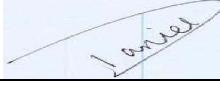


FCC TYPE APPROVAL


EMI MEASUREMENT AND TEST REPORT

For

Waxess Inc.

34 Executive Park, Suite 250, Irvine, CA 92614

FCC ID: SNBDM1000C

This Report Concerns: <input checked="" type="checkbox"/> Original Report	Equipment Type: Dual Mode CDMA 850/1900 & 2.4GHz FHSS Cordless Phone
Test Engineer: Ming Jin /	
Report No.: R0502172(BS)	
Report Date: 2005-03-13	
Reviewed By: Daniel Deng /	
Prepared By: Bay Area Compliance Laboratory Corporation (BACL) 230 Commercial Street Sunnyvale, CA 94085 Tel: (408) 732-9162 Fax: (408) 732 9164	

Note: The test report is specially limited to the above company and the product model only. It may not be duplicated without prior written consent of Bay Area Compliance Laboratory Corporation. This report **must not** be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the US Government.

TABLE OF CONTENTS

GENERAL INFORMATION.....	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
OBJECTIVE	5
RELATED SUBMITTAL(S)/GRANT(S).....	5
TEST METHODOLOGY	5
TEST FACILITY	6
SYSTEM TEST CONFIGURATION.....	7
JUSTIFICATION	7
BLOCK DIAGRAM.....	7
EQUIPMENT MODIFICATIONS	7
LOCAL SUPPORT EQUIPMENT LIST AND DETAILS	7
REMOTE SUPPORT EQUIPMENT LIST AND DETAILS.....	7
EXTERNAL I/O CABLING LIST AND DETAILS	7
POWER SUPPLY LIST AND DETAILS	7
CONFIGURATION OF TEST SYSTEM	8
TEST SETUP BLOCK DIAGRAM	8
SUMMARY OF TEST RESULTS FOR FCC PART 15.....	9
ANTENNA REQUIREMENT	10
§15.207(A) - CONDUCTED EMISSION.....	11
MEASUREMENT UNCERTAINTY	11
TEST SETUP.....	11
RECEIVER ANALYZER SETUP	11
TEST EQUIPMENT LIST AND DETAILS.....	11
TEST PROCEDURE	11
ENVIRONMENTAL CONDITIONS	12
SUMMARY OF TEST RESULTS	12
CONDUCTED EMISSIONS TEST DATA	12
PLOT OF CONDUCTED EMISSIONS TEST DATA	12
§15.205 & §15.209 - RADIATED EMISSION.....	15
MEASUREMENT UNCERTAINTY	15
TEST SETUP.....	15
SPECTRUM ANALYZER SETUP	15
TEST EQUIPMENT LIST AND DETAILS.....	15
ENVIRONMENTAL CONDITIONS	16
TEST PROCEDURE	16
CORRECTED AMPLITUDE & MARGIN CALCULATION	16
SUMMARY OF TEST RESULTS	16
BASE, RADIATED EMISSION TEST DATA @ 3 METER (CDMA MODE OPERATING SIMULTANEOUSLY).....	17
§15.247 (A) (1) - HOPPING CHANNEL SEPARATION	19
STANDARD APPLICABLE	19
MEASUREMENT PROCEDURE.....	19
TEST EQUIPMENT	19
ENVIRONMENTAL CONDITIONS	19
MEASUREMENT RESULTS.....	20
PLOTS OF HOPPING CHANNEL SEPARATION	21
§15.247 (A) (1) - CHANNEL BANDWIDTH	23
STANDARD APPLICABLE	23
MEASUREMENT PROCEDURE.....	23
TEST EQUIPMENT	23
ENVIRONMENTAL CONDITIONS	23
MEASUREMENT RESULT	24

