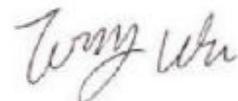


Test Report of FCC CFR 47 Part 15 Subpart C And Industry Canada RSS-247 Issue 1

On Behalf of

Graupner CO., Ltd


8th F,202 Dong,Chunui Techno-Park2,18, Bucheon-ro 198beon-gil,Wonmi-gu,
Bucheon-si, Kyungki-do, South Korea

Product Name:	Quadrocopter
EUT Description:	2.4GHz receive
Model/Type No.:	Alpha 110
Trade Name:	HoTT
FCC ID:	SNL-19001200
Prepared By:	Shenzhen Hongcai Testing Technology Co., Ltd. 1st-3rd Floor, Building C, Shuanghuan Xin Yi Dai Hi-Tech Industrial Park, No.8 Baoqing Road, Baolong Industrial Zone, Longgang District, Shenzhen, Guangdong, China Tel: +86-755-86337020 Fax:+86-755-86337028
Report Number:	HCT16BR052E-1
Tested Date:	March 5-21, 2016
Issued Date:	March 22, 2016
Tested By:	John.Zeng/

Reviewed By:

Approved By:

Owen.Yang
EMC Technical Supervisor

Tony Wu
EMC Technical Manager

TABLE OF CONTENTS

1. GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
1.2 RELATED SUBMITTAL(S) / GRANT (S) AND TEST METHODOLOGY.....	6
1.3 TEST FACILITY	6
2. SYSTEM TEST CONFIGURATION	7
2.1 EUT CONFIGURATION	7
2.2 EUT EXERCISE.....	7
2.3 GENERAL TEST PROCEDURES	7
2.4 MEASUREMENT UNCERTAINTY.....	7
2.5 MEASURE RESULTS EXPLANATION EXAMPLE	8
2.6 LIST OF MEASURING EQUIPMENTS USED	9
3. SUMMARY OF TEST RESULTS.....	9
4. TEST OF AC POWER LINE CONDUCTED EMISSION.....	11
4.1 APPLICABLE STANDARD	11
4.2 TEST SETUP DIAGRAM.....	11
4.3 TEST RESULT	11
5. TEST OF HOPPING CHANNEL BANDWIDTH	12
5.1 APPLICABLE STANDARD	12
5.2 EUT SETUP	12
5.3 TEST EQUIPMENT LIST AND DETAILS	12
5.4 TEST PROCEDURE	12
5.5 TEST RESULT	13
6. TEST OF HOPPING CHANNEL SEPARATION	13
6.1 APPLICABLE STANDARD	15
6.2 EUT SETUP	15
6.3 TEST EQUIPMENT LIST AND DETAILS	15
6.4 TEST PROCEDURE	15
6.5 TEST RESULT	16
7. TEST OF NUMBER OF HOPPING FREQUENCY	18
7.1 APPLICABLE STANDARD	18
7.2 EUT SETUP	18
7.3 TEST EQUIPMENT LIST AND DETAILS	18
7.4 TEST PROCEDURE	18
7.5 TEST RESULT	19
8. TEST OF DWELL TIME OF EACH FREQUENCY	20
8.1 APPLICABLE STANDARD	20
8.2 EUT SETUP	20
8.3 TEST EQUIPMENT LIST AND DETAILS	20
8.4 TEST PROCEDURE	20
8.5 TEST RESULT	21
9. TEST OF MAXIMUM PEAK OUTPUT POWER.....	21
9.1 APPLICABLE STANDARD	25
9.2 EUT SETUP	25
9.3 TEST EQUIPMENT LIST AND DETAILS	25
9.4 TEST PROCEDURE	25
9.5 TEST RESULT	25
10. TEST OF BAND EDGES EMISSION.....	26
10.1 APPLICABLE STANDARD	28
10.2 EUT SETUP	28
10.3 TEST EQUIPMENT LIST AND DETAILS	28
10.4 TEST PROCEDURE	28

10.5 TEST RESULT	30
11. TEST OF SPURIOUS RADIATED EMISSION.....	33
11.1 APPLICABLE STANDARD	33
11.1.2 LIMITS	33
11.2 EUT SETUP	33
11.3 TEST EQUIPMENT LIST AND DETAILS	34
11.4 TEST PROCEDURE	34
11.5 TEST RESULT	35
12. ANTENNA REQUIREMENT.....	46
12.1 STANDARD APPLICABLE	48
12.2 ANTENNA CONNECTED CONSTRUCTION.....	48
13 .RADIO FREQUENCY EXPOSURE	48

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant:	Graupner CO.,Ltd
Address of applicant:	8th F,202 Dong,Chunui Techno-Park2,18, Bucheon-ro 198 beon-gil,Wonmi-gu, Bucheon-si,Kyungki-do, South Korea
Manufacturer :	SJ Technology(Shenzhen)Co.,Ltd
Address of manufacturer:	F6, 1 Bldg, A Area, Yintianxifa Industrial Area, Xixiang Town, Baoan District Shenzhen, Guangdong Province, China

General Description of E.U.T

Items	Description
EUT Description:	2.4GHz receiver
Test Model No.:	Alpha 110
Trade Name:	HoTT
Frequency Band:	2404.056~2474.025MHz
Channel Spacing:	1 MHz
Number of Channels:	70
Type of Modulation:	MSK and FHSS
Antenna Gain	0.5dBi
Antenna Type:	Integral Antenna
Rated Voltage:	Input: DC 4.5V~8.4V

Remark: * The test data gathered are from the production sample provided by the manufacturer.

Hopping Channels:

Number	Channel	Frequency	Number	Channel	Frequency
[0]	51	2455.772	[35]	43	2447.660
[1]	63	2467.940	[36]	67	2471.997
[2]	1	2405.070	[37]	13	2417.239
[3]	20	2424.337	[38]	17	2421.295
[4]	36	2440.562	[39]	31	2435.491
[5]	46	2450.702	[40]	47	2451.716
[6]	64	2468.955	[41]	60	2464.898
[7]	12	2416.225	[42]	9	2413.182
[8]	23	2427.379	[43]	22	2426.365
[9]	39	2443.604	[44]	33	2437.519
[10]	53	2457.800	[45]	45	2449.688
[11]	56	2460.842	[46]	69	2474.025
[12]	7	2411.154	[47]	6	2410.140
[13]	25	2429.407	[48]	19	2423.323
[14]	34	2438.533	[49]	32	2436.505
[15]	55	2459.828	[50]	48	2452.730
[16]	61	2465.912	[51]	58	2462.870
[17]	10	2414.197	[52]	3	2407.098
[18]	18	2422.309	[53]	27	2431.435
[19]	41	2445.632	[54]	28	2432.449
[20]	49	2453.744	[55]	50	2454.758
[21]	59	2463.884	[56]	57	2461.856
[22]	4	2408.112	[57]	11	2415.210
[23]	15	2419.267	[58]	26	2430.421
[24]	40	2444.618	[59]	30	2434.477
[25]	54	2458.814	[60]	52	2456.786
[26]	66	2470.983	[61]	62	2466.927
[27]	8	2412.169	[62]	0	2404.056
[28]	21	2425.351	[63]	16	2420.281
[29]	38	2442.590	[64]	29	2433.463
[30]	44	2448.674	[65]	42	2446.646
[31]	65	2469.969	[66]	68	2473.011
[32]	2	2406.084	[67]	5	2409.126
[33]	14	2418.253	[68]	24	2428.393
[34]	37	2441.575	[69]	35	2439.547

1.2 Related Submittal(s) / Grant (s) and Test Methodology

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

RSS-247 Issue1: Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices.

RSS-Gen Issue 4: General Requirements for Compliance of Radio Apparatus

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

DA 00-705: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

1.3 Test Facility

All measurement required was performed at laboratory of Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahxi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 22/EN 55022 requirements.

FCC – Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, December, 2013.

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

2. SYSTEM TEST CONFIGURATION

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The calibrated antennas used to sample the radiated field strength are mounted on a non-conductive, motorized antenna mast 3 or 10 meters from the leading edge of the turntable.

2.3 General Test Procedures

Conducted Emissions: The EUT is placed on the table, which is 0.8 m above ground plane According to the requirements in ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak detector mode.

Radiated Emissions: The EUT is placed on as turntable, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in ANSI C63.10-2013.

2.4 Measurement Uncertainty

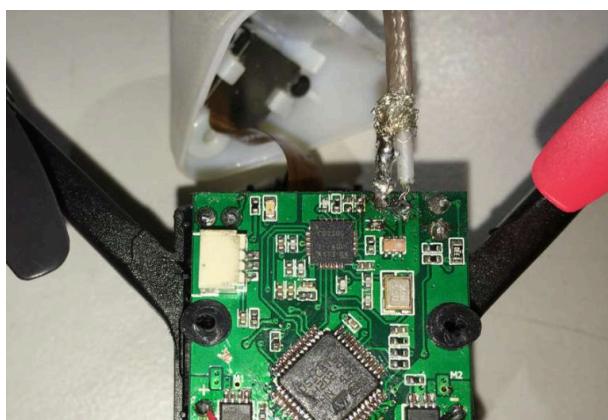
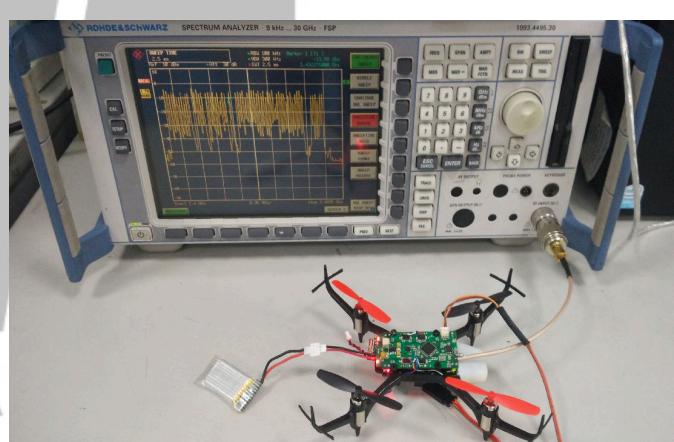
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Transmitter power conducted	+/- 0.57 dB
Transmitter power Radiated	+/- 2.20 dB
Conducted spurious emission 9KHz-40 GHz	+/- 2.20 dB
Power Line Conducted Emission	+/- 3.20 dB
Radiated Emission	+/- 4.32 dB

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.5 Measure Results Explanation Example



For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable less and attenuator factor.
 Offset= RF cable less+ attenuator factor.

Note: Using a temporary antenna connector for the EUT when the conducted measurements are performed.

Equipment	Manufacturer	Model No.	Frequency range(GHz)	
Line	Zhenjiang south electronic	RG316	1-12	0.09
Connector	Zhenjiang south electronic	SMA-K/N-J	1-12	0.02

2.6 List of Measuring Equipments Used

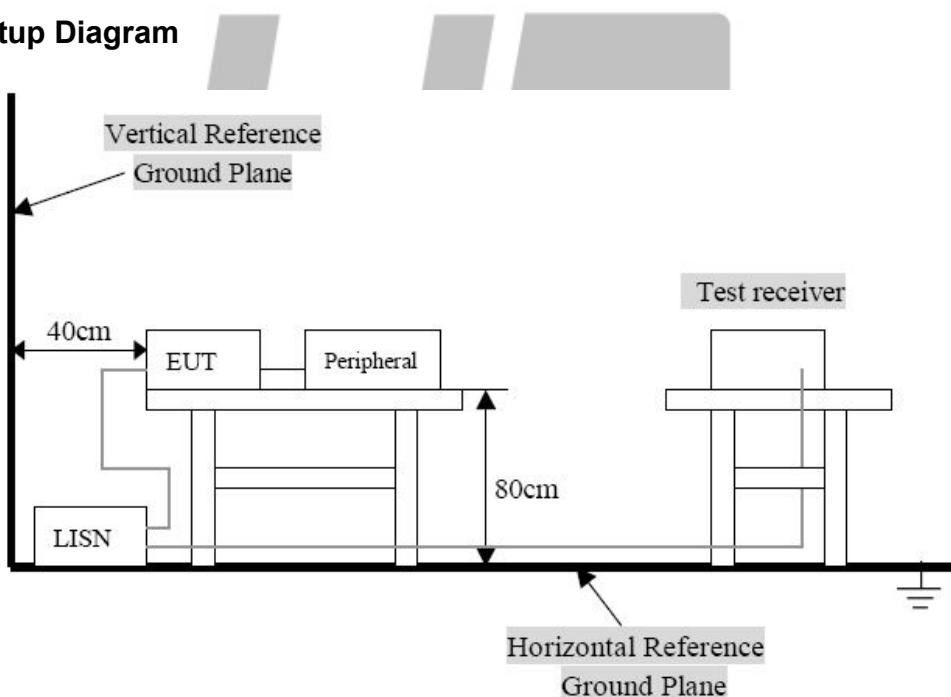
No.	Instrument no.	Equipment	Manufacturer	Model No.	S/N	Last Calibration	Due Calibration
1	BCT-EMC001	EMI Test Receiver	R&S	ESCI	100687	2015-4-25	2016-4-24
2	BCT-EMC002	EMI Test Receiver	R&S	ES PI	100097	2015-11-1	2016-10-31
3	BCT-EMC003	Amplifier	HP	8447D	1937A02492	2015-4-25	2016-4-24
4	BCT-EMC018	TRILOGBroadband Test-Antenna	SCHWARZBECK	VULB9163	9163-324	2015-4-25	2016-4-24
5	BCT-EMC021	Triple-Loop Antenna	EVERFINE	LLA-2	711002	2015-11-1	2016-10-31
6	BCT-EMC026	RF POWER AMPLIFIER	FRANKONIA	FLL-75	1020A1109	2015-4-25	2016-4-24
7	BCT-EMC029	6dB Attenuator	FRANKONIA	N/A	1001698	2015-4-25	2016-4-24
8	BCT-EMC032	10dB attenuator	ELECTRO-METRICS	EM-7600	836	2015-4-25	2016-4-24
9	BCT-EMC036	Spectrum Analyzer	R&S	FSP	100397	2015-11-1	2016-10-31
10	BCT-EMC037	Broadband preamplifier	SCH WARZBECK	BBV9718	9718-182	2015-4-25	2016-4-24
11	BCT-EMC039	Horn Antenna	SCHWARZBECK	BBHA 9120D	0437	2015-4-25	2016-4-24
12	BCT-EMC038	Horn Antenna	SCHWARZBECK	BBHA9170	0483	2015-4-5	2016-4-4
13	BCT-EMC050	Pulse power sensor	Anritsu	MA2411B	110553	2015-11-1	2016-10-31
14	BCT-EMC050	Power Meter	Anritsu	ML2487B	100345	2015-11-1	2016-10-31

3. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.207 IC RSS-GEN Clause 8.8	AC Power Line Conducted Emission	N/A
FCC §15.247(a)(1) IC RSS-247 Issue1 Clause 5.1	Hopping Channel Bandwidth	Pass
FCC §15.247(a)(1) IC RSS-247 Issue1 Clause 5.1	Hopping Channel Separation	Pass
FCC §15.247(a)(1) IC RSS-247 Issue1 Clause 5.1	Number of Hopping Frequency Used	Pass
FCC §15.247(a)(1)(iii) IC RSS-247 Issue1 Clause 5.1	Dwell Time of Each Frequency	Pass
FCC §15.247(b)(1) IC RSS-247 Issue1 Clause 5.4 (4)	Maximum Peak Output Power	Pass

FCC §15.247(d) IC RSS-247 Issue1 Clause 5.5	Band Edges Emission	Pass
FCC §15.247(d) IC RSS-247 Issue1 Clause 5.5	Spurious Radiated Emission	Pass
FCC §15.203/15.247(b)/(c) IC RSS-GEN Clause 8.3	Antenna Requirement	Pass

4. TEST OF AC POWER LINE CONDUCTED EMISSION


4.1 Applicable Standard

Refer to FCC §15.207, RSS-GEN Clause 8.8

For a Low-power Radio-frequency Device is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

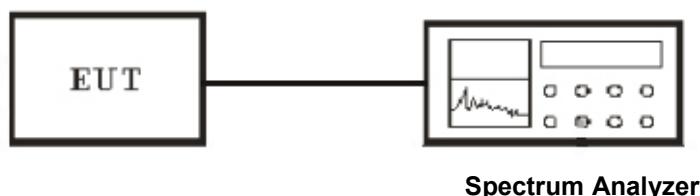
Frequency Range (MHz)	Limits (dBuV)	
	Quasi-Peak	Average
0.150~0.500	66~56	56~46
0.500~5.000	56	46
5.000~30.00	60	50

4.2 Test Setup Diagram

Remark: The EUT was connected to a 120VAC/ 60Hz power source.

4.3 Test Result

Notes: The EUT is powered by battery without AC mains(with battery),this test is not applicable.


5. Test of Hopping Channel Bandwidth

5.1 Applicable Standard

FCC §15.247(a)(1), RSS-247 Issue1 Clause 5.1

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.2 EUT Setup

5.3 Test Equipment List and Details

See section 2.6.

5.4 Test Procedure

1. The transmitter output was connected to the spectrum analyzer through an attenuator.

2. Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW \geq 1% of the 20 dB bandwidth

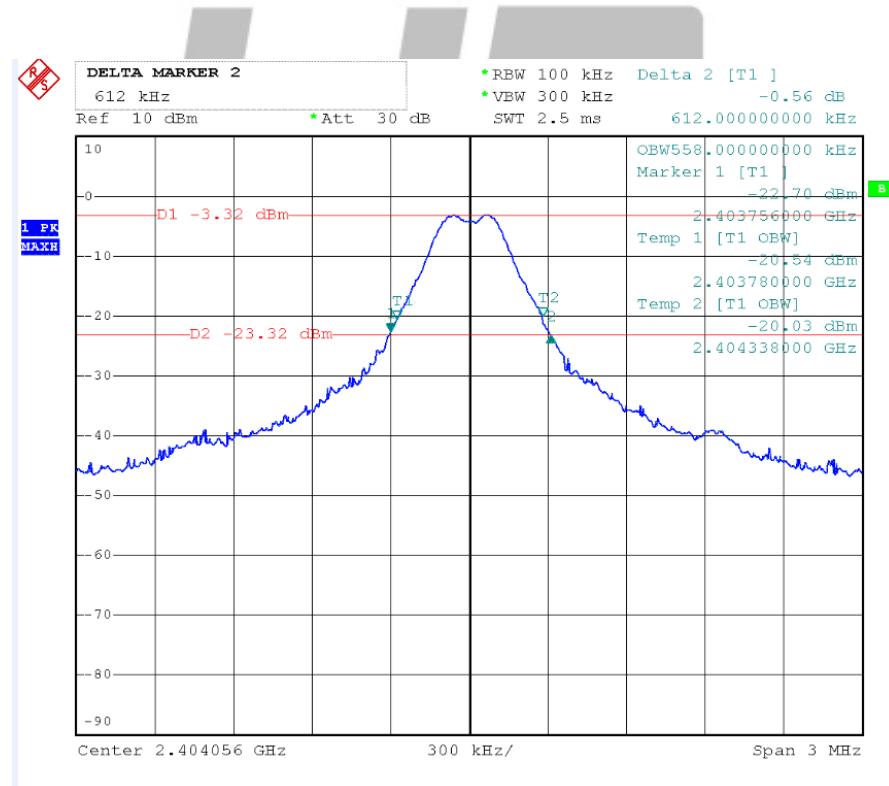
VBW \geq RBW

Sweep = Auto

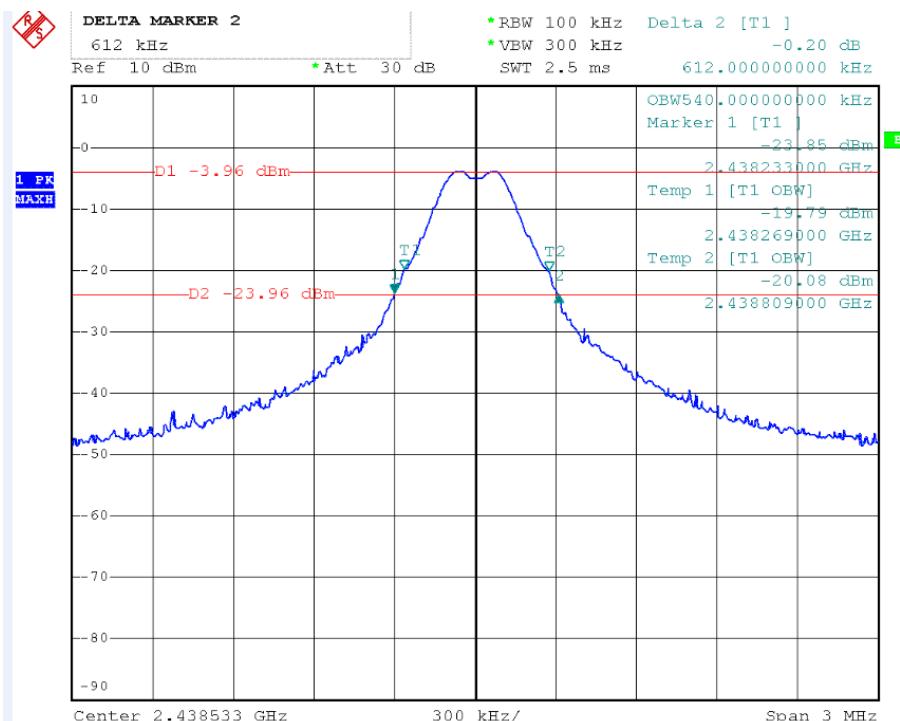
Detector function = peak

Trace = max hold

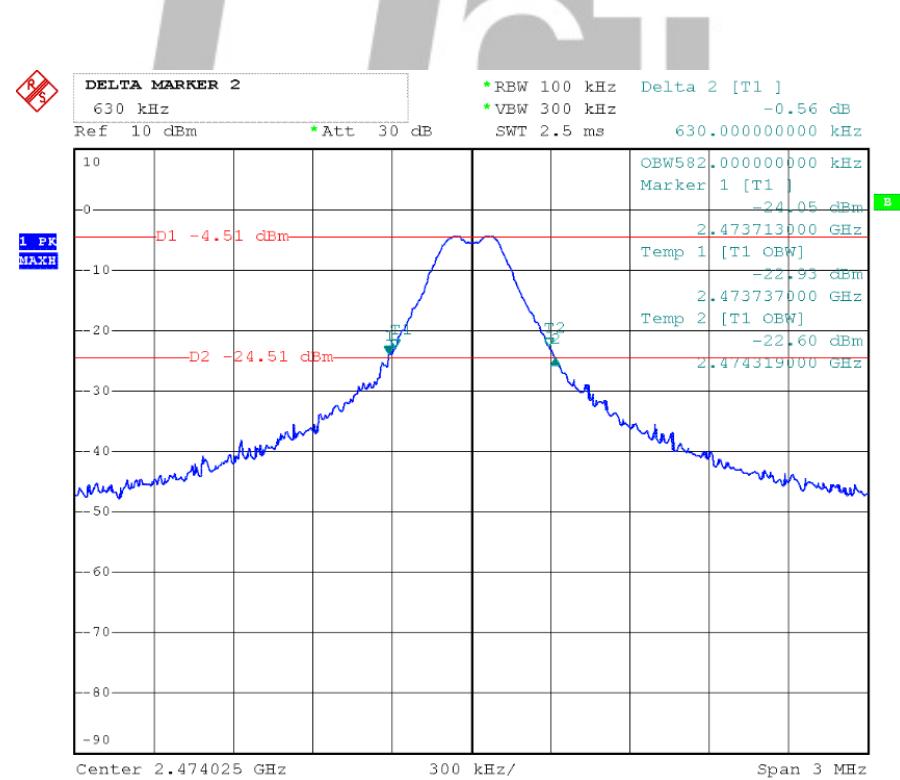
3. The spectrum width with level higher than 20dB below the peak level.


4. Repeat above 1~3 points for the middle and highest channel of the EUT.

5.5 Test Result

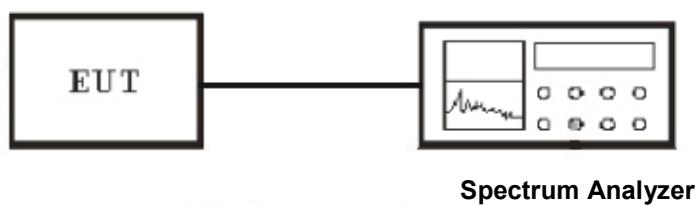

Temperature (°C) : 22~23	EUT: 2.4GHz receiver
Humidity (%RH): 50~54	M/N: Alpha 110
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode

Modulation Type	Channel No.	Frequency (MHz)	99%OBW (MHz)	20dB Bandwidth (MHz)
MSK	Low	2404.056	0.558	0.612
MSK	Middle	2438.533	0.540	0.612
MSK	High	2474.025	0.582	0.630


Channel Low:

Channel Middle:

Channel High:


6. Test of Hopping Channel Separation

6.1 Applicable Standard

FCC §15.247(a)(1), RSS-247 Issue1 Clause 5.1

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

6.2 EUT Setup

6.3 Test Equipment List and Details

See section 2.6.

6.4 Test Procedure

1. The EUT must have its hopping function enabled.
2. Use the following spectrum analyzer settings:

Span = wide enough to capture the peaks of two adjacent channels

Resolution (or IF) Bandwidth (RBW) $\geq 1\%$ of the span

Video (or Average) Bandwidth (VBW) \geq RBW

Sweep = auto

Detector function = peak

Trace = max hold

4. The Hopping Channel Separation is defined as the separation between 2 neighboring hopping frequencies.

5. Repeat above 1~3 points for the middle and highest channel of the EUT.

6.5 Test Result

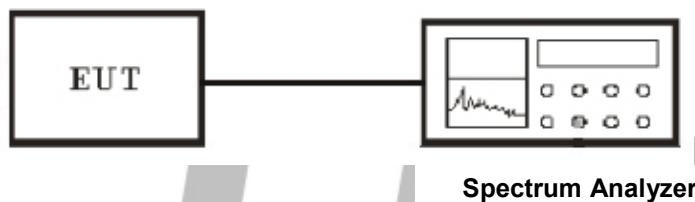
Temperature (°C) : 22~23	EUT: 2.4GHz receiver
Humidity (%RH): 50~54	M/N: Alpha 110
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode

Modulation Type	Frequency (MHz)	Channel Separation (MHz)	Min. Limit (kHz)
FHSS	2404.056~2405.056	1.008	>408
FHSS	2438.533~2439.533	1.028	>408
FHSS	2473.025~2474.025	1.024	>413

Channel Low:

Channel Middle:

Channel High:


7. Test of Number of Hopping Frequency

7.1 Applicable Standard

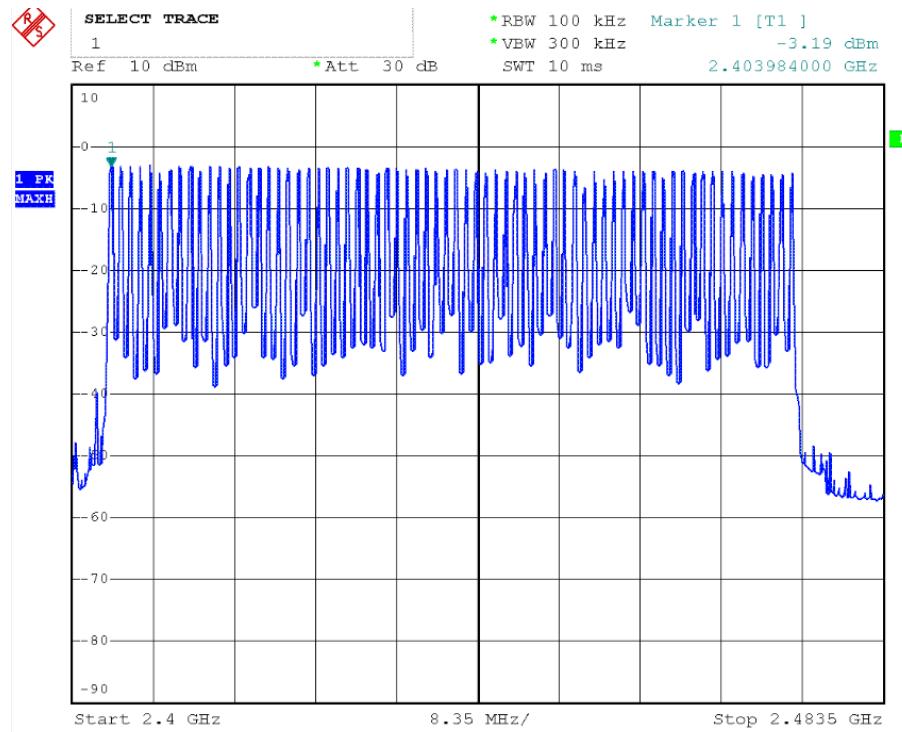
FCC §15.247(a)(1), RSS-247 Issue1 Clause 5.1

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 15 non-overlapping hopping channels. Frequency hopping system which use fewer than 75 hopping frequencies may employ intelligent hopping techniques to avoid interference to other transmissions. Frequency hopping system may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 non-overlapping channels are used.

