

Report No.: FCC11-RTE092801

Page 1 of 65

FCC REPORT

Applicant: Archos SA

Address of Applicant: 12 Rue Ampere Igny France 91430

Equipment Under Test (EUT)

Product Name: A80H

Model No.: 9081

Trade mark: Archos

FCC ID: SOV9081

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247:2010

Date of sample receipt: Aug. 26, 2011

Date of Test: Aug. 29-Sep. 27, 2011

Date of report issued: Sep. 28, 2011

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Kavin Yu Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the EBO product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of EBO International Electrical Approvals or testing done by EBO International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by EBO International Electrical Approvals in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: FCC11-RTE092801 Page 2 of 65

2 Version

Version No.	Date	Description
00	Sep. 28, 2011	Original

Prepared By:	Collan. He	Date:	Sep. 28, 2011	
	Project Engineer			
Check By:	Hams. Hu	Date:	Sep. 28, 2011	
	Reviewer	<u> </u>		

Report No.: FCC11-RTE092801 Page 3 of 65

3 Contents

			Page
1	CO	OVER PAGE	1
2	VE	RSION	2
3		ONTENTS	
4		ST SUMMARY	
5	GE	ENERAL INFORMATION	
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	TEST FACILITY	
	5.5	TEST LOCATION	
	5.6	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.7	TEST INSTRUMENTS LIST	
6	TE	ST RESULTS AND MEASUREMENT DATA	9
	6.1	Antenna requirement:	
	6.2	CONDUCTED EMISSIONS	
	6.3	CONDUCTED PEAK OUTPUT POWER	
	6.4	20dB Occupy Bandwidth	
	6.5	CARRIER FREQUENCIES SEPARATION	
	6.6	HOPPING CHANNEL NUMBER	
	6.7	DWELL TIME	
	6.8	BAND EDGE	
	6.9	RF ANTENNA CONDUCTED SPURIOUS EMISSIONS	
	6.10	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.11	RADIATED EMISSION	
		1.1 Below 1GHz	
	6.1		
		11.3 Band edge (Radiated Emission)	
7	TE	ST SETUP PHOTO	54
Q	FII	T CONSTRUCTIONAL DETAILS	56

Report No.: FCC11-RTE092801 Page 4 of 65

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	15.207	PASS
Conducted Peak Output Power	15.247 (b)(1)	PASS
20dB Occupied Bandwidth	15.247 (a)(1)	PASS
Carrier Frequencies Separation	15.247 (a)(1)	PASS
Hopping Channel Number	15.247 (a)(1)	PASS
Dwell Time	15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)&TCB Exclusion List (7 July 2002)	PASS
Radiated Emission	15.205/15.209	PASS
Band Edge	15.247(d)	PASS

Pass: The EUT complies with the essential requirements in the standard.

Report No.: FCC11-RTE092801 Page 5 of 65

5 General Information

5.1 Client Information

Applicant:	Archos SA		
Address of Applicant:	12 Rue Ampere Igny France 91430		
Manufacturer:	Archos SA		
Address of Manufacturer:	12 Rue Ampere Igny France 91430		
Factory:	Excelsior Electronics		
Address of Factory:	Sam Tuen Management Zone, Houjie, Dongguan Guangdong PRC		

5.2 General Description of E.U.T.

Product Name:	A80H
Model No.:	9081
Trade mark:	Archos
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	Frequency Hopping Spread Spectrum (FHSS)
Modulation Technology:	GFSK, Pi/4QPSK, 8DPSK
Antenna Type:	Integral
Antenna gain:	2dBi (declare by manufacturer)
Power supply:	Model:MD-TRC0620DC Input: AC 100-240V 0.3A(MAX)50/60Hz
	Output: DC 5.0V1.5A

Report No.: FCC11-RTE092801 Page 6 of 65

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency		
The lowest channel	2402MHz		
The middle channel	2441MHz		
The Highest channel	2480MHz		

Report No.: FCC11-RTE092801 Page 7 of 65

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	52 % RH			
Atmospheric Pressure:	1008 mbar			
Test mode:				
Transmitting mode	Keep the EUT in transmitting continuously mode.			

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, July 20, 2010.

● Industry Canada (IC)

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-1.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen,

China

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Other Information Requested by the Customer

N	റ	n	e

Report No.: FCC11-RTE092801 Page 8 of 65

5.7 Test Instruments list

Radia	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 30 2011	Mar. 29 2012	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Jul. 04 2011	Jul. 03 2012	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	Feb. 26 2011	Feb. 25 2012	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 30 2011	June 29 2012	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2011	Mar. 29 2012	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	Apr. 01 2011	Mar. 31 2012	
9	Coaxial Cable	GTS	N/A	GTS211	Apr. 01 2011	Mar. 31 2012	
9	Coaxial cable	GTS	N/A	GTS210	Apr. 01 2011	Mar. 31 2012	
11	Coaxial Cable	GTS	N/A	GTS212	Apr. 01 2011	Mar. 31 2012	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	Jul. 04 2011	Jul. 03 2012	
13	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	Jul. 04 2011	Jul. 03 2012	
14	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 30 2011	June 29 2012	
15	Band filter	Amindeon	82346	GTS219	June 30 2011	June 29 2012	

Condu	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS252	Jul. 04 2011	Jul. 03 2012		
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	Jul. 04 2011	Jul. 03 2012		
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	Jul. 04 2011	Jul. 03 2012		
4	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	Jul. 04 2011	Jul. 03 2012		
5	Coaxial Cable	GTS	N/A	GTS227	Apr. 01 2011	Mar. 31 2012		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

Report No.: FCC11-RTE092801

Page 9 of 65

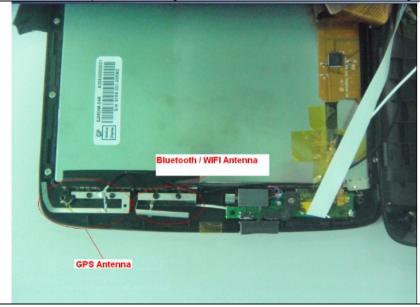
6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna port is an integral antenna inside EUT, the best case gain of the antenna is 2.0dBi.

