TEST REPORT FOR FCC PART 15 COMPLIANCE FOR PACIFICA INTERNATIONAL

Pacifica International Booster Amplifier Model Numbers GP850A, G850A and P1900A

> Prepared by Daniel C. Swann November 20, 2004

FCC Part 22 Subpart H FCC Part 24 Subpart E

FCC ID SNY-GP850A

GEL Report File PI_01-2004

GLEN ELLEN LABORATORIES

1876 London Ranch Road Glen Ellen, CA 95442 707 996 8533

MEASUREMENT/TECHNICAL REPORT

Pacifica International Booster Amplifier

Model Numbers GP850A, G850A, and P1900A

FCC ID SNY-GP850A

This report concerns:

An Original Equipment Grant

Equipment type: amplifier

Product Description: Cellular Telephone Booster Amplifier

FCC Rule Part 47CFR Parts 2, 22H, 24E

Frequency Range Rated RF power output Emissions Designator 824-849 MHz 2 Watts F1D, GXW, DXW 1850-1940 MHz 3 Watts GXW, DXW

Deferred grant requested: no

Request for confidentiality: yes

Transition rules per 15.37: no

Report prepared by: Daniel C. Swann

Glen Ellen Laboratories 1876 London Ranch Road Glen Ellen, CA 95442

(707) 996-8533 (707) 996-2803 fax dan@glenellenlabs.com

Measurements Certified by: Daniel C. Swann

Date 11/20/04

GEL Report File: GEL Report File PI_01-2004

anil C. Swam

TABLE OF CONTENTS

1 GENERAL INFORMATION

- 1.1 Product Description
- 1.2 Tested System Details
- 1.3 Test Methodology
- 1.4 Test Facility

2 PRODUCT LABELING AND MANUAL STATEMENT

- 2.1 Product Labeling
- 2.2 FCC Statement in User Manual

3 SYSTEM TEST CONFIGURATION

- 3.1 Justification
- 3.2 EUT Operating Conditions
- 3.3 Special Accessories
- 3.4 Equipment Modifications
- 3.5 Configurations of Tested System
 - Figure 3.5.1 Unintentional Radiated Emissions Test Setup
 - Figure 3.5.2 Conducted Emissions Test Setup
 - Figure 3.5.3 99% Occupied Power BW Test Setup
 - Figure 3.5.4 RF Output Power and Intermodulation Test Setup

4 RADIATED AND CONDUCTED EMISSIONS DATA

- 4.1 Unintentional Radiated Emissions Data
- 4.2 Conducted Emissions Data
- 4.3 99% Occupied Power BW Data
- 4.4 RF Output Power and Intermodulation
- 4.5 Field Strength Calculation for Unintentional Radiated Emissions

5 HUMAN EXPOSURE ANALYSIS IN ACCORDANCE WITH 47CFR1.1310

- 5.1 Guidelines
- 5.2 Calculations

This report contains 33 pages, and may be reproduced in full only.

1 GENERAL INFORMATION

1.1 Product Description

The purpose of the GP850A Booster Amplifier is to boost the output power of a 0.5 watts handheld cellular phone to the maximum FCC allowed output power of 3 watts for the 800 MHz cellular band and 2 watts of the 1900 MHz PCS band.

The GP850A mechanical design consists of a PCB board mounted to a finned heat sink aluminum extrusion, with the voltage regulators directly mounted to the extrusion. The bottom of the unit and the two ends, are covered with aluminum plates. The aluminum parts are painted, except for the areas of the extrusion, bottom cover and end plates that contact each other.

Signal input and outputs are made with TNC connectors located on the end plates.

The DC jack power connector is located on the input end of the housing, with the center at +V.

The controls available to the user are the On / Off switch, and a High Band / Low Band Channel switch, located on the input end of the housing.

Please see the product photographs attachment for pictures of the assembled, and disassembled, unit.

The product will be marketed under three Model Numbers, utilizing the same PC board, but not loading part of the circuitry for two of the models. The operation of the units is the same, with the unused part of the circuit terminated in 50 Ohms.

GP850A	the unit tested for this report, both high and low band circuits
G850A	the 800 MHz cellular band only, without the 1900 MHz PCS band circuitry
P1900A	the 1900 MHz PCS band, without the 800 MHz cellular band circuitry

The amplifier is bi-directional, but only the uplink output was tested. The downlink output was not tested because it is directly connected to the phone with an RF coax cable. The receive signal of this amplifier is a very low signal level and it operates in the -50 dBm or less region with a gain of the LNA (low noise amplifier) approx. 10 dB.

1.2 Tested System Details

Equipment under Test: Pacifica International Model Numbers GP850A, G850A, and

P1900A.

FCC ID: SNY-GP850A

Manufacturer and applicant: Pacifica International

1479 Georgia Court Rohnert Park, CA 94928

GP850A Specifications

	Uplink	Downlink				
Frequency:	824-849 MHz (800 cellular)	Frequency:	869-894 MHz (800 cellular)			
	1850-1910 MHz (1900 PCS)		1930-1990 MHz (1900 PCS)			
Output power:	3W max.(800 cellular)					
	2W max (1900 PCS)					
Input max power:	0.5W (800 cellular)	Input max power:	0 dBm			
	0.2W (1900 PCS)					
NF:	NA	NF:	6 dB typical			
Gain:	6-10 dB (800 cellular)	Gain:	7-12 dB (800 cellular)			
	8-12 dB (1900 PCS)		6-12 dB (1900 PCS)			
Tx-Rx isolation:	35 dB min	Tx-Rx isolation:	35 dB min			
Type of emissions:	GXW (GSM)					
	F1D (AMPS)					
	DXW (TDMA/NADC)					
Power supply:	11-20V DC					
Current consumption:	2 A max					
Standby current:	< 600 mA					
Storage temperatures:	-10 to +80C					
Operating temperatures	s:-10 to +50C					
In line fuse	3A					
Connector type:	TNC female					
Weight:	1 lb					
Dimension:	1.25"x 4.5"x 3.75"					