PLOT OF CHANNEL BANDWIDTH.....	24
§15.247 (A) (1) (III) - NUMBER OF HOPPING FREQUENCY USED	26
STANDARD APPLICABLE	26
MEASUREMENT PROCEDURE.....	26
TEST EQUIPMENT	26
ENVIRONMENTAL CONDITIONS.....	26
MEASUREMENT RESULTS.....	26
PLOTS OF NUMBER OF HOPPING FREQUENCY	27
§15.247 9 (A) (1) (III) - DWELL TIME.....	28
STANDARD APPLICABLE	28
MEASUREMENT PROCEDURE.....	28
TEST EQUIPMENT	28
ENVIRONMENTAL CONDITIONS.....	28
MEASUREMENT RESULTS.....	28
PLOTS OF DWELL TIME	28
§15.247 (B) (1) - MAXIMUM PEAK OUTPUT POWER.....	32
STANDARD APPLICABLE	32
MEASUREMENT PROCEDURE.....	32
TEST EQUIPMENT	32
ENVIRONMENTAL CONDITIONS.....	32
MEASUREMENT RESULT	32
§15.247 (C) - 100 KHZ BANDWIDTH OF BAND EDGES.....	33
STANDARD APPLICABLE	33
MEASUREMENT PROCEDURE.....	33
TEST EQUIPMENT	33
ENVIRONMENTAL CONDITIONS.....	33
PLOTS OF 100kHz BANDWIDTH OF BAND EDGE	33
§2.1051 - SPURIOUS EMISSION AT ANTENNA PORT.....	36
STANDARD APPLICABLE	36
MEASUREMENT PROCEDURE.....	36
TEST EQUIPMENT	36
ENVIRONMENTAL CONDITIONS.....	36
MEASUREMENT RESULTS.....	36
SUMMARY OF TEST RESULTS FOR PART 22 & 24.....	40
§1.1307(B)(1) & §2.1091 - RF EXPOSURE.....	41
§2.1047 - MODULATION CHARACTERISTIC	43
APPLICABLE STANDARD	43
TEST PROCEDURE	43
TEST EQUIPMENT LIST AND DETAILS.....	43
ENVIRONMENTAL CONDITIONS.....	43
TEST RESULTS	43
§2.1053 - SPURIOUS RADIATED EMISSIONS.....	45
APPLICABLE STANDARD	45
TEST PROCEDURE	45
TEST EQUIPMENT LIST AND DETAILS.....	45
ENVIRONMENTAL CONDITIONS.....	45
TEST RESULT	46
§2.1046, §22.913(A), & §24.232 – CONDUCTED OUTPUT POWER	47
APPLICABLE STANDARD	47
TEST PROCEDURE	47
TEST EQUIPMENT LIST AND DETAILS.....	47

ENVIRONMENTAL CONDITIONS	47
TEST RESULTS	47
§2.1049, §22.917, §22.905, & §24.238 - OCCUPIED BANDWIDTH	51
APPLICABLE STANDARD	51
TEST PROCEDURE	51
TEST EQUIPMENT LIST AND DETAILS.....	51
ENVIRONMENTAL CONDITIONS	51
TEST RESULTS	51
§2.1051, §22.917, & §24.238(A) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS.....	54
APPLICABLE STANDARD	54
TEST PROCEDURE	54
TEST EQUIPMENT LIST AND DETAILS.....	54
ENVIRONMENTAL CONDITIONS	54
TEST RESULTS	54
§2.1055 (A), §2.1055 (D), §22.355, & §24.235 - FREQUENCY STABILITY	57
APPLICABLE STANDARD	57
TEST PROCEDURE	57
TEST EQUIPMENT LIST AND DETAILS.....	57
ENVIRONMENTAL CONDITIONS	58
TEST RESULTS	58
§22.917 & §24.238 – BAND EDGE	60
APPLICABLE STANDARD	60
TEST PROCEDURE	60
TEST EQUIPMENT LIST AND DETAILS.....	60
ENVIRONMENTAL CONDITIONS	60
TEST RESULTS	60

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

The *Waxess Inc.*’s product, FCC ID:SNBDM1000C or the “EUT” as referred to this report is a base of Dual Mode CDMA 850/1900 & 2.4GHz FHSS Cordless Phone. The EUT is measured approximately 200mmL x 195mmW x 170mmH.