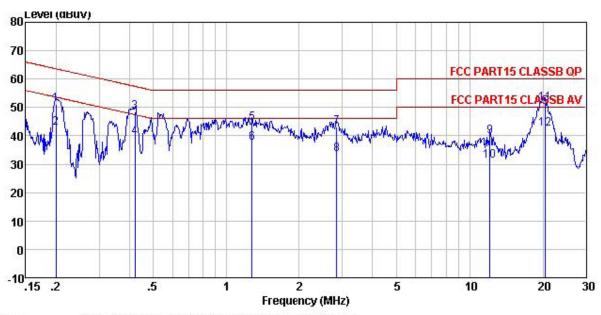
Report No.: FCC11-RTE092801

Page 10 of 65

6.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.4:2009				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz				
Limit:	Frequency range (MHz) Limit (dBuV)				
	Frequency range (IVII IZ)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
Test procedure	* Decreases with the logarithm The E.U.T and simulators are				
	impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.				
Test setup:	Reference Plane				
	AUX Equipment Test table/Insulation pla Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilizatio Test table height=0.8m		er — AC power		
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Measurement Data


An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Report No.: FCC11-RTE092801 Page 11 of 65

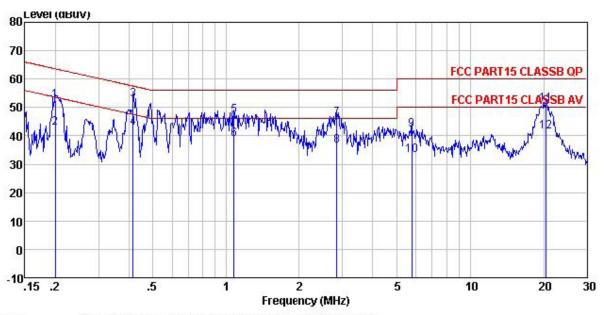
Line:

Condition : FCC PART15 CLASSB QP LISN(2011) LINE

Job No. : 732IT

Test Mode : Bluetooth mode

Test Engineer: Collin


1650	Freq	Read	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
1	0.200	50.29	0.66	0.10	51.05	63.62	-12.57	QP
1 2 3 4 5 6 7 8 9	0.200	42.18	0.66	0.10	42.94	53.62	-10.68	Average
3	0.421	47.63	0.57	0.10	48.30	57.42	-9.12	QP
4	0.421	38.65	0.57	0.10	39.32	47.42	-8.10	Average
5	1.269	44.01	0.45	0.10	44.56	56.00	-11.44	QP
6	1.269	36.94	0.45	0.10	37.49	46.00	-8.51	Average
7	2.854	42.70	0.36	0.10	43.16	56.00	-12.84	QP
8	2.854	33.19	0.36	0.10	33.65	46.00	-12.35	Average
9	12.124	39.37	0.20	0.20	39.77	60.00	-20.23	QP
10	12.124	30.83	0.20	0.20	31.23	50.00	-18.77	Average
11	20.486	51.20	0.14	0.21	51.55	60.00	-8.45	QP
12	20.486	42.18	0.14	0.21	42.53	50.00	-7.47	Average

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: FCC11-RTE092801 Page 12 of 65

Neutral:

Condition : FCC PART15 CLASSB QP LISN(2011) NEUTRAL

Job No. : 732IT

Test Mode : Bluetooth mode

Test Engineer: Collin

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	-dBuV	dB	dB	dBuV	-dBuV	dB	
1	0.200	51.63	0.66	0.10	52.39	63.62	-11.23	QP
2	0.200	42.19	0.66	0.10	42.95	53.62	-10.67	Average
3	0.415	52.03	0.58	0.10	52.71	57.55	-4.84	QP
2 3 4 5 6 7 8 9	0.415	42.11	0.58	0.10	42.79	47.55	-4.76	Average
5	1.071	46.45	0.47	0.10	47.02	56.00	-8.98	QP
6	1.071	38.19	0.47	0.10	38.76	46.00	-7.24	Average
7	2.854	45.69	0.36	0.10	46.15	56.00	-9.85	QP
8	2.854	36.19	0.36	0.10	36.65	46.00	-9.35	Average
9	5.774	41.79	0.28	0.11	42.18	60.00	-17.82	QP
10	5.774	32.77	0.28	0.11	33.16	50.00	-16.84	Average
11	20.486	50.65	0.14	0.21	51.00	60.00	-9.00	QP
12	20.486	40.99	0.14	0.21	41.34	50.00	-8.66	Average

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: FCC11-RTE092801

Page 13 of 65

6.3 Conducted Peak Output Power

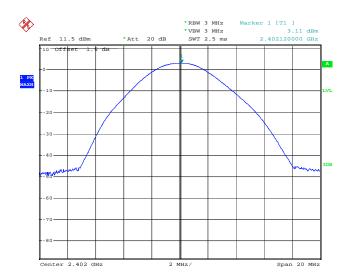
Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.4:2009 and KDB DA00-705		
Receiver setup:	RBW=3MHz, VBW=3MHz, Detector=Peak		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

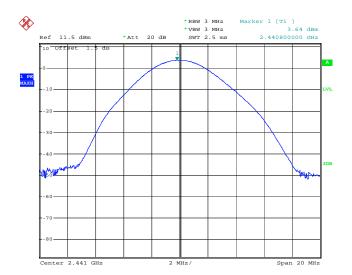
Report No.: FCC11-RTE092801

Page 14 of 65

Measurement Data


Weasurement Data					
	GFSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	3.11	30.00	Pass		
Middle	3.64	30.00	Pass		
Highest	2.11	30.00	Pass		
	Pi/4QPSK m	ode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	2.13	30.00	Pass		
Middle	2.62	30.00	Pass		
Highest	0.84	30.00	Pass		
	8DPSK mo	de			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	2.23	30.00	Pass		
Middle	2.75	30.00	Pass		
Highest	1.05	30.00	Pass		

