Evaluation

Data Storage

The DASY4 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Norm _i , a _{i0} , a _{i1} , a _{i2}
	- Conversion factor	ConvF _i
	- Diode compression point	Dcp _i
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot cf/dcp_i$$

with V_i = compensated signal of channel i ($i = x, y, z$)
 U_i = input signal of channel i ($i = x, y, z$)
 cf = crest factor of exciting field (DASY parameter)
 dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$

with V_i = compensated signal of channel i ($i = x, y, z$)
 $Norm_i$ = sensor sensitivity of channel i ($i = x, y, z$)
 $[mV/(V/m)^2]$ for E-field Probes
 $ConvF$ = sensitivity enhancement in solution
 a_{ij} = sensor sensitivity factors for H-field probes
 f = carrier frequency [GHz]
 E_i = electric field strength of channel i in V/m
 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^2 \cdot \sigma) / (\rho \cdot 1000)$$

with SAR = local specific absorption rate in mW/g
 E_{tot} = total field strength in V/m
 σ = conductivity in [mho/m] or [Siemens/m]
 ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770 \quad \text{or} \quad P_{pwe} = H_{tot}^2 \cdot 37.7$$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²
 E_{tot} = total electric field strength in V/m
 H_{tot} = total magnetic field strength in A/m

2.4.9 Test equipment utilized

This table gives a complete overview of the SAR measurement equipment

Devices used during the test described in chapter 2.5. are marked

	Manufacturer	Device	Type	Serial number	Date of last calibration)*
<input checked="" type="checkbox"/>	Schmid & Partner Engineering AG	Dosimetric E-Field Probe	ET3DV6	1558	August 15, 2008
<input type="checkbox"/>	Schmid & Partner Engineering AG	Dosimetric E-Field Probe	ET3DV6	1559	January 14, 2009
<input checked="" type="checkbox"/>	Schmid & Partner Engineering AG	900 MHz System Validation Dipole	D900V2	102	August 18, 2008
<input type="checkbox"/>	Schmid & Partner Engineering AG	1800 MHz System Validation Dipole	D1800V2	287	August 19, 2008
<input checked="" type="checkbox"/>	Schmid & Partner Engineering AG	1900 MHz System Validation Dipole	D1900V2	531	May 14, 2008
<input checked="" type="checkbox"/>	Schmid & Partner Engineering AG	2450 MHz System Validation Dipole	D2450V2	710	August 20, 2008
<input checked="" type="checkbox"/>	Schmid & Partner Engineering AG	Data acquisition electronics	DAE3V1	413	January 8, 2009
<input type="checkbox"/>	Schmid & Partner Engineering AG	Data acquisition electronics	DAE3V1	477	May 14, 2008
<input checked="" type="checkbox"/>	Schmid & Partner Engineering AG	Software	DASY 4 V4.5	---	N/A
<input checked="" type="checkbox"/>	Schmid & Partner Engineering AG	Phantom	SAM	---	N/A
<input checked="" type="checkbox"/>	Rohde & Schwarz	Universal Radio Communication Tester	CMU 200	106826	January 15, 2009
<input checked="" type="checkbox"/>	Hewlett Packard)*	Network Analyser 300 kHz to 6 GHz	8753C	2937U00269	January 9, 2009
<input checked="" type="checkbox"/>	Hewlett Packard)*	Network Analyser 300 kHz to 6 GHz	85047A	2936A00872	January 9, 2009
<input checked="" type="checkbox"/>	Hewlett Packard	Dielectric Probe Kit	85070C	US99360146	N/A
<input checked="" type="checkbox"/>	Hewlett Packard	Signal Generator	8665A	2833A00112	January 8, 2009
<input checked="" type="checkbox"/>	Amplifier Research	Amplifier	25S1G4 (25 Watt)	20452	N/A
<input checked="" type="checkbox"/>	Rohde & Schwarz	Power Meter	NRP	101367	January 9, 2009
<input checked="" type="checkbox"/>	Rohde & Schwarz	Power Meter Sensor	NRP Z22	100227	January 9, 2009
<input checked="" type="checkbox"/>	Rohde & Schwarz	Power Meter Sensor	NRP Z22	100234	January 9, 2009

)* : Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

2.4.10 Tissue simulating liquids: dielectric properties

The following materials are used for producing the tissue-equivalent materials.

(liquids used for tests described in chapter 2.5. are marked with):

Ingredients (% of weight)	Frequency (MHz)					
frequency band	<input type="checkbox"/> 450	<input checked="" type="checkbox"/> 835	<input type="checkbox"/> 900	<input type="checkbox"/> 1800	<input checked="" type="checkbox"/> 1900	<input checked="" type="checkbox"/> 2450
Tissue Type	Head	Head	Head	Head	Head	Head
Water	38.56	41.45	40.92	52.64	54.9	62.7
Salt (NaCl)	3.95	1.45	1.48	0.36	0.18	0.5
Sugar	56.32	56.0	56.5	0.0	0.0	0.0
HEC	0.98	1.0	1.0	0.0	0.0	0.0
Bactericide	0.19	0.1	0.1	0.0	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	36.8
DGBE	0.0	0.0	0.0	47.0	44.92	0.0

Table 2: Head tissue dielectric properties

Ingredients (% of weight)	Frequency (MHz)					
frequency band	<input type="checkbox"/> 450	<input checked="" type="checkbox"/> 835	<input type="checkbox"/> 900	<input type="checkbox"/> 1800	<input checked="" type="checkbox"/> 1900	<input checked="" type="checkbox"/> 2450
Tissue Type	Body	Body	Body	Body	Body	Body
Water	51.16	52.4	56.0	69.91	69.91	73.2
Salt (NaCl)	1.49	1.40	0.76	0.13	0.13	0.04
Sugar	46.78	45.0	41.76	0.0	0.0	0.0
HEC	0.52	1.0	1.21	0.0	0.0	0.0
Bactericide	0.05	0.1	0.27	0.0	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0
DGBE	0.0	0.0	0.0	29.96	29.96	26.7

Table 3: Body tissue dielectric properties

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, 16MΩ+ resistivity

HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100(ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether

Note : Due to their availability body tissue simulating liquids as defined by FCC OET Bulletin 65 Supplement C are generally used for body worn SAR testing according to European standards.

2.4.11 Tissue simulating liquids: parameters

Used Target Frequency	Target Head Tissue		Measured Head Tissue		Measured Date
[MHz]	Permittivity	Conductivity [S/m]	Permittivity	Conductivity [S/m]	
835	41.5	0.90	42.4	0.90	2009-01-29
900	41.5	0.97	41.6	0.97	2009-01-29
1900	40.0	1.40	40.1	1.41	2009-01-29
2450	39.2	1.80	39.5	1.86	2009-01-30

Table 4: Parameter of the head tissue simulating liquid

Used Target Frequency	Target Body Tissue		Measured Body Tissue		Measured Date
[MHz]	Permittivity	Conductivity [S/m]	Permittivity	Conductivity [S/m]	
835	55.2	0.97	54.6	0.97	2009-01-28
900	55.0	1.05	54.0	1.03	2009-01-28
1900	53.3	1.52	52.9	1.53	2009-01-29
2450	52.7	1.95	52.8	1.96	2009-01-30

Table 5: Parameter of the body tissue simulating liquid

Note: The dielectric properties have been measured using the contact probe method at 22°C.

2.4.12 Measurement uncertainty evaluation for SAR test

The overall combined measurement uncertainty of the measurement system is $\pm 10.3\%$ ($K=1$).

The expanded uncertainty ($k=2$) is assessed to be $\pm 20.6\%$

This measurement uncertainty budget is suggested by IEEE P1528 and determined by Schmid & Partner Engineering AG. The breakdown of the individual uncertainties is as follows:

Error Sources	Uncertainty Value	Probability Distribution	Divi- sor	c_i 1g	c_i 10g	Standard Uncertainty 1g	Standard Uncertainty 10g	v_i^2 or v_{eff}
Measurement System								
Probe calibration	$\pm 4.8\%$	Normal	1	1	1	$\pm 4.8\%$	$\pm 4.8\%$	∞
Axial isotropy	$\pm 4.7\%$	Rectangular	$\sqrt{3}$	0.7	0.7	$\pm 1.9\%$	$\pm 1.9\%$	∞
Hemispherical isotropy	$\pm 9.6\%$	Rectangular	$\sqrt{3}$	0.7	0.7	$\pm 3.9\%$	$\pm 3.9\%$	∞
Spatial resolution	$\pm 0.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.0\%$	$\pm 0.0\%$	∞
Boundary effects	$\pm 1.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6\%$	∞
Probe linearity	$\pm 4.7\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 2.7\%$	$\pm 2.7\%$	∞
System detection limits	$\pm 1.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6\%$	∞
Readout electronics	$\pm 1.0\%$	Normal	1	1	1	$\pm 1.0\%$	$\pm 1.0\%$	∞
Response time	$\pm 0.8\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.5\%$	$\pm 0.5\%$	∞
Integration time	$\pm 2.6\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 1.5\%$	$\pm 1.5\%$	∞
RF ambient conditions	$\pm 3.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 1.7\%$	$\pm 1.7\%$	∞
Probe positioner	$\pm 0.4\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.2\%$	$\pm 0.2\%$	∞
Probe positioning	$\pm 2.9\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 1.7\%$	$\pm 1.7\%$	∞
Max. SAR evaluation	$\pm 1.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6\%$	∞
Test Sample Related								
Device positioning	$\pm 2.9\%$	Normal	1	1	1	$\pm 2.9\%$	$\pm 2.9\%$	145
Device holder uncertainty	$\pm 3.6\%$	Normal	1	1	1	$\pm 3.6\%$	$\pm 3.6\%$	5
Power drift	$\pm 5.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 2.9\%$	$\pm 2.9\%$	∞
Phantom and Set-up								
Phantom uncertainty	$\pm 4.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 2.3\%$	$\pm 2.3\%$	∞
Liquid conductivity (target)	$\pm 5.0\%$	Rectangular	$\sqrt{3}$	0.64	0.43	$\pm 1.8\%$	$\pm 1.2\%$	∞
Liquid conductivity (meas.)	$\pm 2.5\%$	Normal	1	0.64	0.43	$\pm 1.6\%$	$\pm 1.1\%$	∞
Liquid permittivity (target)	$\pm 5.0\%$	Rectangular	$\sqrt{3}$	0.6	0.49	$\pm 1.7\%$	$\pm 1.4\%$	∞
Liquid permittivity (meas.)	$\pm 2.5\%$	Normal	1	0.6	0.49	$\pm 1.5\%$	$\pm 1.2\%$	∞
Combined Uncertainty								
Expanded Std. Uncertainty						$\pm 10.3\%$	$\pm 10.0\%$	330
						$\pm 20.6\%$	$\pm 20.1\%$	

Table 6: Measurement uncertainties

2.4.13 Measurement uncertainty evaluation for system validation

The overall combined measurement uncertainty of the measurement system is $\pm 8.4\%$ ($K=1$).

The expanded uncertainty ($k=2$) is assessed to be $\pm 16.8\%$

This measurement uncertainty budget is suggested by IEEE P1528 and determined by Schmid & Partner Engineering AG. The breakdown of the individual uncertainties is as follows:

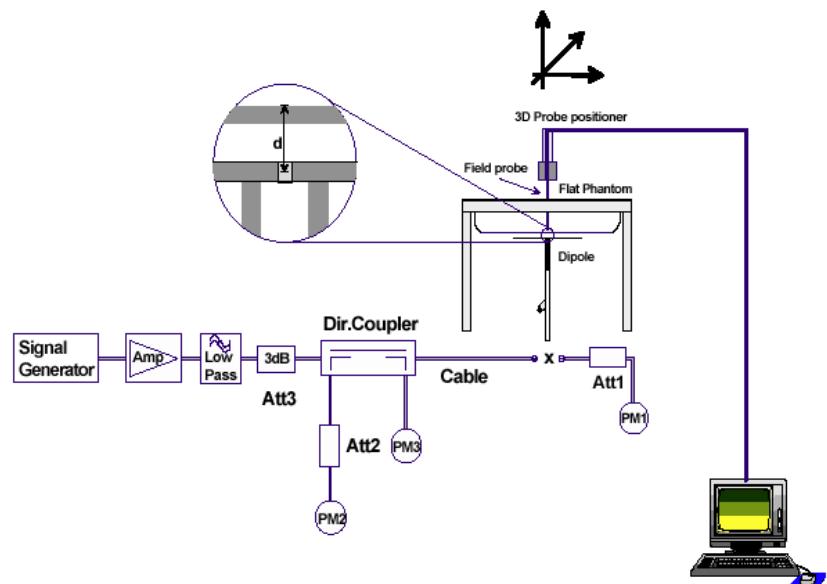
Error Sources	Uncertainty Value	Probability Distribution	Divisor	c_i 1g	c_i 10g	Standard Uncertainty 1g	Standard Uncertainty 10g	v_i^2 or v_{eff}
Measurement System								
Probe calibration	$\pm 4.8\%$	Normal	1	1	1	$\pm 4.8\%$	$\pm 4.8\%$	∞
Axial isotropy	$\pm 4.7\%$	Rectangular	$\sqrt{3}$	0.7	0.7	$\pm 1.9\%$	$\pm 1.9\%$	∞
Hemispherical isotropy	$\pm 0.0\%$	Rectangular	$\sqrt{3}$	0.7	0.7	$\pm 0.0\%$	$\pm 3.9\%$	∞
Boundary effects	$\pm 1.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6\%$	∞
Probe linearity	$\pm 4.7\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 2.7\%$	$\pm 2.7\%$	∞
System detection limits	$\pm 1.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6\%$	∞
Readout electronics	$\pm 1.0\%$	Normal	1	1	1	$\pm 1.0\%$	$\pm 1.0\%$	∞
Response time	$\pm 0.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.0\%$	$\pm 0.0\%$	∞
Integration time	$\pm 0.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.0\%$	$\pm 0.0\%$	∞
RF ambient conditions	$\pm 3.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 1.7\%$	$\pm 1.7\%$	∞
Probe positioner	$\pm 0.4\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.2\%$	$\pm 0.2\%$	∞
Probe positioning	$\pm 2.9\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 1.7\%$	$\pm 1.7\%$	∞
Max. SAR evaluation	$\pm 1.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6\%$	∞
Test Sample Related								
Dipole axis to liquid distance	$\pm 2.0\%$	Normal	1	1	1	$\pm 1.2\%$	$\pm 1.2\%$	∞
Power drift	$\pm 4.7\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 2.7\%$	$\pm 2.7\%$	∞
Phantom and Set-up								
Phantom uncertainty	$\pm 4.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 2.3\%$	$\pm 2.3\%$	∞
Liquid conductivity (target)	$\pm 5.0\%$	Rectangular	$\sqrt{3}$	0.64	0.43	$\pm 1.8\%$	$\pm 1.2\%$	∞
Liquid conductivity (meas.)	$\pm 2.5\%$	Normal	1	0.64	0.43	$\pm 1.6\%$	$\pm 1.1\%$	∞
Liquid permittivity (target)	$\pm 5.0\%$	Rectangular	$\sqrt{3}$	0.6	0.49	$\pm 1.7\%$	$\pm 1.4\%$	∞
Liquid permittivity (meas.)	$\pm 2.5\%$	Normal	1	0.6	0.49	$\pm 1.5\%$	$\pm 1.2\%$	∞
Combined Uncertainty						$\pm 8.4\%$	$\pm 8.1\%$	
Expanded Std. Uncertainty						$\pm 16.8\%$	$\pm 16.2\%$	

Table 7: Measurement uncertainties

2.4.14 System validation

The system validation is performed for verifying the accuracy of the complete measurement system and performance of the software. The system validation is performed with tissue equivalent material according to IEEE P1528 (described above). The following table shows validation results for all frequency bands and tissue liquids used during the tests of the test item described in chapter 1.5. (graphic plot(s) see annex 1).

Validation Kit	Frequency	Target Peak SAR (1000 mW) (+/- 10%)	Target SAR _{1g} (1000 mW) (+/- 10%)	Measured Peak SAR (1000 mW)	Measured SAR _{1g} (1000 mW)	Measured date
D900V2 S/N: 102	900 MHz head	15.4 mW/g	10.5 mW/g	16.4 mW/g	10.9 mW/g	2009-01-29
D900V2 S/N: 102	900 MHz body	16.4 mW/g	10.8 mW/g	16.2 mW/g	11.1 mW/g	2009-01-28
D1900V2 S/N: 531	1900 MHz head	71.6 mW/g	37.6 mW/g	74.5 mW/g	40.1 mW/g	2009-01-29
D1900V2 S/N: 531	1900 MHz body	69.6 mW/g	38.3 mW/g	73.9 mW/g	40.4 mW/g	2009-01-29
D2450V2 S/N: 710	2450 MHz head	110.8 mW/g	51.4 mW/g	113 mW/g	50.6 mW/g	2009-01-30
D2450V2 S/N: 710	2450 MHz body	99.6 mW/g	49.4 mW/g	102.6 mW/g	52.1 mW/g	2009-01-30


Table 8: Results system validation

Note : 900 MHz probe/dipole calibration is valid +/-100 MHz and fully covers the 850 MHz band.

2.4.15 Validation procedure

The validation is performed by using a validation dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a plexiglass spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 1000 mW. To adjust this power a power meter is used. The power sensor is connected to the cable before the validation to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the validation to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

Validation results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system.

2.5 Test Results

2.5.1 Conducted power measurements

For the measurements a Rohde & Schwarz Radio Communication Tester CMU 200 was used. The output power was measured using an integrated RF connector and attached RF cable. The conducted output power was also checked before and after each SAR measurement. The resulting power values were within a 0.2 dB tolerance of the values shown below.

Note : CMU200 measures GSM peak and average output power for active timeslots.

For SAR the timebased average power is relevant. The difference inbetween depends on the duty cycle of the TDMA signal :

No. of timeslots	1	2	3	4
Duty Cycle	1 : 8	1 : 4	1 : 2.66	1 : 2
timebased avg. power compared to slotted avg. power	- 9 dB	- 6 dB	- 4.25 dB	- 3 dB

The signalling modes differ as follows :

mode	coding scheme	modulation
GRPS	CS1 to CS4	GMSK
EGPRS (EDGE)	MCS1 to MCS4	GMSK
EGPRS (EDGE)	MCS5 to MCS9	8PSK

Apart from modulation change (GMSK/8PSK) coding schemes differ in code rate without influence on the RF signal. Therefore one coding scheme per mode was selected for conducted power measurements.

2.5.2 Conducted power measurements GSM 850 MHz

Channel / frequency	modulation	timeslots	slotted avg. power	timebased avg. power (calculated)
128 / 824.2 MHz	GMSK	1	32.2dBm	23.2dBm
190 / 836.6 MHz	GMSK	1	32.1dBm	23.1dBm
251 / 848.0 MHz	GMSK	1	32.1dBm	23.1dBm
128 / 824.2 MHz	GMSK	2	29.2dBm	23.2dBm
190 / 836.6 MHz	GMSK	2	29.1dBm	23.1dBm
251 / 848.0 MHz	GMSK	2	29.1dBm	23.1dBm
128 / 824.2 MHz	GMSK	3	28.6dBm	24.4dBm
190 / 836.6 MHz	GMSK	3	28.6dBm	24.4dBm
251 / 848.0 MHz	GMSK	3	28.6dBm	24.4dBm
128 / 824.2 MHz	GMSK	4	27.7dBm	24.7dBm
190 / 836.6 MHz	GMSK	4	27.7dBm	24.7dBm
251 / 848.0 MHz	GMSK	4	27.7dBm	24.7dBm
128 / 824.2 MHz	8PSK	4	22.2dBm	19.2dBm
190 / 836.6 MHz	8PSK	4	22.2dBm	19.2dBm
251 / 848.0 MHz	8PSK	4	22.2dBm	19.2dBm

Table 9: Test results conducted peak power measurement GSM 850 MHz

2.5.3 Conducted power measurements GSM 1900 MHz

Channel / frequency	modulation	timeslots	slotted avg. power	timebased avg. power (calculated)
512 / 1850.2 MHz	GMSK	1	30.0dBm	21.0dBm
661 / 1880.0 MHz	GMSK	1	29.5dBm	20.5dBm
810 / 1909.8 MHz	GMSK	1	29.5dBm	20.5dBm
512 / 1850.2 MHz	GMSK	2	27.8dBm	21.8dBm
661 / 1880.0 MHz	GMSK	2	28.0dBm	22.0dBm
810 / 1909.8 MHz	GMSK	2	27.9dBm	21.9dBm
512 / 1850.2 MHz	GMSK	3	26.3dBm	22.1dBm
661 / 1880.0 MHz	GMSK	3	26.5dBm	22.3dBm
810 / 1909.8 MHz	GMSK	3	26.4dBm	22.2dBm
512 / 1850.2 MHz	GMSK	4	25.3dBm	22.3dBm
661 / 1880.0 MHz	GMSK	4	25.5dBm	22.5dBm
810 / 1909.8 MHz	GMSK	4	25.4dBm	22.4dBm
512 / 1850.2 MHz	8PSK	4	21.2dBm	18.2dBm
661 / 1880.0 MHz	8PSK	4	21.5dBm	18.4dBm
810 / 1909.8 MHz	8PSK	4	21.4dBm	18.5dBm

Table 10: Test results conducted peak power measurement GSM 1900 MHz

2.5.4 Justification of SAR measurements in GSM mode

SAR measurements in head positions were performed in speech mode with 1 active timeslot.

SAR measurements in body position were performed in GPRS mode with 4 active timeslots.

As conducted power for other timeslot configurations only shows little variation SAR delta checks were performed in these modes, too.

In EDGE mode a delta measurement was performed with MCS8 (8PSK modulation) to show that SAR value corresponds to the lower average output power compared to GMSK.