* *The test data gathered are from typical production sample, serial number: F60AD60C, F60AD609, provided by the manufacturer.*

Objective

This type approval report is prepared on behalf of *Waxess Inc.* in accordance with Part 2, Subpart J, Part 15, Subparts A, B, C, Part 22 Subpart H and Part 24 Subpart E of the Federal Communication Commissions rules.

The objective is also to determine compliance with Part 22 Subpart H and Part 24 Subpart E rules for the GSM:

- output power
- modulation characteristic
- occupied bandwidth
- spurious emission at antenna terminal
- field strength of spurious radiation
- frequency stability
- conducted and radiated margin.
- band edge

The objective is also to determine compliance with FCC 15.247 rules for the FHSS:

- Maximum Peak Output Power
- Hopping Channel Separation
- Number of Hopping Frequency Used
- 20 dB Bandwidth
- Dwell Time on Each Channel
- 100 kHz Bandwidth of Band Edge
- Conducted Emission
- Spurious Emission
- Radiated Emission
- Antenna Requirement

Related Submittal(s)/Grant(s)

No Related Submittals

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2003& TIA/EIA-603.

Test Facility

The Open Area Test site used by Bay Area Compliance Laboratory Corporation to collect radiated and conducted emission measurement data is located in the back parking lot of the building at 230 Commercial Street, Sunnyvale, California, USA.

Test site at Bay Area Compliance Laboratory Corporation has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules and Article 8 of the VCCI regulations. The facility also complies with the test methods and procedures set forth in ANSI C63.4-2003.

The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC file 31040/SIT 1300F2 and VCCI Registration No.: C-1298 and R-1234. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The current scope of accreditations is attached hereinafter and can also be found at

<http://ts.nist.gov/ts/htdocs/210/214/scopes/2001670.htm>

SYSTEM TEST CONFIGURATION

Justification

The EUT was configured for testing according to TIA/EIA 603A.

The final qualification test was performed with the EUT operating at normal mode.

Block Diagram

Please refer to Exhibit D.

Equipment Modifications

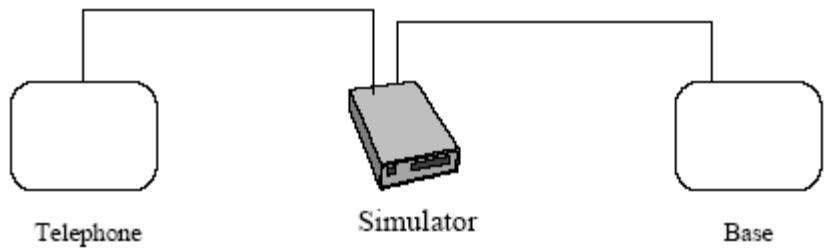
No modifications were made to the EUT.