7.2 EUT Setup

7.3 Test Equipment List and Details

See section 2.6.

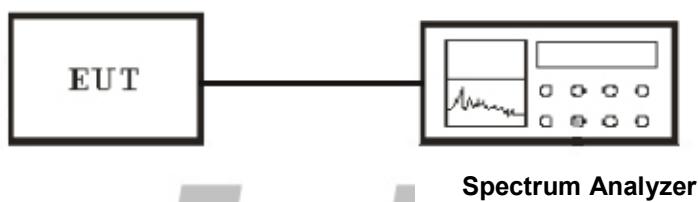

7.4 Test Procedure

1. The EUT must have its hopping function enabled.
2. Use the following spectrum analyzer settings:
 - Span = the frequency band of operation
 - RBW $\geq 1\%$ of the span
 - VBW \geq RBW
 - Sweep = Auto
 - Detector function = peak
 - Trace = max hold
3. Observe frequency hopping in 2400MHz~2483.5MHz, there are at least 32 non-overlapping channels.
4. Repeat above 1~3 points for the middle and highest channel of the EUT.

7.5 Test Result

Temperature (°C) : 22~23	EUT: 2.4GHz receiver
Humidity (%RH): 50~54	M/N: Alpha 110
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode

Modulation Type	Frequency (MHz)	Number of Hopping Channels	Min. Limit
FHSS	2404.056~2474.025	70	≥15


8. Test of Dwell Time of Each Frequency

8.1 Applicable Standard

FCC §15.247(a)(1)(iii), RSS-247 Issue1 Clause 5.1

For frequency hopping systems operating in the 2400-2483.5 MHz band The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4seconds multiplied by the number of hopping channels employed.

8.2 EUT Setup

8.3 Test Equipment List and Details

See section 2.6.

8.4 Test Procedure

1. The EUT must have its hopping function enabled.
2. Use the following spectrum analyzer settings:

Span = zero span, centered on a hopping channel

RBW = 1 MHz

VBW \geq RBW

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold

3. Measure the maximum time duration of one single pulse.

8.5 Test Result

Temperature (°C) : 22~23	EUT: 2.4GHz receiver
Humidity (%RH): 50~54	M/N: Alpha 110
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode

Test Result: PASS

Modulation Type	Channel No.	Frequency (MHz)	Dwell Time (ms)	Limit (ms)
MSK	Low	2404.056	52.36	400
MSK	Middle	2438.533	56.10	400
MSK	High	2474.025	52.36	400

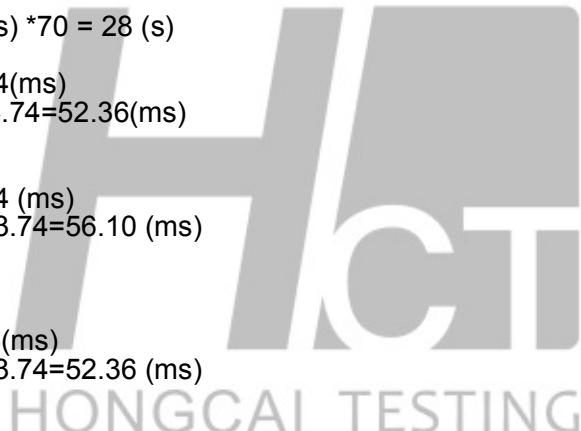
A period time = 400(ms) *70 = 28 (s)

CH Low:

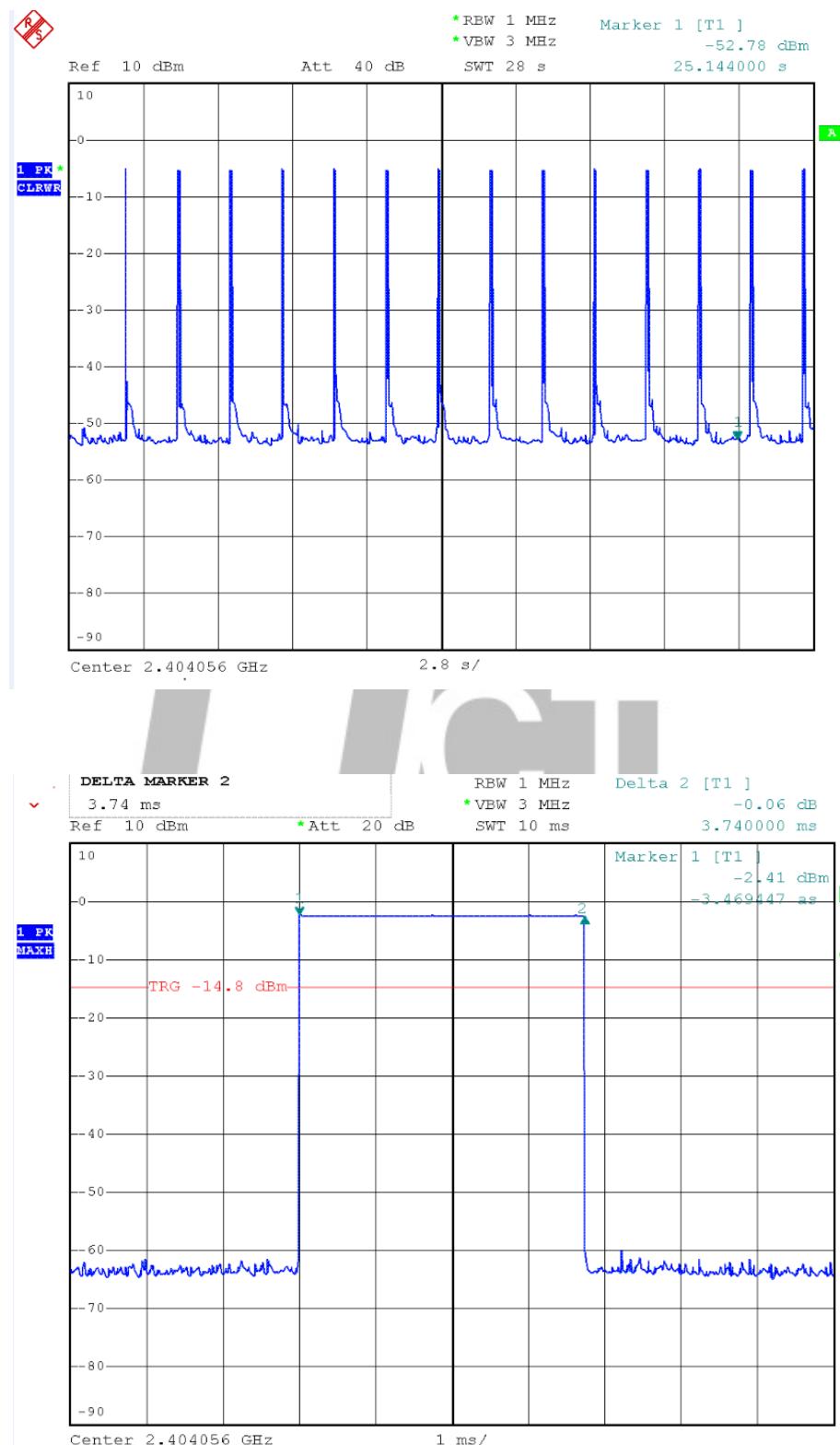
N=14 Time slot = 3.74(ms)

Dwell time=N*T= 14* 3.74=52.36(ms)

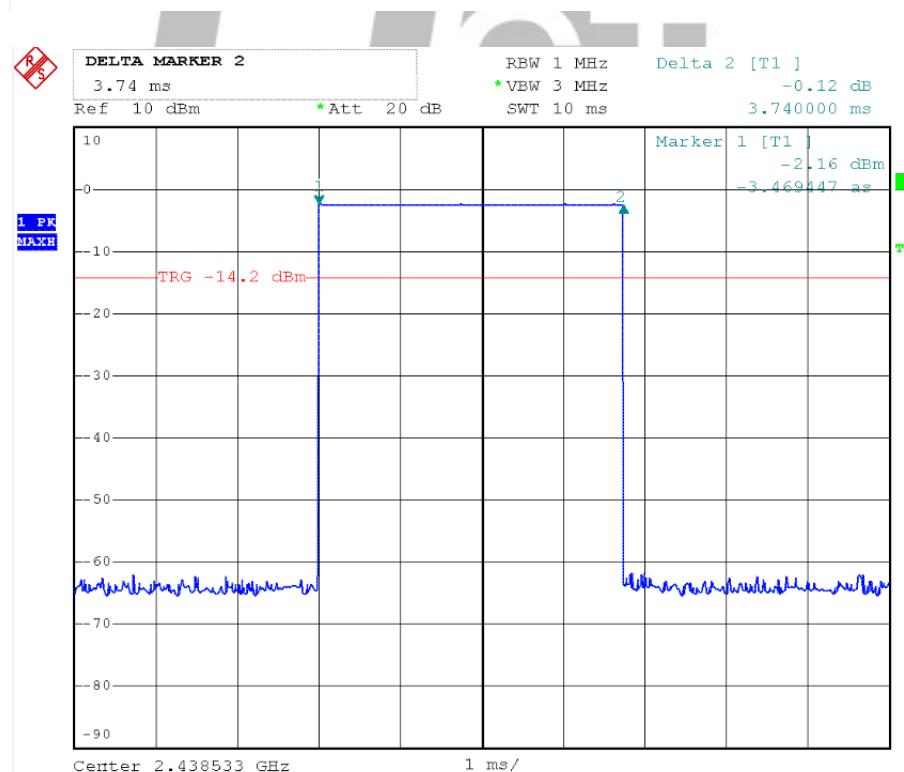
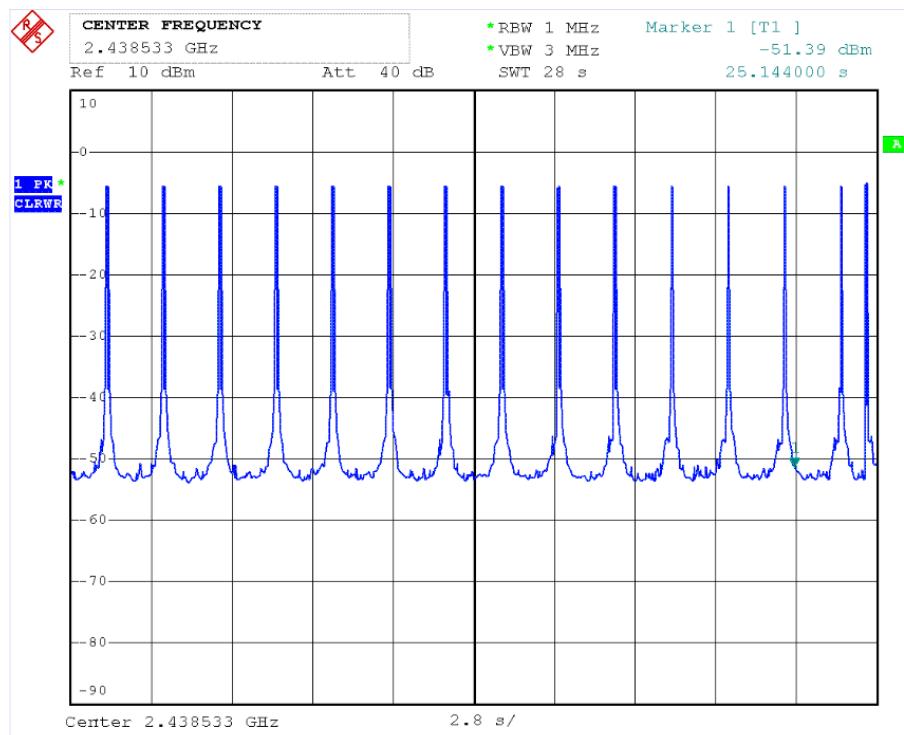
CH Mid:

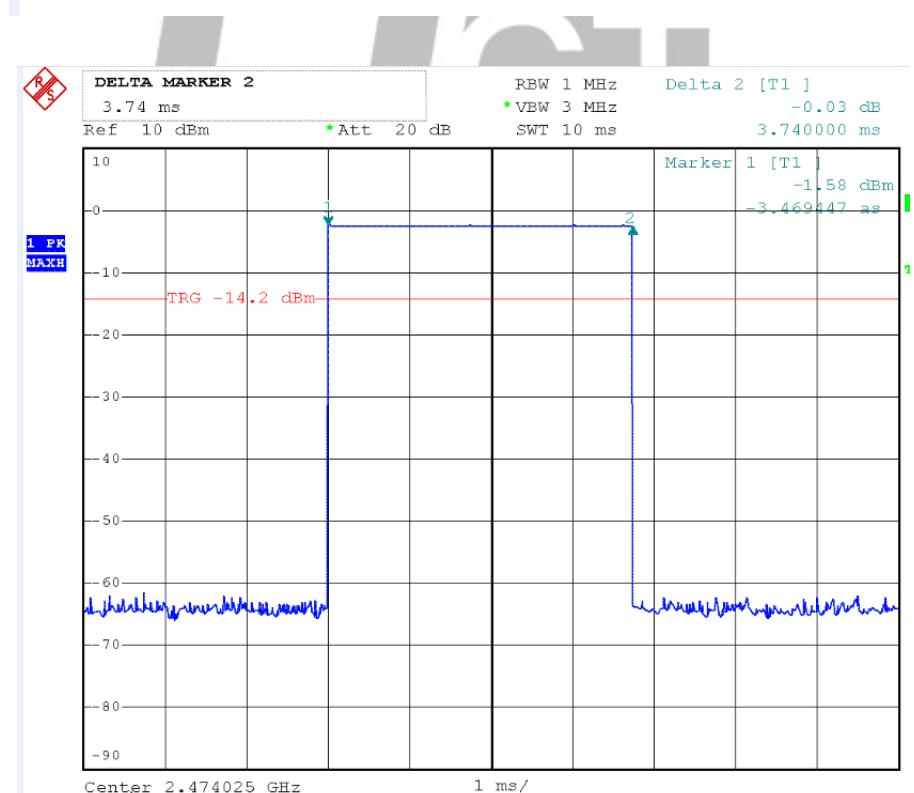
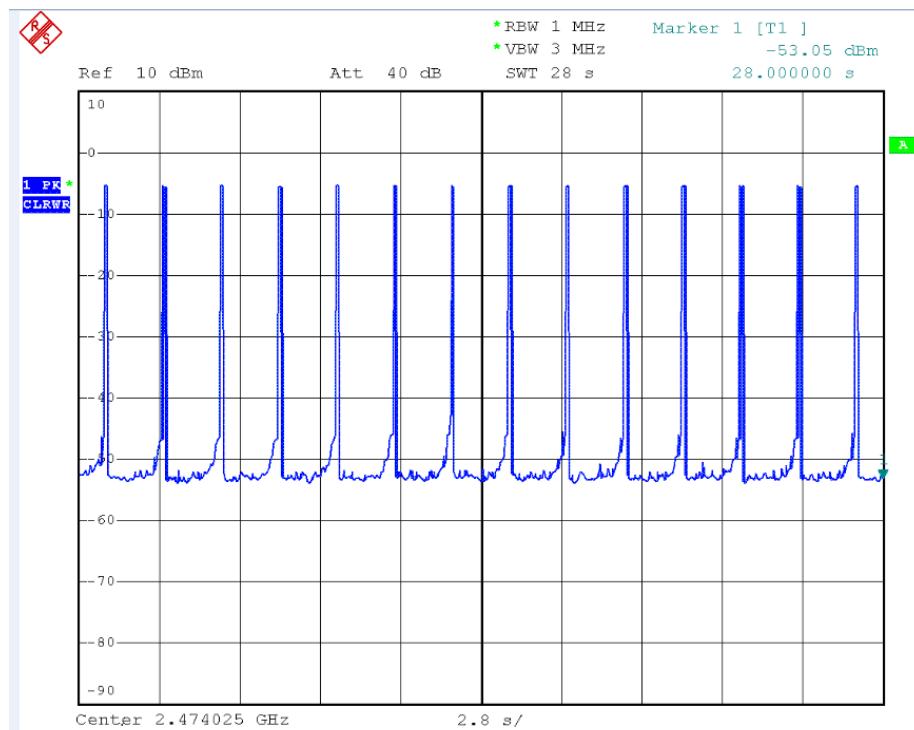

N=15 Time slot = 3.74 (ms)

Dwell time= N*T= 15* 3.74=56.10 (ms)


CH High:

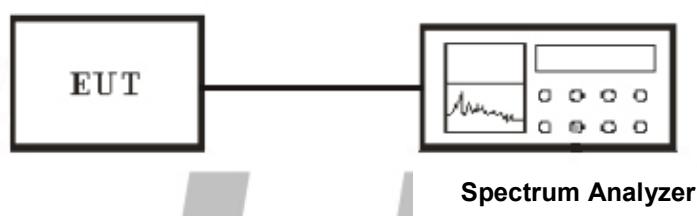
N=14 Time slot =3.74(ms)



Dwell time= N*T= 14* 3.74=52.36 (ms)



Channel Low:

Channel Middle:

Channel High:


9. Test of Maximum Peak Output Power

9.1 Applicable Standard

FCC §15.247(b)(1), RSS-247 Issue1 Clause 5.4 (4)

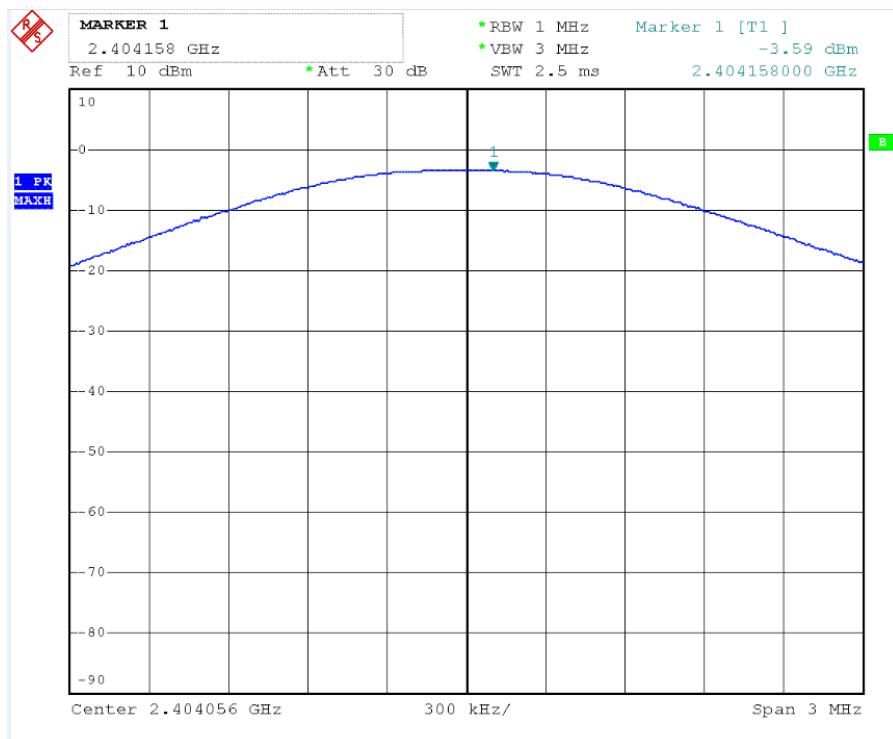
For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels and The maximum peak output power shall not exceed 1 watt. For all other frequency hopping systems in this frequency band, The maximum peak output power shall not exceed 0.125 watt.

9.2 EUT Setup

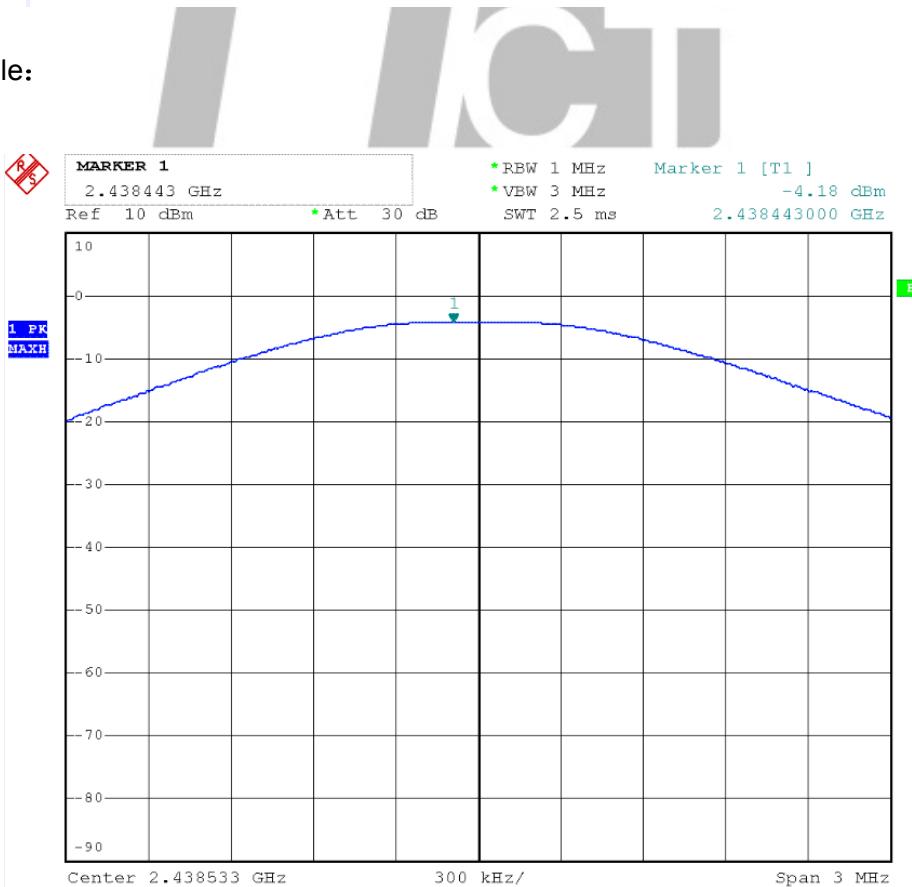
9.3 Test Equipment List and Details

See section 2.6.

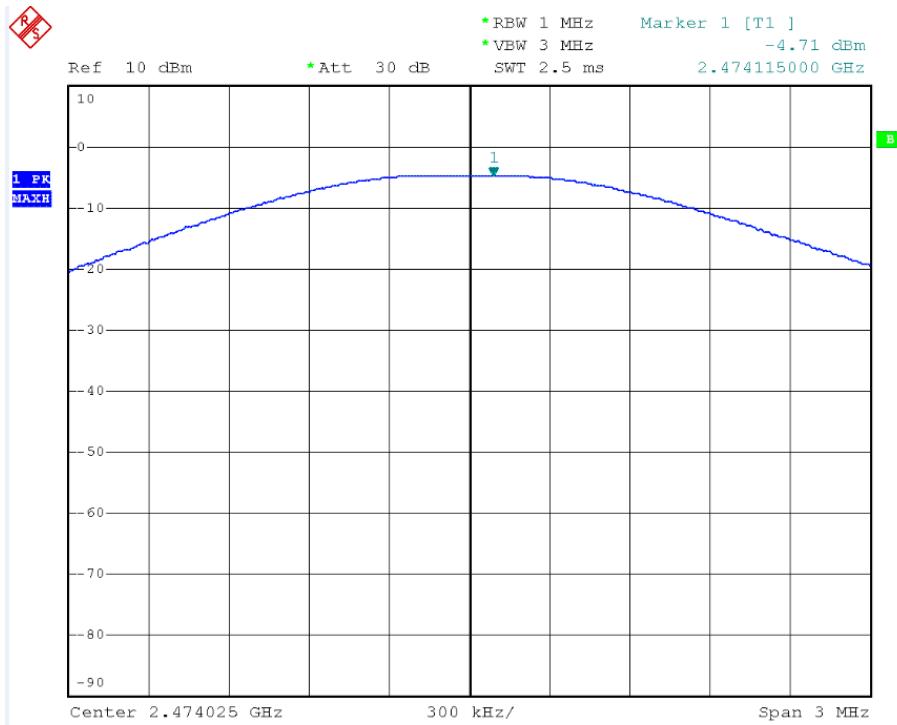
9.4 Test Procedure


1. The transmitter output was connected to the peak power meter and recorded the peak value.
2. Peak power meter parameter set to auto attenuator and filter is the same as.
3. Repeated the 1 for the middle and highest channel of the EUT.