Tested by: Daniel Swann

Glen Ellen Laboratories 1876 London Ranch Road Glen Ellen, CA 95442

(707) 996-8533

dan@glenellenlabs.com

1.3 Test Methodology

The radiated tests were performed in accordance with 47CFR Parts 2, 22, 24, ANSI C63.4-2001, CISPR 22, EN55022, CISPR 16. See Figure 3.1 and the photographs for details of the test setup. Radiated testing was performed at an antenna to EUT distance of 3 meters.

1.4 Test Facility

The facility is located near the town of Glen Ellen, California, at the street address of 1876 London Ranch Road. The open field test site consists of a 10 by 20 meter area of galvanized hardware cloth placed on top of a flat asphalt surface located in an open meadow. The Glen Ellen Laboratories open field test site complies with the requirements specified by VDE 0876/9.78, VDE 0877 Part 1/11.81, VDE 0877 Part 2/2.85, CISPR 16, CISPR 22, and ANSI C63.4-2001. The test site closely follows the theoretical normalized site attenuation specifications for both horizontal and vertical polarizations. The site has been fully described in a report dated October 28, 2004, submitted to the FCC, and accepted in a letter dated November 3, 2004 (Registration Number 90613.)

Test equipment used included:

- 1. Hewlett Packard 8591EM spectrum analyzer, cal due 04-10-05.
- 2. Hewlett Packard 8593EM spectrum analyzer, cal due 09-29-05.
- 3. Agilent E4432B signal generator, cal due 08-25-05.
- 4. Sonoma Instruments 317 preamplifier, 10 kHz to 2.5 GHz, cal due 04-14-05.
- 5. RFMD 3802 preamplifier, 800-1000 MHz.
- 5. RFMD 3805 preamplifier, 1700-2000 MHz.
- 6. GEL BIC9414 biconical antenna, 30 MHz to 300 MHz, cal due 05-24-05.
- 7. GEL LPA-3 log periodic antenna, 275 MHz to 2 GHz, cal due 05-24-05.
- 8. ETS 3115 horn antenna, 1 GHz to 18 GHz, cal due 09-09-05.
- 9. Hewlett Packard 436A power meter.
- 10. Hewlett Packard 8481A power meter head, 10 MHz to 18 GHz, cal due 04-02-05.
- 11. JFW 50 FH-4-100-3N attenuator, cal due 10-23-05.

2 PRODUCT LABELING

2.1 Product Label

The product label shall be placed on the product and shall bear the following statement:

This product is designed to be used with an external antenna with a maximum gain of 3 dBi or less. The use of an antenna of a higher gain is strictly prohibited and violates FCC regulations.

Please see the label attachment for the layout of the label

2.2 FCC User Manual Statement

The instructions furnished to the user shall include the following statement, placed in a prominent location in the text of the manual:

WARNING!

This product is designed to be used with an external antenna with a maximum gain of 3 dBi or less. The use of an antenna of a higher gain is strictly prohibited and violates FCC regulations.

Changes or modifications not expressly approved by the manufacturer may void the user's authority to operate the equipment.

NOTICE: During transmitter operation, a minimum distance of 50cm (20 in.) shall be maintained between the antenna and personnel, in order to meet the maximum permissible exposure (MPE) limits in section 1.1310 of FCC Rules.

3 SYSTEM TEST CONFIGURATION

3.1 Justification

The EUT was tested in accordance with the standard ANSI C63.4-2001.

3.2 EUT Operating Conditions

The equipment was tested with appropriate signals on all connections, as detailed in the Figures and the data sections, with the equipment listed in the System Equipment List.

3.3 Special Accessories

No special accessories were used.

3.4 **Equipment Modifications**

No equipment modifications were made.

3.5 Configurations of Tested System

The following figures follow this page:

- 3.5.1 Unintentional Radiated Emissions Test Setup
- 3.5.2 Conducted Emissions Test Setup
- 3.5.3 99% Occupied Power BW Test Setup
- 3.5.4 RF Output Power and Intermodulation Test Setup

In addition, please see the photograph attachments for the configurations of the tested system.

Figure 3.5.1 Unintentional Radiated Emissions Test Setup

3 meters measurement distance from EUT to the receive antenna

Radiated emission test setup

 \leftarrow 3 meters from the edge of the table top \rightarrow RFMD 3802 50 Ohm **ANTENNA** EUT RFMD 3805 termination GEL BIC 9414 GEL LPA-3 ETS 3115 40 dB pad Signal Gen JFW50-FH-E4432B 4-100-3N Sonoma GEL Instrument Preamplifier 317 AP2-18 Power Meter HP436A HP8481A Power meter to verify the Spectrum output level Analyzer HP8591EM