Local Support Equipment List and Details

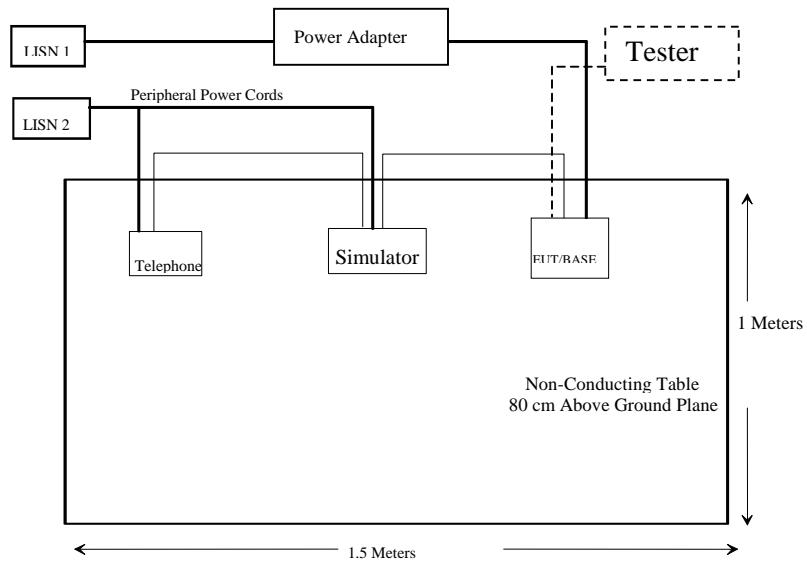
Manufacturer	Description	Model	Serial Number	FCC ID
Southern Telecom	Telephone	None	None	None
Teltone Corp	Simulator	TLS-3B-01	80071	None

Remote Support Equipment List and Details

Manufacturer	Description	Model	Serial Number	FCC ID
Agilent	Wireless CDMA Tester	Agilent E6393A	JP1MJ00416	None


External I/O Cabling List and Details

Cable Description	Length (M)	Port/From	To
None-Shielded RJ-11 Cable	1.5	RJ-11 Port/EUT	Simulator RJ11Port
None-Shielded RJ-11 Cable	1.5	Support telephone	Simulator RJ11Port


Power Supply List and Details

Manufacturer	Description	Model	Serial Number	FCC ID
Maxess	AC Adaptor	AD-48081000	None	None

Configuration of Test System

Test Setup Block Diagram

SUMMARY OF TEST RESULTS FOR FCC PART 15

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.203	Antenna Requirement	Compliant
§ 15.205	Restricted Bands	Compliant
§15.207 (a)	Conducted Emission	Compliant
§15.209	Radiated Emission	Within Measurement Uncertainty
§15.247 (a) (1)	Hopping Channel Separation	Compliant
§15.247 (a) (1)	Channel Bandwidth	Compliant
§15.247 (a) (1) (iii)	Number of Hopping Frequencies Used	Compliant
§15.247 (a) (1) (iii)	Dwell Time of Each Frequency within a 10 Second Period of time (0.4 x Number of Channel)	Compliant
§15.247 (b) (1)	Maximum Peak Output Power	Compliant
§ 15.247 (b)(4) § 2.1093	RF Safety Requirements	Compliant
§ 15.247 (c)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§ 2.1051	Spurious Emission at Antenna Port	Compliant

ANTENNA REQUIREMENT

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to § 15.247 (1), if transmitting antennas of directional gain greater than 6 dBi are used the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The gain of antenna used for transmitting is 0 dBi by default, and the antenna connector is designed with permanent attachment and no consideration of replacement. Please see EUT photo for details.

§15.207(a) - CONDUCTED EMISSION

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at BACL is ± 2.4 dB.

Test Setup

The measurement was performed at shield room, using the same setup per ANSI C63.4 – 2003 measurement procedure. The specification used was FCC Class B limits.

External I/O cables were draped along the edge of the test table and bundle when necessary.

The adapter was connected with LISN-1.

Receiver Analyzer Setup

The receiver was set to investigate the spectrum from 150 kHz to 30MHz.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date
Rohde & Schwarz	LISN	ESH2-Z5	871884/039	2004-03-28
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2004-09-15
Fluke	Calibrated Voltmeter	189	18485-38	2004-07-18

* **Statement of Traceability:** BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

Test Procedure

During the conducted emission test, the power cord of the adapter was connected to the mains outlet of the LISN-1.

Maximizing procedure were performed on the six (6) highest emissions of the EUT.

All data was recorded in the peak detection mode, quasi-peak and average. Quasi-Peak readings are distinguished with an “QP”. Average readings are distinguished with an “Ave”.

Environmental Conditions

Temperature:	23° C
Relative Humidity:	35%
ATM Pressure:	1019 mbar

The testing was performed by Ming Jin on 2004-11-01.