2.5.5 Conducted power measurements WLAN

Channel / frequency	802.11b avg. max.	82.11g spectral max.
1 / 2412 MHz	18.27 dBm	22.6 dBm
6 / 2437 MHz	18.70 dBm	23.6 dBm
11 / 2472 MHz	17.83 dBm	22.9 dBm

Table 11: Test results conducted peak power measurement

Note : WLAN conducted results are from measurements for part 15.247 test report

2.5.6 Multiple Transmitter Information

The following tables list information which is relevant for the decision if a simultaneous transmit evaluation is necessary according to KDB 648474.

important abbreviations :

SPLSR : Antenna pair SAR to Peak Location Separation Ratio ($SAR_x + SAR_y$)/ d_{xy}
 P_{ref} : 12 mW at 2.4 GHz

a) head position

Tx No.	Communication system and frequency band	P_{avg} (mW)	single SAR (W/kg) (see ch. 2.6)	remarks
1a	GSM 850 MHz	250	0.590	routine evaluation
1b	GSM 1900 MHz	125	0.374	routine evaluation
2	802.11b/g 2450 MHz	74	0.534	routine evaluation $P_2 > P_{ref}$, $d_{23} < 2.5$ cm
3	Bluetooth 2450 MHz	6	:=0	$P_3 < P_{ref}$, $d_{23} < 2.5$ cm
Sum of all 1g-SAR values		n/a		

Table 12: Communication systems and SAR values in head position

antenna pair (x,y)	antenna distance d_{xy} (cm)	L_{xy} (cm)	$SPLSR_{xy}$	sim.-Tx SAR	remarks
(1a,2)	11.8	n/a	0.095	N	$SPLSR_{xy} < 0.3$
(1b,2)	11.8	n/a	0.077	N	$SPLSR_{xy} < 0.3$
(1,3)	11.8	n/a	n/a	N	BT no stand alone
(2,3)	0	n/a	n/a	N	BT no stand alone $P_2 > P_{ref}$, $SAR < 1.2$ W/kg

Table 13: Antenna distances and SPLSR evaluation in head position

a) body position

Tx No.	Communication system and frequency band	P _{avg} (mW)	single SAR (W/kg) (see ch. 2.6)	remarks
1a	GSM 850 MHz	250	0.885	routine evaluation
1b	GSM 1900 MHz	125	0.443	routine evaluation
2	802.11b/g 2450 MHz	74	0.082	routine evaluation $P_2 > P_{ref}$, $d_{23} < 2.5$ cm
3	Bluetooth 2450 MHz	6	:=0	$P_3 < P_{ref}$, $d_{23} < 2.5$ cm
Sum of all 1g-SAR values		n/a		

Table 14: Communication systems and SAR values in head position

antenna pair (x,y)	antenna distance d _{xy} (cm)	L _{xy} (cm)	SPLSR _{xy}	sim.-Tx SAR	remarks
(1a,2)	11.8	n/a	0.09	N	SPLSR _{xy} < 0.3
(1b,2)	11.8	n/a	0.044	N	SPLSR _{xy} < 0.3
(1,3)	11.8	n/a	n/a	N	BT no stand alone
(2,3)	0	n/a	n/a	N	BT no stand alone $P_2 > P_{ref}$, SAR < 1.2 W/kg

Table 15: Antenna distances and SPLSR evaluation in head position

In simple words :

The distance of the GSM antenna to the antenna(s) of unlicensed transmitters is > 5 cm and the sum of the SAR values is < 1.6 W/kg :

No simultaneous transmission SAR evaluation is necessary with GSM.

The Bluetooth output power is below P_{ref}. So neither standalone SAR for BT nor simultaneous Tx SAR with the WLAN transmitter is necessary.

See photo documentation for exact antenna positions.

2.6 Test results (Head and Body SAR)

The table contains the measured SAR values averaged over a mass of 1 g					
Channel / frequency	Position	Left hand position	Right hand position	Limit	Liquid temperature
190 / 836.6 MHz	cheek	0.590 W/kg	0.539 W/kg	1.6 W/kg	22.7/22.6 °C
190 / 836.6 MHz	tilted 15°	0.256 W/kg	0.297 W/kg	1.6 W/kg	22.6/22.6 °C
128 / 824.2 MHz	cheek	not necessary	not necessary	1.6 W/kg	--- °C
251 / 848.8 MHz	cheek	not necessary	not necessary	1.6 W/kg	--- °C

Table 16: Test results (Head SAR 850 MHz)

Note: The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.

The table contains the measured SAR values averaged over a mass of 1 g					
Channel / frequency	Position	Number of time slot	Body worn	Limit	Liquid temperature
190 / 836.6 MHz	front	4	0.626 W/kg	1.6 W/kg	22.0°C
190 / 836.6 MHz	rear	4	0.867 W/kg	1.6 W/kg	22.0°C
190 / 836.6 MHz	rear	3	0.823 W/kg	1.6 W/kg	22.0°C
190 / 836.6 MHz	rear	2	0.786 W/kg	1.6 W/kg	22.0°C
190 / 836.6 MHz	rear	1	0.628 W/kg	1.6 W/kg	22.0°C
128 / 824.2 MHz	rear	4	0.876 W/kg	1.6 W/kg	22.0°C
251 / 848.8 MHz	rear	4	0.885 W/kg	1.6 W/kg	22.0°C
251 / 848.8 MHz	rear	4 EGPRS	0.235 W/kg	1.6 W/kg	22.0°C

Table 17: Test results (Body SAR 850 MHz)

Note: The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.

Tests in body position were performed with 15 mm air gap between DUT and SAM to simulate the use of a non-metallic belt-clip or holster.

The table contains the measured SAR values averaged over a mass of 1 g					
Channel / frequency	Position	Left hand position	Right hand position	Limit	Liquid temperature
661 / 1880.0 MHz	cheek	0.199 W/kg	0.374 W/kg	1.6 W/kg	22.0/22.2 °C
661 / 1880.0 MHz	tilted 15°	0.105 W/kg	0.115 W/kg	1.6 W/kg	22.0/22.2 °C
512 / 1850.2 MHz	cheek	not necessary	not necessary	1.6 W/kg	---- °C
810 / 1909.8 MHz	cheek	not necessary	not necessary	1.6 W/kg	---- °C

Table 18: Test results (Head SAR 1900 MHz)

Note: The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.

The table contains the measured SAR values averaged over a mass of 1 g					
Channel / frequency	Position	Number of time slot	Body worn	Limit	Liquid temperature
661 / 1880.0 MHz	front	4	0.329 W/kg	1.6 W/kg	22.7°C
661 / 1880.0 MHz	rear	4	0.443 W/kg	1.6 W/kg	22.7°C
661 / 1880.0 MHz	rear	3	0.422 W/kg	1.6 W/kg	22.7°C
661 / 1880.0 MHz	rear	2	0.396 W/kg	1.6 W/kg	22.7°C
661 / 1880.0 MHz	rear	1	0.258 W/kg	1.6 W/kg	22.7°C
661 / 1880.0 MHz	rear	4 EGPRS	0.176 W/kg	1.6 W/kg	22.7°C
512 / 1850.2 MHz	rear	4	not necessary	1.6 W/kg	----
810 / 1909.8 MHz	rear	4	not necessary	1.6 W/kg	----

Table 19: Test results (Body SAR 1900 MHz)

Note: The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.

Tests in body position were performed with 15 mm air gap between DUT and SAM to simulate the use of a non-metallic belt-clip or holster.

The table contains the measured SAR values averaged over a mass of 1 g					
Channel / frequency	Position	Left hand position	Right hand position	Limit	Liquid temperature
6 / 2437 MHz	cheek	0.243 W/kg	0.470 W/kg	1.6 W/kg	21.7/21.7 °C
6 / 2437 MHz	tilted 15°	0.267 W/kg	0.534 W/kg	1.6 W/kg	21.7/21.7 °C
6 / 2437 MHz	tilted 15° 6 Mbps OFDM		0.311 W/kg	1.6 W/kg	21.7 °C
1 / 2412 MHz	tilted 15°	not necessary	not necessary	1.6 W/kg	---- °C
11 / 2462 MHz	tilted 15°	not necessary	not necessary	1.6 W/kg	---- °C

Table 20: Test results (Head SAR WLAN 2450 MHz)

Note: The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.

The table contains the measured SAR values averaged over a mass of 1 g					
Channel / frequency	Position	Data rate	Body worn	Limit	Liquid temperature
6 / 2437 MHz	front	1 Mbps	0.058 W/kg	1.6 W/kg	21.7°C
6 / 2437 MHz	rear	1 Mbps	0.082 W/kg	1.6 W/kg	21.7°C
6 / 2437 MHz	rear	6 Mbps	0.046 W/kg	1.6 W/kg	21.7°C

Table 21: Test results (Body SAR WLAN 2450 MHz)

Note: The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.

Tests in body position were performed with 15 mm air gap between DUT and SAM to simulate the use of a non-metallic belt-clip or holster.

2.6.1 General description of test procedures

The DUT is tested using a CMU 200 communications tester as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted peak power.

Test positions as described in the tables above are in accordance with the specified test standard.

Tests in body position are performed with the maximum number of timeslots in uplink. Additional delta checks are performed if averaged power may be on a similar level for other timeslot configurations and on customer request.

Tests in head position are performed in voice mode with 1 timeslot unless GPRS/EGPRS function allows parallel voice and data traffic on 2 or more timeslots (see chapter 1.5 for details).

The WLAN tests were performed with data rate 1 Mbps in 802.11b mode. At the worst case position additional tests were performed with data rate 6 Mbps in 802.11g mode. The DUT was set to continuous TX mode and maximum output power.

Conducted output power was measured using an integrated RF connector and attached RF cable.

Annex 1 System performance verification

Date/Time: 2009-01-29 11:46:19 Date/Time: 2009-01-29 11:50:00

SystemPerformanceCheck-D900-850 head 2009-01-29

DUT: Dipole 900 MHz; Type: D900V2; Serial: 102

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: HSL850 Medium parameters used: $f = 900$ MHz; $\sigma = 0.97$ mho/m; $\epsilon_r = 41.6$; $\rho = 1000$ kg/m³

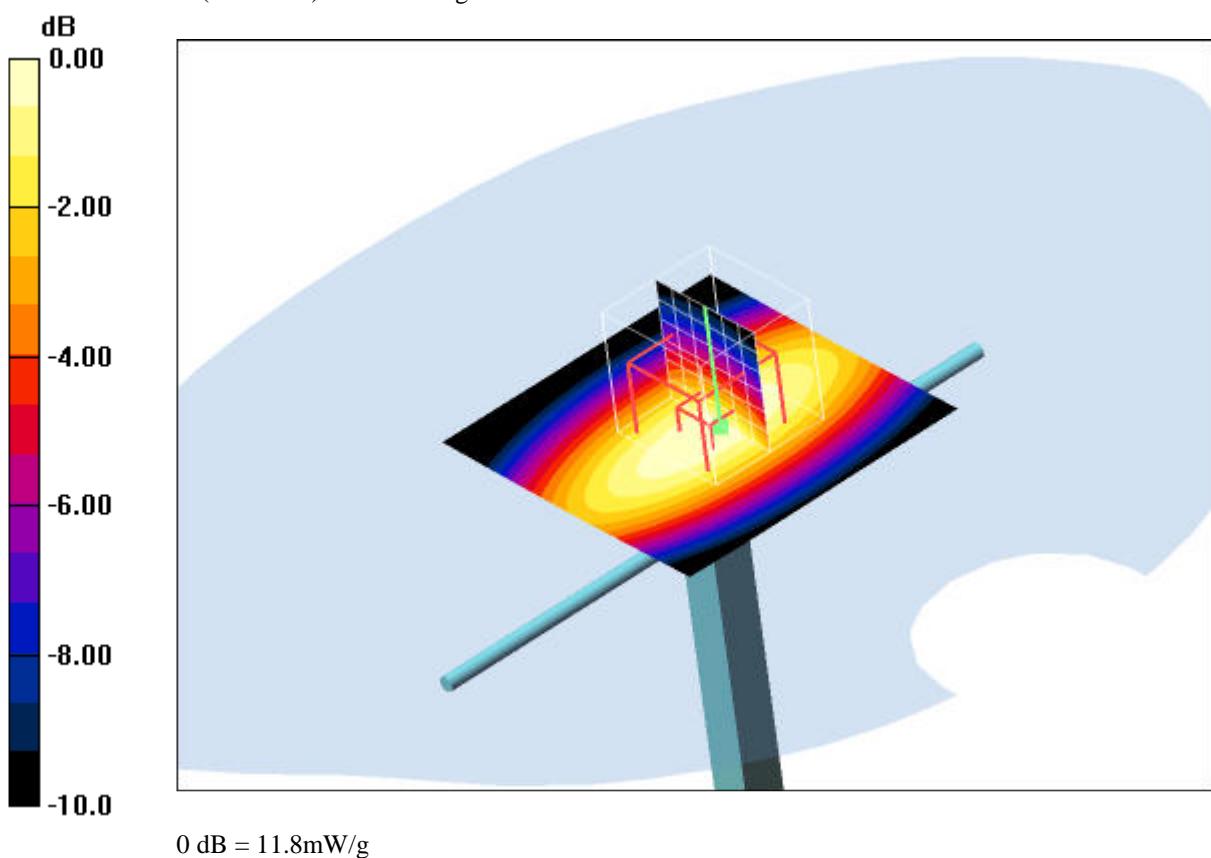
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(5.99, 5.99, 5.99); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=15mm, Pin=1000mW/Area Scan (51x51x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 11.7 mW/g


d=15mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 115.2 V/m; Power Drift = -0.024 dB

Peak SAR (extrapolated) = 16.4 W/kg

SAR(1 g) = 10.9 mW/g; SAR(10 g) = 7.03 mW/g

Maximum value of SAR (measured) = 11.8 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 23.3°C; liquid temperature: 22.7°C

Date/Time: 2009-01-28 13:02:47 Date/Time: 2009-01-28 13:06:36

SystemPerformanceCheck-D900-850 body 2009-01-28**DUT: Dipole 900 MHz; Type: D900V2; Serial: 102**

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: M850 Medium parameters used: $f = 900$ MHz; $\sigma = 1.03$ mho/m; $\epsilon_r = 54$; $\rho = 1000$ kg/m³

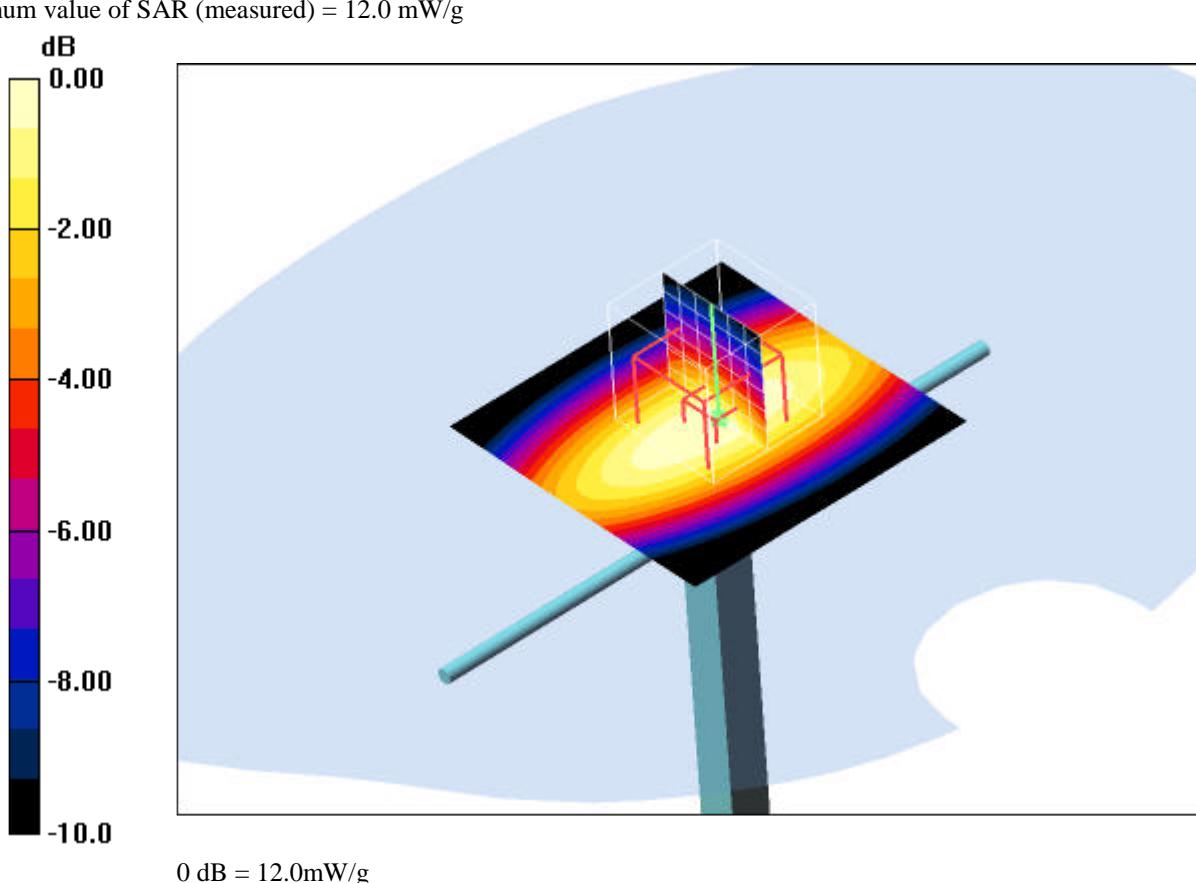
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(5.8, 5.8, 5.8); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=15mm, Pin=1000mW/Area Scan (51x51x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 11.9 mW/g


d=15mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 113.2 V/m; Power Drift = -0.021 dB

Peak SAR (extrapolated) = 16.2 W/kg

SAR(1 g) = 11.1 mW/g; SAR(10 g) = 7.25 mW/g

Maximum value of SAR (measured) = 12.0 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 23.2°C; liquid temperature: 22.0°C

Date/Time: 2009-01-29 14:20:33 Date/Time: 2009-01-29 14:24:10

SystemPerformanceCheck-D1900 head 2009-01-29**DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:531**

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900 Medium parameters used (interpolated): $f = 1900$ MHz; $\sigma = 1.41$ mho/m; $\epsilon_r = 40.1$; $\rho = 1000$ kg/m³

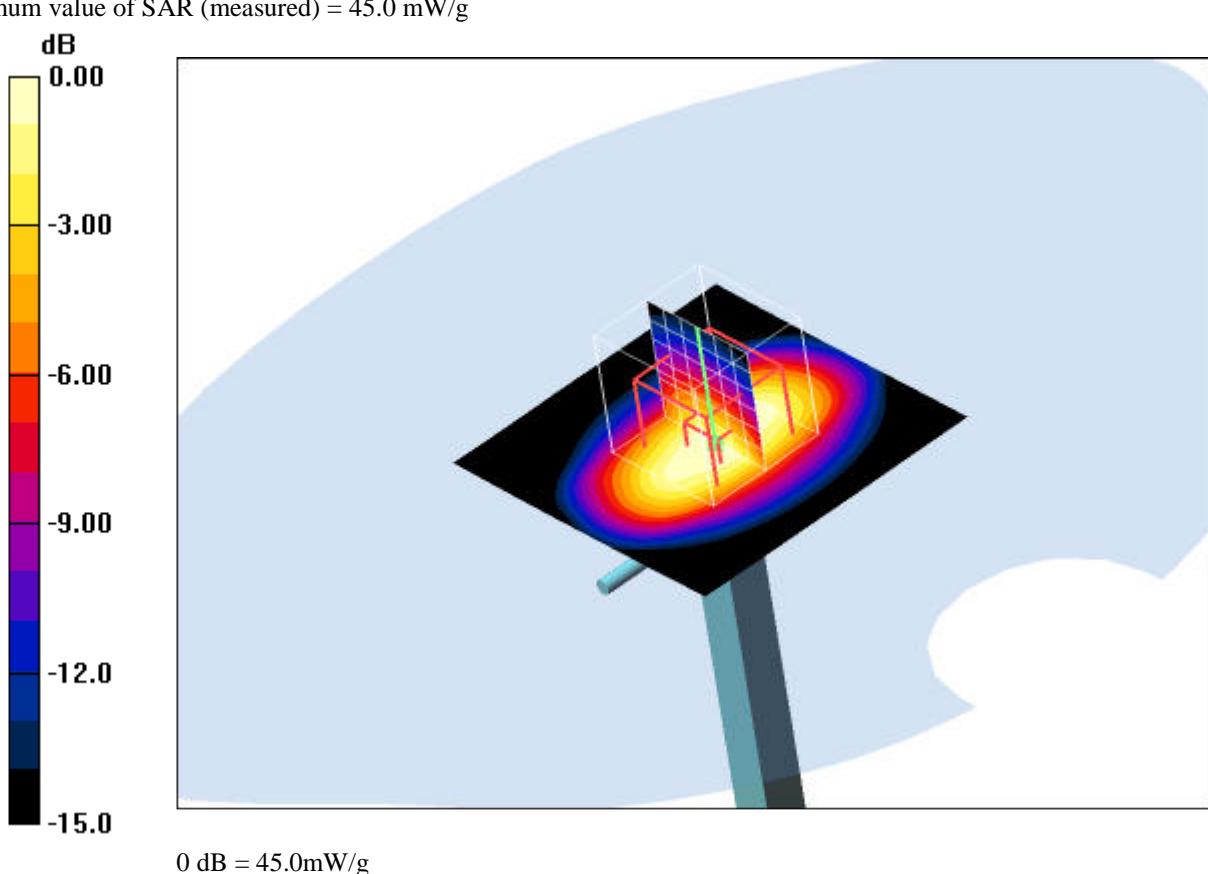
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.96, 4.96, 4.96); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=10mm, Pin=1000mW/Area Scan (51x51x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 53.7 mW/g


d=10mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 183.2 V/m; Power Drift = -0.068 dB

Peak SAR (extrapolated) = 74.5 W/kg

SAR(1 g) = 40.1 mW/g; SAR(10 g) = 20.9 mW/g

Maximum value of SAR (measured) = 45.0 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 23.2°C; liquid temperature: 22.2°C

Date/Time: 2009-01-29 18:00:19 Date/Time: 2009-01-29 18:03:58

SystemPerformanceCheck-D1900 body 2009-01-29**DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:531**

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: M1900 Medium parameters used (interpolated): $f = 1900$ MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 52.9$; $\rho = 1000$ kg/m³

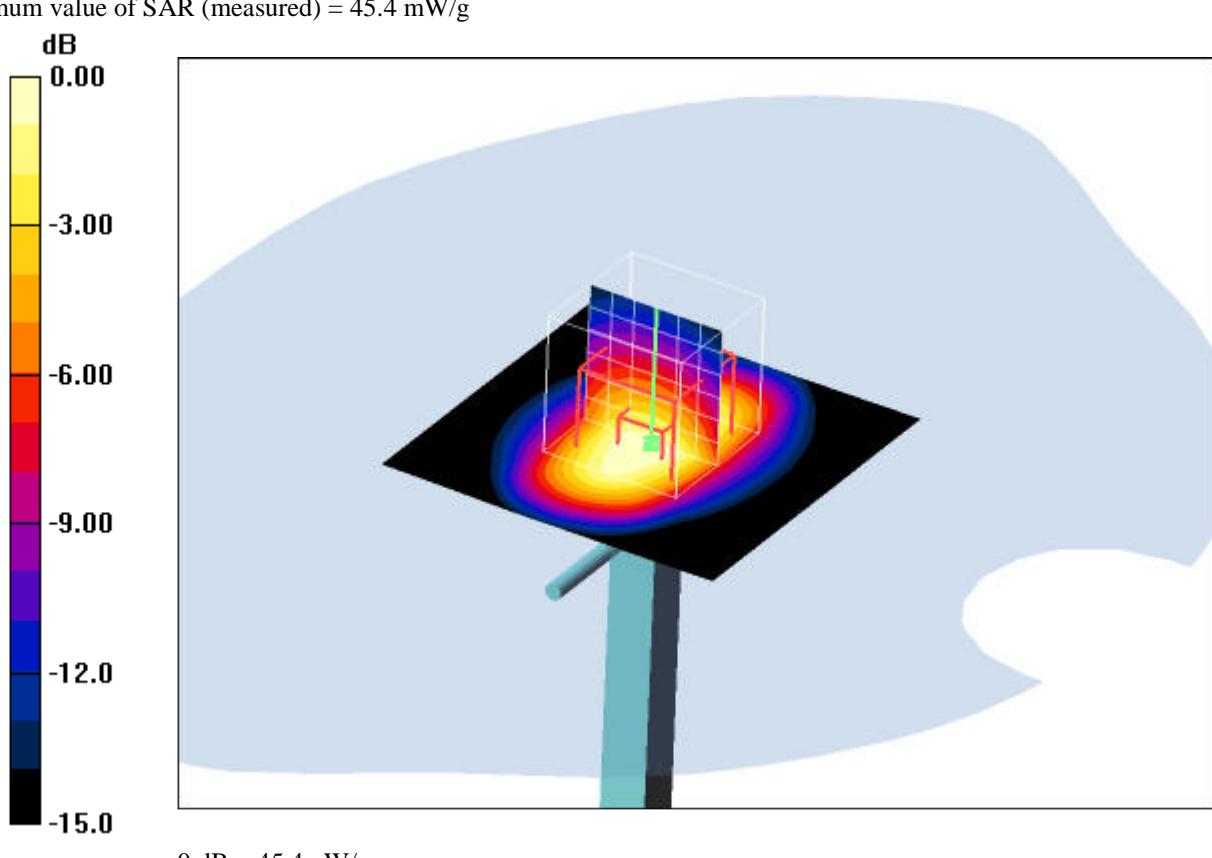
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.39, 4.39, 4.39); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=10mm, Pin=1000mW/Area Scan (51x51x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 56.7 mW/g


d=10mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 180.3 V/m; Power Drift = -0.016 dB