HP8593EM

Figure 3.5.2 Conducted Emissions Test Setup

Conducted emission test setup

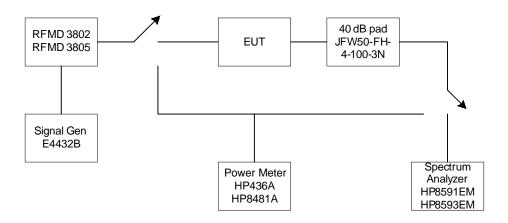
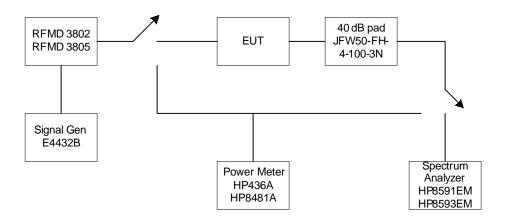
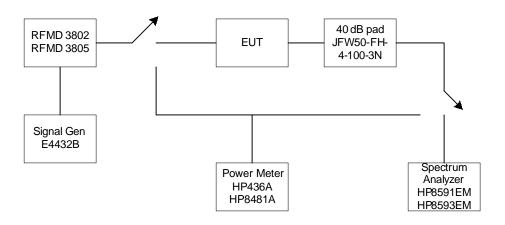



Figure 3.5.3 99% Occupied Power BW Test Setup


99% Occupied Power BW Test Setup

11

Figure 3.5.4 RF Output Power and Intermodulation Test Setup

RF Output Power and Intermodulation Test Setup

4 RADIATED AND CONDUCTED EMISSIONS DATA

4.1 Unintentional Radiated Emissions Data

The following data lists the significant emissions frequencies, measured quasi-peak levels, below 1 GHz, and average levels above 1 GHz, and FCC Part 2.1051, 2.1053, 22.917, 24.238 Limits. All tests were done in CW mode. The spectrum analyzer RBW was 120 KHz at 6 dB. These measurements were made on October 15, 2004, by Daniel Swann and Udom Vanich. Please refer to Figure 3.5.1 for a diagram of the test setup.

CW mode Carrier Frequ Power (dBm) Limit (dBc) Limit (dBuV/r	iency (MHz)	824.0 33.4 46.4 94.0	43+10*LOG(0.001*(10^(output power dBm /10))) Power (dBm) + 107 (conversion dBm to dBuV) - Limit (dBc)						
Frequency	Measured		Antenna	Cable	Amplifier	Field	Limit	Margin	Pass/Fail
MHz	Amplitude dBuV		Factor dB/m	Loss dB	Gain dB	Strength dBuV/m	dBuV/m	dB	
Vertical Polarization									
1648.0	77.2		25.6	0.9	18.2	85.6	94.0	-8.4	Pass
2472.0	40.4		27.7	1.2	18.9	50.4	94.0	-43.6	Pass
3296.0	37.0		30.8	1.4	18.9	50.3	94.0	-43.7	Pass
4120.0	32.9		33.2	1.6	19.0	48.7	94.0	-45.3	Pass
4944.0	37.1		32.8	1.8	18.3	53.5	94.0	-40.5	Pass
5768.0	28.0		34.7	2.1	18.0	46.8	94.0	-47.2	Pass
4120.0	44.5		33.2	1.6	19.0	60.3	94.0	-33.7	Pass
4944.0	35.4		32.8	1.8	18.3	51.8	94.0	-42.2	Pass
5768.0	29.9		34.7	2.1	18.0	48.7	94.0	-45.3	Pass
6592.0	34.4		35.3	2.4	17.5	54.6	94.0	-39.4	Pass
7416.0	35.3		36.3	2.7	17.4	56.9	94.0	-37.1	Pass
8240.0	37.3		37.8	3.1	17.1	61.1	94.0	-32.9	Pass

	`			
4	Ι,	Λ		

Tester Name Daniel C. Swann

Test Personnel:

CW mode

Carrier Frequency (MHz) 824.0 Power (dBm) 33.4

Limit (dBc) 46.4 43+10*LOG(0.001*(10^(output power dBm /10)))

Limit (dBuV/m) 94.0 Power (dBm) + 107 (conversion dBm to dBuV) - Limit (dBc)

Frequency MHz	Spectrum Analyzer Measured Amplitude dBuV	Antenna Factor dB/m	Cable Loss dB	Amplifier Gain dB	Field Strength dBuV/m	Limit dBuV/m	Margin dB	Pass/Fail	
Horizontal Polarization									
1648.0	72.0	25.6	0.9	18.2	80.4	94.0	-13.6	Pass	
2472.0	42.6	27.7	1.2	18.9	52.6	94.0	-41.4	Pass	
3296.0	39.8	30.8	1.4	18.9	53.1	94.0	-40.9	Pass	
4120.0	44.5	33.2	1.6	19.0	60.3	94.0	-33.7	Pass	
4944.0	35.4	32.8	1.8	18.3	51.8	94.0	-42.2	Pass	
5768.0	29.9	34.7	2.1	18.0	48.7	94.0	-45.3	Pass	
6592.0	34.4	35.3	2.4	17.5	54.6	94.0	-39.4	Pass	
7416.0	35.3	36.3	2.7	17.4	56.9	94.0	-37.1	Pass	
8240.0	37.3	37.8	3.1	17.1	61.1	94.0	-32.9	Pass	
9064.0	36.1	38.7	3.3	17.0	61.1	94.0	-32.9	Pass	

Test Personnel:

Tester Signature Date 11/20/04

CW	mode
----	------

Carrier Frequency (MHz) 836.0 Power (dBm) 34.2

Limit (dBc) 47.2 43+10*LOG(0.001*(10^(output power dBm /10)))

Limit (dBuV/m) 94.0 Power (dBm) + 107 (conversion dBm to dBuV) - Limit (dBc)