Summary of Test Results

According to the recorded data in following table, the EUT complied with the FCC Conducted limit for a Class B device, with the *worst* margin reading of:

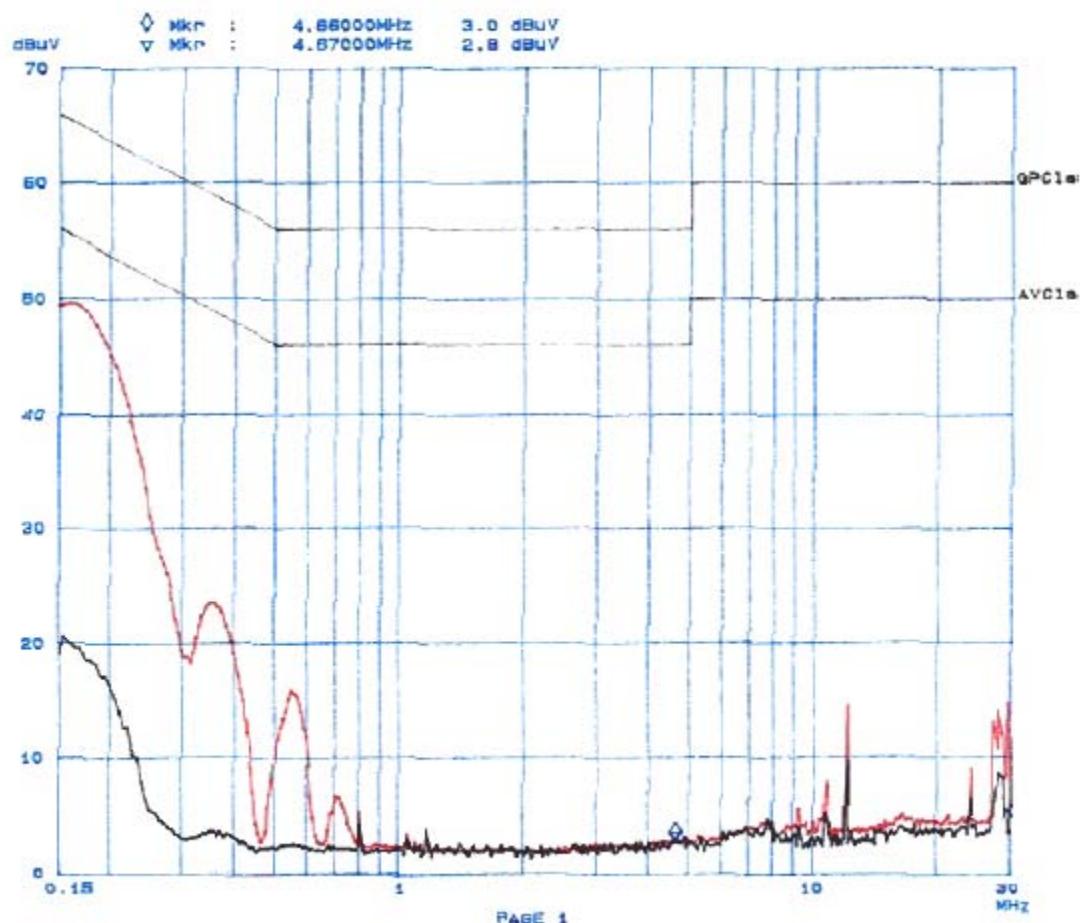
-17.3 dB at 0.150 MHz in the **Neutral** conductor