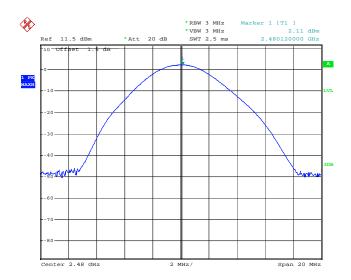
Test plot as follows:



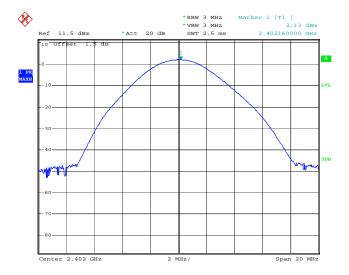
Report No.: FCC11-RTE092801 Page 15 of 65

Test mode: GFSK Test channel: Lowest

Test mode: GFSK Test channel: Middle



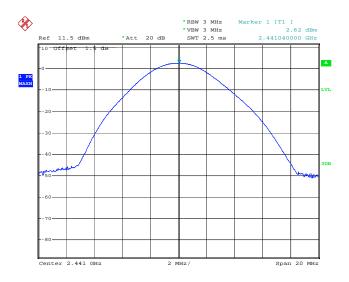
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."



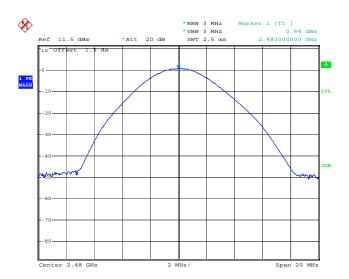
Report No.: FCC11-RTE092801 Page 16 of 65

Test mode: GFSK Test channel: Highest

Test mode: Pi/4QPSK Test channel: Lowest



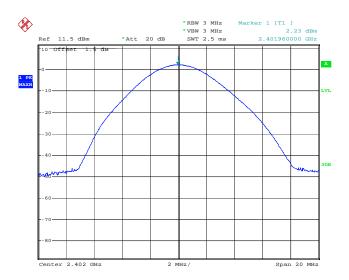
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."



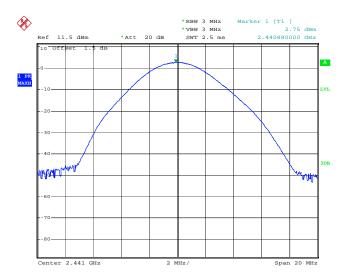
Report No.: FCC11-RTE092801 Page 17 of 65

Test mode: Pi/4QPSK Test channel: Middle

Test mode: Pi/4QPSK Test channel: Highest



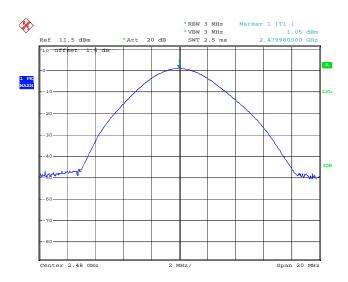
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."



Report No.: FCC11-RTE092801 Page 18 of 65

Test mode: 8DPSK Test channel: Lowest

Test mode: 8DPSK Test channel: Middle



[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: FCC11-RTE092801 Page 19 of 65

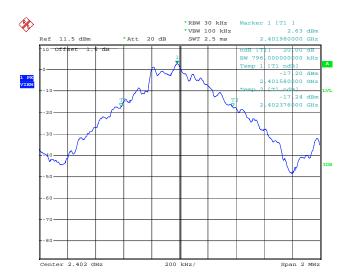
Test mode: 8DPSK Test channel: Highest

Report No.: FCC11-RTE092801

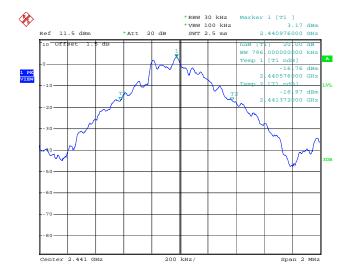
Page 20 of 65

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2009 and KDB DA00-705	
Receiver setup:	RBW=30KHz, VBW=100KHz,detector=Peak	
Limit:	NA NA	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Pass	

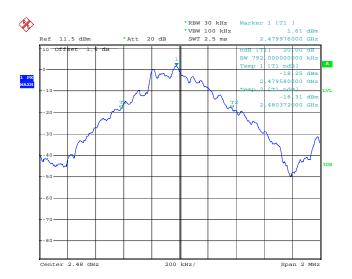

Measurement Data				
T	20dB Occupy Bandwidth (KHz)			
Test channel	GFSK	Pi/4QPSK	8DPSK	
Lowest	796	1380	1208	
Middle	796	1376	1204	
Highest	792	1204	1204	

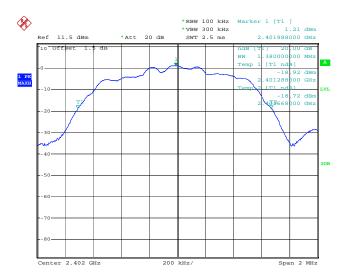
Test plot as follows:



Report No.: FCC11-RTE092801 Page 21 of 65

Test mode: GFSK Test channel: Lowest

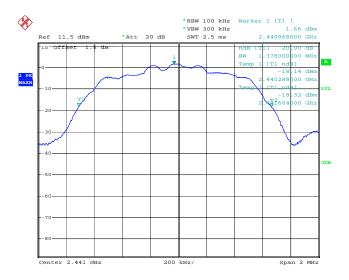

Test mode: GFSK Test channel: Middle



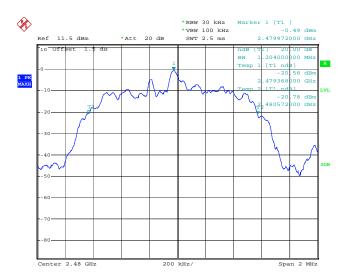
Report No.: FCC11-RTE092801 Page 22 of 65

Test mode: GFSK Test channel: Highest

Test mode: Pi/4QPSK Test channel: Lowest



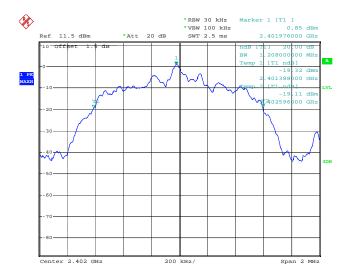
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."