9.5 Test Result


Temperature (°C) : 22~23	EUT: 2.4GHz receiver
Humidity (%RH) : 50~54	M/N: Alpha 110
Barometric Pressure (mbar) : 950~1000	Operation Condition: Tx Mode

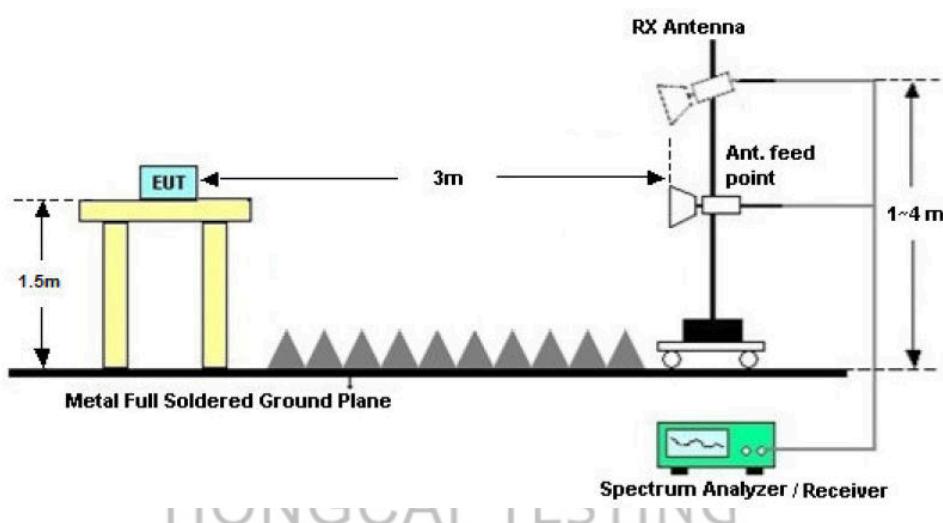
Modulation Type	Channel No.	Frequency (MHz)	Output Power (dBm)	Limit (dBm)	Result
MSK	Low	2404.056	-3.59	21	Pass
MSK	Middle	2438.533	-4.18	21	Pass
MSK	High	2474.025	-4.71	21	Pass


Channel Low:

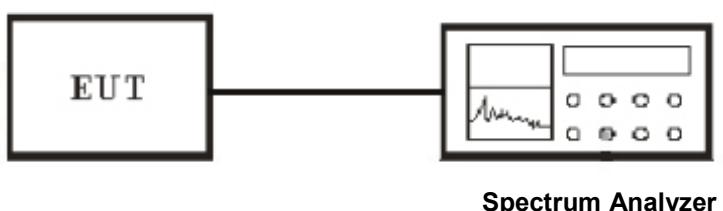
Channel Middle:

Channel High:

10. Test of Band Edges Emission


10.1 Applicable Standard

FCC §15.247(d), RSS-247 Issue1 Clause 5.5


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

10.2 EUT Setup

Radiated Measurement Setup

Conducted Measurement Setup

10.3 Test Equipment List and Details

See section 2.6.

10.4 Test Procedure

Conducted Measurement

1. Span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation.
2. Set the RBW $\geq 1\%$ of the span
3. Set the VBW \geq RBW.

4. Detector = peak.
5. Sweep time = auto
6. Trace mode = max hold.
7. Allow trace to fully stabilize.
8. Use the peak marker function to determine the maximum amplitude level.

Radiated Measurement

Peak Field Strength Measurements

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. Set RBW = 1 MHz for $f \geq 1$ GHz, 100 kHz for $f < 1$ GHz
3. Set VBW \geq RBW
4. Detector = Peak
5. Trace Mode = max hold.
6. Sweep = auto couple.
7. Trace was allowed to stabilize

Average Field Strength Measurements

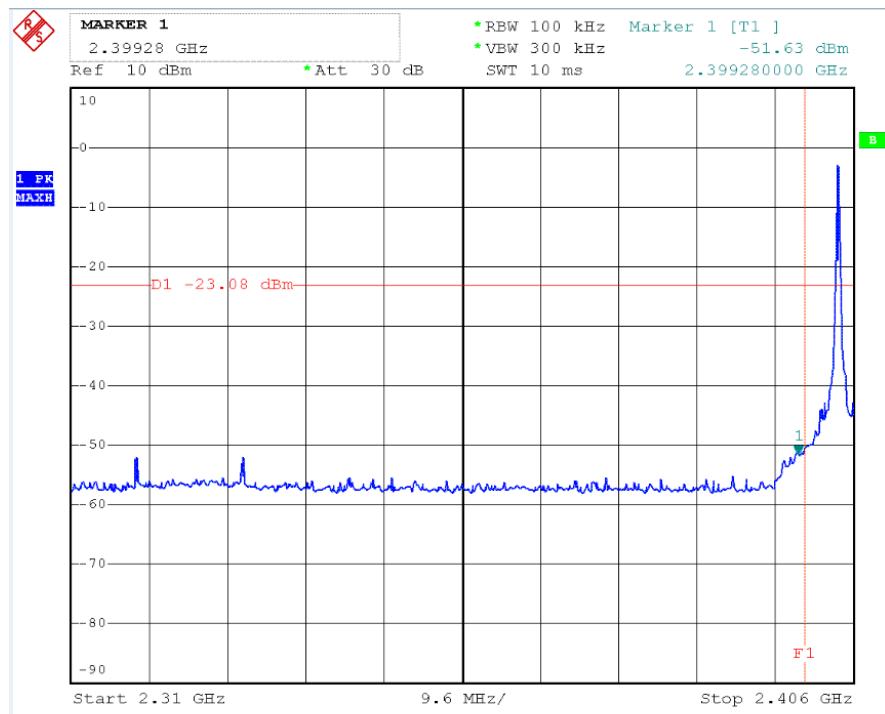
1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. Set RBW = 1 MHz for $f \geq 1$ GHz, 100 kHz for $f < 1$ GHz
3. Set VBW \geq RBW
4. Detector = power average (RMS)
5. Sweep = auto couple.
6. Trace (RMS) averaging was performed over at least 100 traces

NOTE :

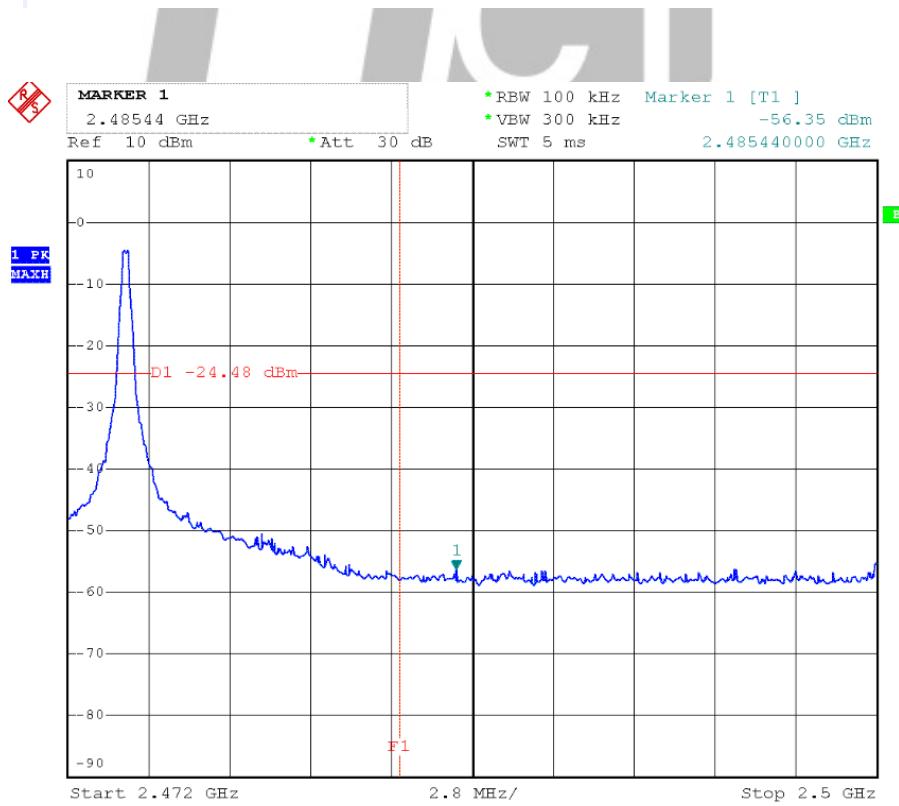
1. Configure the EUT according to ANSI C63.10-2013
2. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
4. For band edge emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.

10.5 Test Result

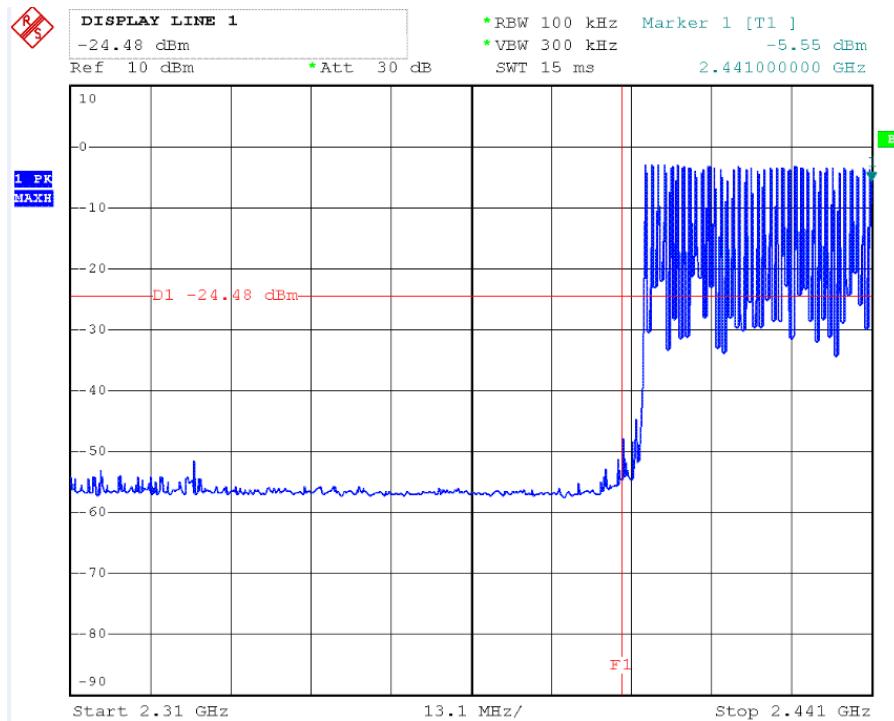
Temperature (°C) : 22~23	EUT: 2.4GHz receiver
Humidity (%RH): 50~54	M/N: Alpha 110
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode

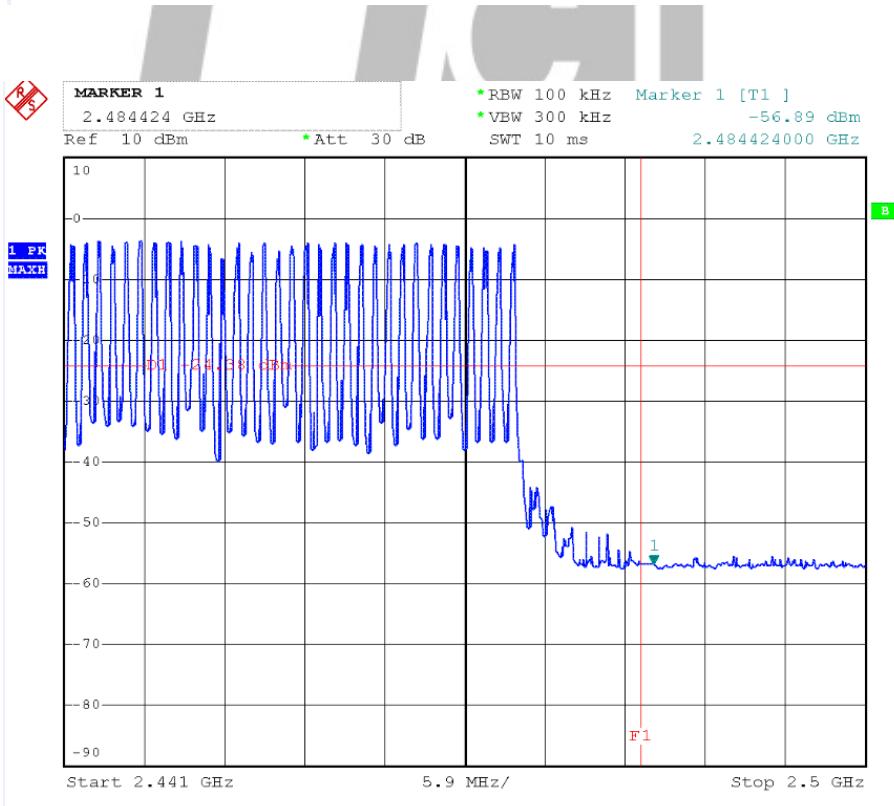

Radiated Test Result

Frequency (MHz)	Antenna Polarization	Emission Read Value (dB μ V/m)	Limits (dB μ V/m)
2398.32	H	41.03	54
2398.22	V	45.66	54
2483.24	H	42.81	54
2483.76	V	46.32	54



Conducted Test Result


Low Channel


High Channel

Hopping Conducted Test Result Low Channel

High Channel

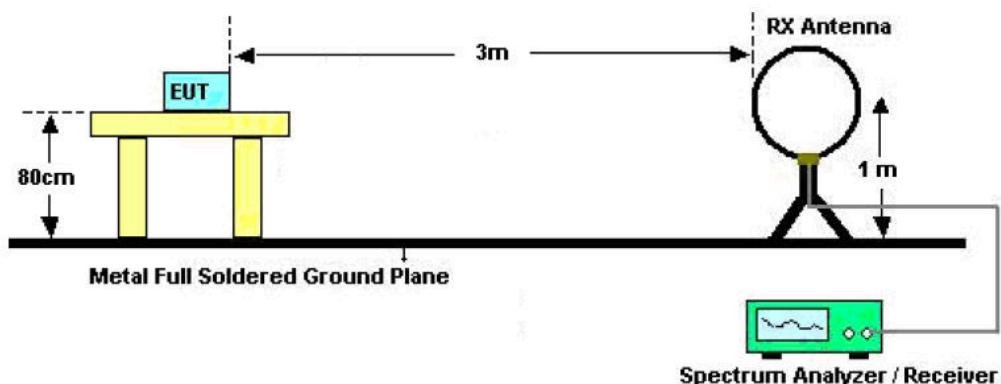
11. Test of Spurious Radiated Emission

11.1 Applicable Standard

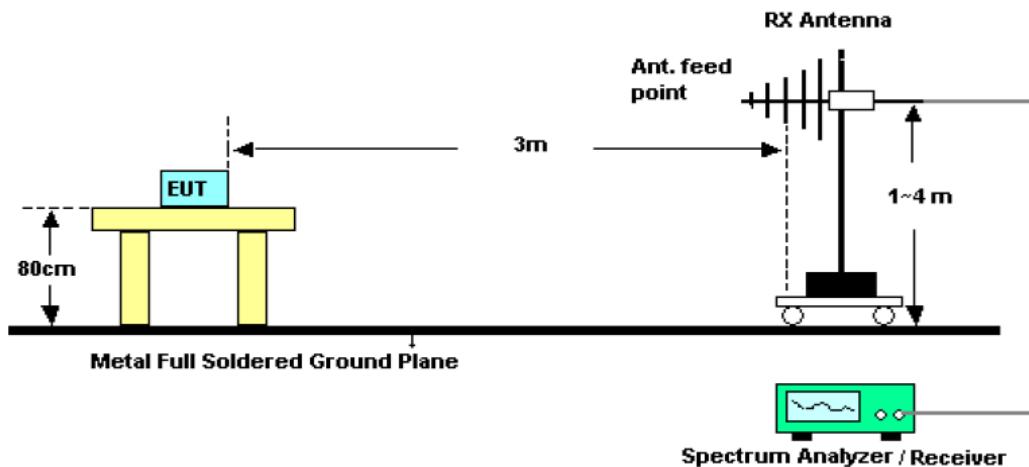
Refer to FCC §15.247(d), RSS-247 Issue1 Clause 5.5