Conducted Emissions Test Data

LINE CONDUCTED EMISSIONS				FCC CLASS B	
Frequency MHz	Amplitude dB μ V	Detector Qp/Ave/Peak	Phase Line/Neutral	Limit dB μ V	Margin dB
0.150	48.7	Qp	Neutral	66	-17.3
0.150	41.2	Qp	Line	66	-24.8
0.150	19.4	Ave	Neutral	56	-36.6
12.300	9.7	Ave	Neutral	50	-40.3
4.930	2.0	Ave	Line	46	-44.0
0.150	11.9	Ave	Line	56	-44.1
12.300	15.2	Qp	Neutral	60	-44.8
19.100	3.8	Ave	Line	50	-46.2
4.670	2.8	Ave	Neutral	50	-47.2
19.100	7.2	Qp	Line	60	-52.8
4.900	2.3	Qp	Line	56	-53.7
4.660	3.0	Qp	Neutral	60	-57.0

Plot of Conducted Emissions Test Data

Plot(s) of Conducted Emissions Test Data is presented in the following page as reference.

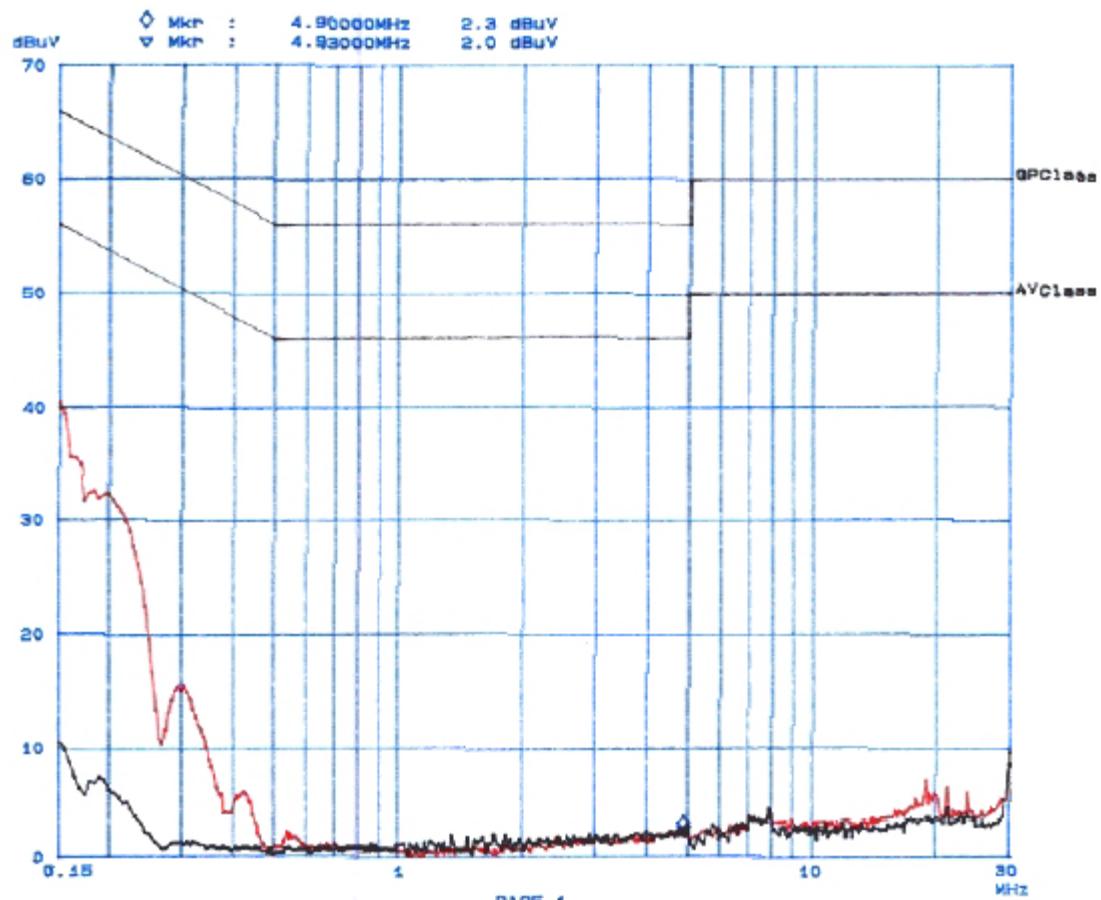

Bay Area Compliance Laboratory Corp
Class B

01. Nov 04 13:03

EUT: DM1006
Manuf: WAXESS
Op Cond: Normal
Operator: Ming
Comment: N

Scan Settings (3 Ranges)