Peak SAR (extrapolated) = 73.9 W/kg

SAR(1 g) = 40.4 mW/g; SAR(10 g) = 21.5 mW/g

Maximum value of SAR (measured) = 45.4 mW/g

0 dB = 45.4mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 23.7°C; liquid temperature: 22.7°C

Date/Time: 2009-01-30 14:23:57 Date/Time: 2009-01-30 14:28:07

SystemPerformanceCheck-D2450 head 2009-01-30**DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 710**

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL2450 Medium parameters used: $f = 2450$ MHz; $\sigma = 1.86$ mho/m; $\epsilon_r = 39.5$; $\rho = 1000$ kg/m³

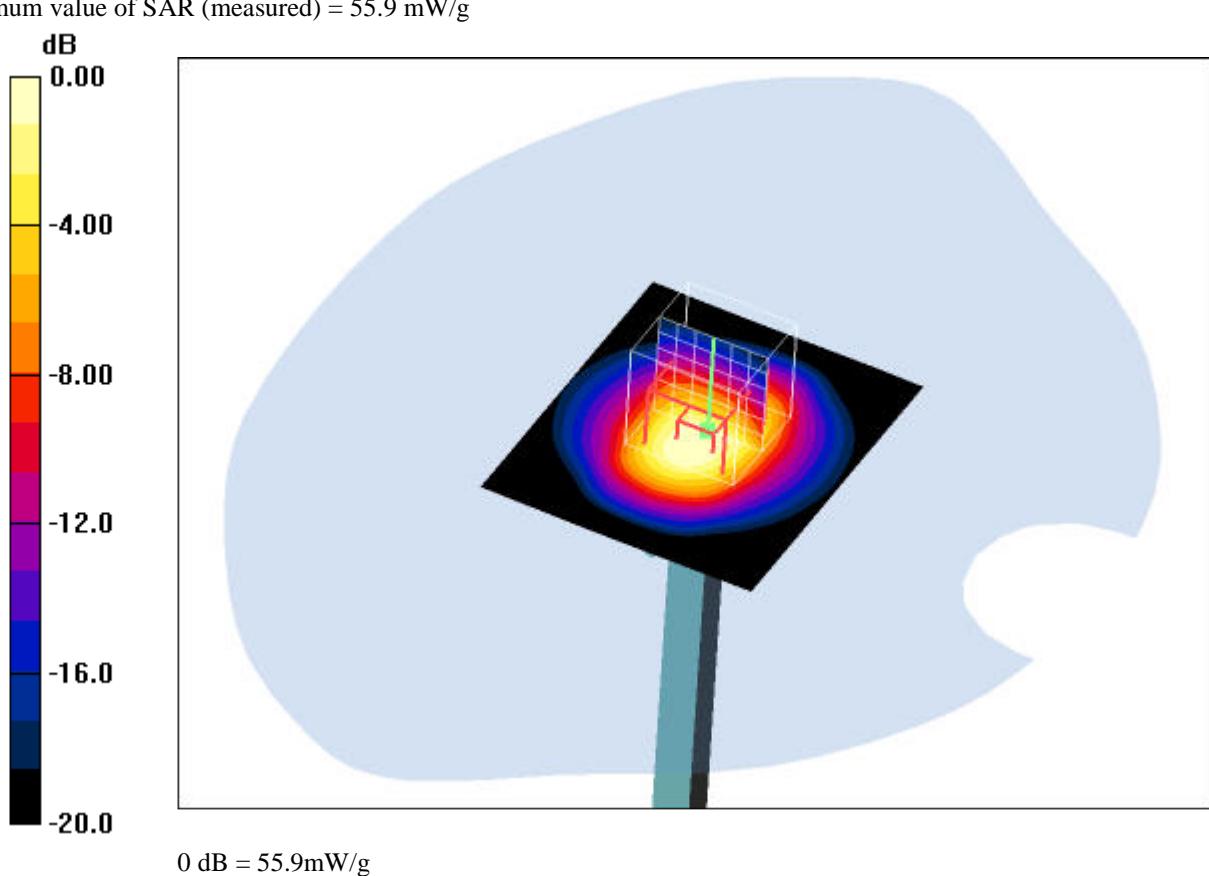
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.4, 4.4, 4.4); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=10mm, Pin=1000mW/Area Scan (51x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 68.1 mW/g


d=10mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 181.1 V/m; Power Drift = -0.041 dB

Peak SAR (extrapolated) = 113.0 W/kg

SAR(1 g) = 50.6 mW/g; SAR(10 g) = 23.5 mW/g

Maximum value of SAR (measured) = 55.9 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 23.6 °C; liquid temperature: 21.7 °C

Date/Time: 2009-01-30 18:23:56 Date/Time: 2009-01-30 18:28:15

SystemPerformanceCheck-D2450 body 2009-01-30**DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 710**

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: M2450 Medium parameters used: $f = 2450$ MHz; $\sigma = 1.96$ mho/m; $\epsilon_r = 52.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

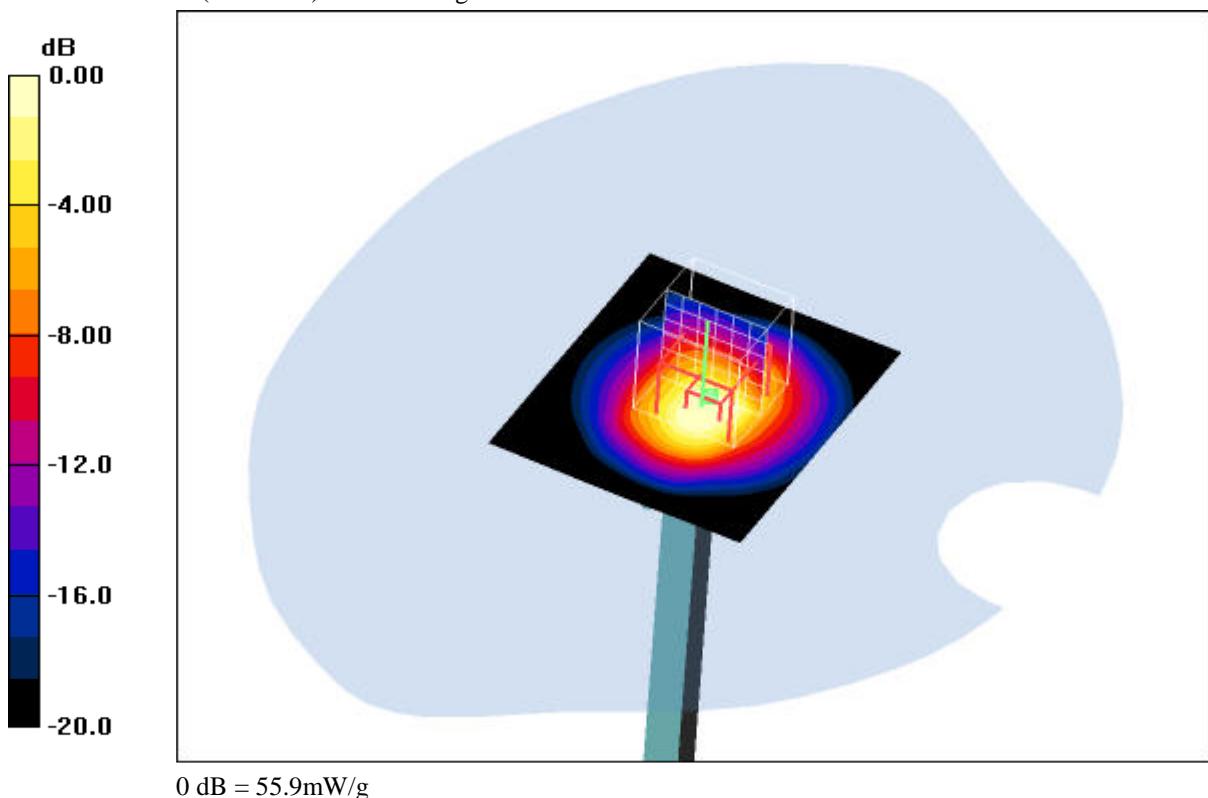
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(3.86, 3.86, 3.86); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=10mm, Pin=1000mW/Area Scan (51x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 60.4 mW/g

d=10mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 189.7 V/m; Power Drift = -0.137 dB

Peak SAR (extrapolated) = 102.6 W/kg

SAR(1 g) = 52.1 mW/g; SAR(10 g) = 24.4 mW/g

Maximum value of SAR (measured) = 55.9 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 23.6 °C; liquid temperature: 21.7 °C

Annex 2 Measurement results (printout from DASY TM)**Remark: results of conducted power measurements: see chapter 2.5/2.6 (if applicable)****Annex 2.1 PCS 850 MHz head**

Date/Time: 2009-01-29 12:05:12 Date/Time: 2009-01-29 12:13:21

P1528_OET65-LeftHandSide-GSM850**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.9$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

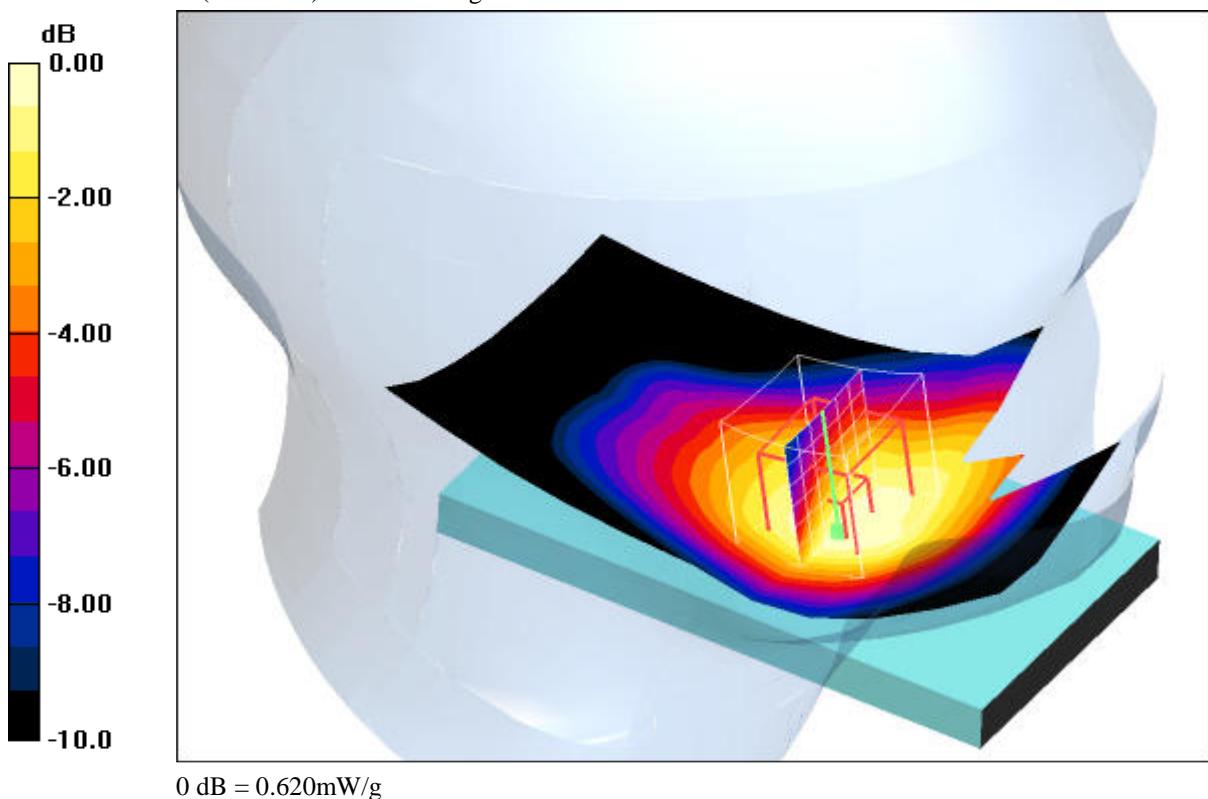
Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.19, 6.19, 6.19); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.633 mW/g


Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.3 V/m; Power Drift = -0.073 dB

Peak SAR (extrapolated) = 0.721 W/kg

SAR(1 g) = 0.590 mW/g; SAR(10 g) = 0.446 mW/g

Maximum value of SAR (measured) = 0.620 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 23.3°C; liquid temperature: 22.7°C

Date/Time: 2009-01-29 12:31:41 Date/Time: 2009-01-29 12:39:56 Date/Time: 2009-01-29 12:57:45

P1528_OET65-LeftHandSide-GSM850**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.9$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.19, 6.19, 6.19); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.267 mW/g

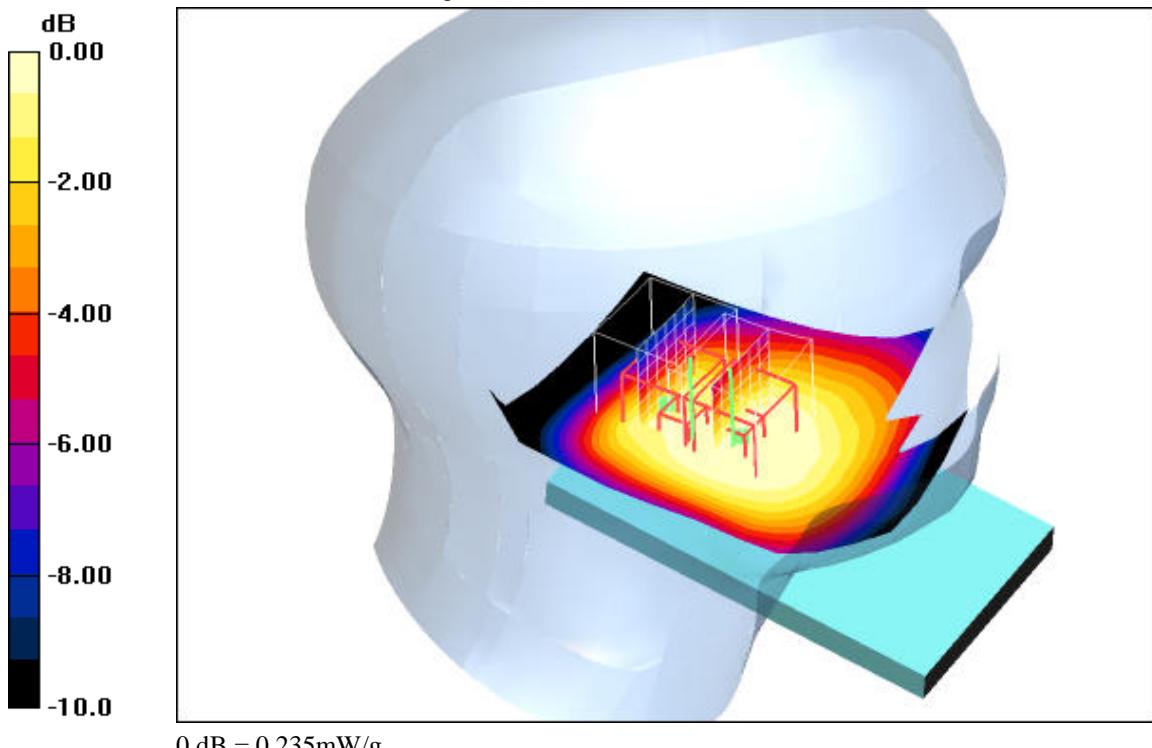
Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.7 V/m; Power Drift = -0.012 dB

Peak SAR (extrapolated) = 0.301 W/kg

SAR(1 g) = 0.256 mW/g; SAR(10 g) = 0.200 mW/g

Maximum value of SAR (measured) = 0.266 mW/g


Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.7 V/m; Power Drift = -0.012 dB

Peak SAR (extrapolated) = 0.264 W/kg

SAR(1 g) = 0.201 mW/g; SAR(10 g) = 0.141 mW/g

Maximum value of SAR (measured) = 0.235 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 23.2°C; liquid temperature: 22.6°C

Date/Time: 2009-01-29 13:34:59 Date/Time: 2009-01-29 13:42:47

P1528_OET65-RightHandSide-GSM850**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.9$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

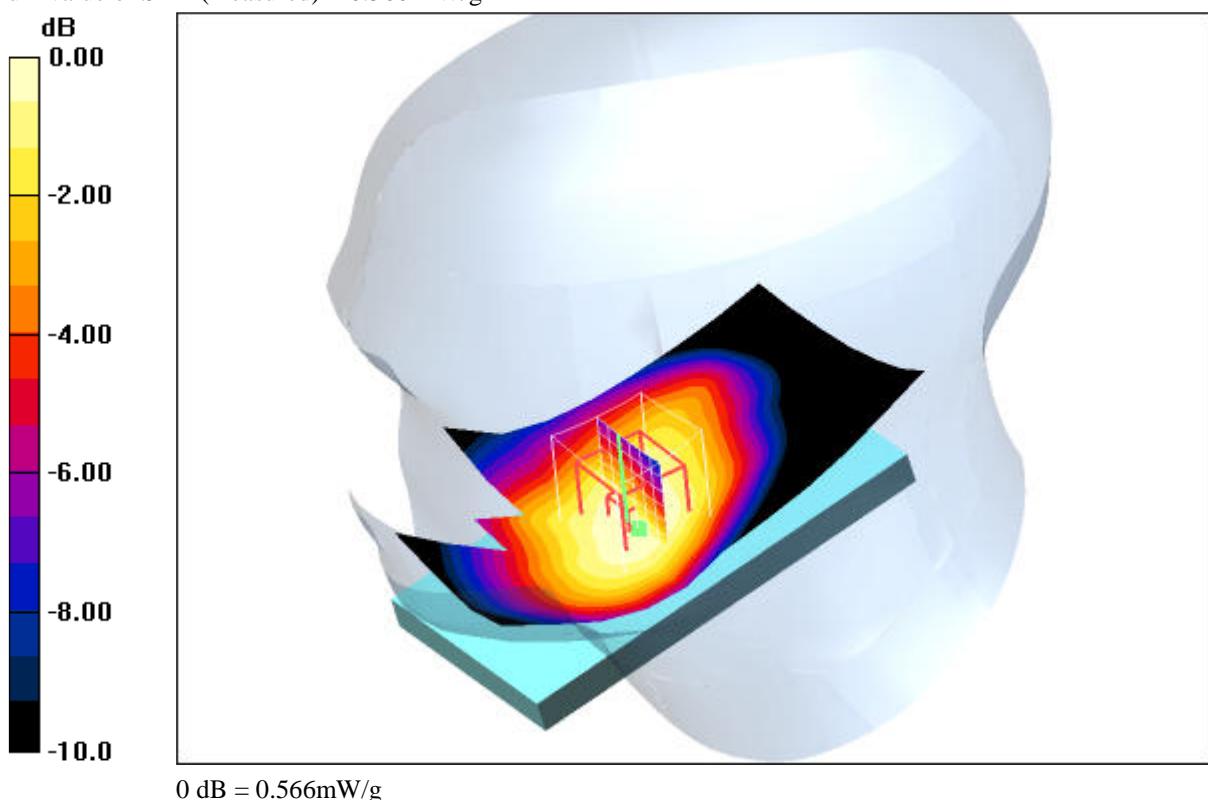
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.19, 6.19, 6.19); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.577 mW/g


Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.5 V/m; Power Drift = 0.051 dB

Peak SAR (extrapolated) = 0.676 W/kg

SAR(1 g) = 0.539 mW/g; SAR(10 g) = 0.412 mW/g

Maximum value of SAR (measured) = 0.566 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 23.2°C; liquid temperature: 22.6°C

Date/Time: 2009-01-29 13:13:05 Date/Time: 2009-01-29 13:21:02

P1528_OET65-RightHandSide-GSM850**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.9$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Right Section

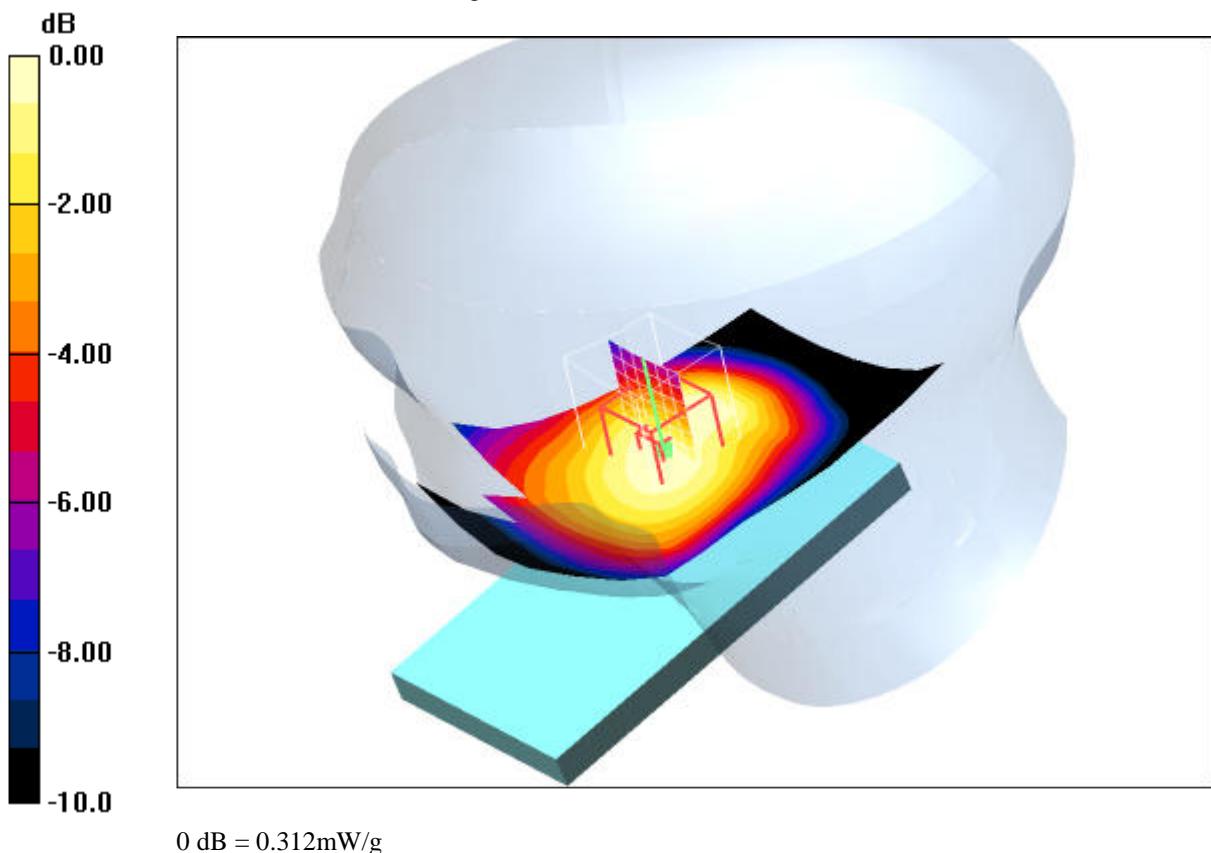
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.19, 6.19, 6.19); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.315 mW/g

Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 19.1 V/m; Power Drift = 0.088 dB

Peak SAR (extrapolated) = 0.374 W/kg

SAR(1 g) = 0.297 mW/g; SAR(10 g) = 0.226 mW/g

Maximum value of SAR (measured) = 0.312 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 23.2°C; liquid temperature: 22.6°C

Annex 2.2 PCS 850 MHz body

Date/Time: 2009-01-28 16:29:20 Date/Time: 2009-01-28 16:37:14

P1528_OET65-Body-GSM850 GPRS 1TS**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium: M850 Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.97$ mho/m; $\epsilon_r = 54.6$; $\rho = 1000$ kg/m³

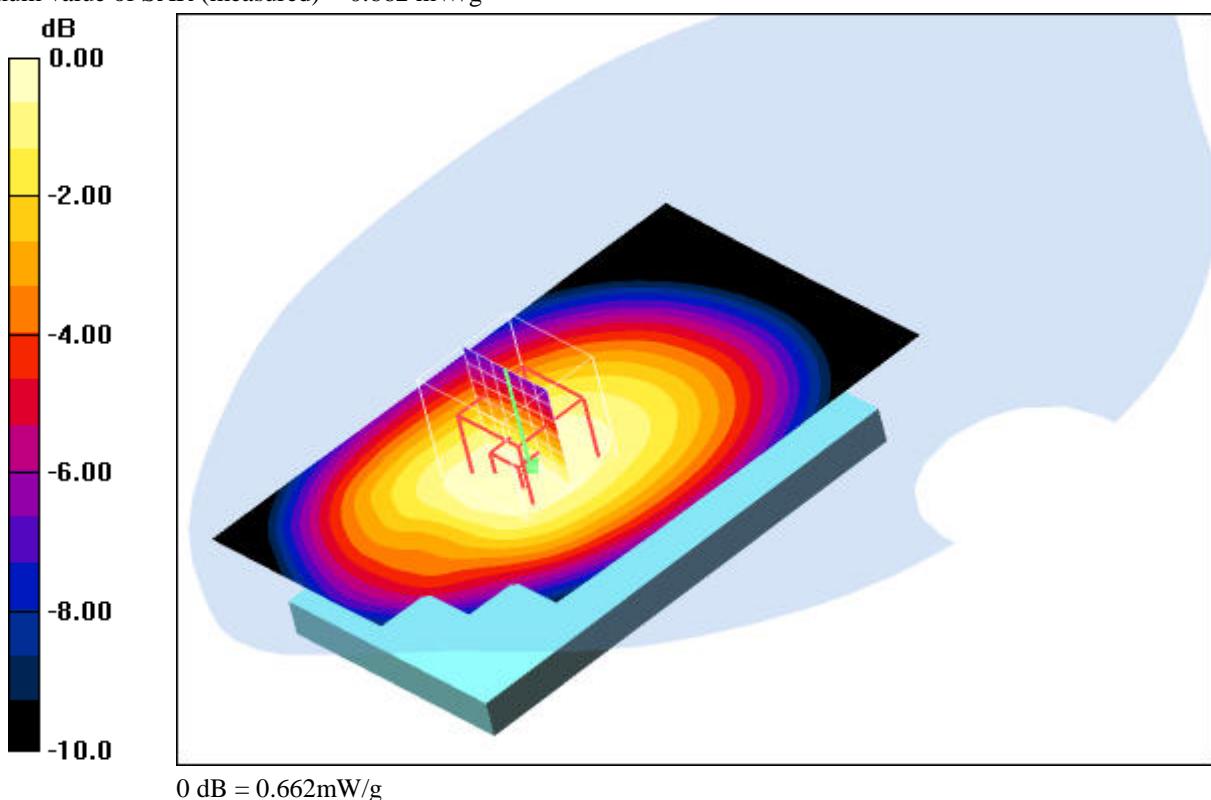
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(5.96, 5.96, 5.96); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.655 mW/g


Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.1 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.776 W/kg

SAR(1 g) = 0.628 mW/g; SAR(10 g) = 0.477 mW/g

Maximum value of SAR (measured) = 0.662 mW/g

Additional information:

position or distance of DUT to SAM: 15 mm

ambient temperature: 23.0°C; liquid temperature: 22.0°C

Date/Time: 2009-01-28 15:54:10 Date/Time: 2009-01-28 16:03:04 Date/Time: 2009-01-28 16:15:11

P1528_OET65-Body-GSM850 GPRS 2TS**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: PCS 850 GPRS; Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium: M850 Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.97$ mho/m; $\epsilon_r = 54.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(5.96, 5.96, 5.96); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.822 mW/g

Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

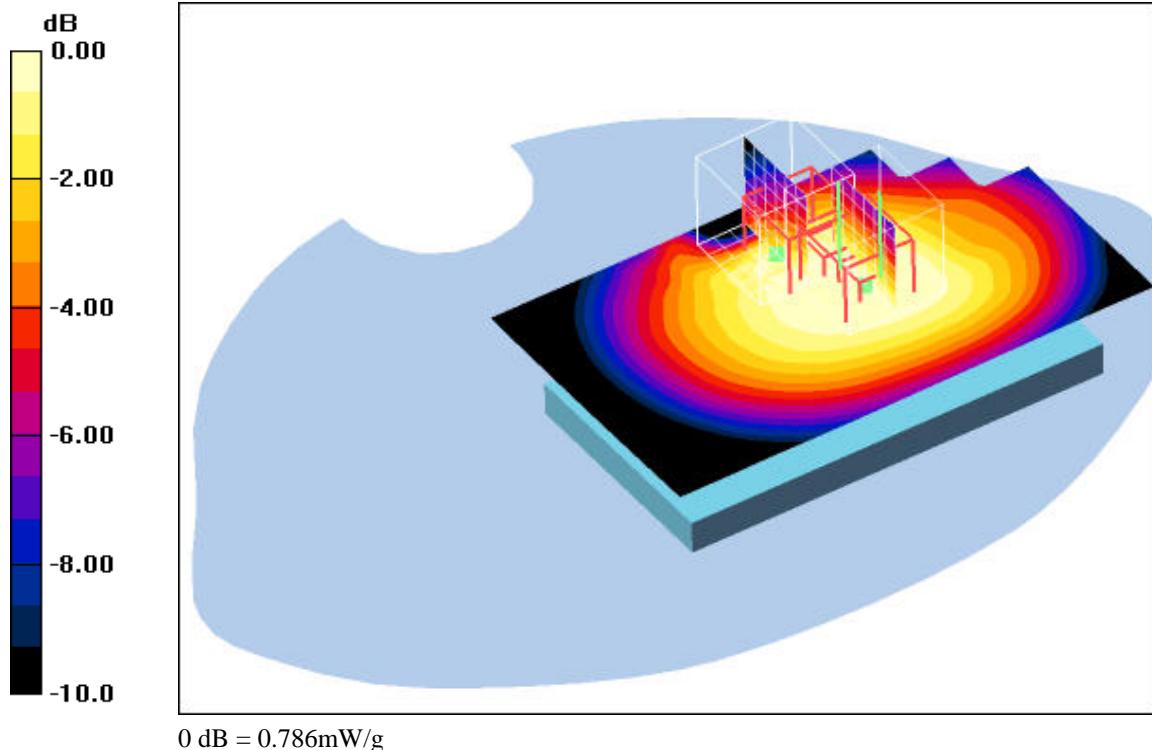
Reference Value = 30.1 V/m; Power Drift = 0.061 dB

Peak SAR (extrapolated) = 0.991 W/kg

SAR(1 g) = 0.786 mW/g; SAR(10 g) = 0.595 mW/g

Maximum value of SAR (measured) = 0.824 mW/g

Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 30.1 V/m; Power Drift = 0.061 dB

Peak SAR (extrapolated) = 0.920 W/kg

SAR(1 g) = 0.696 mW/g; SAR(10 g) = 0.474 mW/g

Maximum value of SAR (measured) = 0.786 mW/g

Additional information:

position or distance of DUT to SAM: 15 mm

ambient temperature: 23.0°C; liquid temperature: 22.0°C

Date/Time: 2009-01-28 15:30:57 Date/Time: 2009-01-28 15:38:57

P1528_OET65-Body-GSM850 GPRS 3TS**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: PCS 850 GPRS 3TS; Frequency: 836.6 MHz; Duty Cycle: 1:2.7

Medium: M850 Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.97$ mho/m; $\epsilon_r = 54.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

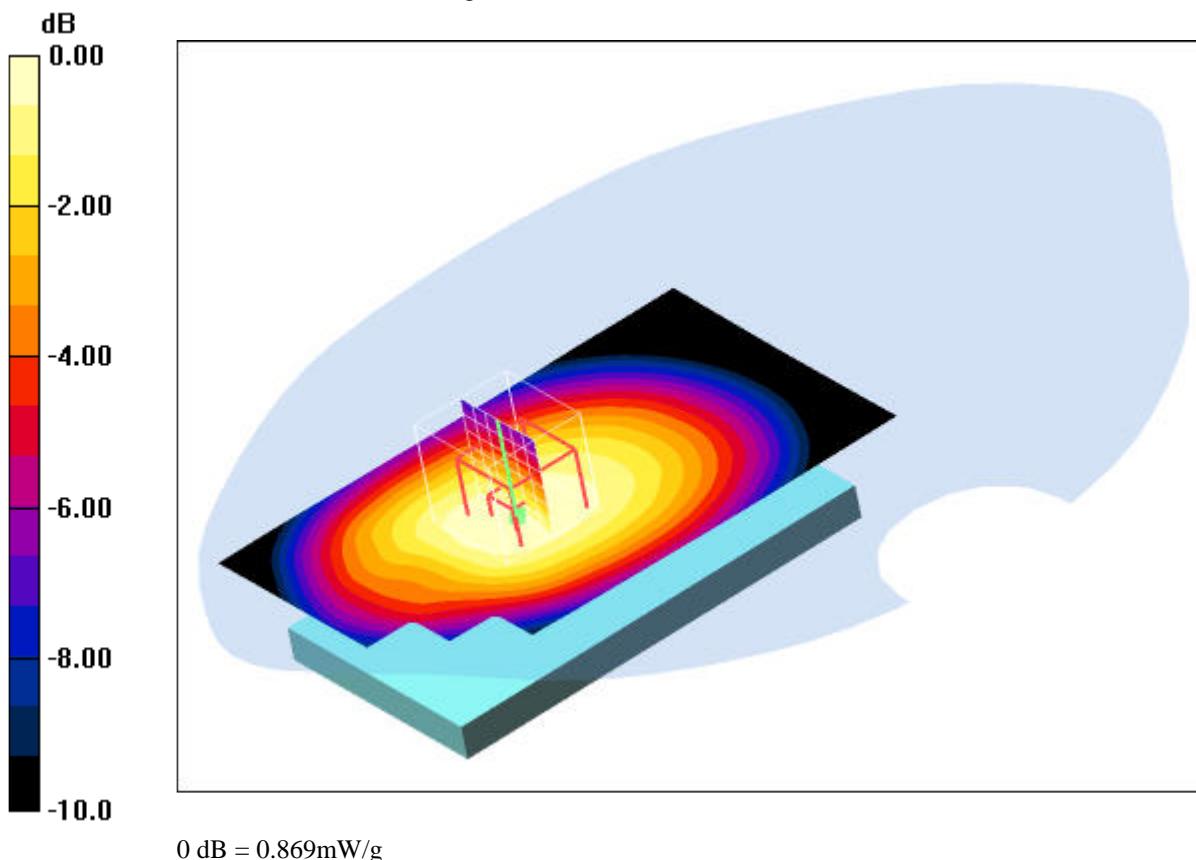
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(5.96, 5.96, 5.96); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.864 mW/g

Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 31.0 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 1.03 W/kg

SAR(1 g) = 0.823 mW/g; SAR(10 g) = 0.624 mW/g

Maximum value of SAR (measured) = 0.869 mW/g

0 dB = 0.869mW/g

Additional information:

position or distance of DUT to SAM: 15 mm

ambient temperature: 23.0°C; liquid temperature: 22.0°C

Date/Time: 2009-01-28 13:31:11 Date/Time: 2009-01-28 14:30:53

P1528_OET65-Body-GSM850 GPRS 4TS**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: PCS 850 GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle: 1:2

Medium: M850 Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.97$ mho/m; $\epsilon_r = 54.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

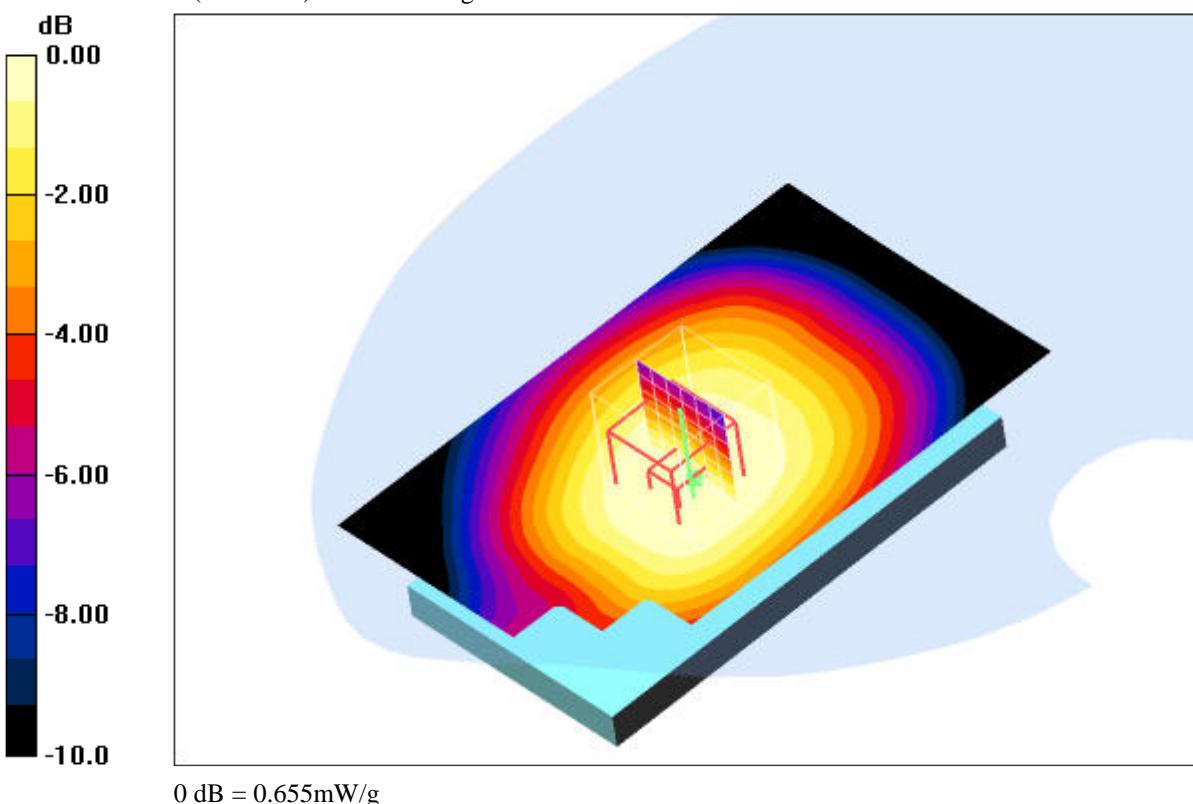
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(5.96, 5.96, 5.96); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.706 mW/g

Front position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 27.9 V/m; Power Drift = -0.142 dB

Peak SAR (extrapolated) = 0.778 W/kg

SAR(1 g) = 0.626 mW/g; SAR(10 g) = 0.481 mW/g

Maximum value of SAR (measured) = 0.655 mW/g

Additional information:

position or distance of DUT to SAM: 15 mm

ambient temperature: 23.2°C; liquid temperature: 22.0°C

Date/Time: 2009-01-28 14:56:55 Date/Time: 2009-01-28 15:15:16

P1528_OET65-Body-GSM850 GPRS 4TS**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: PCS 850 GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle: 1:2

Medium: M850 Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.97$ mho/m; $\epsilon_r = 54.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

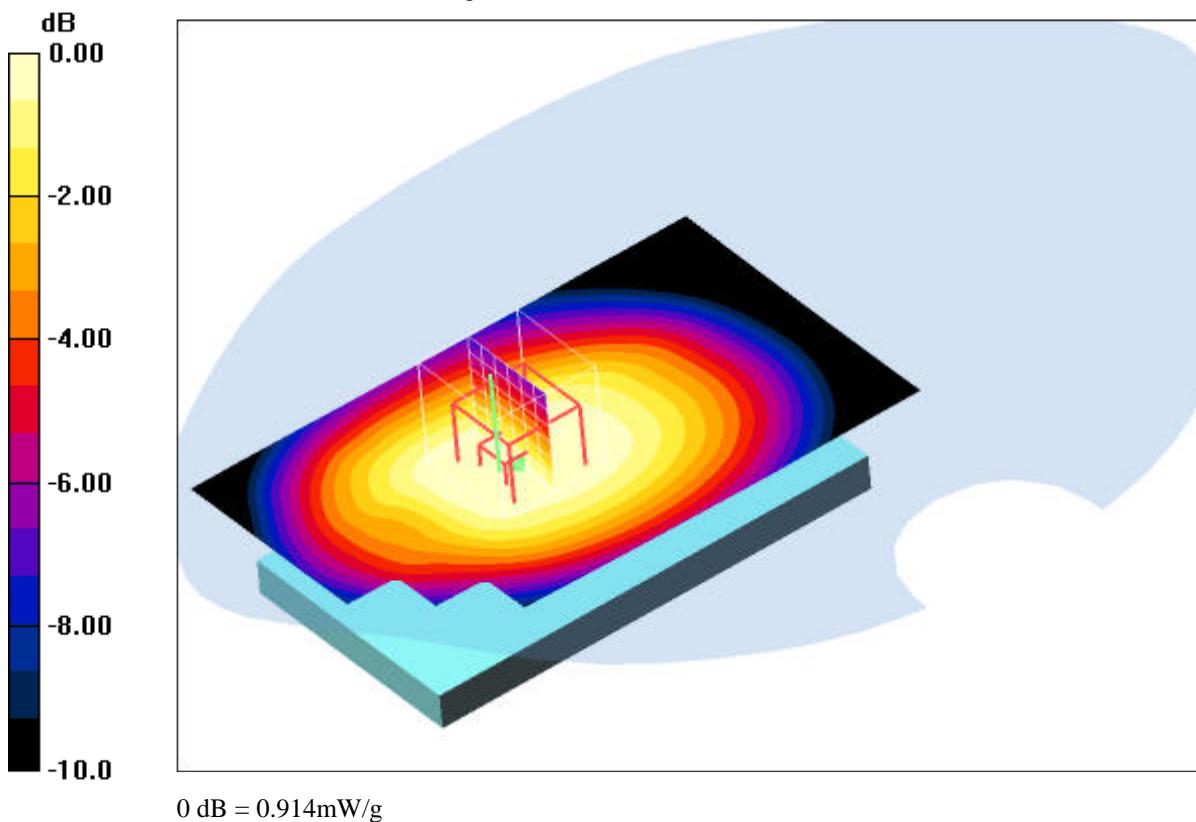
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(5.96, 5.96, 5.96); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.989 mW/g

Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 31.8 V/m; Power Drift = 0.066 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.867 mW/g; SAR(10 g) = 0.659 mW/g

Maximum value of SAR (measured) = 0.914 mW/g

Additional information:

position or distance of DUT to SAM: 15 mm

ambient temperature: 23.0°C; liquid temperature: 22.0°C

Date/Time: 2009-01-28 17:08:18 Date/Time: 2009-01-28 17:17:29

P1528_OET65-Body-GSM850 GPRS 4TS**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: PCS 850 GPRS 4TS; Frequency: 824.2 MHz; Duty Cycle: 1:2

Medium: M850 Medium parameters used: $f = 824.2$ MHz; $\sigma = 0.97$ mho/m; $\epsilon_r = 54.6$; $\rho = 1000$ kg/m³

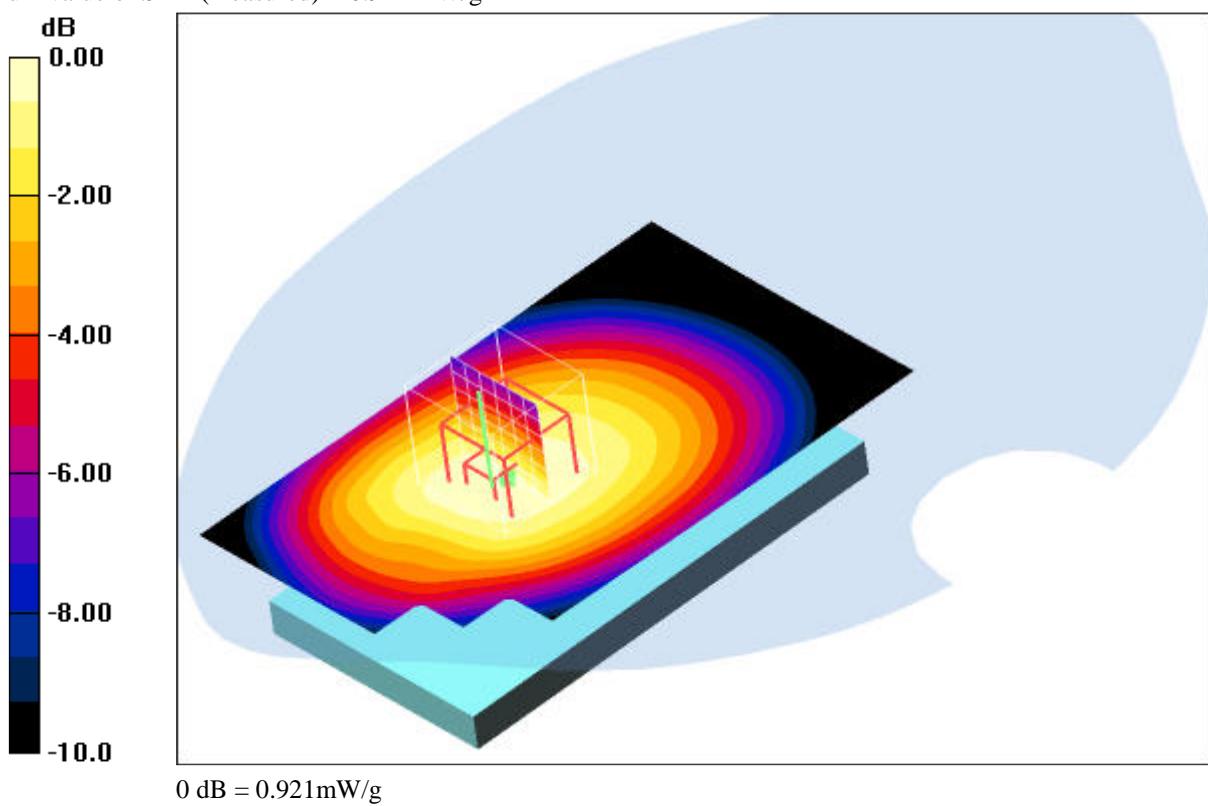
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(5.96, 5.96, 5.96); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Worst-case - Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.900 mW/g