Frequency MHz	Spectrum Analyzer Measured Amplitude	Antenna Factor	Cable Loss	Amplifier Gain	Field Strength	Limit	Margin	Pass/Fail
IVII IZ	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
Vertical Polar	rization							
1672.0	78.1	25.6	0.9	18.3	86.3	94.0	-7.7	Pass
2508.0	46.1	28.9	1.2	18.9	57.3	94.0	-36.7	Pass
3344.0	48.7	30.8	1.4	18.9	62.0	94.0	-32.0	Pass
4180.0	32.1	33.2	1.6	19.0	47.9	94.0	-46.1	Pass
5016.0	35.9	34.2	1.9	18.3	53.6	94.0	-40.4	Pass
5852.0	28.9	34.7	2.2	18.0	47.8	94.0	-46.2	Pass
6688.0	35.1	35.3	2.5	17.5	55.4	94.0	-38.6	Pass
7524.0	34.9	37.6	2.8	17.5	57.8	94.0	-36.2	Pass
8360.0	37.5	37.8	3.1	17.0	61.4	94.0	-32.6	Pass
9196.0	36.1	38.7	3.4	17.0	61.2	94.0	-32.8	Pass
Horizontal Po	olarization							
1672.0	74.2	25.6	0.9	18.3	82.4	94.0	-11.6	Pass
2508.0	38.7	28.9	1.2	18.9	49.9	94.0	-44.1	Pass
3344.0	45.0	30.8	1.4	18.9	58.3	94.0	-35.7	Pass
4180.0	40.7	33.2	1.6	19.0	56.5	94.0	-37.5	Pass
5016.0	35.7	34.2	1.9	18.3	53.4	94.0	-40.6	Pass
5852.0	28.6	34.7	2.2	18.0	47.5	94.0	-46.5	Pass
6688.0	36.5	35.3	2.5	17.5	56.8	94.0	-37.2	Pass
7524.0	35.9	37.6	2.8	17.5	58.8	94.0	-35.2	Pass
8360.0	37.5	37.8	3.1	17.0	61.4	94.0	-32.6	Pass
9196.0	35.2	38.7	3.4	17.0	60.3	94.0	-33.7	Pass

Test Personnel:

Tester Signature Date 11/20/04

CW mode									
Carrier Frequ	uency (MHz)	849.0							
Power (dBm))	35.5							
Limit (dBc)		48.5	4	3+10*LOG	(0.001*(10^(output powe	r dBm /10)))		
Limit (dBuV/	m)	94.0		Power (dBn	n) + 107 (coi	nversion dB	m to dBuV) -	Limit (dBc))
	Spectrum Analyzer								
Frequency	Measured		Antenna	Cable	Amplifier	Field	Limit	Margin	Pass/Fail
MHz	Amplitude	:	Factor	Loss	Gain	Strength			
	dBuV		dB/m	dB	dB	dBuV/m	dBuV/m	dB	
Vertical Pola	rization	849.0 MH	z						
1698.0	7	7.2	25.6	1.0	18.4	85.3	94.0	-8.7	Pass
2547.0	4	8.9	28.9	1.2	18.9	60.1	94.0	-33.9	Pass
3396.0	5	4.9	30.8	1.4	18.9	68.2	94.0	-25.8	Pass
4245.0	3	3.0	33.2	1.7	19.0	48.9	94.0	-45.1	Pass
5094.0	3	8.3	34.2	1.9	18.3	56.1	94.0	-37.9	Pass
5943.0	2	8.6	34.7	2.2	17.9	47.6	94.0	-46.4	Pass
6792.0	3	6.9	35.3	2.5	17.5	57.2	94.0	-36.8	Pass
7641.0	3	4.3	37.6	2.8	17.5	57.2	94.0	-36.8	Pass
8490.0	3	7.1	37.8	3.2	17.0	61.0	94.0	-33.0	Pass
9339.0	3	5.8	38.7	3.5	17.0	60.9	94.0	-33.1	Pass
Horizontal Po	olarization								
1698.0	7	1.6	25.6	1.0	18.4	79.7	94.0	-14.3	Pass
2547.0	4	2.1	28.9	1.2	18.9	53.3	94.0	-40.7	Pass
3396.0	4	8.5	30.8	1.4	18.9	61.8	94.0	-32.2	Pass
4245.0	4	0.7	33.2	1.7	19.0	56.6	94.0	-37.4	Pass
5094.0	3	5.3	34.2	1.9	18.3	53.1	94.0	-40.9	Pass
5943.0	2	8.4	34.7	2.2	17.9	47.4	94.0	-46.6	Pass
6792.0	3	5.8	35.3	2.5	17.5	56.1	94.0	-37.9	Pass
7641.0	3	4.5	37.6	2.8	17.5	57.4	94.0	-36.6	Pass
8490.0	3	7.3	37.8	3.2	17.0	61.2	94.0	-32.8	Pass

Test Personnel:

9339.0

Tester Signature _____ Date 11/20/04

17.0

60.2

94.0

-33.8

Pass

Tester Name Daniel C. Swann

38.7

35.1

3.5

CW mode									
Carrier Frequ	iency (MHz)	1850.0							
Power (dBm)	1	33.1							
Limit (dBc)		46.1	4	3+10*LOG	(0.001*(10^(output powe	r dBm /10)))		
Limit (dBuV/r	m)	94.0	ı	Power (dBn	n) + 107 (coi	nversion dBı	m to dBuV) -	Limit (dBc)	
`	Spectrum Analyzer								
Frequency	Measured		Antenna	Cable	Amplifier	Field	Limit	Margin	Pass/Fail
MHz	Amplitude		Factor	Loss	Gain	Strength			
	dBuV		dB/m	dB	dB	dBuV/m	dBuV/m	dB	
Vertical Pola	rization								
3700.0	55.6		31.8	1.5	19.0	69.9	94.0	-24.1	Pass
5550.0	70.2		34.7	2.0	18.2	88.8	94.0	-5.2	Pass
7400.0	45.7		36.3	2.7	17.4	67.3	94.0	-26.7	Pass
9250.0	43.0		38.7	3.4	17.0	68.1	94.0	-25.9	Pass
11100.0	42.2		38.9	4.1	17.0	68.2	94.0	-25.8	Pass
12950.0	41.2		39.4	4.8	17.0	68.4	94.0	-25.6	Pass
14800.0	39.4		40.9	5.5	17.0	68.8	94.0	-25.2	Pass
16650.0	40.5		40.2	6.2	17.0	69.9	94.0	-24.1	Pass
18500.0	39.9		45.8	6.7	17.0	75.4	94.0	-18.6	Pass
20350.0	44.1		45.8	6.7	17.0	79.6	94.0	-14.4	Pass
Horizontal Po	olarization								
3700.0	60.6		31.8	1.5	19.0	74.9	94.0	-19.1	Pass
5550.0	56.1		34.7	2.0	18.2	74.7	94.0	-19.3	Pass
7400.0	43.7		36.3	2.7	17.4	65.3	94.0	-28.7	Pass
9250.0	37.4		38.7	3.4	17.0	62.5	94.0	-31.5	Pass
11100.0	37.0		38.9	4.1	17.0	63.0	94.0	-31.0	Pass
12950.0	39.9		39.4	4.8	17.0	67.1	94.0	-26.9	Pass
14800.0	39.0		40.9	5.5	17.0	68.4	94.0	-25.6	Pass
16650.0	40.4		40.2	6.2	17.0	69.8	94.0	-24.2	Pass
18500.0	40.0		45.8	6.7	17.0	75.5	94.0	-18.5	Pass
20350.0	45.4		45.8	6.7	17.0	80.9	94.0	-13.1	Pass

Test Personnel:

Tester Signature _____ Date 11/20/04

CW mode

Carrier Frequency (MHz) 1910.0 Power (dBm) 31.4

Limit (dBc) 44.4 43+10*LOG(0.001*(10^(output power dBm /10)))

Limit (dBuV/m) 94.0 Power (dBm) + 107 (conversion dBm to dBuV) - Limit (dBc)

	Spectrum Analyzer							
Frequency	Measured	Antenna	Cable	Amplifier	Field	Limit	Margin	Pass/Fail
MHz	Amplitude	Factor	Loss	Gain	Strength			
	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
Vertical Polarization								
3820.0	56.2	31.8	1.5	18.9	70.6	94.0	-23.4	Pass
5730.0	50.7	34.7	2.1	18.0	69.5	94.0	-24.5	Pass
7640.0	59.7	37.6	2.8	17.5	82.6	94.0	-11.4	Pass
9550.0	47.0	38.5	3.5	17.0	72.0	94.0	-22.0	Pass
11460.0	42.2	38.9	4.3	17.0	68.4	94.0	-25.6	Pass
13370.0	39.5	40.5	5.0	17.0	68.0	94.0	-26.0	Pass
15280.0	39.8	39.7	5.7	17.0	68.2	94.0	-25.8	Pass
17190.0	40.2	42.2	6.4	17.0	71.8	94.0	-22.2	Pass
19100.0	41.6	45.8	6.7	17.0	77.1	94.0	-16.9	Pass
21010.0	45.2	45.8	6.7	17.0	80.7	94.0	-13.3	Pass
Horizontal Po	larization							
3820.0	59.2	31.8	1.5	18.9	73.6	94.0	-20.4	Pass
5730.0	53.9	34.7	2.1	18.0	72.7	94.0	-21.3	Pass
7640.0	43.7	37.6	2.8	17.5	66.6	94.0	-27.4	Pass
9550.0	44.6	38.5	3.5	17.0	69.6	94.0	-24.4	Pass
11460.0	43.7	38.9	4.3	17.0	69.9	94.0	-24.1	Pass
13370.0	39.0	40.5	5.0	17.0	67.5	94.0	-26.5	Pass
15280.0	40.0	39.7	5.7	17.0	68.4	94.0	-25.6	Pass
17190.0	41.5	42.2	6.4	17.0	73.1	94.0	-20.9	Pass
19100.0	39.8	45.8	6.7	17.0	75.3	94.0	-18.7	Pass
21010.0	44.5	45.8	6.7	17.0	80.0	94.0	-14.0	Pass

Test Personnel:

Tester Signature _____ Date 11/20/04

4.2 Conducted Emissions Data

The following data lists the significant emissions data measured in accordance with 47 CFR Part 2.1051, 2.1053, 22.917, 24.238 Limits. These measurements were made on October 16, 2004, by Daniel Swann and Udom Vanich. Please refer to Figure 3.5.2 for a diagram of the test setup.

Transmitter Conducted Emissions Data

GSM

carrier frequency (MHz) 824.0
Power (dBm) 33.4

Limit (dBc) 46.4 43+10*LOG(0.001*(10^(output power dBm /10)))

Frequency MHz	Measured Power	Measured Power	Spec	Margin	Pass / Fail
	dBm	dBc	dBc		
824.0					
1648.0	-33.9	67.3	46.4	-20.9	Pass
2472.0	-44.6	78.0	46.4	-31.6	Pass
3296.0	-44.2	77.6	46.4	-31.2	Pass
4120.0	-45.1	78.5	46.4	-32.1	Pass
4944.0	-45.1	78.5	46.4	-32.1	Pass
5768.0	-45.3	78.7	46.4	-32.3	Pass

no signal at higher harmonics

Test Personnel:

Transmitter Conducted Emissions Data

Modulation: GSM

carrier frequency (MHz) 836 Power (dBm) 34.56

Limit (dBc) 47.56 43+10*LOG(0.001*(10^(output power dBm /10)))