11.1.2 Limits

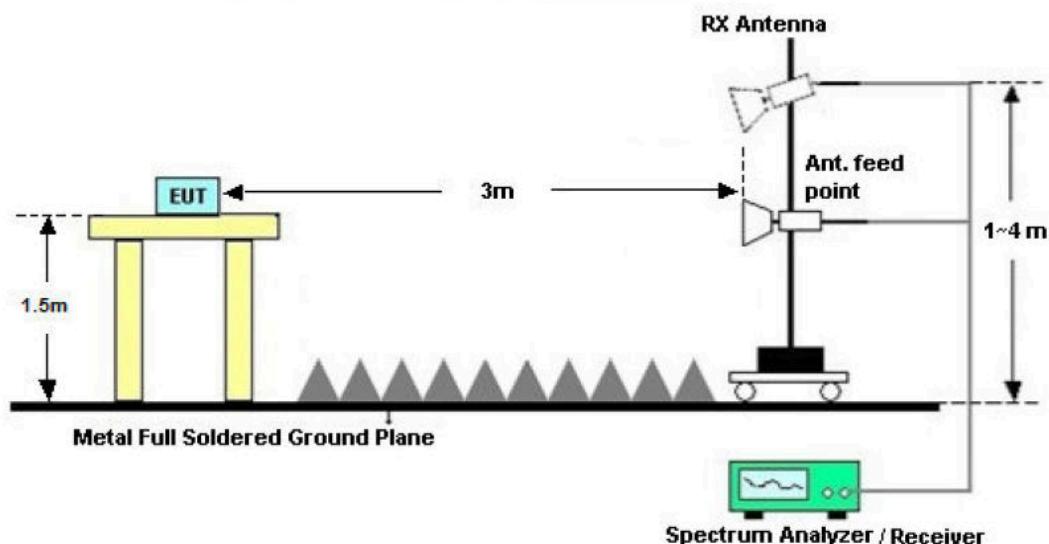
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

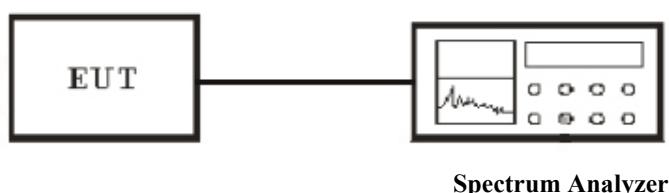

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209.

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 – 960	200	3
Above 960	500	3


11.2 EUT Setup

Radiated Measurement Setup


For radiated emission below 30MHz


For radiated emission from 30MHz to1GHz

For radiated emission from above1GHz

Conducted Measurement Setup

11.3 Test Equipment List and Details

See section 2.6.

11.4 Test Procedure

Conducted Measurement

1. Set the center frequency and span to encompass frequency range to be measured.
2. Set the RBW = 100 kHz.
3. Set the VBW \geq RBW.

4. Detector = peak.
5. Sweep time = auto couple.
6. Trace mode = max hold.
7. Allow trace to fully stabilize.
8. Use the peak marker function to determine the maximum amplitude level.

Radiated Measurement

Peak Field Strength Measurements

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. Set RBW = 1 MHz for $f \geq 1$ GHz, 100 kHz for $f < 1$ GHz
3. Set VBW \geq RBW
4. Detector = Peak
5. Trace Mode = max hold.
6. Sweep = auto couple.
7. Trace was allowed to stabilize

Average Field Strength Measurements

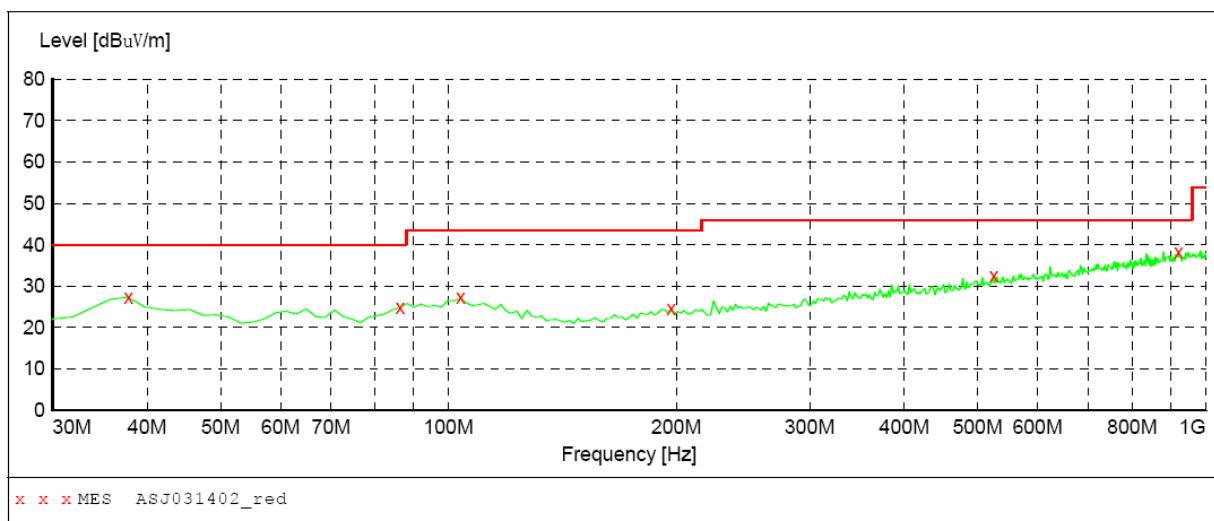
1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. Set RBW = 1 MHz for $f \geq 1$ GHz, 100 kHz for $f < 1$ GHz
3. Set VBW \geq RBW
4. Detector = power average (RMS)
5. Sweep = auto couple.
6. Trace (RMS) averaging was performed over at least 100 traces

NOTE: 1. Configure the EUT according to ANSI C63.10-2013

2. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
4. For band edge emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.

11.5 Test Result

Temperature (°C) : 22~23	EUT: 2.4GHz receiver
Humidity (%RH): 50~54	M/N: Alpha 110
Barometric Pressure (mbar): 950~1000	Operation Condition: TX Mode


Test Result: PASS

Radiated Spurious Emission Data Below 1GHz Channel Low:

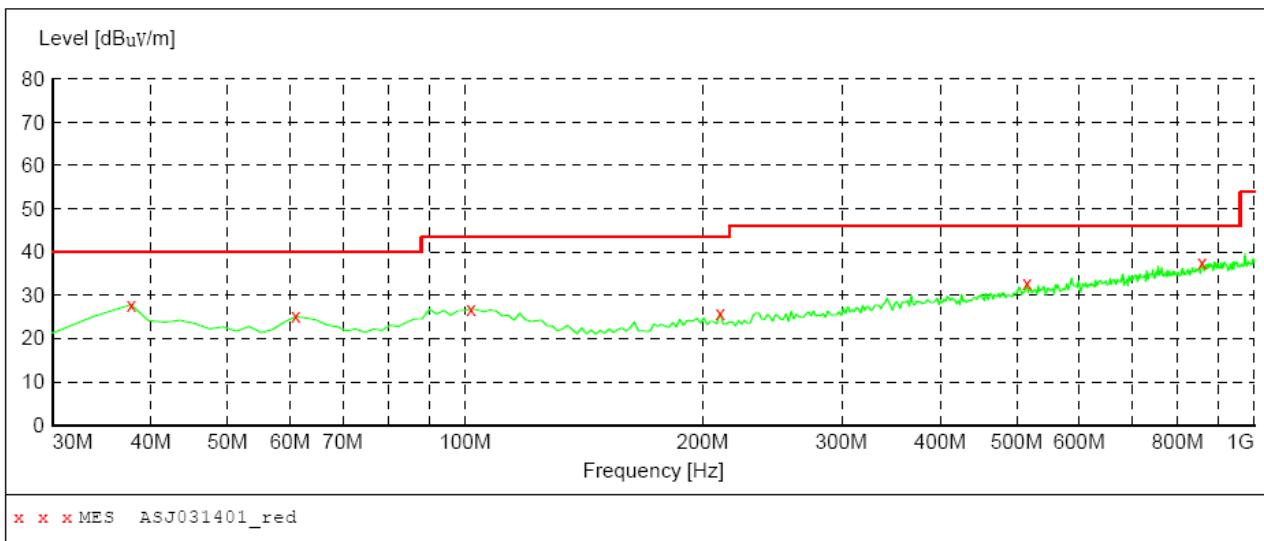
EUT: 2.4GHz receiver
 M/N: Alpha 110
 Operating Condition: TX Mode
 Test Site: 3m CHAMBER
 Operator: Chen
 Test Specification: DC 6V from battery
 Comment: Polarization: Horizontal

SWEEP TABLE: "test (30M-1G)"

Short Description:		Field Strength			
Start Frequency	Stop Frequency	Detector	Meas.	IF	Transducer
30.0 MHz	1.0 GHz	MaxPeak	Time Coupled	100 kHz	9163 NEW

MEASUREMENT RESULT: "ASJ031402_red"

2016-3-14 08:53


Frequency MHz	Level dBuV/m	Transd dB	Limit dBuV/m	Margin dB	Det. QP	Height cm	Azimuth deg	Polarization
37.760000	27.30	13.6	40.0	12.7	QP	100.0	0.00	HORIZONTAL
86.260000	24.80	13.8	40.0	15.2	QP	100.0	0.00	HORIZONTAL
103.720000	27.20	15.9	43.5	16.3	QP	100.0	0.00	HORIZONTAL
196.840000	24.60	14.0	43.5	18.9	QP	100.0	0.00	HORIZONTAL
524.700000	32.40	20.6	46.0	13.6	QP	100.0	0.00	HORIZONTAL
920.460000	38.30	25.9	46.0	7.7	QP	100.0	0.00	HORIZONTAL

Radiated Spurious Emission Data Below 1GHz Channel Low:

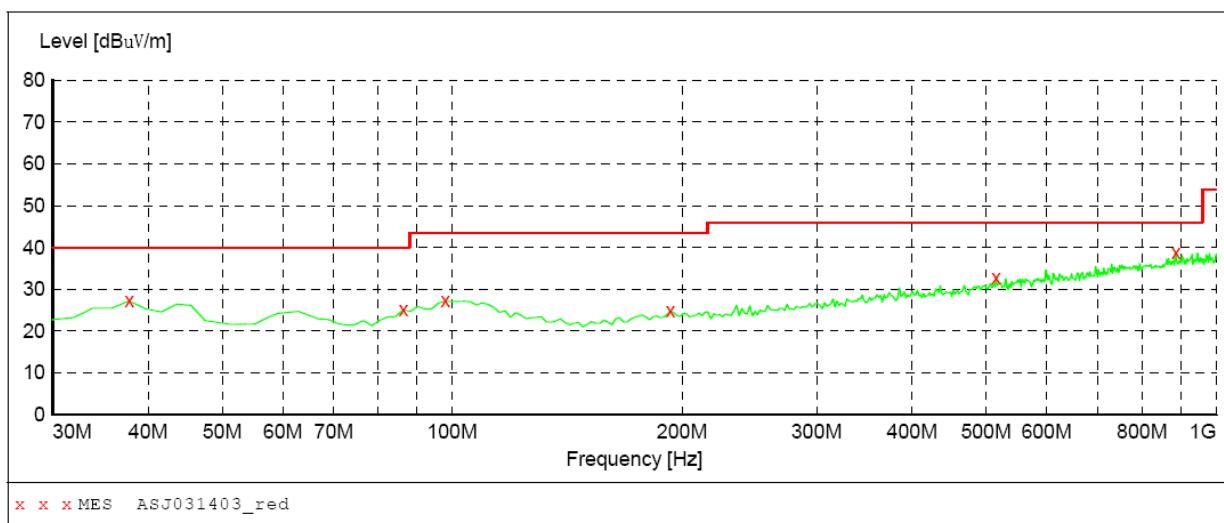
EUT: 2.4GHz receiver
 M/N: Alpha 110
 Operating Condition: TX Mode
 Test Site: 3m CHAMBER
 Operator: Chen
 Test Specification: DC 6V from battery
 Comment: Polarization: Vertical

SWEEP TABLE: "test (30M-1G)"

Short Description:		Field Strength		
Start Frequency	Stop Frequency	Detector	Meas.	IF
30.0 MHz	1.0 GHz	MaxPeak	Coupled	Bandw.
			100 kHz	9163 NEW