Worst-case - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 32.1 V/m; Power Drift = -0.066 dB

Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.876 mW/g; SAR(10 g) = 0.667 mW/g

Maximum value of SAR (measured) = 0.921 mW/g

Additional information:

position or distance of DUT to SAM: 15 mm

ambient temperature: 23.0°C; liquid temperature: 22.0°C

Date/Time: 2009-01-28 17:33:10 Date/Time: 2009-01-28 17:50:18

P1528_OET65-Body-GSM850 GPRS 4TS**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: PCS 850 GPRS 4TS; Frequency: 848.8 MHz; Duty Cycle: 1:2

Medium: M850 Medium parameters used: $f = 848.8$ MHz; $\sigma = 0.97$ mho/m; $\epsilon_r = 54.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

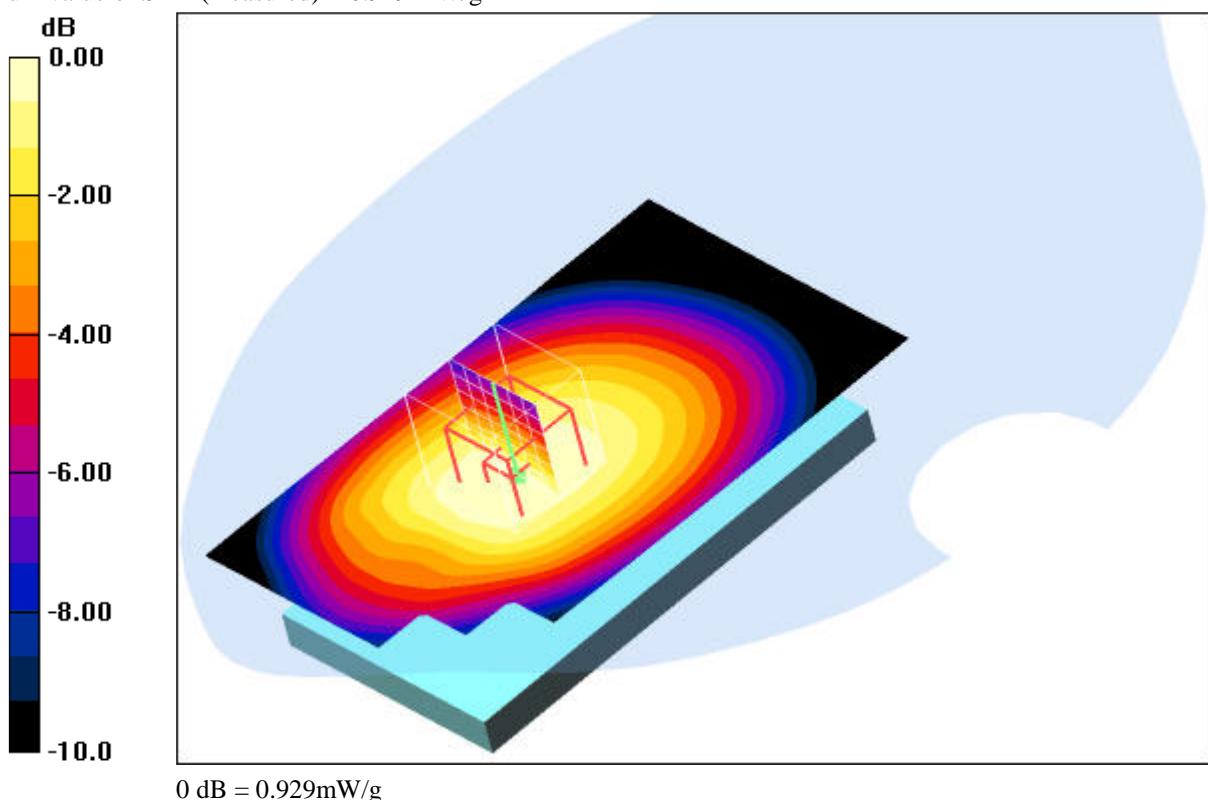
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(5.96, 5.96, 5.96); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Worst-case - High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.927 mW/g

Worst-case - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 32.1 V/m; Power Drift = 0.019 dB

Peak SAR (extrapolated) = 1.10 W/kg

SAR(1 g) = 0.885 mW/g; SAR(10 g) = 0.669 mW/g

Maximum value of SAR (measured) = 0.929 mW/g

Additional information:

position or distance of DUT to SAM: 15 mm

ambient temperature: 23.0°C; liquid temperature: 22.0°C

Date/Time: 2009-01-29 09:15:09 Date/Time: 2009-01-29 09:42:57

P1528_OET65-Body-GSM850 EGPRS 4TS**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: PCS 850 EGPRS 4TS; Frequency: 848.8 MHz; Duty Cycle: 1:2

Medium: M850 Medium parameters used: $f = 848.8$ MHz; $\sigma = 0.97$ mho/m; $\epsilon_r = 54.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(5.96, 5.96, 5.96); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.268 mW/g

Rear position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 16.6 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.292 W/kg

SAR(1 g) = 0.235 mW/g; SAR(10 g) = 0.178 mW/g

Maximum value of SAR (measured) = 0.247 mW/g

Additional information:

position or distance of DUT to SAM: 15 mm

ambient temperature: 23.0°C; liquid temperature: 22.0°C

Annex 2.3 PCS 1900 MHz head

Date/Time: 2009-01-29 15:50:43 Date/Time: 2009-01-29 15:58:52 Date/Time: 2009-01-29 16:12:52

P1528_OET65-LeftHandSide-GSM1900**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.41$ mho/m; $\epsilon_r = 40.1$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.96, 4.96, 4.96); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.202 mW/g

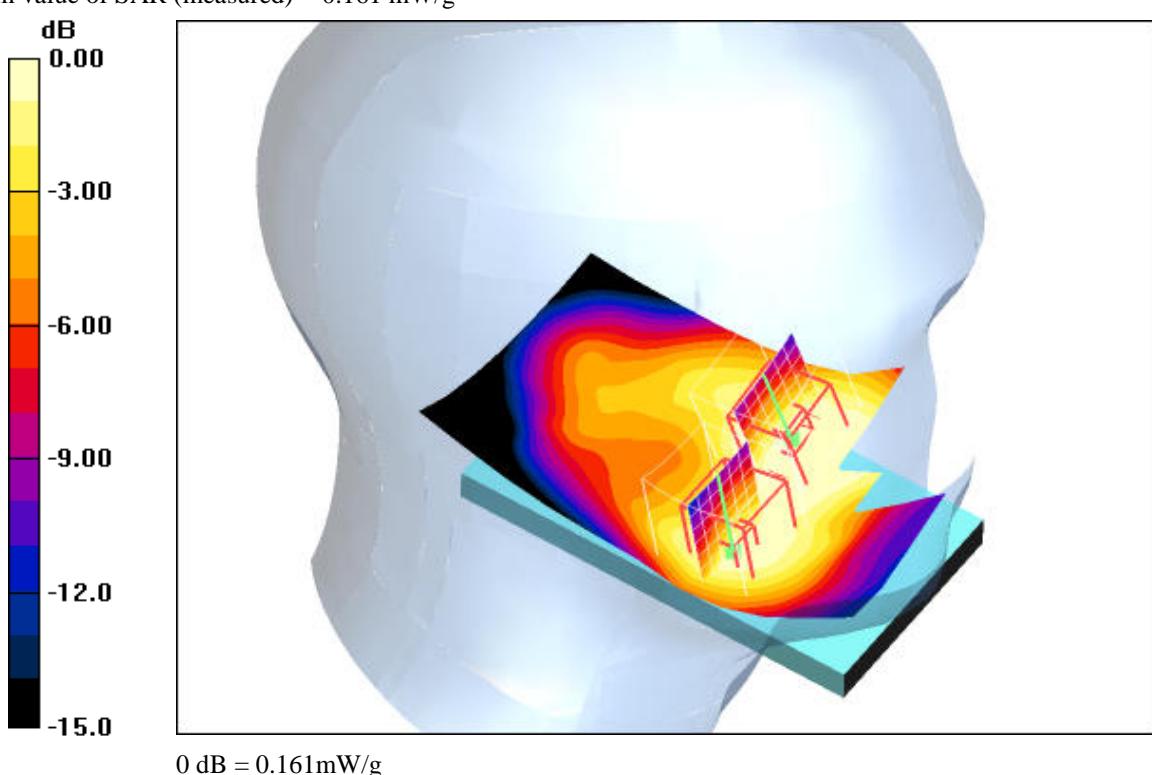
Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.2 V/m; Power Drift = -0.128 dB

Peak SAR (extrapolated) = 0.294 W/kg

SAR(1 g) = 0.199 mW/g; SAR(10 g) = 0.128 mW/g

Maximum value of SAR (measured) = 0.210 mW/g


Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.2 V/m; Power Drift = -0.128 dB

Peak SAR (extrapolated) = 0.253 W/kg

SAR(1 g) = 0.149 mW/g; SAR(10 g) = 0.095 mW/g

Maximum value of SAR (measured) = 0.161 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.8°C; liquid temperature: 22.0°C

Date/Time: 2009-01-29 15:29:22 Date/Time: 2009-01-29 15:37:29

P1528_OET65-LeftHandSide-GSM1900**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.41$ mho/m; $\epsilon_r = 40.1$; $\rho = 1000$ kg/m³

Phantom section: Left Section

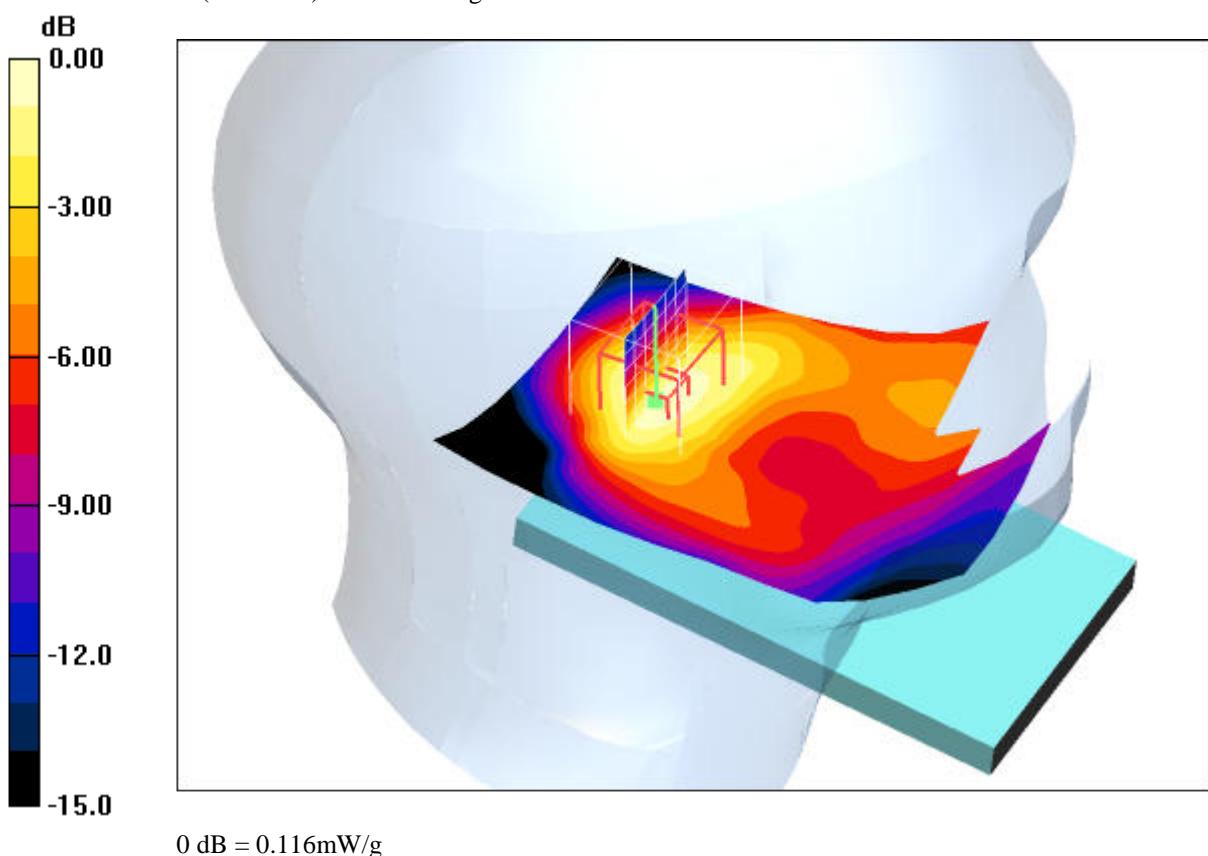
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.96, 4.96, 4.96); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.124 mW/g

Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 9.02 V/m; Power Drift = -0.030 dB

Peak SAR (extrapolated) = 0.164 W/kg

SAR(1 g) = 0.105 mW/g; SAR(10 g) = 0.063 mW/g

Maximum value of SAR (measured) = 0.116 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.8°C; liquid temperature: 22.0°C

Date/Time: 2009-01-29 14:41:24 Date/Time: 2009-01-29 14:50:33

P1528_OET65-RightHandSide-GSM1900**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.41$ mho/m; $\epsilon_r = 40.1$; $\rho = 1000$ kg/m³

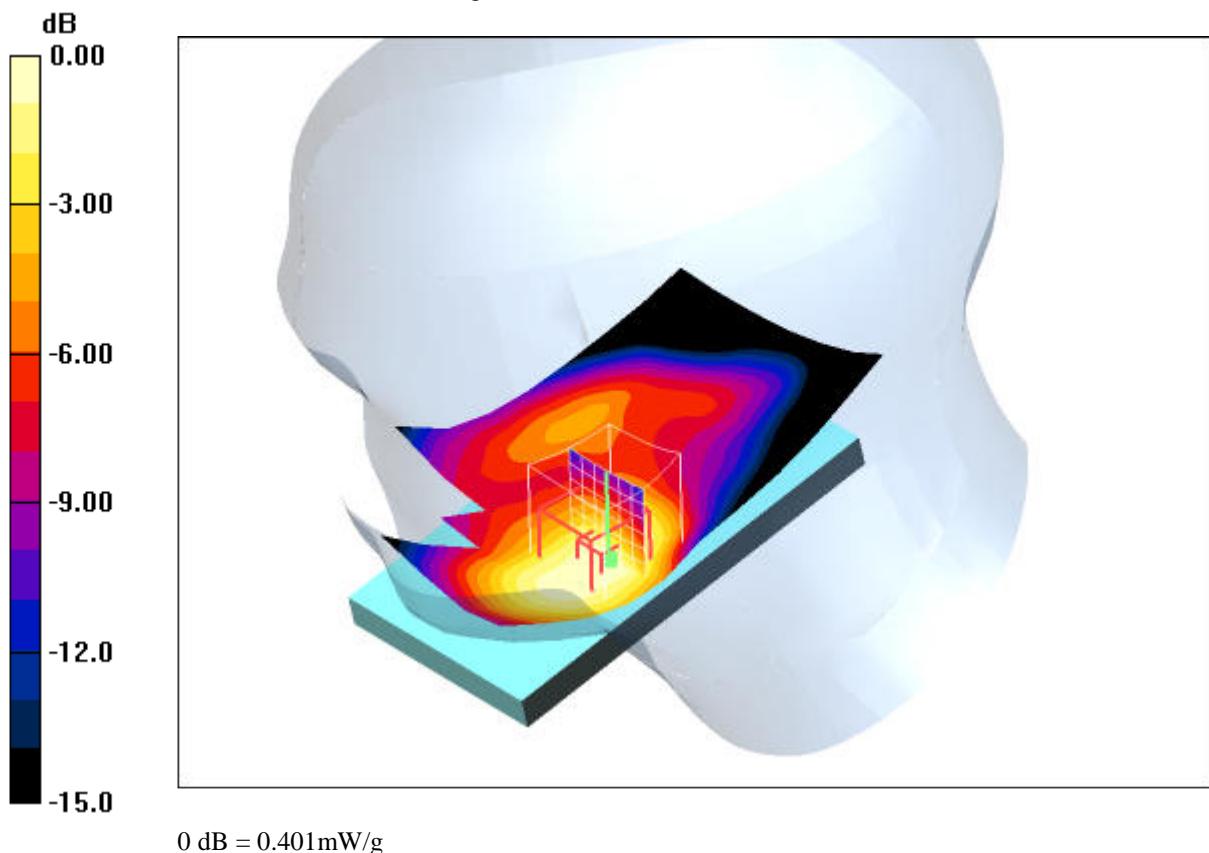
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.96, 4.96, 4.96); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.409 mW/g


Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.6 V/m; Power Drift = -0.107 dB

Peak SAR (extrapolated) = 0.543 W/kg

SAR(1 g) = 0.374 mW/g; SAR(10 g) = 0.240 mW/g

Maximum value of SAR (measured) = 0.401 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.8°C; liquid temperature: 22.2°C

Date/Time: 2009-01-29 15:06:11 Date/Time: 2009-01-29 15:14:13

P1528_OET65-RightHandSide-GSM1900**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.41$ mho/m; $\epsilon_r = 40.1$; $\rho = 1000$ kg/m³

Phantom section: Right Section

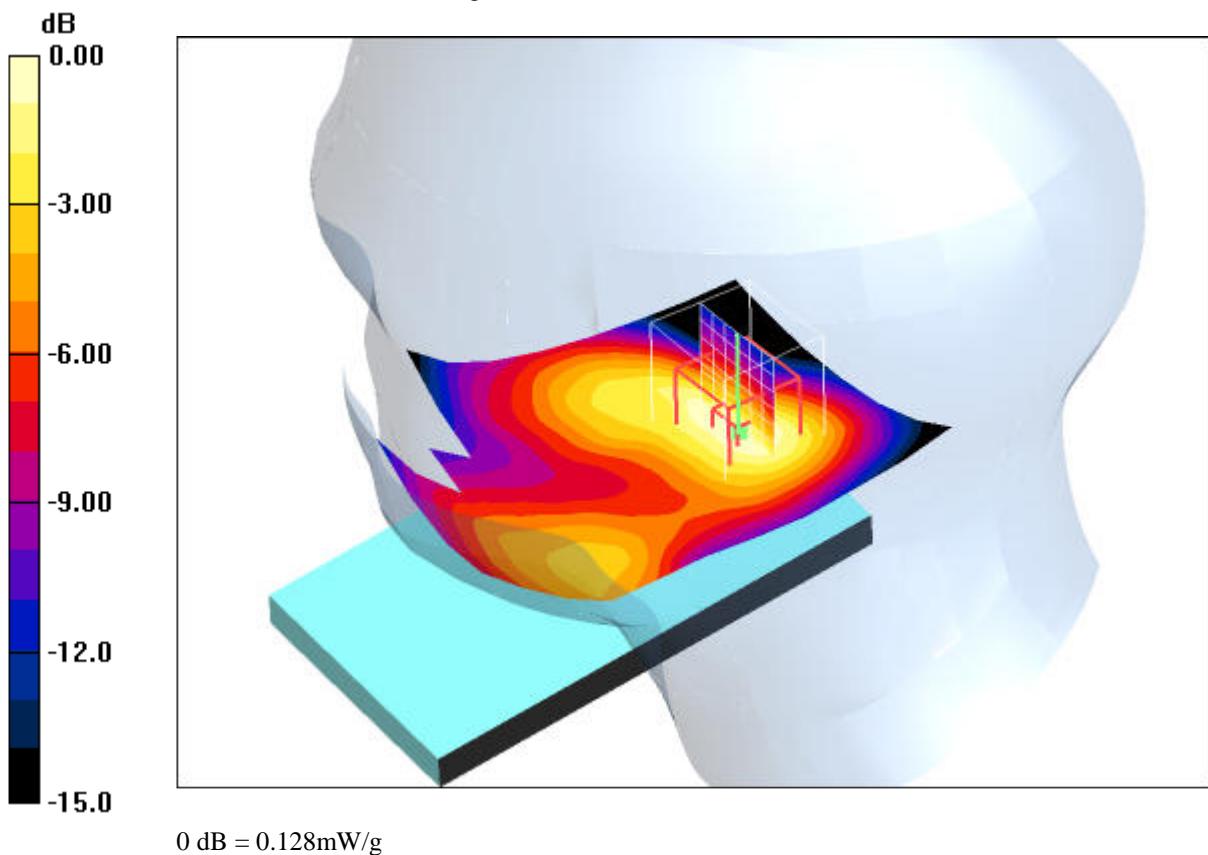
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.96, 4.96, 4.96); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.135 mW/g

Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 9.78 V/m; Power Drift = -0.035 dB

Peak SAR (extrapolated) = 0.183 W/kg

SAR(1 g) = 0.115 mW/g; SAR(10 g) = 0.067 mW/g

Maximum value of SAR (measured) = 0.128 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.8°C; liquid temperature: 22.2°C

Annex 2.4 PCS 1900 MHz body

Date/Time: 2009-01-29 20:05:38 Date/Time: 2009-01-29 20:13:35

P1528_OET65-Body-GSM1900 GPRS 1TS**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: PCS 1900 GPRS 1TS; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: M1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 52.9$; $\rho = 1000$ kg/m³