Frequencies			Receiver Settings				
Start	Stop	Step	IF BW	Detector	M-Time	Atten	Preamp
150K	1M	5K	9K	QP+AV	20ms	15dBBLN	OFF
1M	5M	10K	9K	QP+AV	1ms	15dBBLN	OFF
5M	30M	100K	9K	QP+AV	1ms	15dBBLN	OFF


Bay Area Compliance Laboratory Corp
Class B

01. Nov 04 11:23

EUT: DM100G
Manuf: WAXESS
Op Cond: Normal
Operator: Ming
Comment: L

Scan Settings (3 Ranges)

Frequencies			Receiver Settings					
Start	Stop	Step	IF BW	Detector	M-Time	Atten	Preamp	
180K	1M	8K	8K	QP+AV	20ms	15dBBLN	OFF	
1M	5M	10K	8K	QP+AV	1ms	15dBBLN	OFF	
5M	30M	100K	8K	QP+AV	1ms	15dBBLN	OFF	

§15.205 & §15.209 - RADIATED EMISSION

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at BACL is ± 4.0 dB.

Test Setup

The radiated emission tests were performed in the open area 3-meter test site, using the setup in accordance with ANSI C63.4-2001. The specification used was the FCC 15 Subpart C limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

The adapter was connected with 120Vac/60Hz power source.

Spectrum Analyzer Setup

According to FCC Rules, 47 CFR §15.33 (a) (1), the system was tested to 25GHz.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

<u>Frequency Range</u>	<u>RBW</u>	<u>Video B/W</u>
Below 30MHz	10kHz	10kHz
30 – 1000MHz	100kHz	100kHz
Above 1000MHz	1MHz	1MHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Due Date
HP	Amplifier, Pre, microwave	8449B	3147A00400	2004-03-14
HP	Amplifier, Pre	8447E	1937A01057	2004-08-04
HP	Analyzer, Spectrum	8565EC	3946A00131	2004-08-06
ETS	Antenna, Biconical	3110B	9603-2315	2004-01-11
A.R.A.	Antenna, Horn, DRG	DRG-118/A	1132	2004-09-30
A. H. Systems	Antenna, Horn, DRG	SAS-200/571	2455-261	2004-08-01
ETS	Antenna, logperiodic	3148	0004-1155	2004-10-11

* **Statement of Traceability:** BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

Environmental Conditions

Temperature:	23° C
Relative Humidity:	35%
ATM Pressure:	1019 mbar

The testing was performed by Ming Jin on 2004-11-09.

Test Procedure

For the radiated emissions test, both the laptop and all peripheral power cords were connected to the AC floor outlet since the power supply used in the laptop did not provide an accessory power outlet.

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations.

All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dB of specification limits), and are distinguished with a "Qp" in the data table.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

$$\text{Corr. Ampl.} = \text{Indicated Reading} + \text{Antenna Factor} + \text{Cable Factor} - \text{Amplifier Gain}$$

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Corr. Ampl.} - \text{Class B Limit}$$

Summary of Test Results

According to the recorded data in following table, for base, the EUT measures within the measurement uncertainty, and had the worst margin of:

Base:

- 1.1 dB at 7203.17 MHz** in the **Vertical** polarization, Low Channel.
- 1.3 dB at 7324.99 MHz** in the **Vertical** polarization, Mid Channel.
- 1.4 dB at 7446.81 MHz** in the **Vertical** polarization, High Channel.