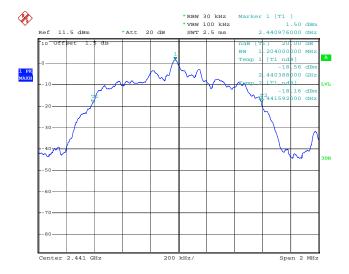
Report No.: FCC11-RTE092801 Page 23 of 65

Test mode: Pi/4QPSK Test channel: Middle

Test mode: Pi/4QPSK Test channel: Highest



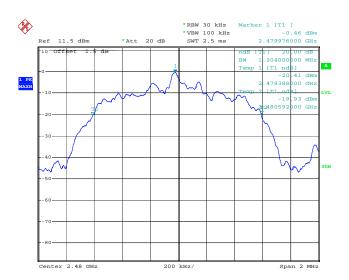
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."



Report No.: FCC11-RTE092801 Page 24 of 65

Test mode: 8DPSK Test channel: Lowest

Test mode: 8DPSK Test channel: Middle



[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: FCC11-RTE092801 Page 25 of 65

Test mode: 8DPSK Test channel: Highest

Report No.: FCC11-RTE092801 Page 26 of 65

6.5 Carrier Frequencies Separation

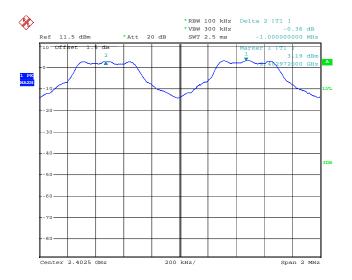
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.4:2009 and KDB DA00-705		
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak		
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

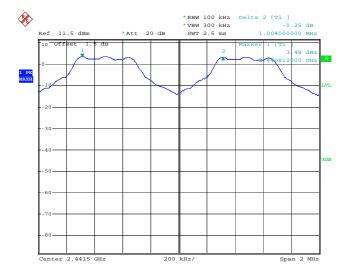
Report No.: FCC11-RTE092801 Page 27 of 65

Measurement Data			
	GFSK mod	de	
Test channel	Carrier Frequencies Separation (KHz)	Limit (KHz)	Result
Lowest	1000	531	Pass
Middle	1004	531	Pass
Highest	1000	531	Pass
	Pi/4QPSK m	ode	
Test channel	Carrier Frequencies Separation (KHz)	Limit (KHz)	Result
Lowest	1004	920	Pass
Middle	1000	920	Pass
Highest	1004	920	Pass
	8DPSK mo	de	
Test channel	Carrier Frequencies Separation (KHz)	Limit (KHz)	Result
Lowest	1004	805	Pass
Middle	1008	805	Pass
Highest	1004	805	Pass

Note: According to section 6.4.

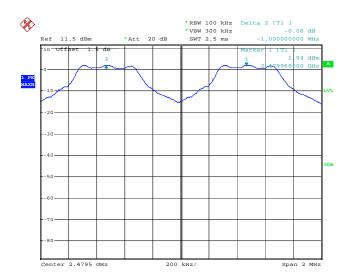

· · · · · · · · · · · · · · · · · · ·				
Mode	20dB bandwidth (KHz)	Limit (KHz)		
Mode	(worse case)	(Carrier Frequencies Separation)		
GFSK	796	531		
PI/4QPSK	1380	920		
8DPSK	1208	805		

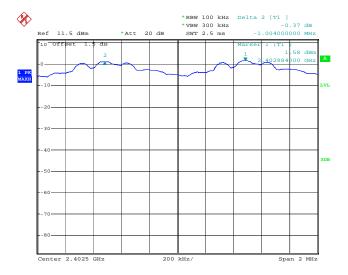
Test plot as follows:



Report No.: FCC11-RTE092801 Page 28 of 65

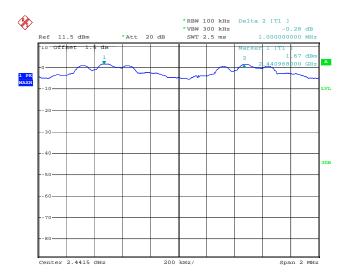
Test mode: GFSK Test channel: Lowest

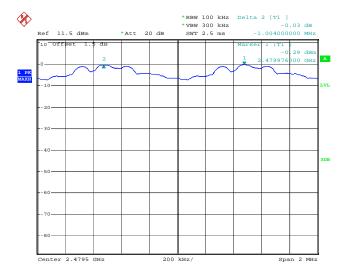

Test mode: GFSK Test channel: Middle



Report No.: FCC11-RTE092801 Page 29 of 65

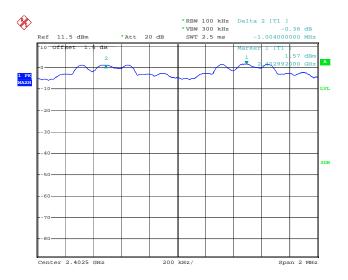
Test mode: GFSK Test channel: Highest

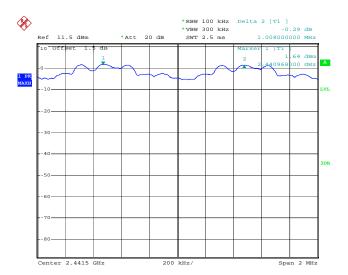

Test mode: Pi/4QPSK Test channel: Lowest



Report No.: FCC11-RTE092801 Page 30 of 65

Test mode: Pi/4QPSK Test channel: Middle

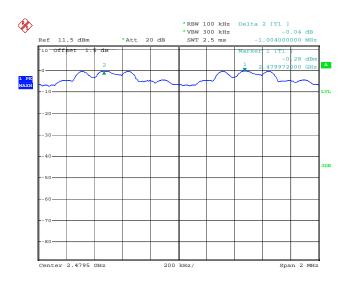

Test mode: Pi/4QPSK Test channel: Highest



Report No.: FCC11-RTE092801 Page 31 of 65

Test mode: 8DPSK Test channel: Lowest

Test mode: 8DPSK Test channel: Middle



[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

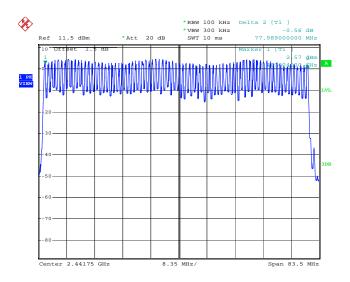
Report No.: FCC11-RTE092801 Page 32 of 65