Frequency MHz	Measured Power	Measured Power	Spec	Margin	Pass / Fail
	dBm	dBc	dBc		
1672	-32.9	67.46	47.56	-19.9	Pass
2508	-43.8	78.36	47.56	-30.8	Pass
3344	-44.3	78.86	47.56	-31.3	Pass
4180	-44.7	79.26	47.56	-31.7	Pass
5016	-45.2	79.76	47.56	-32.2	Pass
5852	-44.9	79.46	47.56	-31.9	Pass

no signal at higher harmonics

Transmitter Conducted Emissions Data

Modulation: GSM

carrier frequency (MHz) 849 Power (dBm) 33.5

Limit (dBc) 43+10*LOG(0.001*(10^(output power dBm /10)))

Frequency MHz	Measured Power	Measured Power	Spec	Margin	Pass / Fail
	dBm	dBc	dBc		
1698	-34.4	67.9	46.5	-21.4	Pass
2547	-43.9	77.4	46.5	-30.9	Pass
3396	-44.6	78.1	46.5	-31.6	Pass
4245	-45.1	78.6	46.5	-32.1	Pass
5094	-45.6	79.1	46.5	-32.6	Pass
5943	-45.0	78.5	46.5	-32.0	Pass

no signal at higher harmonics

Test Personnel:

Tester Signature Date 11/20/04

Transmitter Conducted Emissions Data

Modulation: TDMA

carrier frequency (MHz) 824 Power (dBm) 33.4

Limit (dBc) 46.4 43+10*LOG(0.001*(10^(output power dBm /10)))

Frequency MHz	Measured Power	Measured Power	Spec	Margin	Pass / Fail
	dBm	dBc	dBc		
1648	-25.6	59.0	46.4	-12.6	Pass
2472	-41.0	74.4	46.4	-28.0	Pass
3296	-44.0	77.4	46.4	-31.0	Pass
4120	-42.7	76.1	46.4	-29.7	Pass
4944	-42.3	75.7	46.4	-29.3	Pass
5768	-44.9	78.3	46.4	-31.9	Pass

no signal at higher harmonics

Transmitter Conducted Emissions Data

Modulation: TDMA

carrier frequency (MHz) 836 Power (dBm) 34.2

Limit (dBc) 47.2 43+10*LOG(0.001*(10^(output power dBm /10)))

Frequency MHz	Measured Power	Measured Power	Spec	Margin	Pass / Fail
	dBm	dBc	dBc		
1672	-23.5	57.7	47.2	-10.5	Pass
2508	-39.2	73.4	47.2	-26.2	Pass
3344	-41.6	75.8	47.2	-28.6	Pass
4180	-42	76.2	47.2	-29.0	Pass
5016	-41.8	76.0	47.2	-28.8	Pass
5852	-43	77.2	47.2	-30.0	Pass

no signal at higher harmonics

Test Personnel:

Transmitter Conducted Emissions Data

Modulation: TDMA

carrier frequency (MHz) 849 Power (dBm) 33.5

Limit (dBc) 46.5 43+10*LOG(0.001*(10^(output power dBm /10)))

Frequency	Measured	Measured	Spec	Margin	Pass / Fail
MHz	Power	Power			
	dBm	dBc	dBc		
1698	-28.9	62.4	46.5	-15.9	Pass
2547	-41.6	75.1	46.5	-28.6	Pass
3396	-44	77.5	46.5	-31.0	Pass
4245	-45.1	78.6	46.5	-32.1	Pass
5094	-44	77.5	46.5	-31.0	Pass
5943	-43.8	77.3	46.5	-30.8	Pass

no signal at higher harmonics

Transmitter Conducted Emissions Data

Modulation: FM with 2.5K sine wave, +/-8KHz peak frequency deviation

carrier frequency (MHz) 824 Power (dBm) 29.9

Limit (dBc) 42.9 43+10*LOG(0.001*(10^(output power dBm /10)))

Frequency MHz	Measured Power	Measured Power	Spec	Margin	Pass / Fail
	dBm	dBc	dBc		
1648	-27.0	56.9	42.9	-14.0	Pass
2472	-42.9	72.8	42.9	-29.9	Pass
3296 no signal at high	-43.9 er harmonics	73.8	42.9	-30.9	Pass

Test Personnel:

Transmitter Conducted Emissions Data

Modulation: FM with 2.5K sine wave, +/-8KHz peak frequency deviation

carrier frequency (MHz) 836 Power (dBm) 30.32

Limit (dBc) 43.32 43+10*LOG(0.001*(10^(output power dBm /10)))

Frequency MHz	Measured Power	Measured Power	Spec	Margin	Pass / Fail
	dBm	dBc	dBc		
1672	-28.0	58.32	43.32	-15.0	Pass
2508	-39.6	69.92	43.32	-26.6	Pass
3344	-41.3	71.62	43.32	-28.3	Pass

no signal at higher harmonics

Transmitter Conducted Emissions Data

Modulation: FM with 2.5K sine wave, +/-8KHz peak frequency deviation

carrier frequency (MHz) 849 Power (dBm) 30.05

Limit (dBc) 43.05 43+10*LOG(0.001*(10^(output power dBm /10)))

Frequency MHz	Measured Power	Measured Power	Spec	Margin	Pass / Fail
	dBm	dBc	dBc		
1698	-25.3	55.35	43.05	-12.3	Pass
2547	-41.7	71.75	43.05	-28.7	Pass
3396	-44.0	74.05	43.05	-31.0	Pass

no signal at higher harmonics

Test Personnel:

Transmitter Conducted Emissions Data

Modulation: TDMA

carrier frequency (MHz) 1850 Power (dBm) 31.1

Limit (dBc) 44.1 43+10*LOG(0.001*(10^(output power dBm /10)))