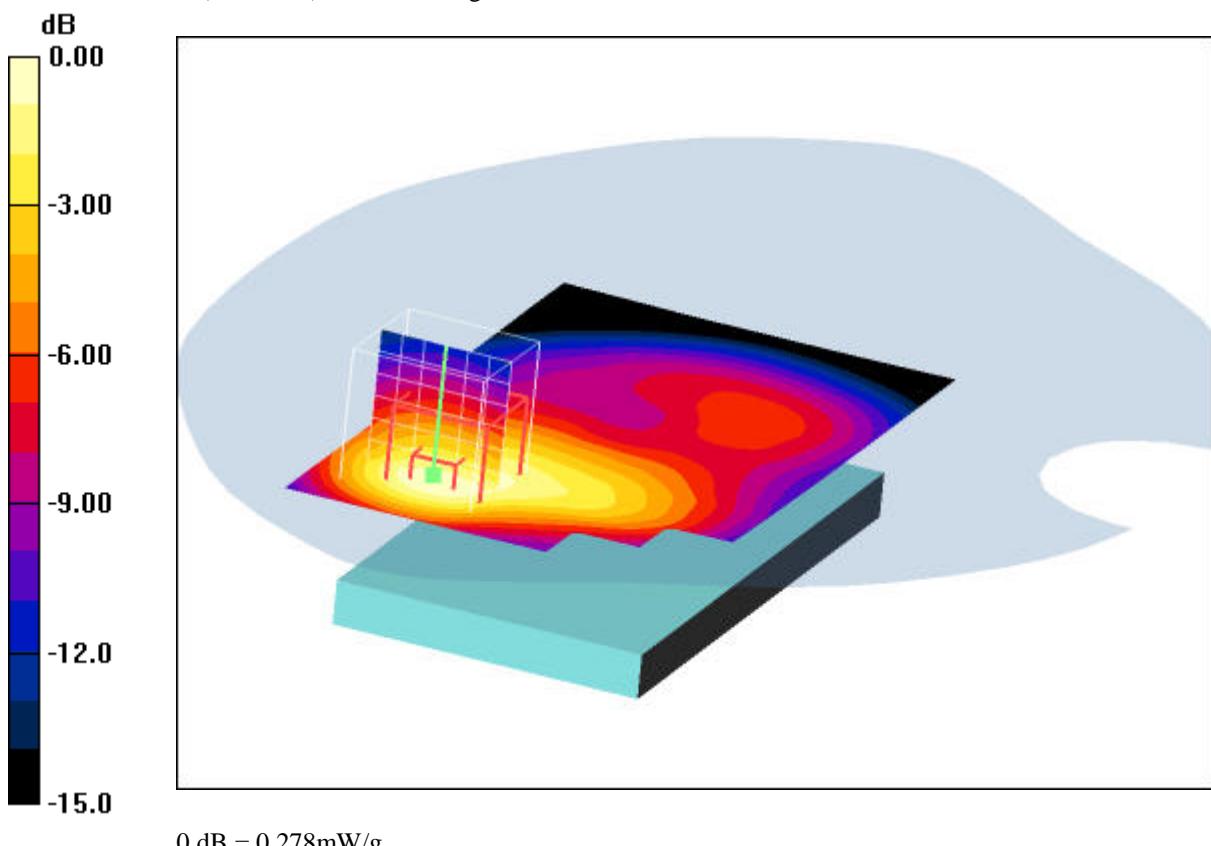
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.39, 4.39, 4.39); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.277 mW/g


Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.6 V/m; Power Drift = -0.160 dB

Peak SAR (extrapolated) = 0.454 W/kg

SAR(1 g) = 0.258 mW/g; SAR(10 g) = 0.155 mW/g

Maximum value of SAR (measured) = 0.278 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 23.3°C; liquid temperature: 22.7°C

Date/Time: 2009-01-29 19:43:06 Date/Time: 2009-01-29 19:51:22

P1528_OET65-Body-GSM1900 GPRS 2TS**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: PCS 1900 GPRS 2TS; Frequency: 1880 MHz; Duty Cycle: 1:4

Medium: M1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 52.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

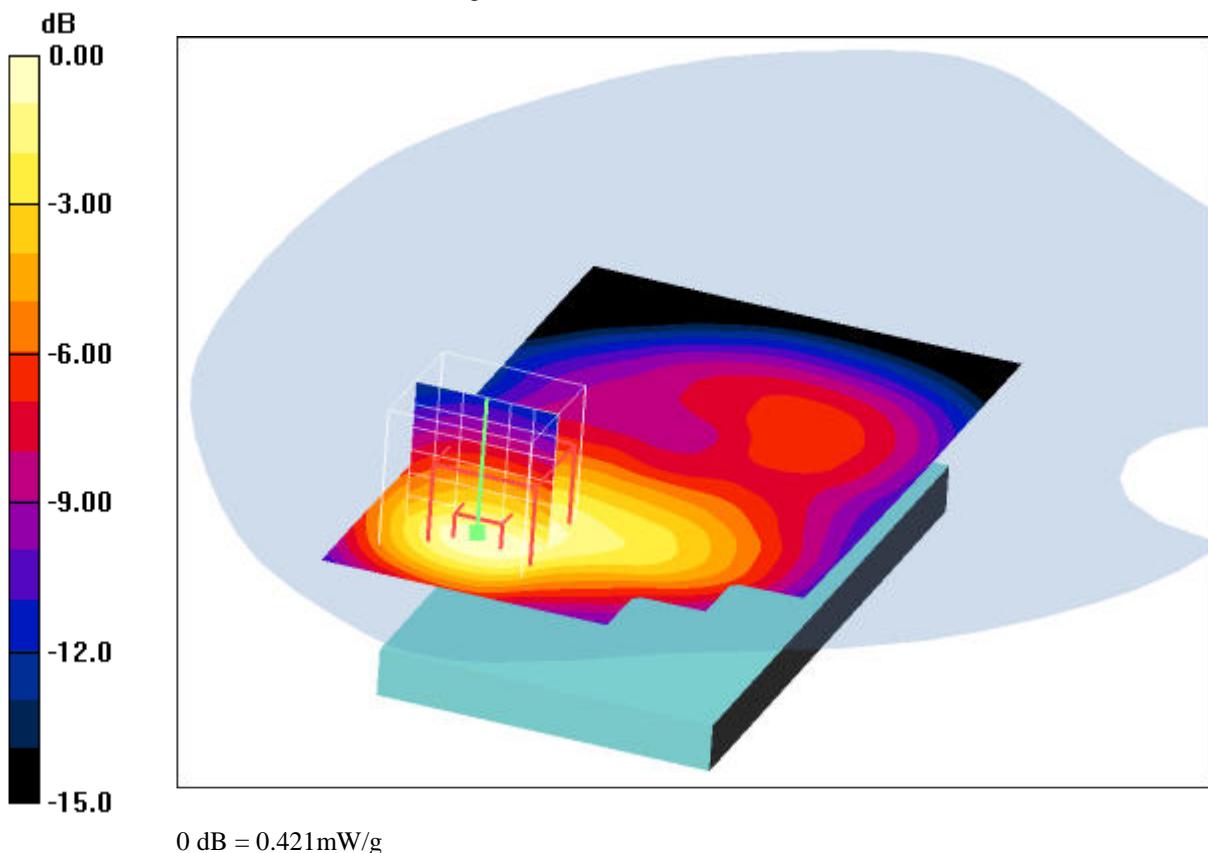
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.39, 4.39, 4.39); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.421 mW/g

Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 16.7 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 0.697 W/kg

SAR(1 g) = 0.396 mW/g; SAR(10 g) = 0.237 mW/g

Maximum value of SAR (measured) = 0.421 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 23.3°C; liquid temperature: 22.7°C

Date/Time: 2009-01-29 19:18:19 Date/Time: 2009-01-29 19:27:10

P1528_OET65-Body-GSM1900 GPRS 3TS**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: PCS 1900 GPRS 3TS; Frequency: 1880 MHz; Duty Cycle: 1:2.7

Medium: M1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 52.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

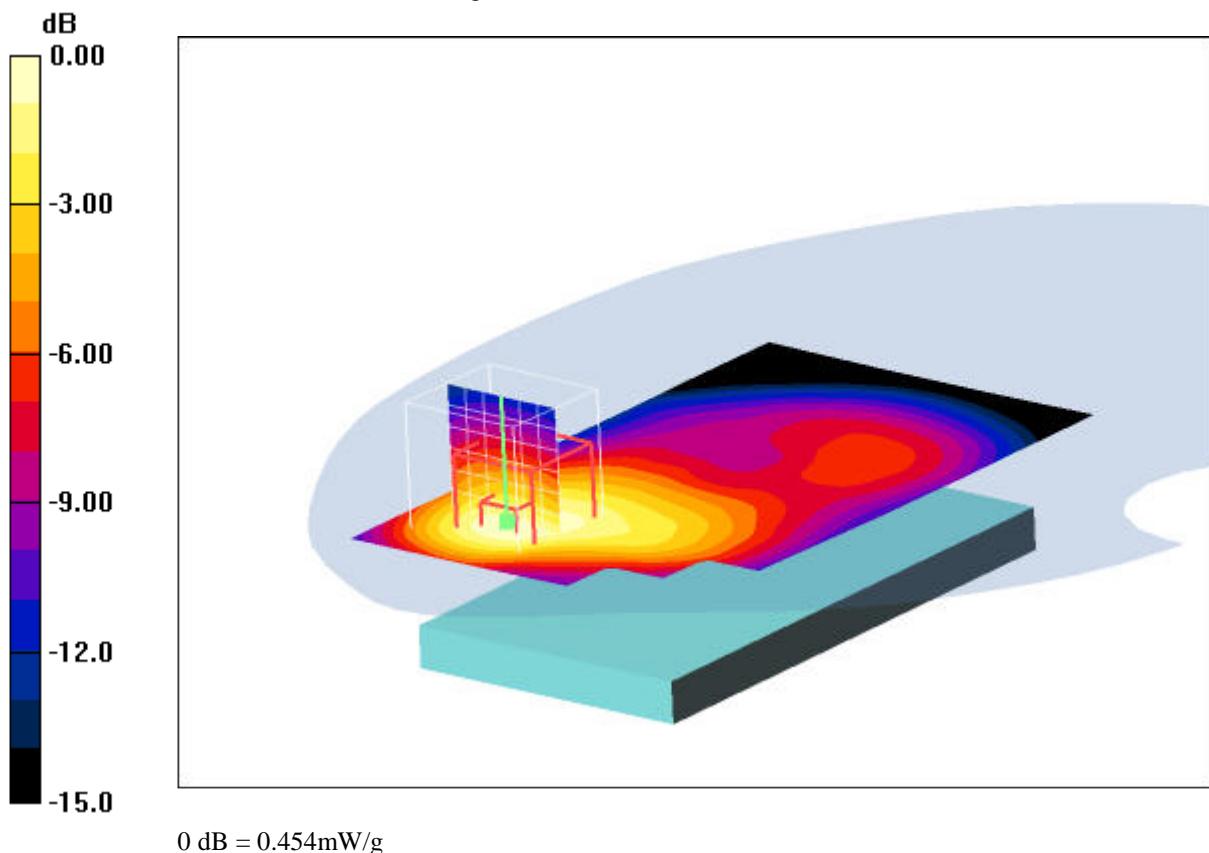
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.39, 4.39, 4.39); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.448 mW/g

Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 17.4 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 0.740 W/kg

SAR(1 g) = 0.422 mW/g; SAR(10 g) = 0.254 mW/g

Maximum value of SAR (measured) = 0.454 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 23.3°C; liquid temperature: 22.7°C

Date/Time: 2009-01-29 18:47:53 Date/Time: 2009-01-29 19:00:46

P1528_OET65-Body-GSM1900 GPRS 4TS**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: PCS 1900 GPRS 4TS; Frequency: 1880 MHz; Duty Cycle: 1:2

Medium: M1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 52.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

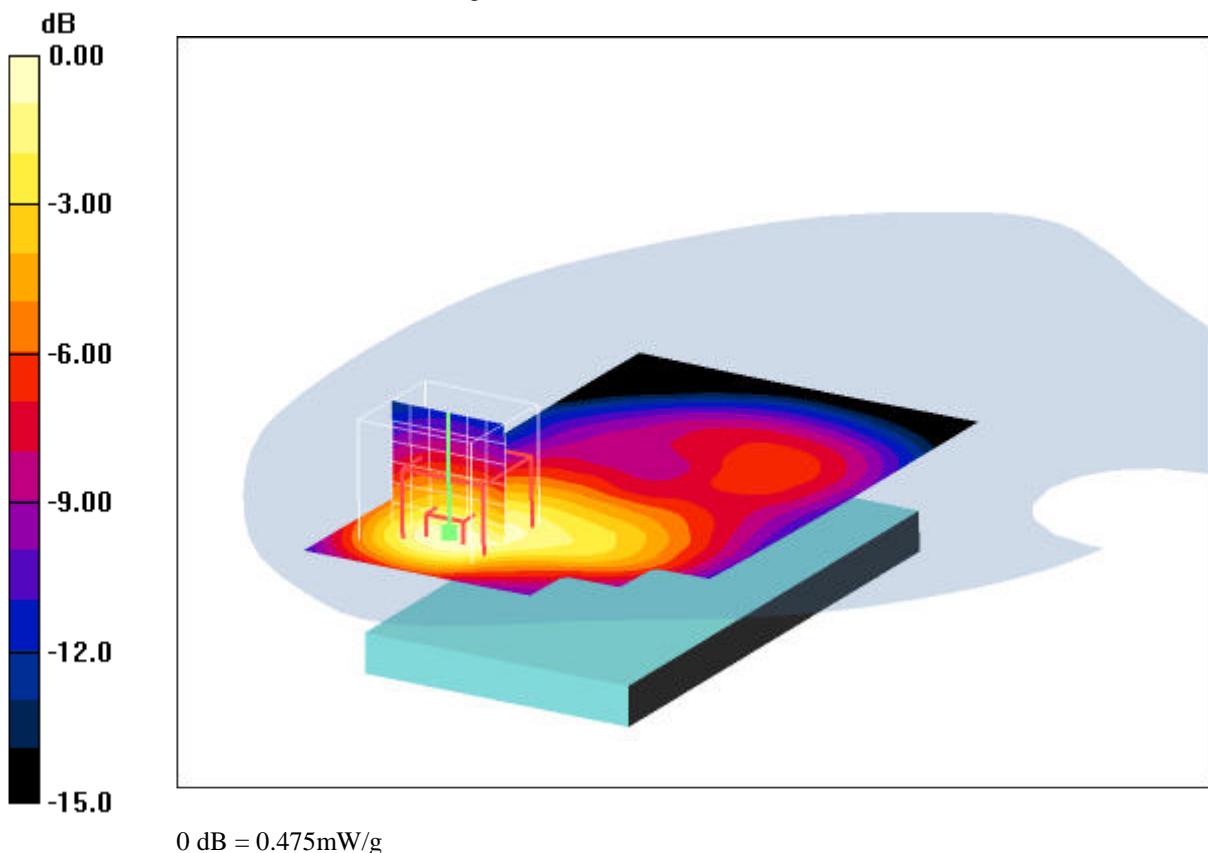
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.39, 4.39, 4.39); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.472 mW/g

Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 17.8 V/m; Power Drift = -0.056 dB

Peak SAR (extrapolated) = 0.773 W/kg

SAR(1 g) = 0.443 mW/g; SAR(10 g) = 0.267 mW/g

Maximum value of SAR (measured) = 0.475 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 23.3°C; liquid temperature: 22.7°C

Date/Time: 2009-01-29 18:22:31 Date/Time: 2009-01-29 18:30:30

P1528_OET65-Body-GSM1900 GPRS 4TS**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: PCS 1900 GPRS 4TS; Frequency: 1880 MHz; Duty Cycle: 1:2

Medium: M1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 52.9$; $\rho = 1000$ kg/m³

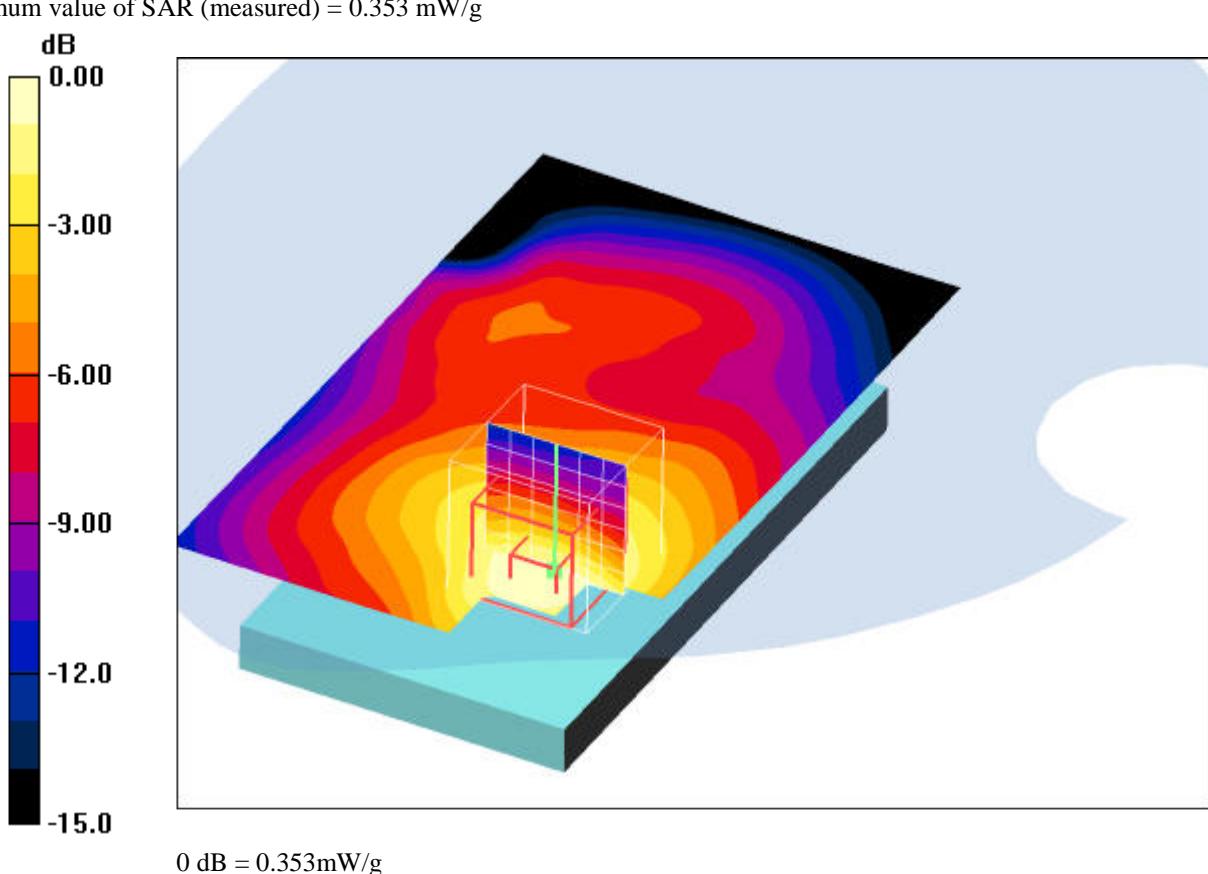
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.39, 4.39, 4.39); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.350 mW/g


Front position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.3 V/m; Power Drift = -0.014 dB

Peak SAR (extrapolated) = 0.557 W/kg

SAR(1 g) = 0.329 mW/g; SAR(10 g) = 0.203 mW/g

Maximum value of SAR (measured) = 0.353 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 23.3°C; liquid temperature: 22.7°C

Date/Time: 2009-01-30 09:03:27 Date/Time: 2009-01-30 09:19:37

P1528_OET65-Body-GSM1900 EGPRS 4TS**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: PCS 1900 EGPRS 4TS; Frequency: 1880 MHz; Duty Cycle: 1:2

Medium: M1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 52.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.39, 4.39, 4.39); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.388 mW/g

Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 10.00 V/m; Power Drift = -0.081 dB

Peak SAR (extrapolated) = 0.308 W/kg

SAR(1 g) = 0.176 mW/g; SAR(10 g) = 0.103 mW/g

Maximum value of SAR (measured) = 0.190 mW/g

Additional information:

position or distance of DUT to SAM: 15 mm

ambient temperature: 23.3°C; liquid temperature: 22.7°C

Annex 2.5 WLAN 2450 MHz head

Date/Time: 2009-01-30 15:26:41 Date/Time: 2009-01-30 15:35:12 Date/Time: 2009-01-30 15:46:38

P1528_OET65_EN62209-LeftHandSide-WLAN**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: WLAN 2450 US; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: HSL2450 Medium parameters used (interpolated): $f = 2437 \text{ MHz}$; $\sigma = 1.86 \text{ mho/m}$; $\epsilon_r = 39.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.4, 4.4, 4.4); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.272 mW/g

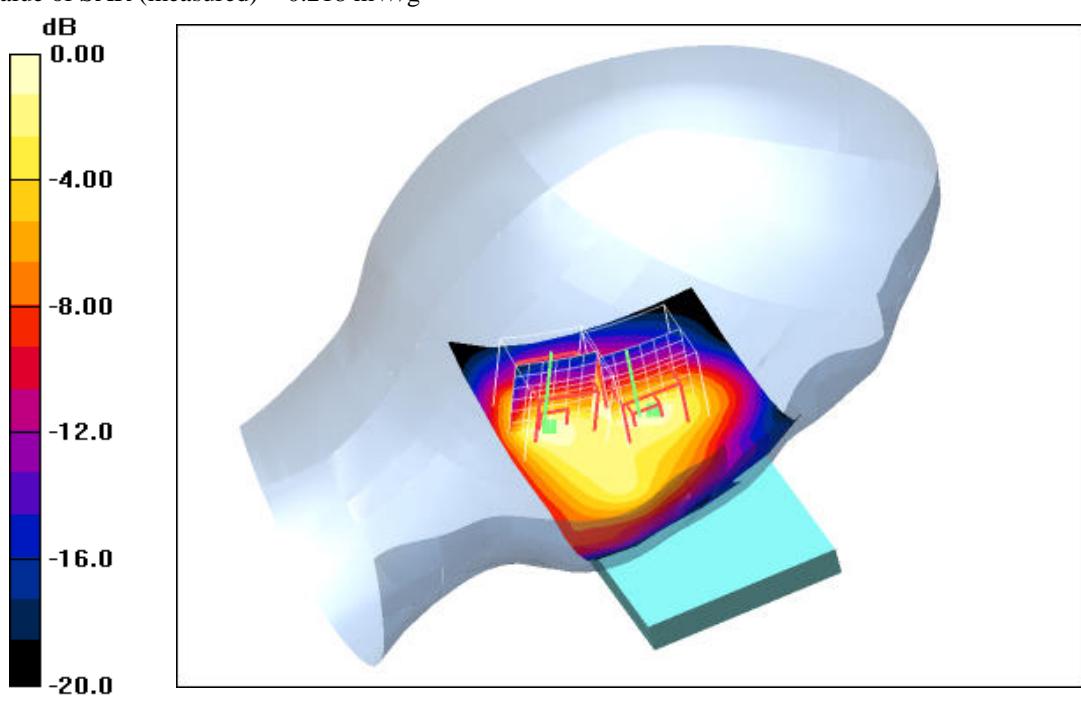
Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.6 V/m; Power Drift = -0.031 dB

Peak SAR (extrapolated) = 0.523 W/kg

SAR(1 g) = 0.243 mW/g; SAR(10 g) = 0.115 mW/g

Maximum value of SAR (measured) = 0.267 mW/g


Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.6 V/m; Power Drift = -0.031 dB

Peak SAR (extrapolated) = 0.419 W/kg

SAR(1 g) = 0.198 mW/g; SAR(10 g) = 0.101 mW/g

Maximum value of SAR (measured) = 0.218 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 23.6 °C; liquid temperature: 21.7 °C

Date/Time: 2009-01-30 16:01:54 Date/Time: 2009-01-30 16:10:15

P1528_OET65_EN62209-LeftHandSide-WLAN**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: WLAN 2450 US; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: HSL2450 Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.86$ mho/m; $\epsilon_r = 39.5$; $\rho = 1000$ kg/m³