Test mode: 8DPSK Test channel: Highest

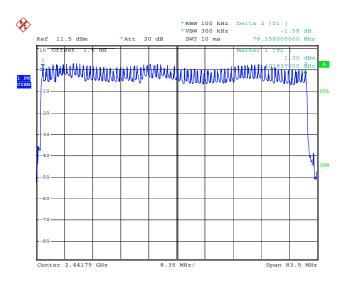
Report No.: FCC11-RTE092801 Page 33 of 65

6.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.4:2009 and KDB DA00-705		
Receiver setup:	RBW=100KHz, VBW=300KHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak		
Limit:	15channels		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

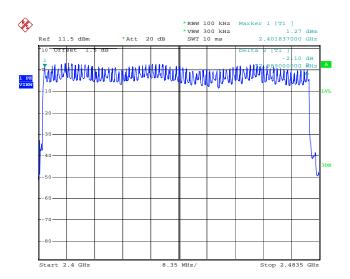

Measurement Data					
Mode	Hopping channel numbers	Limit			
GFSK	79	75			
Pi/4QPSK	79	75			
8DPSK	79	75			

Test plot as follows



Report No.: FCC11-RTE092801 Page 34 of 65

Test mode: GFSK



Report No.: FCC11-RTE092801 Page 35 of 65

Test mode:	8DPSK	

Report No.: FCC11-RTE092801

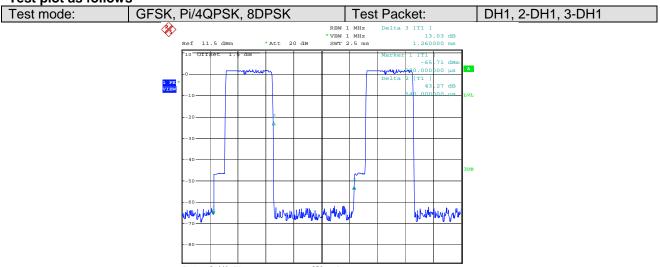
Page 36 of 65

6.7 Dwell Time

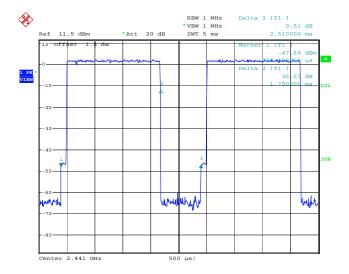
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.4:2009 and KDB DA00-705		
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak		
Limit:	0.4 Second		
Test mode:	Hopping transmitting with all kind of modulation.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement Data				
Mode	Packet	Dwell time (second)	Limit (second)	
GFSK	DH1	0.1696	0.4	
	DH3	0.2864	0.4	
	DH5	0.3264	0.4	
Pi/4QPSK	2-DH1	0.1696	0.4	
	2-DH3	0.2864	0.4	
	2-DH5	0.3264	0.4	
8DPSK	3-DH1	0.1696	0.4	
	3-DH3	0.2864	0.4	
	3-DH5	0.3264	0.4	

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

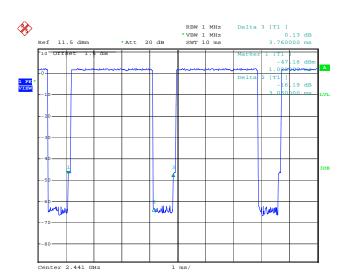

The lowest channel (2402MHz), middle channel (2441MHz), highest channel (2480MHz) as blow

DH1 time slot= 0.53(ms)*(1600/ (2*79))*31.6=169.60ms DH3 time slot= 1.79(ms)*(1600/ (4*79))*31.6=286.40ms DH5 time slot= 3.06(ms)*(1600/ (6*79))*31.6=326.40ms



Report No.: FCC11-RTE092801 Page 37 of 65

Test plot as follows



Report No.: FCC11-RTE092801 Page 38 of 65

Test mode: GFSK, Pi/4QPSK, 8DPSK Test Packet: DH5, 2-DH5, 3-DH5

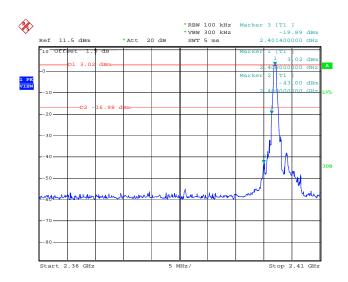
Report No.: FCC11-RTE092801 Page 39 of 65

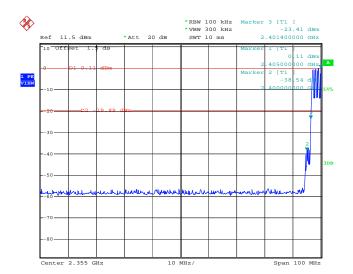
6.8 Band Edge

Test Requirement:	FCC Part15 C Section 15.247 (d)							
•								
Test Method:	ANSI C63.4:2009 and KDB DA00-705							
Receiver setup:	RBW=100KHz, VBW=300KHz, Detector=Peak							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:								
	Spectrum Analyzer E.U.T							
	Non-Conducted Table							
	Ground Reference Plane							
Test Instruments:	Refer to section 5.7 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Pass							

Remark:

During test the item, Pre-scan the GFSK, Pi/4QPSK, 8DPSK modulation, and found the GFSK modulation which it is worse case.