MEASUREMENT RESULT: "ASJ031401_red"

2016-3-14 08:51


Frequency MHz	Level dBuV/m	Transd dB	Limit dBuV/m	Margin dB	Det. QP	Height cm	Azimuth deg	Polarizatio
37.760000	27.80	13.6	40.0	12.2	QP	100.0	0.00	VERTICAL
61.040000	25.10	13.5	40.0	14.9	QP	100.0	0.00	VERTICAL
101.780000	26.90	16.1	43.5	16.6	QP	100.0	0.00	VERTICAL
210.420000	25.90	13.9	43.5	17.6	QP	100.0	0.00	VERTICAL
515.000000	32.80	20.5	46.0	13.2	QP	100.0	0.00	VERTICAL
858.380000	37.70	25.1	46.0	8.3	QP	100.0	0.00	VERTICAL

Radiated Spurious Emission Data Below 1GHz Channel Middle:

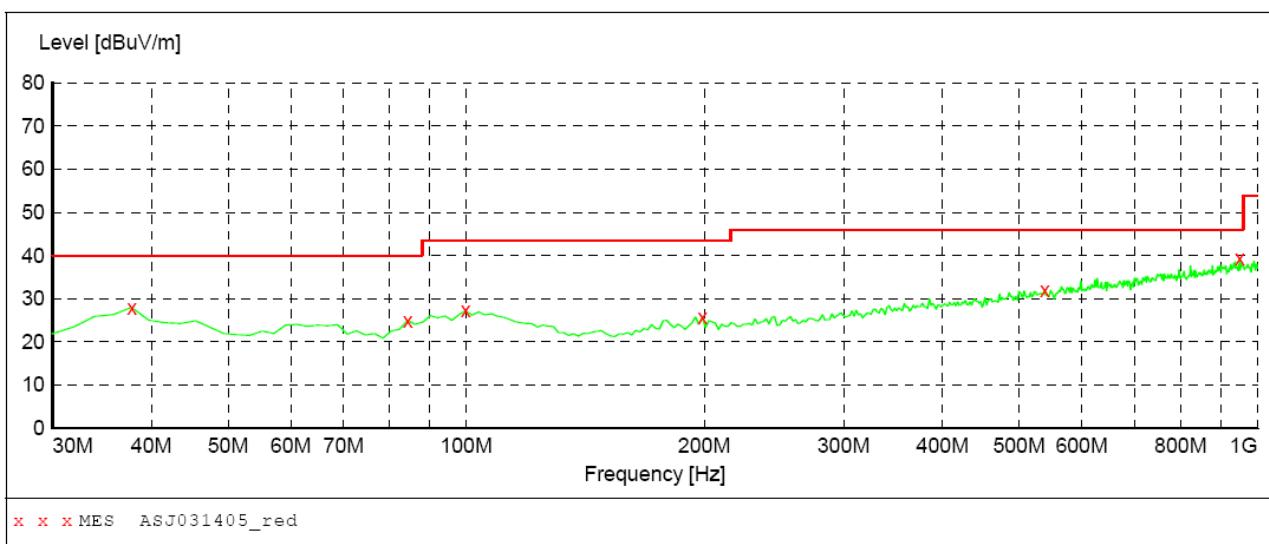
EUT: 2.4GHz receiver
 M/N: Alpha 110
 Operating Condition: TX Mode
 Test Site: 3m CHAMBER
 Operator: Chen
 Test Specification: DC 6V from battery
 Comment: Polarization: Horizontal

SWEEP TABLE: "test (30M-1G)"

Short Description:		Field Strength			
Start Frequency	Stop Frequency	Detector	Meas.	IF Time	Transducer
30.0 MHz	1.0 GHz	MaxPeak	Coupled	100 kHz	9163 NEW

MEASUREMENT RESULT: "ASJ031403_red"

2016-3-14 08:54


Frequency MHz	Level dBuV/m	Transd dB	Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
37.760000	27.20	13.6	40.0	12.8	QP	100.0	0.00	HORIZONTAL
86.260000	25.10	13.8	40.0	14.9	QP	100.0	0.00	HORIZONTAL
97.900000	27.20	15.7	43.5	16.3	QP	100.0	0.00	HORIZONTAL
192.960000	24.80	14.0	43.5	18.7	QP	100.0	0.00	HORIZONTAL
515.000000	32.80	20.5	46.0	13.2	QP	100.0	0.00	HORIZONTAL
885.540000	38.90	25.6	46.0	7.1	QP	100.0	0.00	HORIZONTAL

Radiated Spurious Emission Data Below 1GHz Channel Middle:

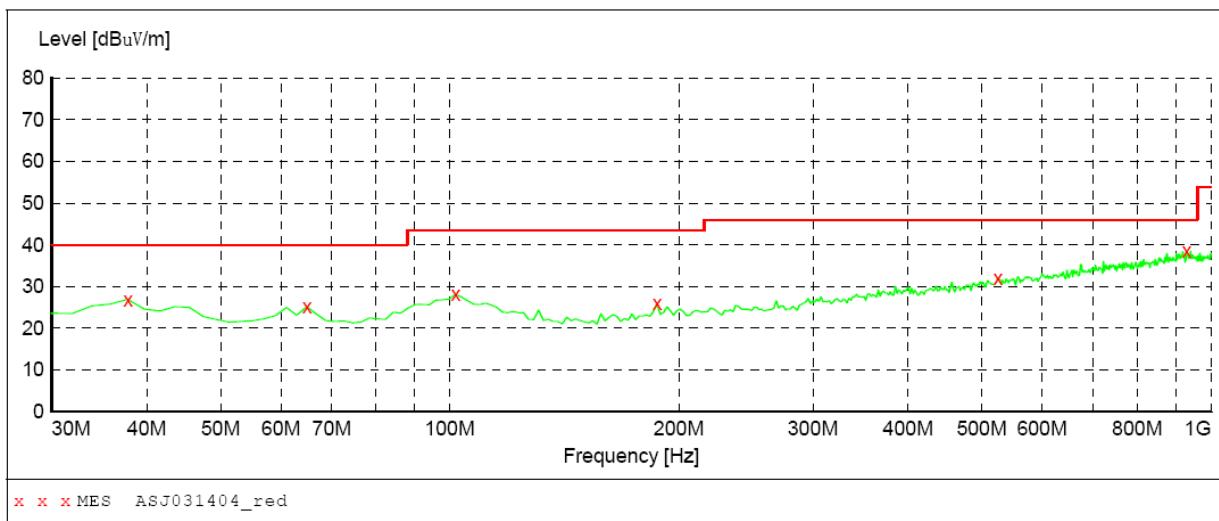
EUT: 2.4GHz receiver
 M/N: Alpha 110
 Operating Condition: TX Mode
 Test Site: 3m CHAMBER
 Operator: Chen
 Test Specification: DC 6V from battery
 Comment: Polarization: Vertical

SWEET TABLE: "test (30M-1G)"

Short Description:		Field Strength			
Start Frequency	Stop Frequency	Detector	Meas.	IF	Transducer
30.0 MHz	1.0 GHz	MaxPeak	Coupled	100 kHz	9163 NEW

MEASUREMENT RESULT: "ASJ031405_red"

2016-3-14 08:57


Frequency MHz	Level dBuV/m	Transd dB	Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarizatio
37.760000	28.00	13.6	40.0	12.0	QP	100.0	0.00	VERTICAL
84.320000	25.00	13.2	40.0	15.0	QP	100.0	0.00	VERTICAL
99.840000	27.20	16.2	43.5	16.3	QP	100.0	0.00	VERTICAL
198.780000	25.80	14.0	43.5	17.7	QP	100.0	0.00	VERTICAL
538.280000	32.00	20.8	46.0	14.0	QP	100.0	0.00	VERTICAL
949.560000	39.30	26.0	46.0	6.7	QP	100.0	0.00	VERTICAL

Radiated Spurious Emission Data Below 1GHz Channel High:

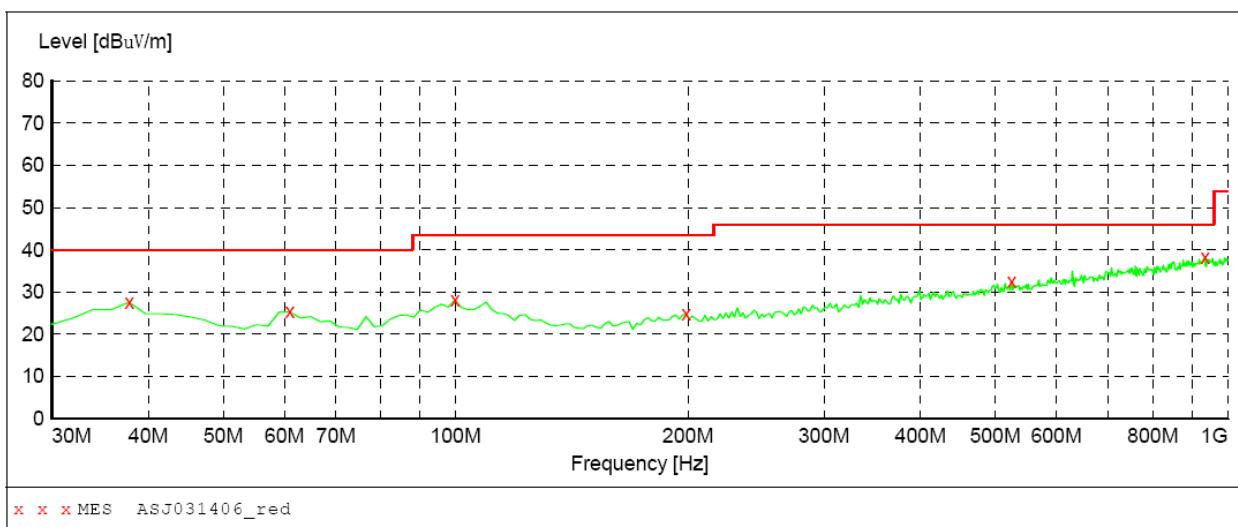
EUT: 2.4GHz receiver
 M/N: Alpha 110
 Operating Condition: TX Mode
 Test Site: 3m CHAMBER
 Operator: Chen
 Test Specification: DC 6V from battery
 Comment: Polarization: Horizontal

SWEET TABLE: "test (30M-1G)"

Short Description:		Field Strength			
Start Frequency	Stop Frequency	Detector	Meas.	IF	Transducer
30.0 MHz	1.0 GHz	MaxPeak	Time	Bandw.	9163 NEW

MEASUREMENT RESULT: "ASJ031404_red"

2016-3-14 08:55


Frequency MHz	Level dBuV/m	Transd dB	Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
37.760000	26.90	13.6	40.0	13.1	QP	100.0	0.00	HORIZONTAL
64.920000	25.20	13.6	40.0	14.8	QP	100.0	0.00	HORIZONTAL
101.780000	28.10	16.1	43.5	15.4	QP	100.0	0.00	HORIZONTAL
187.140000	25.90	13.7	43.5	17.6	QP	100.0	0.00	HORIZONTAL
524.700000	32.00	20.6	46.0	14.0	QP	100.0	0.00	HORIZONTAL
928.220000	38.50	25.9	46.0	7.5	QP	100.0	0.00	HORIZONTAL

Radiated Spurious Emission Data Below 1GHz Channel High:

EUT: 2.4GHz receiver
 M/N: Alpha 110
 Operating Condition: TX Mode
 Test Site: 3m CHAMBER
 Operator: Chen
 Test Specification: DC 6V from battery
 Comment: Polarization: Vertical

SWEET TABLE: "test (30M-1G)"

Short Description:		Field Strength		
Start Frequency	Stop Frequency	Detector	Meas.	IF
30.0 MHz	1.0 GHz	MaxPeak	Coupled	100 kHz
Transducer 9163 NEW				

MEASUREMENT RESULT: "ASJ031406_red"

2016-3-14 08:58

Frequency MHz	Level dBuV/m	Transd dB	Limit dBuV/m	Margin dB	Det. QP	Height cm	Azimuth deg	Polarization
37.760000	27.60	13.6	40.0	12.4	QP	100.0	0.00	VERTICAL
61.040000	25.30	13.5	40.0	14.7	QP	100.0	0.00	VERTICAL
99.840000	28.10	16.2	43.5	15.4	QP	100.0	0.00	VERTICAL
198.780000	24.90	14.0	43.5	18.6	QP	100.0	0.00	VERTICAL
524.700000	32.50	20.6	46.0	13.5	QP	100.0	0.00	VERTICAL
934.040000	38.20	26.0	46.0	7.8	QP	100.0	0.00	VERTICAL

Radiated Spurious Emission Test Data Above 1GHz

Channel Low

Channel Low (2404.056MHz)								
Maximum Frequency (MHz)	Polarity and Level					Limit (dB μ V/m)	Margin (dB μ V/m)	Mark (P/Q/A)
	Polarity	Height (m)	Reading dB μ V	Transd	Result dB μ V/m			
2403.920	H	1	111.51	-7.15	104.36	N/A	N/A	P
			102.91	-7.15	95.76	N/A	N/A	A
2403.920	V	1	113.94	-7.15	106.79	N/A	N/A	P
			103.05	-7.15	95.90	N/A	N/A	A
4807.84	H	1	40.55	1.07	41.62	74	-32.38	P
			30.41	1.07	31.48	54	-22.52	A
4807.84	V	1	41.90	1.07	42.97	74	-31.03	P
			31.05	1.07	32.12	54	-21.88	A
7211.76	H	1	40.68	7.38	48.06	74	-25.94	P
			30.85	7.38	38.23	54	-15.77	A
7211.76	V	1	42.54	7.38	49.92	74	-24.08	P
			31.92	7.38	39.30	54	-14.70	A
9615.68	H	1	40.61	10.29	50.90	74	-23.10	P
			31.39	10.29	41.68	54	-12.32	A
9615.68	V	1	43.10	7.38	50.48	74	-23.52	P
			31.77	7.38	39.15	54	-14.85	A
12019.6	H	1	40.75	14.01	54.76	74	-19.24	P
			31.94	14.01	45.95	54	-8.05	A
12019.6	V	1	41.74	14.01	55.75	74	-18.25	P
			31.85	14.01	45.86	54	-8.14	A
25380.35	----	----	----	----	----	----	----	----