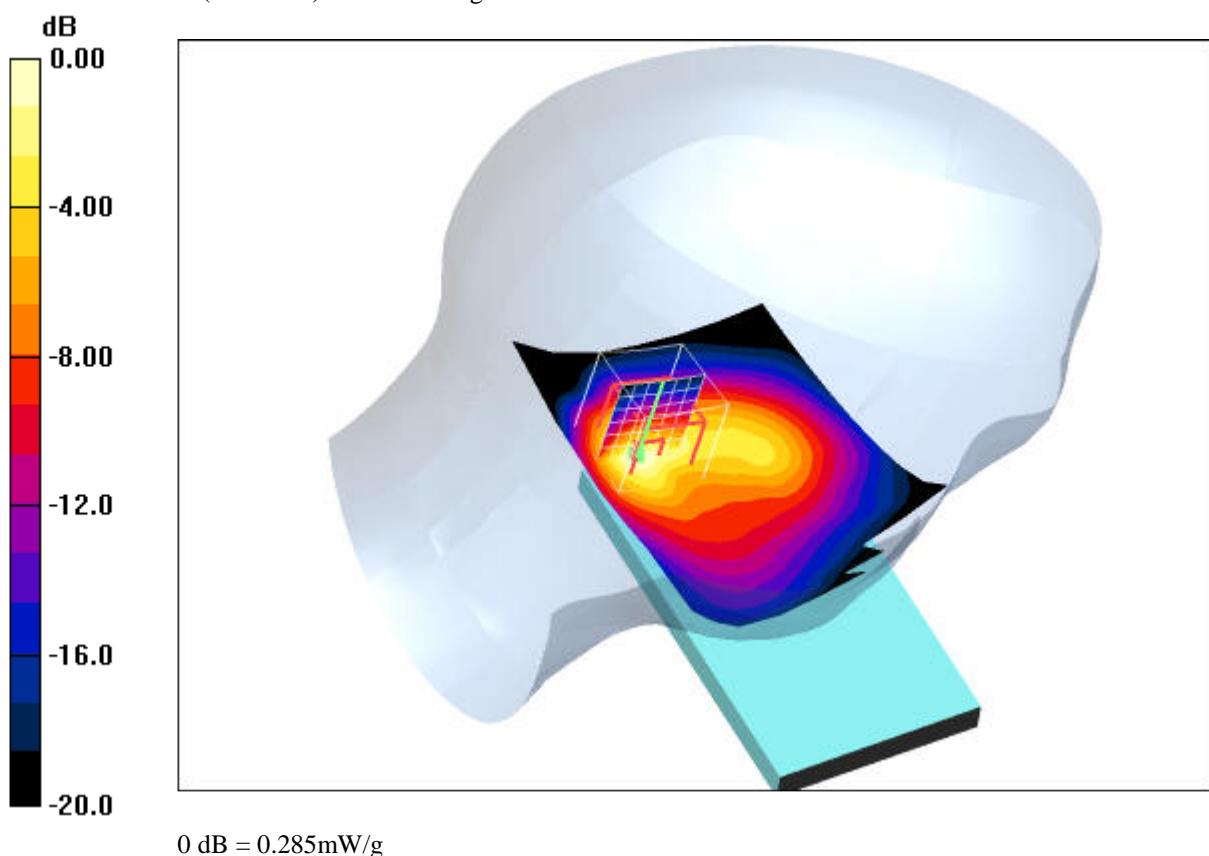
Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.4, 4.4, 4.4); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.295 mW/g


Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.6 V/m; Power Drift = 0.063 dB

Peak SAR (extrapolated) = 0.607 W/kg

SAR(1 g) = 0.267 mW/g; SAR(10 g) = 0.123 mW/g

Maximum value of SAR (measured) = 0.285 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 23.6 °C; liquid temperature: 21.7 °C

Date/Time: 2009-01-30 16:28:01 Date/Time: 2009-01-30 16:37:24

P1528_OET65_EN62209-RightHandSide-WLAN**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: WLAN 2450 US; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: HSL2450 Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.86$ mho/m; $\epsilon_r = 39.5$; $\rho = 1000$ kg/m³

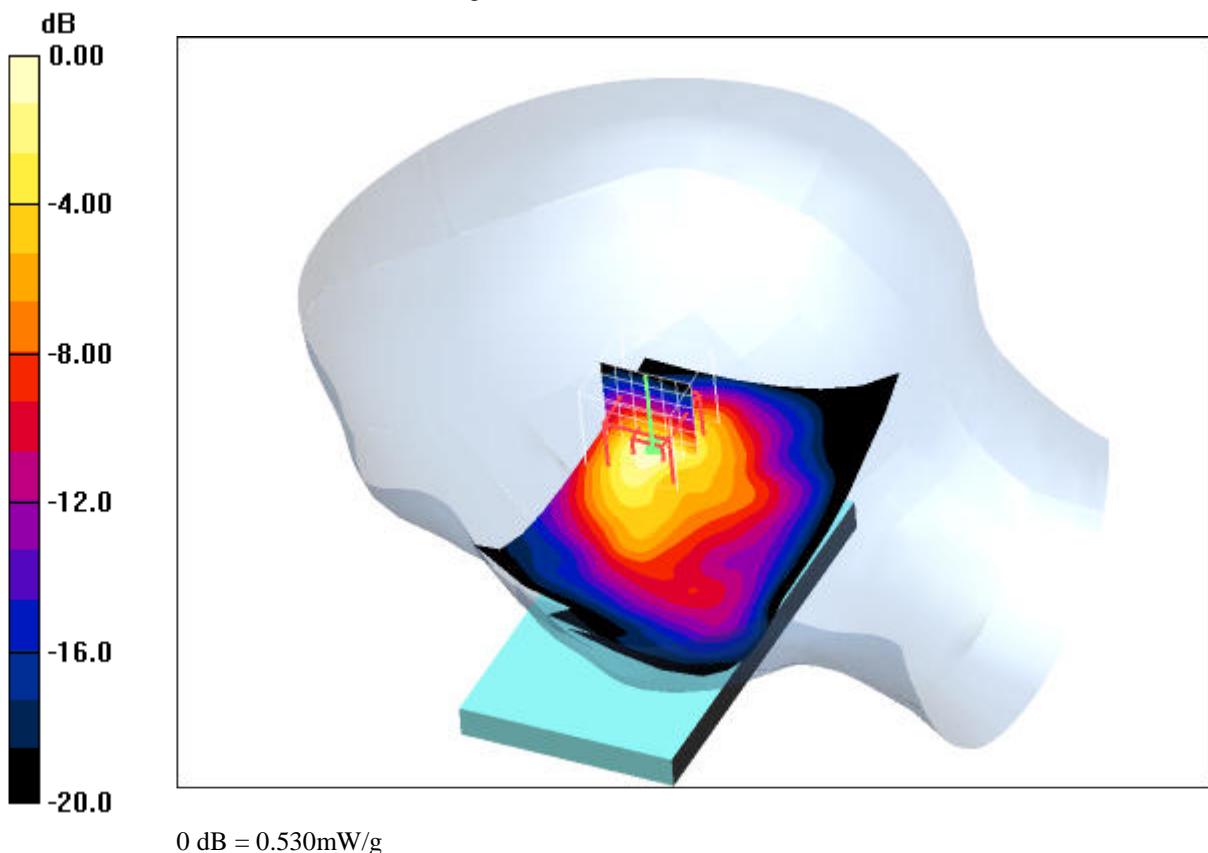
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.4, 4.4, 4.4); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.560 mW/g


Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.6 V/m; Power Drift = 0.033 dB

Peak SAR (extrapolated) = 1.20 W/kg

SAR(1 g) = 0.470 mW/g; SAR(10 g) = 0.203 mW/g

Maximum value of SAR (measured) = 0.530 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 23.6 °C; liquid temperature: 21.7 °C

Date/Time: 2009-01-30 16:51:52 Date/Time: 2009-01-30 17:00:35

P1528_OET65_EN62209-RightHandSide-WLAN**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: WLAN 2450 US; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: HSL2450 Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.86$ mho/m; $\epsilon_r = 39.5$; $\rho = 1000$ kg/m³

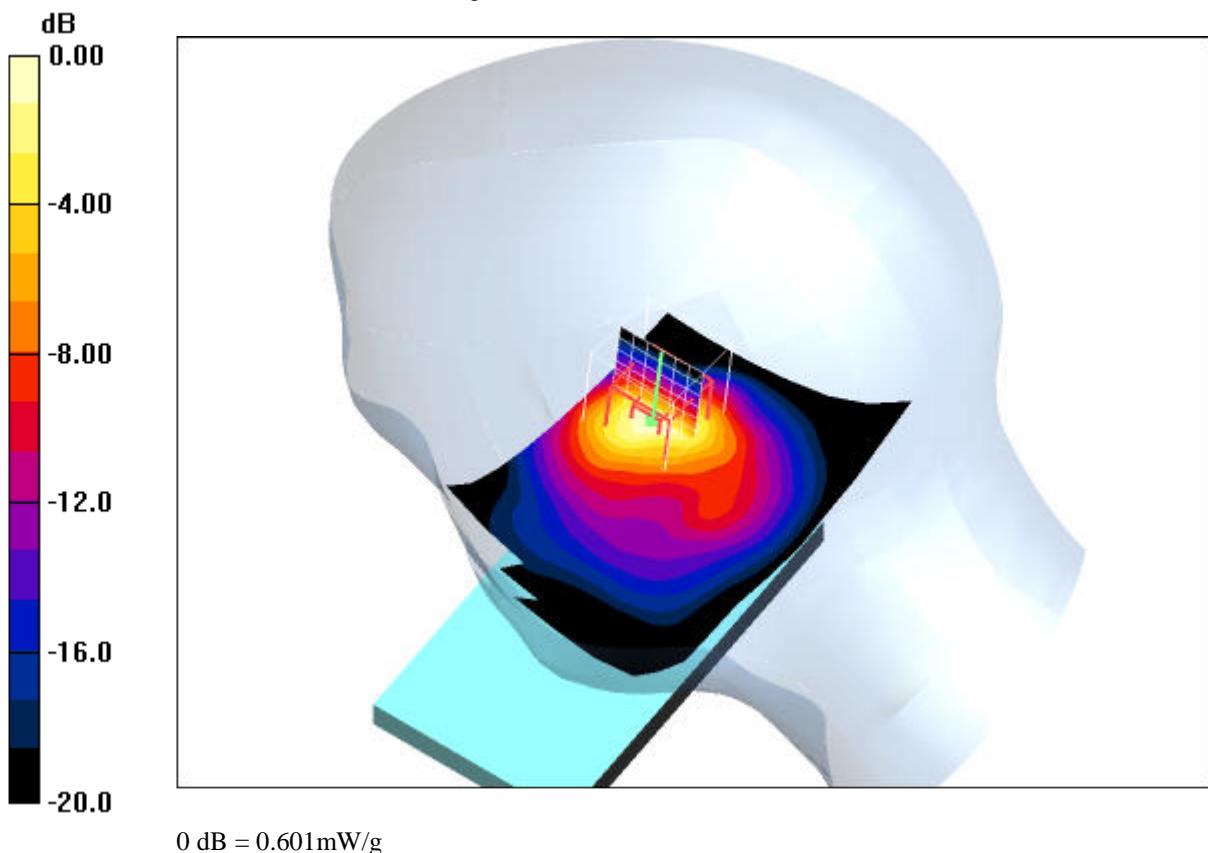
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.4, 4.4, 4.4); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.666 mW/g


Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.8 V/m; Power Drift = 0.091 dB

Peak SAR (extrapolated) = 1.50 W/kg

SAR(1 g) = 0.534 mW/g; SAR(10 g) = 0.223 mW/g

Maximum value of SAR (measured) = 0.601 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 23.6 °C; liquid temperature: 21.7 °C

Date/Time: 2009-01-30 17:16:51 Date/Time: 2009-01-30 17:25:00

P1528_OET65_EN62209-RightHandSide-WLAN**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: WLAN 2450 US; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: HSL2450 Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.86$ mho/m; $\epsilon_r = 39.5$; $\rho = 1000$ kg/m³

Phantom section: Right Section

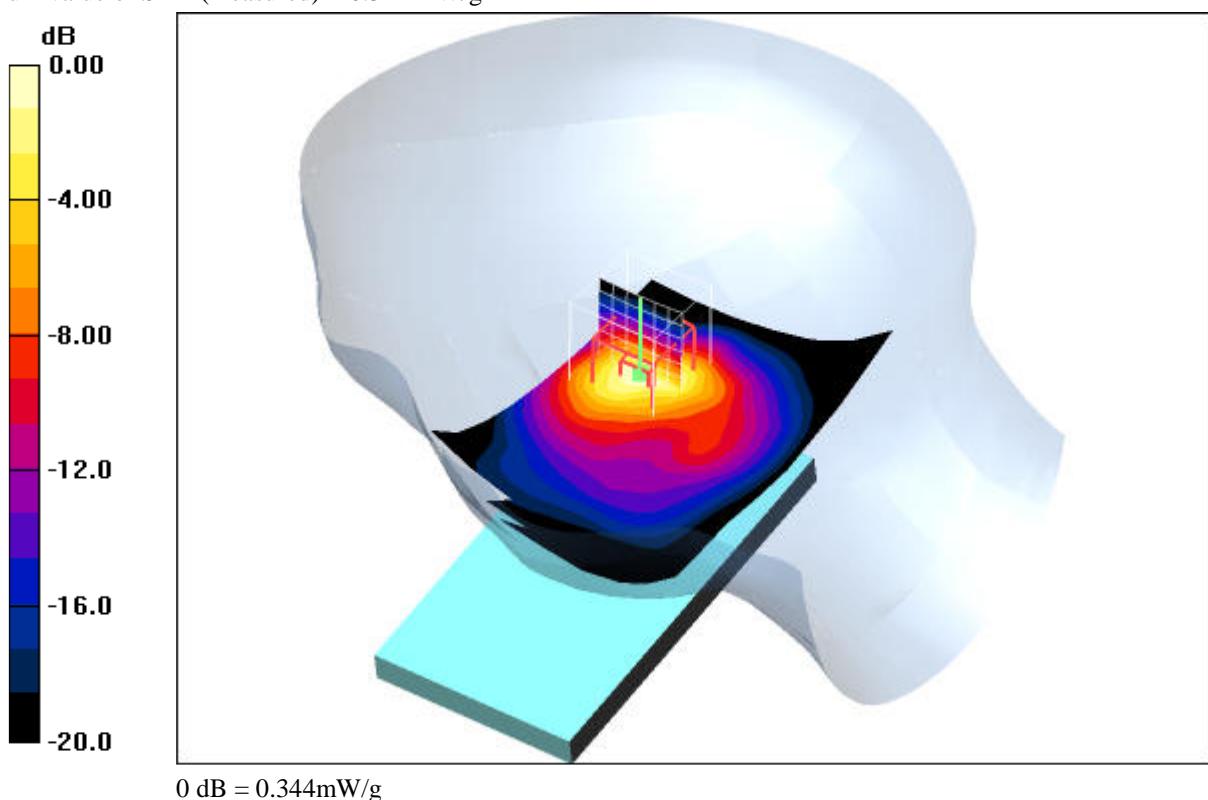
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.4, 4.4, 4.4); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Middle 6 Mbps/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.353 mW/g

Tilt position - Middle 6 Mbps/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 11.3 V/m; Power Drift = 0.112 dB

Peak SAR (extrapolated) = 0.894 W/kg

SAR(1 g) = 0.311 mW/g; SAR(10 g) = 0.128 mW/g

Maximum value of SAR (measured) = 0.344 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 23.6 °C; liquid temperature: 21.7 °C

Annex 2.6 WLAN 2450 MHz body

Date/Time: 2009-01-30 18:53:39 Date/Time: 2009-01-30 19:01:38

P1528_OET65_EN62311-Body-WLAN2450**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: WLAN 2450 US; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: M2450 Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.96$ mho/m; $\epsilon_r = 52.8$; $\rho = 1000$ kg/m³

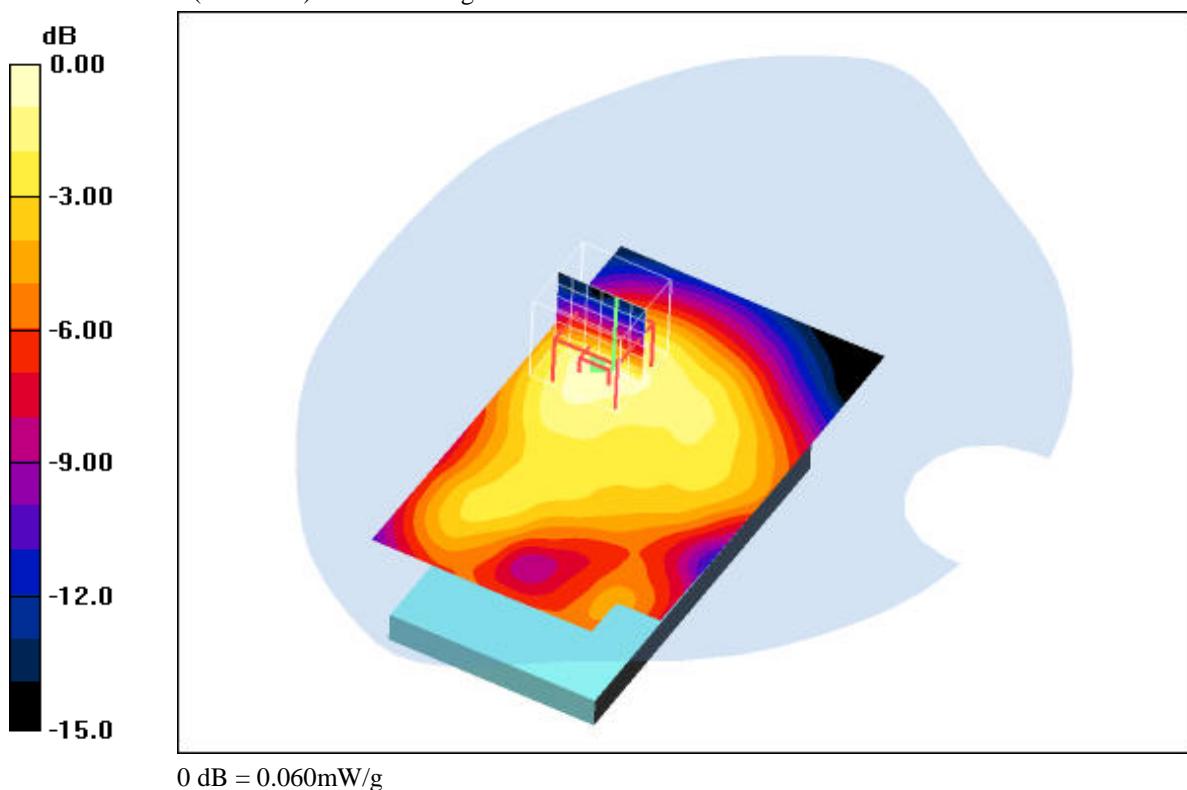
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(3.86, 3.86, 3.86); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.060 mW/g


Front position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.31 V/m; Power Drift = 0.055 dB

Peak SAR (extrapolated) = 0.126 W/kg

SAR(1 g) = 0.058 mW/g; SAR(10 g) = 0.032 mW/g

Maximum value of SAR (measured) = 0.060 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : 15 mm

ambient temperature: 23.7 °C; liquid temperature: 21.7 °C

Date/Time: 2009-01-30 19:17:57 Date/Time: 2009-01-30 19:26:12 Date/Time: 2009-01-30 19:38:23

P1528_OET65_EN62311-Body-WLAN2450**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: WLAN 2450 US; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: M2450 Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.96$ mho/m; $\epsilon_r = 52.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(3.86, 3.86, 3.86); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.089 mW/g

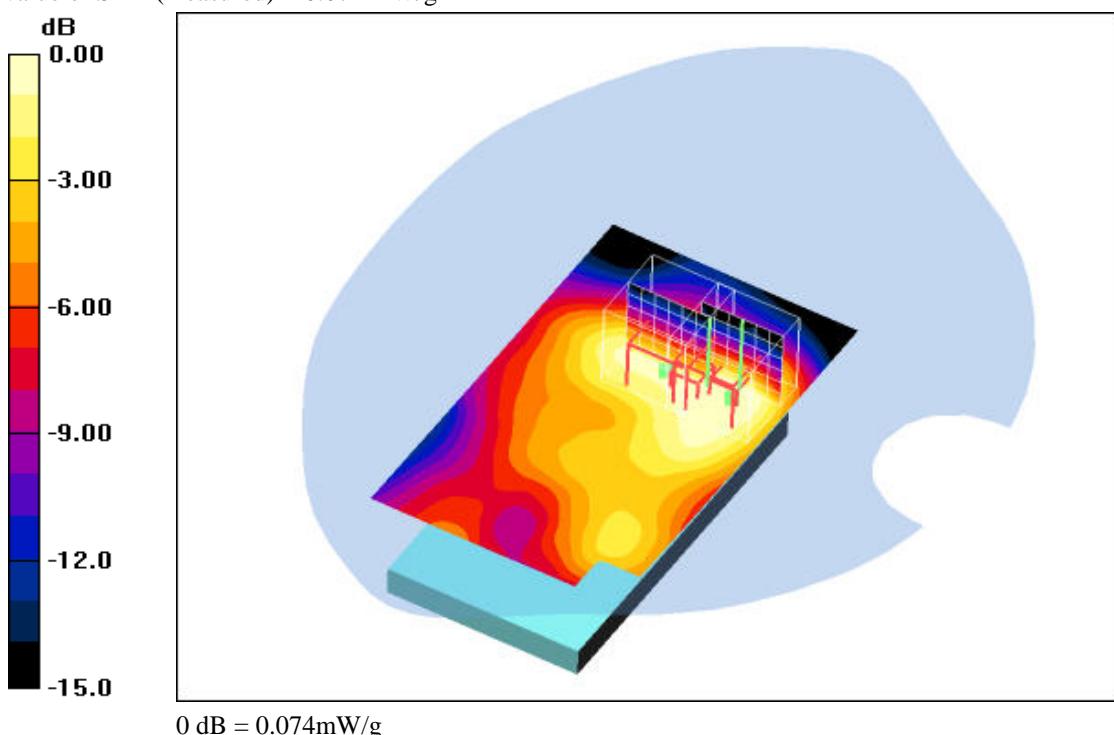
Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.52 V/m; Power Drift = 0.199 dB

Peak SAR (extrapolated) = 0.199 W/kg

SAR(1 g) = 0.082 mW/g; SAR(10 g) = 0.044 mW/g

Maximum value of SAR (measured) = 0.084 mW/g


Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.52 V/m; Power Drift = 0.199 dB

Peak SAR (extrapolated) = 0.168 W/kg

SAR(1 g) = 0.065 mW/g; SAR(10 g) = 0.038 mW/g

Maximum value of SAR (measured) = 0.074 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : 15 mm

ambient temperature: 23.7 °C; liquid temperature: 21.7 °C

Date/Time: 2009-01-30 19:59:58 Date/Time: 2009-01-30 20:08:45 Date/Time: 2009-01-30 20:20:57

P1528_OET65_EN62311-Body-WLAN2450**DUT: Toshiba; Type: TM5-E01; Serial: 359238020010636**