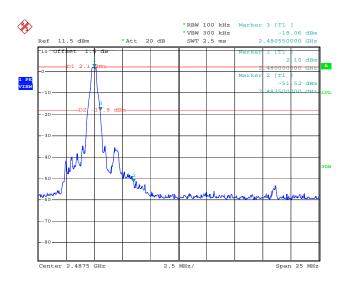

Test plot as follows:

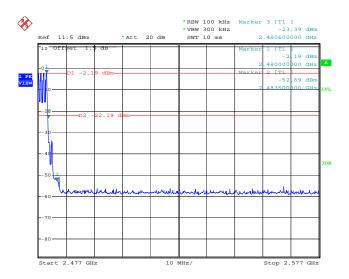

Report No.: FCC11-RTE092801 Page 40 of 65

Worse case mode:	GFSK	Test channel:	Lowest

No-hopping mode:

Hopping mode:




Report No.: FCC11-RTE092801 Page 41 of 65

Worse case mode:	GFSK	Test channel:	Highest

No-hopping mode:

Hopping mode:

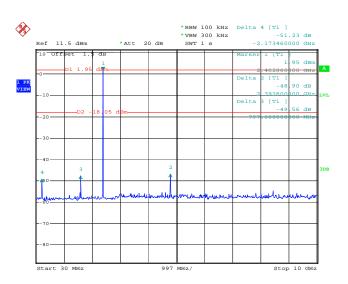
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

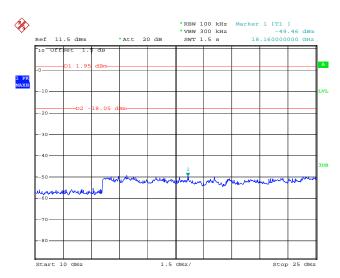
Report No.: FCC11-RTE092801 Page 42 of 65

6.9 RF Antenna Conducted spurious emissions

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2009 and KDB DA00-705						
	In any 100 kHz bandwidth outside the frequency band in which the						
Limit:	spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer						
	Non-Conducted Table						
	Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Pass						

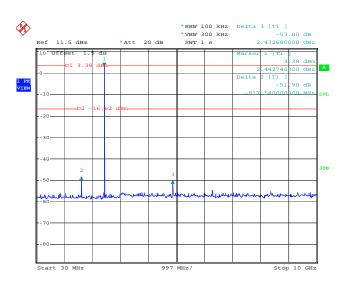
Remark:

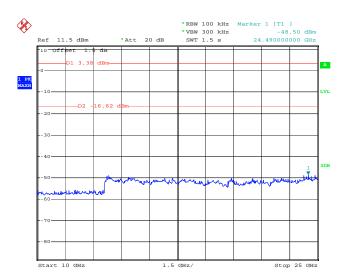

During test the item, Pre-scan the GFSK, Pi/4QPSK, 8DPSK modulation, and found the GFSK modulation which it is worse case.


[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.ebotek.cn and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.ebotek.cn. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: FCC11-RTE092801 Page 43 of 65

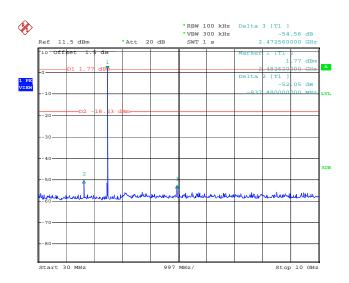
Worse case mode: GFSK Test channel: Lowest

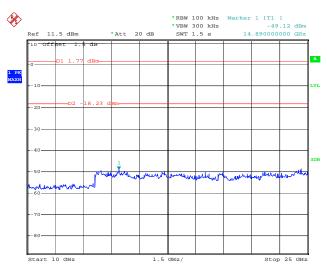




Report No.: FCC11-RTE092801 Page 44 of 65

Worse case mode: GFSK Test channel: Middle





Report No.: FCC11-RTE092801 Page 45 of 65

Worse case mode: GFSK Test channel: Highest

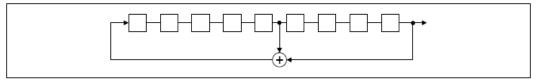
Report No.: FCC11-RTE092801

Page 46 of 65

6.10 Pseudorandom Frequency Hopping Sequence

Test Requirement:

FCC Part15 C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹ -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

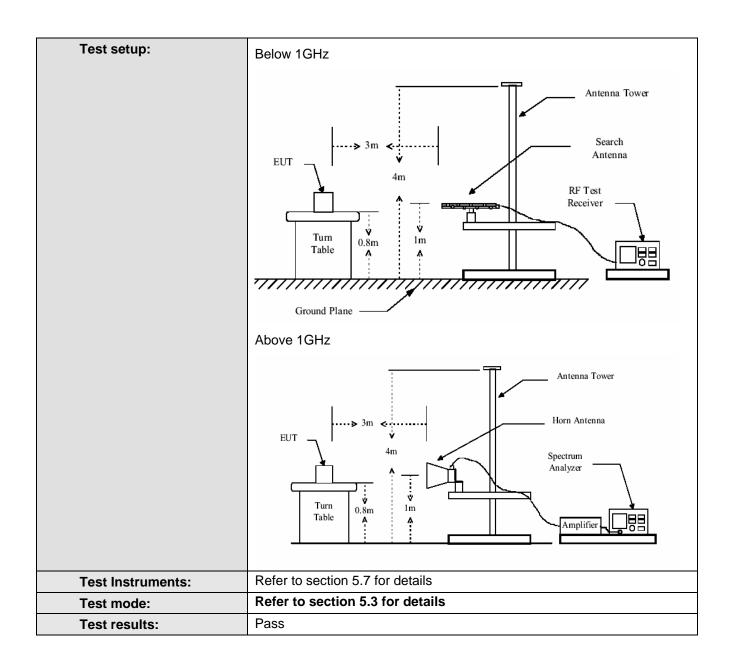
Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their

corresponding transmitters and shift frequencies in synchronization with the transmitted signals.