Remark: 1. Transd.=Antenna Factor+Cable Loss+Pre-amplifier
Margin = Level-Limit
Mark: P means Peak Value, Q means Quasi Peak Value, A means Average Value
2. Data of measurement within this frequency range shown “-” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
3. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz, A(Average): RBW=1MHz, VBW=3MHz.
4. The test limit distance is 3m limit

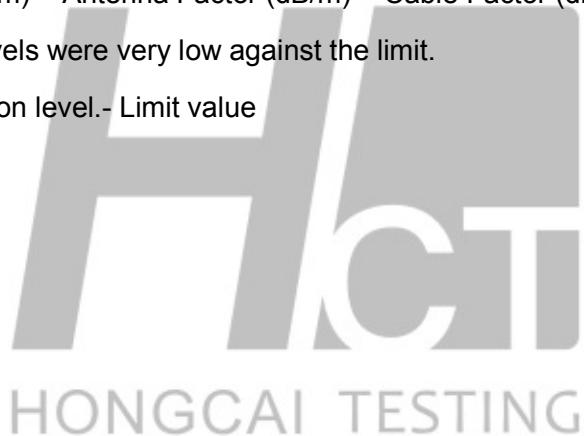
Channel Mid

Channel Mid (2438.533MHz)								
Maximum Frequency (MHz)	Polarity and Level					Limit (dB μ V/m)	Margin (dB μ V/m)	Mark (P/Q/A)
	Polarity	Height (m)	Reading dB μ V	Transd	Result dB μ V/m			
2435.989	H	1	109.50	-6.37	103.13	N/A	N/A	P
			100.74	-6.37	94.37	N/A	N/A	A
2435.989	V	1	112.85	-6.37	106.48	N/A	N/A	P
			102.62	-6.37	96.25	N/A	N/A	A
4871.978	H	1	40.41	1.07	41.48	74	-32.52	P
			30.54	1.07	31.61	54	-22.39	A
4871.978	V	1	41.75	1.07	42.82	74	-31.18	P
			31.01	1.07	32.08	54	-21.92	A
7307.967	H	1	40.24	7.49	47.73	74	-26.27	P
			30.90	7.49	38.39	54	-15.61	A
7307.967	V	1	41.68	7.49	49.17	74	-24.83	P
			31.52	7.49	39.01	54	-14.99	A
9743.956	H	1	40.91	10.47	51.38	74	-22.62	P
			31.54	10.47	42.01	54	-11.99	A
9743.956	V	1	41.25	10.47	51.72	74	-22.28	P
			31.68	10.47	42.15	54	-11.85	A
12179.945	H	1	41.54	14.1	55.64	74	-18.36	P
			31.22	14.1	45.32	54	-8.68	A
12179.945	V	1	41.75	14.1	55.85	74	-18.15	P
			31.90	14.1	46.00	54	-8.00	A
25380.37	----	----	----	----	----	----	----	----

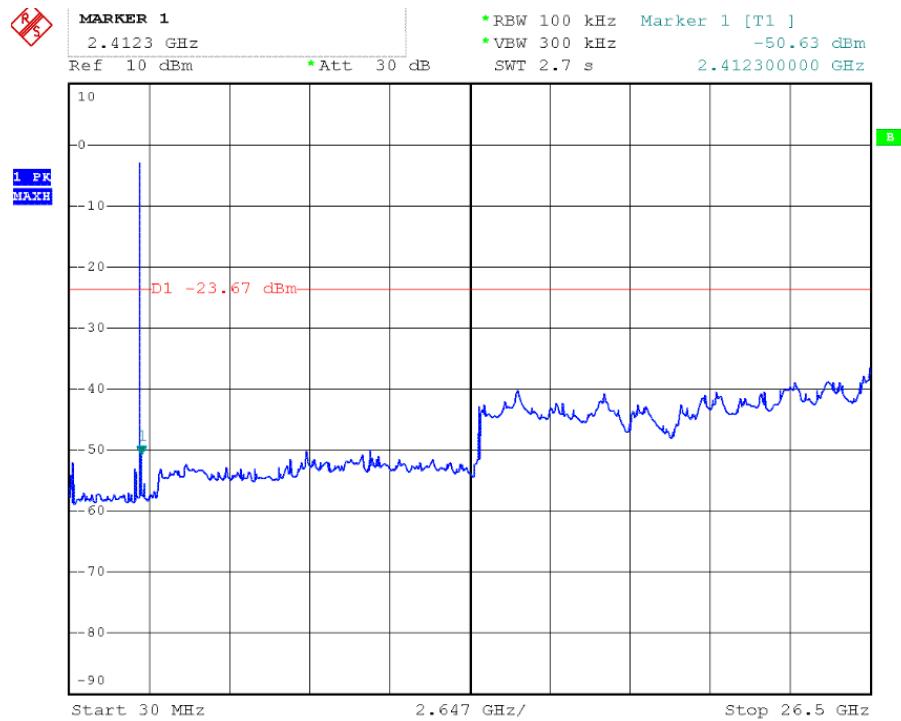
Remark: 1. Transd.=Antenna Factor+Cable Loss-Pre-amplifier
 Margin = Level-Limit
 Mark: P means Peak Value, Q means Quasi Peak Value, A means Average Value
 2. Data of measurement within this frequency range shown “-” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
 3. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz, A(Average): RBW=1MHz, VBW=3MHz.
 4. The test limit distance is 3m limit

Channel High

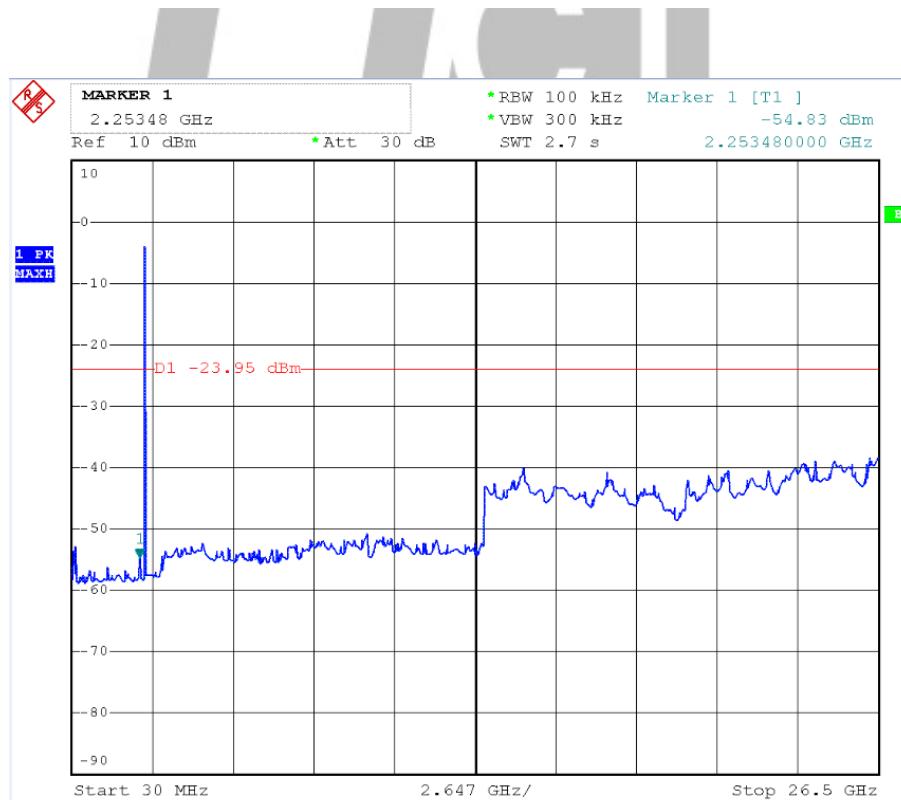
Channel High (2474.025MHz)								
Maximum Frequency (MHz)	Polarity and Level					Limit (dB μ V/m)	Margin (dB μ V/m)	Mark (P/Q/A)
	Polarity	Height (m)	Reading dB μ V	Transd	Result dB μ V/m			
2472.056	H	1	112.67	-6.05	106.62	N/A	N/A	P
			103.80	-6.05	97.75	N/A	N/A	A
2472.056	V	1	114.38	-6.05	108.33	N/A	N/A	P
			104.02	-6.05	97.97	N/A	N/A	A
4944.112	H	1	40.98	1.07	42.05	74	-31.95	P
			30.87	1.07	31.94	54	-22.06	A
4944.112	V	1	41.82	1.07	42.89	74	-31.11	P
			30.96	1.07	32.03	54	-21.97	A
7416.168	H	1	41.82	7.61	49.43	74	-24.57	P
			30.65	7.61	38.26	54	-15.74	A
7416.168	V	1	41.16	7.61	48.77	74	-25.23	P
			31.87	7.61	39.48	54	-14.52	A
9888.224	H	1	40.82	10.65	51.47	74	-22.53	P
			31.65	10.65	42.30	54	-11.70	A
9888.224	V	1	41.30	10.65	51.95	74	-22.05	P
			31.51	10.65	42.16	54	-11.84	A
12360.28	H	1	40.82	14.19	55.01	74	-18.99	P
			31.65	14.19	45.84	54	-8.16	A
12360.28	V	1	41.25	14.19	55.44	74	-18.56	P
			32.02	14.19	46.21	54	-7.79	A
25381.35	----	----	----	----	----	----	----	----

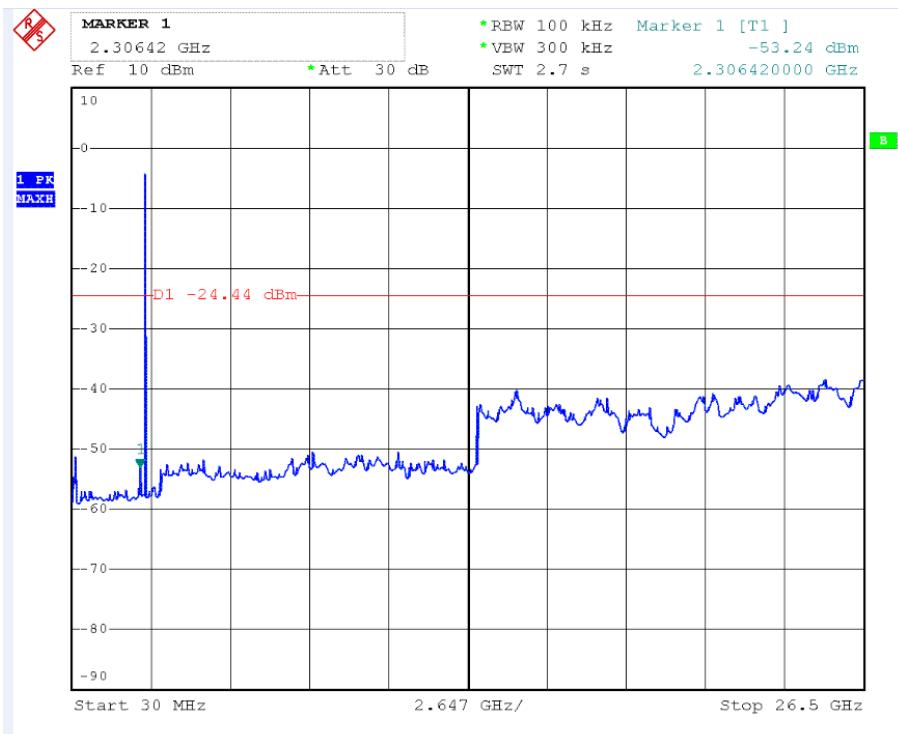

Remark: 1. Transd.=Antenna Factor+Cable Loss-Pre-amplifier
 Margin = Level-Limit
 Mark: P means Peak Value, Q means Quasi Peak Value, A means Average Value
 2. Data of measurement within this frequency range shown “-” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
 3. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz, A(Average): RBW=1MHz, VBW=3MHz.
 4. The test limit distance is 3M limit

Radiated Emission Below 30 MHz TX (CH Low)


Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Emission Levels (dBuV/m)	Limit (dB μ V/m)	Margin (dB)	Detector Mode
0.512	24.59	8.22	-1.01	31.8	67	-35.20	QP
18.09	24.75	8.17	-1.20	31.72	49.5	-17.78	QP
23.28	22.93	8.03	-1.05	29.91	49.5	-19.59	QP
24.42	24.29	7.48	-1.69	30.08	49.5	-19.42	QP

Note:


1. The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos. The worst case data is recorded in the report.
2. Emission level (dB μ V/m) = Raw Value (dBuV) + Correction Factor (dB/m)
3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
4. The other emission levels were very low against the limit.
5. Margin value = Emission level.- Limit value


Conducted Spurious Emission Test Data 30MHz-26.5GHz Channel Low

Channel Mid

Channel High

HONGCAI TESTING

12. ANTENNA REQUIREMENT

12.1 Standard Applicable

FCC §15.203/15.247(b)/(c), RSS-GEN Clause 8.3

Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Section 15.247(b)/(c):

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

If the intentional radiator is used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

12.2 Antenna Connected Construction

The antenna connector is designed with permanent attachment and no consideration of replacement. The antenna used in this product is complied with Standard. The maximum Gain of the antenna lower than 6.0dBi and have the definite antenna Specification.