Frequency MHz	Measured Power	Measured Power	Spec	Margin	Pass / Fail
	dBm	dBc	dBc		
3700	-42.0	73.1	44.1	-29.0	Pass
5550	-35.2	66.3	44.1	-22.2	Pass
7400	-37.0	68.1	44.1	-24.0	Pass
9250	-37.5	68.6	44.1	-24.5	Pass

no signal at higher harmonics

Transmitter Conducted Emissions Data

Modulation: TDMA

 carrier frequency (MHz)
 1880

 Power (dBm)
 32.9

 Limit (dBc)
 45.9

43+10*LOG(0.001*(10^(output power dBm /10)))

Frequency	Measured	Measured	Spec	Margin	Pass / Fail
MHz	Power	Power			
	dBm	dBc	dBc		
3760	-44.4	77.3	45.9	-31.4	Pass
5640	-31.6	64.5	45.9	-18.6	Pass
7520	-30.1	63.0	45.9	-17.1	Pass
9400	-37.4	70.3	45.9	-24.4	Pass

no signal at higher harmonics

Test Personnel:

Transmitter Conducted Emissions Data

Modulation: TDMA

carrier frequency (MHz) 1910 Power (dBm) 32.9

Limit (dBc) 45.9 43+10*LOG(0.001*(10^(output power dBm /10)))

Frequency MHz	Measured Power	Measured Power	Spec	Margin	Pass / Fail
	dBm	dBc	dBc		
3820	-43.2	76.1	45.9	-30.2	Pass
5730	-37.9	70.8	45.9	-24.9	Pass
7640	-37.7	70.6	45.9	-24.7	Pass
9550	-37.0	69.9	45.9	-24.0	Pass

no signal at higher harmonics

Transmitter Conducted Emissions Data

Modulation: GSM

carrier frequency (MHz) 1850
Power (dBm) 33.2
Limit (dBo) 46.2

Limit (dBc) 46.2 43+10*LOG(0.001*(10^(output power dBm /10)))

Frequency MHz	Measured Power	Measured Power	Spec	Margin	Pass / Fai
WII 12	dBm	dBc	dBc		
3700	-45.2	78.4	46.2	-32.2	Pass
5550	-40.8	74.0	46.2	-27.8	Pass
7400	-30.9	64.1	46.2	-17.9	Pass
9250	-44.9	78.1	46.2	-31.9	Pass
9250 no signal at high	-36.4 er harmonics	69.6	46.2	-23.4	Pass

Test Personnel:

Transmitter Conducted Emissions Data

Modulation: GSM

carrier frequency (MHz) 1880 Power (dBm) 31.7

Limit (dBc) 44.7 43+10*LOG(0.001*(10^(output power dBm /10)))

Frequency MHz	Measured Power	Measured Power	Spec	Margin	Pass / Fail
	dBm	dBc	dBc		
3760	-43.9	75.6	44.7	-30.9	Pass
5640	-38.1	69.8	44.7	-25.1	Pass
7520	-38.4	70.1	44.7	-25.4	Pass
9400	-30.4	62.1	44.7	-17.4	Pass
11280	-35.7	67.4	44.7	-22.7	Pass

no signal at higher harmonics

Transmitter Conducted Emissions Data

Modulation: GSM

carrier frequency (MHz) 1910 Power (dBm) 32.1

Limit (dBc) 45.1 43+10*LOG(0.001*(10^(output power dBm /10)))

Frequency	Measured	Measured	Spec	Margin	Pass / Fail
MHz	Power	Power			
	dBm	dBc	dBc		
3820	-44.4	76.5	45.1	-31.4	Pass
5730	-43.0	75.1	45.1	-30.0	Pass
7640	-38.1	70.2	45.1	-25.1	Pass
9550	-38.0	70.1	45.1	-25.0	Pass
11460	-35.7	67.8	45.1	-22.7	Pass

no signal at higher harmonics

Test Personnel:

4.3 99% Occupied Power BW Data

The following data lists the significant emissions data, and the margins, calculated using 47 CFR Parts 2.1051, 2.1053, 22.917, 24.238. All tests were done in CW mode. Plots of these measurements are provided in an attachment. These measurements were made on October 16, 2004, by Daniel Swann and Udom Vanich.. Please refer to Figure 3.5.3 for a diagram of the test setup. Plots of these measurements are included in the attachment "Plots of 99% Occupied Power BW Data."

	99% Occupied BW				
	RF input	RF output			
Frequency(MHZ)	BW(KHz)	BW(KHz)			
Modulation: TDMA					
824	28.5	28.5			
836	28.3	28.4			
849	28.4	29			
Modulation: GSM					
824	244.5	241.5			
836	244.5	243.8			
849	243.8	243.8			
Modulation: FM with 2.5Kz sine wave +/-8KHz peak					
frequency deviation					
824	21.68	21.68			
836	21.6	21.6			
849	21.68	21.68			
Modulation: TDMA					
1851	28.3	30			
1880	29.2	29.2			
1909	28.7	30.8			
Modulation: GSM					
1851	243	243			
1880	243	240			
1909	243	243			

Test Personnel:

4.4 RF Output Power and Intermodulation

The following data lists the significant emissions data, and the margins, calculated using 47 CFR Parts 2.1051, 2.1053, 22.917, 24.238. All tests were done in CW mode. Plots of these measurements are provided in an attachment. These measurements were made on October 16, 2004, by Daniel Swann and Udom Vanich. Please refer to Figure 3.5.4 for a diagram of the test setup.