Report No.: FCC11-RTE092801 Page 47 of 65

6.11 Radiated Emission

Test Requirement:	FCC Part15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.4: 2003									
Test Frequency Range:	30MHz to 25GHz									
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)									
Receiver setup:										
Receiver setup.	Frequency Detector RBW VBW Remark 30MHz-1GHz Quasi-peak 100KHz 300KHz Quasi-peak Val									
	Above 1GHz	Peak	1MHz	3MHz	Peak Value					
	Above 1GHz Peak 1MHz 3MHz Peak Average 1MHz 10Hz Average									
Limit:	 									
	Frequency Limit (dBuV/m @3m) Remark 30MHz-88MHz 40.0 Quasi-peak									
			40.0		Quasi-peak Value					
	88MHz-21		43.5		Quasi-peak Value					
	216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value									
			54.0		Average Value					
	Above 1	GHz	74.0		Peak Value					
Test Procedure:	the ground rotated 360 radiation. b. The EUT was antenna, whatower. c. The antenna ground to de horizontal at the measured. d. For each succase and the meters and degrees to degrees to degrees to degree	at a 3 meter set degrees to degree to degree to degree to degree the antennation of the maximulation of the degree degree to degr	mi-anechoicermine the parameter on the total and the total arizations of a mass turned arizations of a mass are performance of the total arizations of a mass turned arizations are performance of the total arizations are performance of the mass are performance of the total arizations are perfor	c camber. Toosition of the interference op of a varial meter to follower of the fiethe antennation heights fied from 0 decaded by the end of the end was a stopped a dise the emissione by one and then reparted in X, Y,	ence-receiving able-height antenna ur meters above the ald strength. Both a are set to make ged to its worst rom 1 meter to 4 agrees to 360. Function and and the peak values asions that did not using peak, quasi-ported in a data.					

Report No.: FCC11-RTE092801 Page 48 of 65

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Report No.: FCC11-RTE092801

Page 49 of 65

6.11.1 Below 1GHz

Test in Bluetooth mode.

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Frequency (MHz)
33.07	0.61	14.60	32.23	46.41	29.39	40.00	-10.61	Vertical
72.33	0.86	13.23	31.87	44.05	26.27	40.00	-13.73	Vertical
158.46	1.56	10.02	32.01	48.90	28.47	43.50	-15.03	Vertical
234.91	1.90	10.86	32.28	46.75	27.23	46.00	-18.77	Vertical
407.43	2.26	14.22	32.32	50.18	34.34	46.00	-11.66	Vertical
691.31	2.94	20.27	31.70	46.64	38.15	46.00	-7.85	Vertical
45.71	0.67	14.80	32.01	37.87	21.33	40.00	-18.67	Horizontal
186.65	1.61	11.53	32.08	50.92	31.98	43.50	-11.52	Horizontal
252.53	1.91	11.98	32.28	52.37	33.98	46.00	-12.02	Horizontal
359.25	2.17	13.84	32.31	53.78	37.48	46.00	-8.52	Horizontal
420.43	2.26	15.64	32.32	53.54	39.12	46.00	-6.88	Horizontal
731.76	2.94	23.19	31.69	46.24	40.68	46.00	-5.32	Horizontal

Report No.: FCC11-RTE092801 Page 50 of 65

6.11.2 Above 1GHz

Worse case mode:	GFSK	Test channel:	Lowest	Remark:	Peak
			•		

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	9.36	34.25	41.53	49.07	51.15	74.00	-22.85	Vertical
7206.00	11.42	35.84	39.48	44.09	51.87	74.00	-22.13	Vertical
9608.00	13.39	37.99	37.56	40.62	54.44	74.00	-19.56	Vertical
12010.00	16.45	39.10	39.09	38.69	55.15	74.00	-18.85	Vertical
14412.00						74.00		Vertical
16814.00						74.00		Vertical
4804.00	9.36	34.25	41.53	47.38	49.46	74.00	-24.54	Horizontal
7206.00	11.42	35.84	39.48	42.53	50.31	74.00	-23.69	Horizontal
9608.00	13.39	37.99	37.56	39.19	53.01	74.00	-20.99	Horizontal
12010.00	16.45	39.10	39.09	37.39	53.85	74.00	-20.15	Horizontal
14412.00						74.00		Horizontal
16814.00						74.00		Horizontal

Worse case mode: GFSK Test channel: Lowest Remark: Average
--

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	9.36	34.25	41.53	28.54	30.62	54.00	-23.38	Vertical
7206.00	11.42	35.84	39.48	25.21	32.99	54.00	-21.01	Vertical
9608.00	13.39	37.99	37.56	23.27	37.09	54.00	-16.91	Vertical
12010.00	16.45	39.10	39.09	22.81	39.27	54.00	-14.73	Vertical
14412.00						54.00		Vertical
16814.00						54.00		Vertical
4804.00	9.36	34.25	41.53	26.95	29.03	54.00	-24.97	Horizontal
7206.00	11.42	35.84	39.48	23.75	31.53	54.00	-22.47	Horizontal
9608.00	13.39	37.99	37.56	21.94	35.76	54.00	-18.24	Horizontal
12010.00	16.45	39.10	39.09	21.61	38.07	54.00	-15.93	Horizontal
14412.00						54.00		Horizontal
16814.00						54.00		Horizontal

Remark

[&]quot;---" means that the emission level is too low to be measured

Shenzhen EBO Technology Co., Ltd.

Report No.: FCC11-RTE092801 Page 51 of 65

				_				_		
770100 0a00	mode.	. 0.1	1000	i iai ii ioi	•	maaio	1 (01	nan.	1 Our	
I Worse case	mode. (i)	FSK	I lest c	hannel	•	Middle	I Rei	mark:	Peak	

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	10.57	34.35	40.33	45.94	50.53	74.00	-23.47	Vertical
7323.00	11.85	36.12	39.18	43.15	51.94	74.00	-22.06	Vertical
9764.00	13.89	38.03	37.94	39.17	53.15	74.00	-20.85	Vertical
12205.00	17.95	39.23	39.30	36.46	54.34	74.00	-19.66	Vertical
14646.00						74.00		Vertical
17087.00						74.00		Vertical
4882.00	10.57	34.35	40.33	44.59	49.18	74.00	-24.82	Horizontal
7323.00	11.85	36.12	39.18	42.07	50.86	74.00	-23.14	Horizontal
9764.00	13.89	38.03	37.94	38.36	52.34	74.00	-21.66	Horizontal
12205.00	17.95	39.23	39.30	36.92	54.80	74.00	-19.20	Horizontal
14646.00						74.00		Horizontal
17087.00					-	74.00		Horizontal