Communication System: WLAN 2450 US; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: M2450 Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.96$ mho/m; $\epsilon_r = 52.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(3.86, 3.86, 3.86); Calibrated: 2008-08-15
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2009-01-08
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Middle 6 M/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.049 mW/g

Rear position - Middle 6 M/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

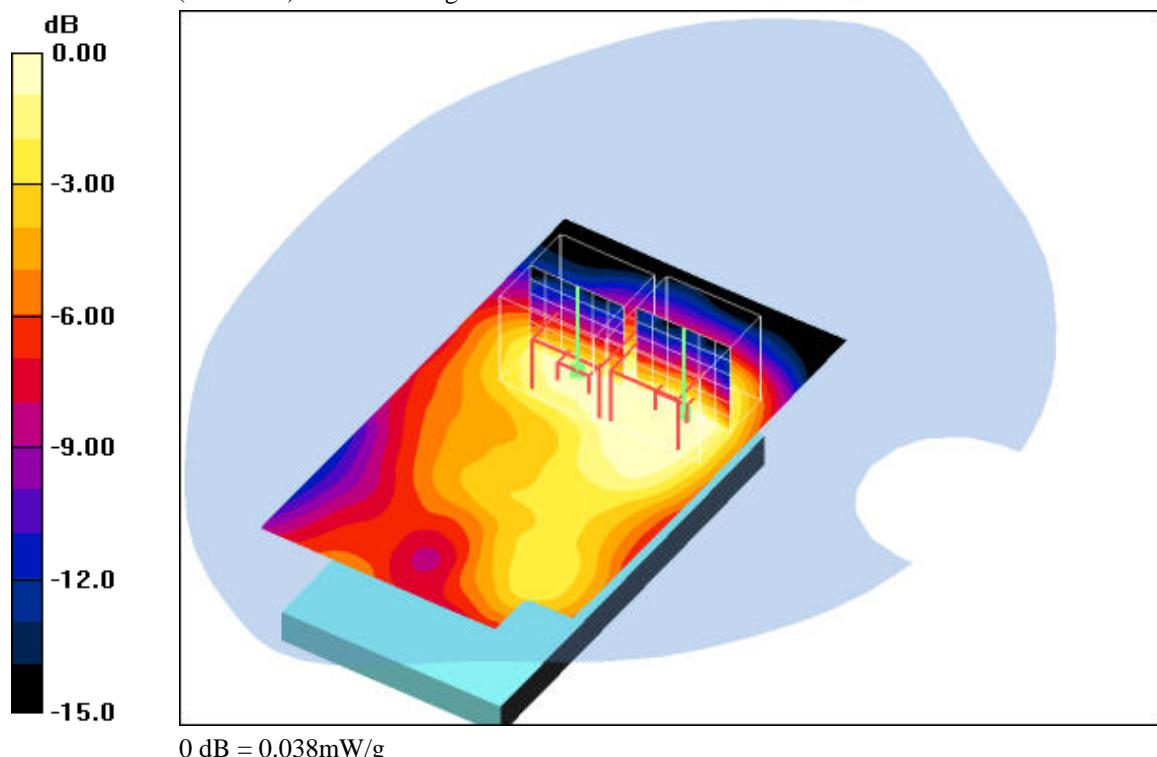
Reference Value = 4.53 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.110 W/kg

SAR(1 g) = 0.046 mW/g; SAR(10 g) = 0.025 mW/g

Maximum value of SAR (measured) = 0.048 mW/g

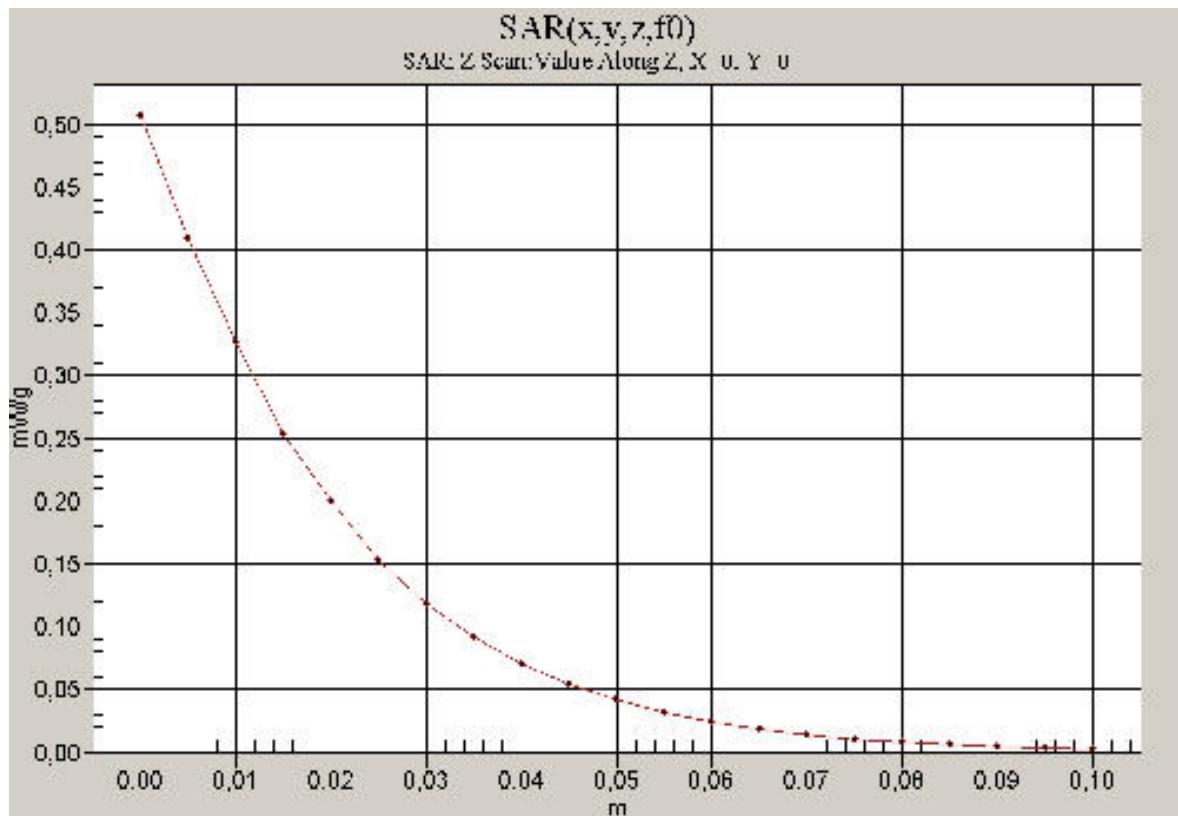
Rear position - Middle 6 M/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

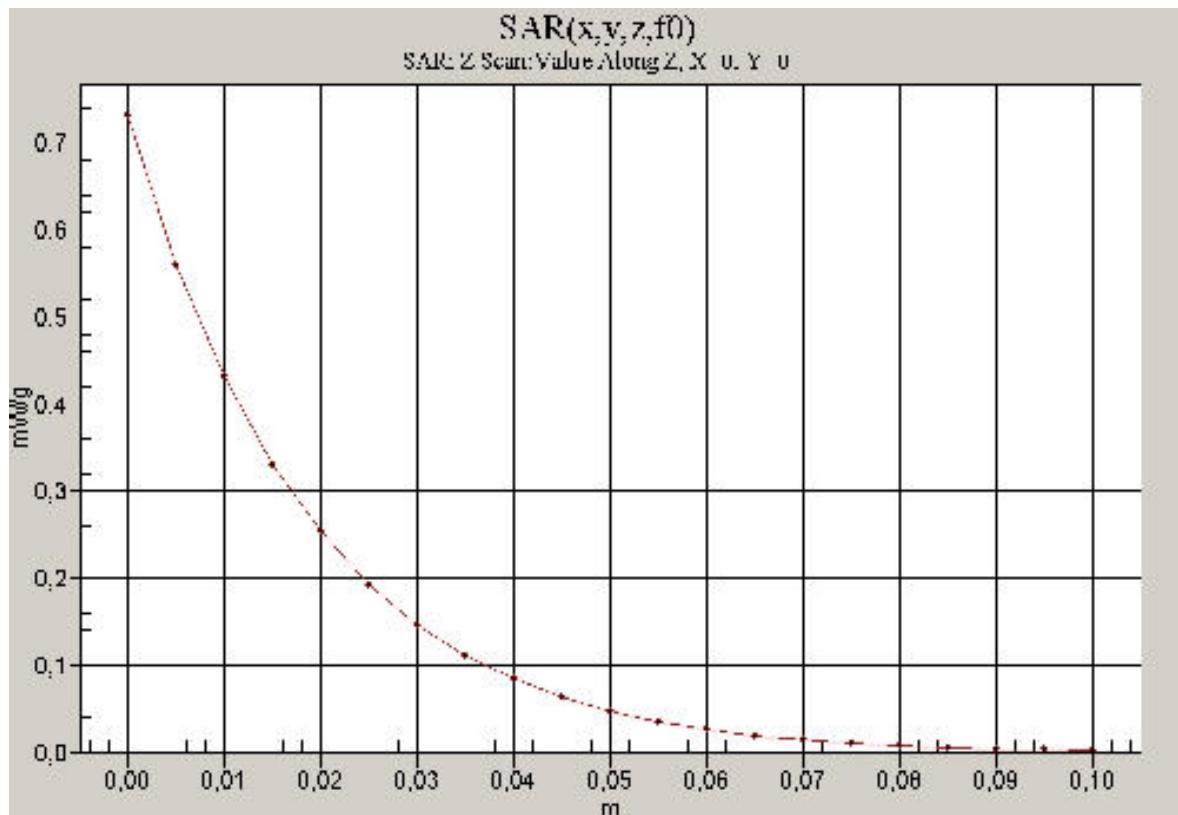
Reference Value = 4.53 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.076 W/kg

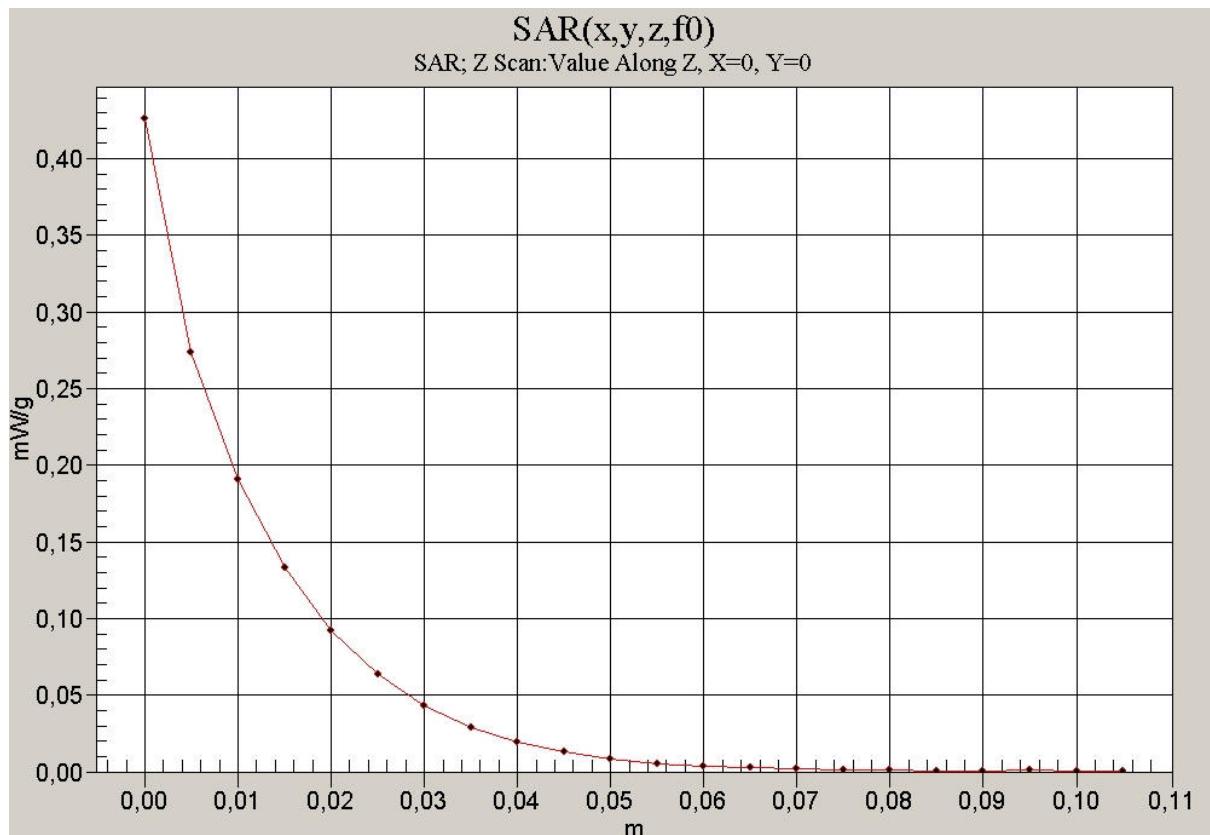
SAR(1 g) = 0.036 mW/g; SAR(10 g) = 0.020 mW/g

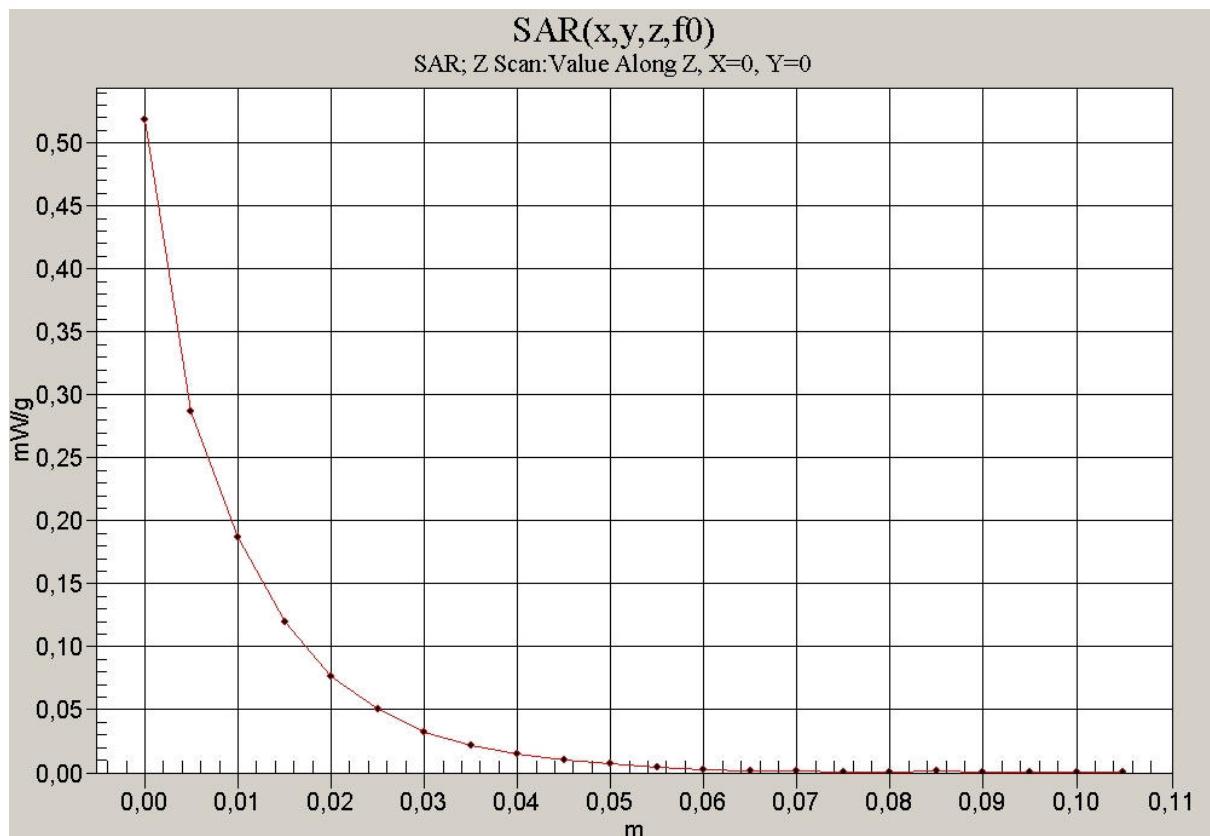

Maximum value of SAR (measured) = 0.038 mW/g

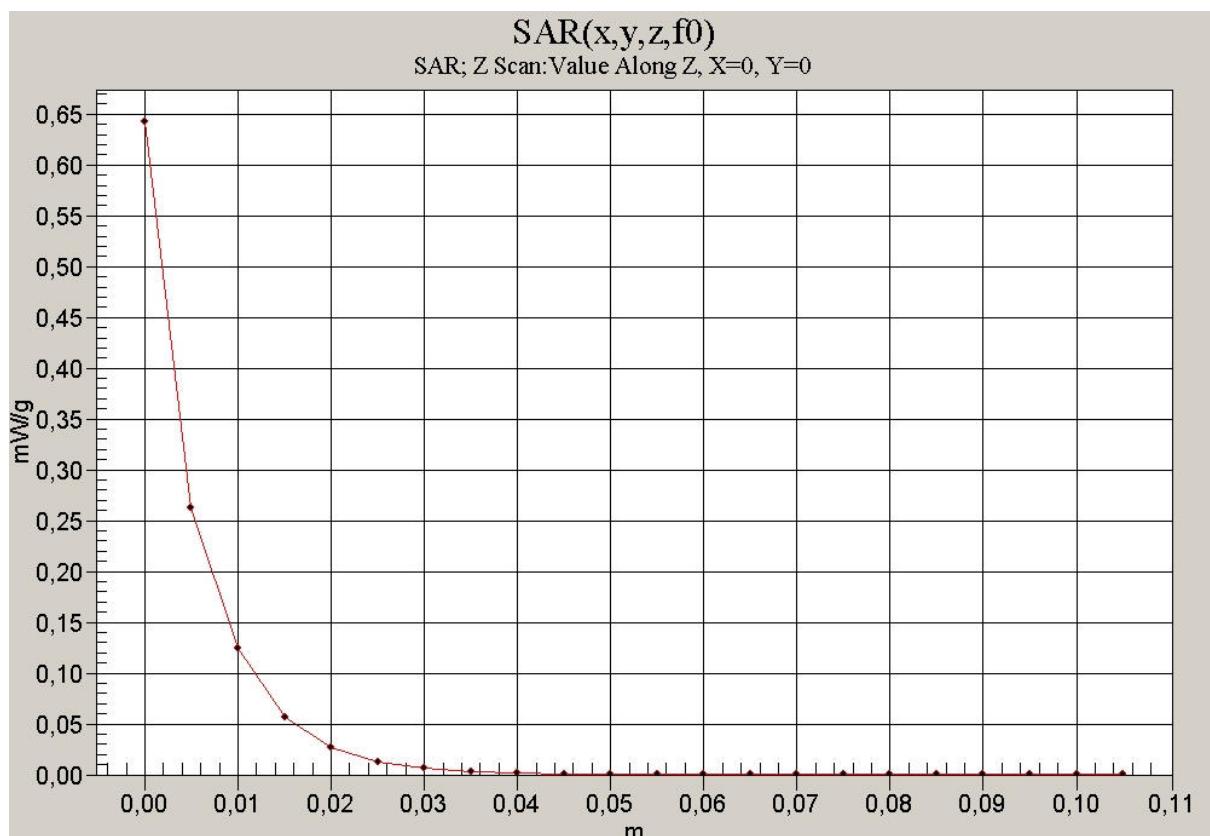
Additional information:

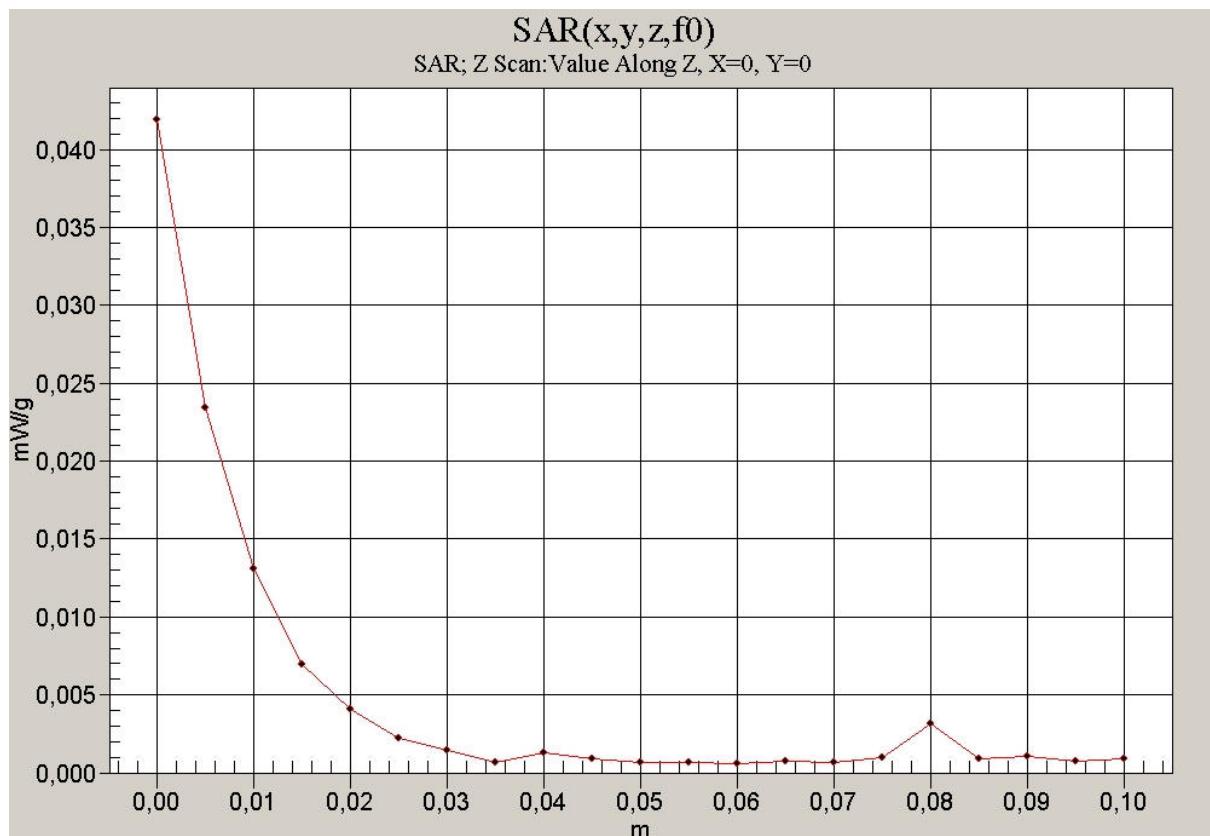

position or distance of DUT to SAM (if not standard head positions) : 15 mm

ambient temperature: 23.7 °C; liquid temperature: 21.7 °C


Annex 2.7 Z-axis scans


850 head


850 body


1900 head

1900 body

2450 head

2450 body

Annex 3 Photo documentation

See separate photo documentation file :

Annex 4 Calibration parameters

Calibration parameters are described in the additional document :

Appendix to test report no. 1-0880-01-07/08‘

**Calibration data, Phantom certificate
and detail information of the DASY4 System**