	Maximum output power				
	RF input	RF output			
Frequency(MHZ)	Power(dBm)	Power(dBm)			
Modulation: TDMA					
824	27.5	33.4			
836	27.5	34.2			
849	27.5	33.5			
Modulation: GSM					
824	27.5	33.1			
836	27.5	34.56			
849	27.5	33.5			
Modulation: FM with 2.5Kz sine wave +/-8KHz peak frequency deviation					
824	27.5	29.9			
836	27.5	30.32			
849	27.5	30.05			
Modulation: TDMA					
1851	24.5	33.1			
1880	24.5	32.9			
1909	24.5	31.4			
Modulation: GSM					
1851	24.5	33.29			
1880	24.5	31.7			
1909	24.5	32.11			

Test Personnel:

	\backslash			
Tester Signature	Savid C. Swan	_ Date _	11/20/04	

4.5 Field Strength Calculation for Radiated Emissions

The field strength was calculated from the following formula:

FS = MEASURED SIGNAL + AF + CF - GAIN

Where FS = field strength, in dBuV/m

MEASURED SIGNAL = Spectrum Analyzer signal amplitude

AF = antenna factor

CF = cable attenuation factor

GAIN = pre-amplifier gain

FS (uV/m) = antilog[10] FS (dBuV/m)

For example, for vertical radiated emissions, fundamental at 824 MHz, at the second harmonic of 1648.0 MHz, an average level of 77.2 dBuV was measured. The antenna factor is 25.6 dB, the cable loss is 0.9 dB, and the pre-amplifier gain is 18.2 dB.

$$FS (dBuV/m) = 77.2 + 25.6 + 0.9 - 18.2$$

FS (dBuV/m) = 85.6 dBuV/m

FCC 3 meter limit = 94.0 dBuV/m

FCC 3 meter margin = -8.4 dB

5 HUMAN EXPOSURE ANALYSIS IN ACCORDANCE WITH 47CFR1.1310

The following is the RF power and Human Exposure Analysis in accordance with 47CFR§1.1310.

5.1. Guidelines

For transmitters operating in the 824-849 MHz range, paragraph 1.1310 Table 1 limits maximum permissible exposure (MPE) to f/1500 mW/cm for uncontrolled environments and f/300 mW/cm for controlled environments.

Therefore for the 824-894 MHz,

The MPE of the uncontrolled environment = $849/1500 = 0.566 \text{ mW/cm}^2$

The MPE of the controlled environment = $849/300 = 2.83 \text{ mW/cm}^2$.

For transmitters operating in the 1850-1910 MHz range, paragraph 1.1310 Table 1 limits maximum permissible exposure (MPE) to 1 $\rm mW/cm^2$ for uncontrolled environments and 5 $\rm mW/cm^2$ for controlled environments.

We will use the uncontrolled environment spec. for the worst case spec.

The far field on-axis power flux density (W/m²) is calculated using the following formula:

$$S = G P_{T} / 4\pi R^{2}$$

Where:

 $S = Power density (mW/cm^2)$

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

 P_T = Power input to the antenna (Watts)

R = Distance to the center of radiation of the antenna (cm)

5 HUMAN EXPOSURE ANALYSIS IN ACCORDANCE WITH 47CFR1.1310

5.2 RF power and Human Exposure Calculations of the EUT booster

The following are the calculations of RF power radiated from the 3W booster model GP850A EUT with the 3 dBi antenna. Users may have some concern with the 3 W booster in the 800 MHz cellular band and the 1900 MHz PCS band.

Using the far field power flux density calculation.

$$S = G \times P_t / (4\pi R^2)$$

Where

 $S = power density (W/cm^2) at 50 cm$

G = Antenna gain = $3 \text{ dBi or } 10^{3/10} = 1.995$

 $P_t = Maximum$ output power from the booster in Watt

For 800 MHz cellular band, $P_t = 34.56 \text{ dBm}$ or 2.858 W

For 1900 MHz PCS band, $P_t = 33.3$ dBm or 2.133 W

R = 50 cm or the distance from the antenna to human. The antenna is externally mounted on the car roof.

5.2 RF power and Human Exposure Calculations of the EUT (continued)

Description	800 MHz Cellular band	1900 MHz PCS band
Maximum output power of the amplifier in dBm (in Watts)	34.56 dBm (2.858W)	33.3 dBm (2.133W)
Antenna Gain in dBi (linear gain)	3 dBi (1.995)	3 dBi (1.995)
Operational Frequency	824-849 MHz	1850-1910MHz
Minimum distance (Controlled): From radiating source for personnel aware of radio frequency equipment and who are able to limit their exposure time. (Installation Technicians)	50 cm	50 cm
Minimum distance (Uncontrolled): From radiating source for personnel unaware of radio frequency equipment and who are not able to limit their exposure time. (General Public)	50 cm	50 cm
Calculated Maximum RF Power Density from EUT:	0.18 mW/cm^3	0.14 mW/cm^3
Maximum Permissible Exposure (MPE) in the uncontrolled environment 6 min average exposure:	0.556 mW/cm ³	1 mW/cm ³
Maximum Permissible Exposure (MPE) in the controlled environment 30 min average exposure:	2.83 mW/cm ³	5 mW/cm ³
Complies with MPE Limits	Yes	Yes

5.2 RF power and Human Exposure Calculations of the EUT (continued)

The following instructions will be placed in the User/Installation Manual (see Section 2.2 of this report, FCC User Manual Statement) instructing installers and users to maintain the minimum MPE distances during operation of the EUT:

"NOTICE: During transmitter operation, a minimum distance of 50cm shall be maintained between the antenna and personnel, in order to meet the maximum permissible exposure (MPE) limits in section 1.1310 of FCC Rules."