Worse case	Worse case mode: GFSK		Test	channel:	Middle	Remar	k:	Average
Frequency	Cable	Antenna	Preamp	Read	Level	Limit Line	Over	

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	10.57	34.35	40.33	27.85	32.44	54.00	-21.56	Vertical
7323.00	11.85	36.12	39.18	25.27	34.06	54.00	-19.94	Vertical
9764.00	13.89	38.03	37.94	23.45	37.43	54.00	-16.57	Vertical
12205.00	17.95	39.23	39.30	21.22	39.10	54.00	-14.90	Vertical
14646.00						54.00		Vertical
17087.00						54.00		Vertical
4882.00	10.57	34.35	40.33	26.64	31.23	54.00	-22.77	Horizontal
7323.00	11.85	36.12	39.18	24.30	33.09	54.00	-20.91	Horizontal
9764.00	13.89	38.03	37.94	22.72	36.70	54.00	-17.30	Horizontal
12205.00	17.95	39.23	39.30	20.73	38.61	54.00	-15.39	Horizontal
14646.00						54.00		Horizontal
17087.00						54.00		Horizontal

Remark

[&]quot;---" means that the emission level is too low to be measured

Report No.: FCC11-RTE092801 Page 52 of 65

Worse case mode: GFSK Test c	hannel: Highest	Remark:	Peak
------------------------------	-----------------	---------	------

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	10.73	34.45	40.18	43.63	48.63	74.00	-25.37	Vertical
7440.00	12.35	36.68	38.85	42.37	52.55	74.00	-21.45	Vertical
9920.00	14.24	38.08	37.78	39.14	53.68	74.00	-20.32	Vertical
12400.00	17.55	39.34	37.48	35.78	55.19	74.00	-18.81	Vertical
14880.00						74.00		Vertical
17360.00						74.00		Vertical
4960.00	10.73	34.45	40.18	42.08	47.08	74.00	-26.92	Horizontal
7440.00	12.35	36.68	38.85	40.95	51.13	74.00	-22.87	Horizontal
9920.00	14.24	38.08	37.78	37.85	52.39	74.00	-21.61	Horizontal
12400.00	17.55	39.34	37.48	36.31	55.72	74.00	-18.28	Horizontal
14880.00						74.00		Horizontal
17360.00						74.00		Horizontal

	Worse case mode:	GFSK	Test channel:	Highest	Remark:	Average
--	------------------	------	---------------	---------	---------	---------

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	10.43	34.45	41.03	29.97	33.82	54.00	-20.18	Vertical
7440.00	12.72	37.37	40.01	24.34	34.42	54.00	-19.58	Vertical
9920.00	14.24	38.08	37.78	22.78	37.32	54.00	-16.68	Vertical
12400.00	17.55	39.34	37.48	20.08	39.49	54.00	-14.51	Vertical
14880.00						54.00		Vertical
17360.00						54.00		Vertical
4960.00	10.43	34.45	41.03	28.48	32.33	54.00	-21.67	Horizontal
7440.00	12.72	37.37	40.01	22.93	33.01	54.00	-20.99	Horizontal
9920.00	14.24	38.08	37.78	21.45	35.99	54.00	-18.01	Horizontal
12400.00	17.55	39.34	37.48	18.83	38.24	54.00	-15.76	Horizontal
14880.00						54.00		Horizontal
17360.00						54.00		Horizontal

Remark

[&]quot;---" means that the emission level is too low to be measured

Report No.: FCC11-RTE092801

Page 53 of 65

6.11.3 Ba	nd ed	lge (F	Radiated E	Emission)							
Test mode: Transmitting Test cha		Test chann	st channel: Lowest		Remark:		Peak				
Frequency (MHz)		ble (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Rea Lev (dBu	el	Level (dBuV/m)	Limit Line (dBuV/m)	Ove Limi (dB)	t	Polarization
2390.00	6.0	02	29.76	39.75	49.2	29	45.32	74.00	-27.5	8	Horizontal
2400.00	6.3	34	30.03	38.87	50.7	76	48.26	74.00	-24.5	4	Horizontal
2390.00	6.0	02	29.76	39.75	50.4	44	46.47	74.00	-26.3	3	Vertical
2400.00	6.3	34	30.03	38.87	52.	18	49.68	74.00	-23.2	2	Vertical

Test mode:	Trans	mitting	Test channel: Lowest		est	Remark:		Average		
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Rea Lev (dBu	el (Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)		Polarization
2390.00	6.02	29.76	39.75	28.78		24.81	54.00	-28.0	9	Horizontal
2400.00	6.34	30.03	38.87	32.	10	29.60	54.00	-23.2	20	Horizontal
2390.00	6.02	29.76	39.75	29.8	83	25.86	54.00	-26.9)4	Vertical
2400.00	6.34	30.03	38.87	33.4	42	30.92	54.00	-21.9	8	Vertical

Test mode:	Trans	mitting	Test channel:		Highest		Remark:		Peak	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Rea Lev (dBu	el	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)		Polarization
2483.50	6.22	30.32	39.53	51.5	50	48.51	74.00	-24.3	39	Horizontal
2500.00	6.36	30.37	39.65	48.0	09	45.17	74.00	-27.6	63	Horizontal
2483.50	6.22	30.32	39.53	52.5	51	49.52	74.00	-23.2	28	Vertical
2500.00	6.36	30.37	39.65	49.3	37	46.45	74.00	-26.4	45	Vertical

Test mode:	Trans	mitting	Test channel:		Highest		Remark:		Average	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Re Lev (dB	vel	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)		Polarization
2483.50	6.22	30.32	39.53	33.89		30.90	54.00	-22.0	00	Horizontal
2500.00	6.36	30.37	39.65	30.	21	27.29	54.00	-25.5	51	Horizontal
2483.50	6.22	30.32	39.53	34.	74	31.75	54.00	-21.0)5	Vertical
2500.00	6.36	30.37	39.65	31.	38	28.46	54.00	-24.4	14	Vertical