According to the recorded data in following table, for Handset, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.207, and 15.247, and had the worst margin of:

Base, Radiated Emission Test Data @ 3 Meter (CDMA mode operating simultaneously)

Frequency MHz	Indicated		Antenna Height Meter	Antenna		Correction Factor			FCC 15 Subpart C		
	Ampl. dB μ V/m	Direction Degree		Polar H/V	Antenna dB	Cable Loss dB	Amp. dB	Corr. Ampl. dB μ V/m	Limit dB μ V/m	Margin dB	Comments
Low Channel											
2401.06	122.5	0	1.6	v	28.1	2.0	35.5	117.1			Fund/Peak
2401.06	115.2	90	1.5	h	28.1	2.0	35.5	109.8			Fund/Peak
2401.06	94.5	0	1.8	v	28.1	2.0	35.5	89.1			Fund/Ave.
2401.06	87.6	90	1.5	h	28.1	2.0	35.5	82.2			Fund/Ave.
7203.17	69.9	45	1.5	v	34.1	3.4	34.5	72.9	74	-1.1	Peak
7203.17	49.8	45	1.5	v	34.1	3.4	34.5	52.8	54	-1.2	Ave.
4802.11	51.1	0	1.6	v	32.5	3.1	34.6	52.1	54	-1.9	Ave.
4802.11	68.9	110	1.6	v	32.5	3.1	34.6	69.9	74	-4.1	Peak
7203.17	46.5	0	1.5	h	34.1	3.4	34.5	49.5	54	-4.5	Ave.
7203.17	63.7	0	1.5	h	34.1	3.4	34.5	66.7	74	-7.3	Peak
4802.11	43.9	15	1.5	h	32.5	3.1	34.6	44.9	54	-9.1	Ave.
2390.00	47.5	180	1.6	v	28.1	2.0	35.5	42.1	54	-11.9	Ave.
4802.11	60.5	15	1.5	h	32.5	3.1	34.6	61.5	74	-12.5	Peak
2390.00	41.2	180	1.5	h	28.1	2.0	35.5	35.8	54	-18.2	Ave.
2390.00	56.9	180	1.6	v	28.1	2.0	35.5	51.5	74	-22.5	Peak
2390.00	49.8	180	1.5	h	28.1	2.0	35.5	44.4	74	-29.6	Peak
Middle Channel											
2441.66	120.7	45	1.6	v	28.1	2.0	35.5	115.3			Fund/Peak
2441.66	114.5	270	1.6	h	28.1	2.0	35.5	109.1			Fund/Peak
2441.66	93.1	45	1.6	v	28.1	2.0	35.5	87.7			Fund/Ave.
2441.66	87.4	270	1.6	h	28.1	2.0	35.5	82.0			Fund/Ave.
7324.99	69.7	90	1.5	v	34.1	3.4	34.5	72.7	74	-1.3	Peak
7324.99	49.7	310	1.6	v	34.1	3.4	34.5	52.7	54	-1.3	Ave.
7324.99	63.5	45	1.8	h	34.1	3.4	34.5	66.5	74	-7.5	Peak
7324.99	43.1	45	1.8	h	34.1	3.4	34.5	46.1	54	-7.9	Ave.
4883.33	39.6	180	1.6	v	32.5	3.1	34.6	40.6	54	-13.4	Ave.
4883.33	34.5	310	1.5	h	32.5	3.1	34.6	35.5	54	-18.5	Ave.
4883.33	51.1	180	1.6	v	32.5	3.1	34.6	52.1	74	-21.9	Peak
4883.33	46.7	310	1.5	h	32.5	3.1	34.6	47.7	74	-26.3	Peak

Frequency MHz	Indicated Ampl. dB μ V/m		Direction Degree	Antenna Height Meter	Antenna Polar H/V		Correction Factor			FCC 15 Subpart C		
	Ampl. dB μ V/m	Direction Degree			Antenna dB	Cable Loss dB	Amp. dB	Corr. Ampl. dB μ V/m	Limit dB μ V/m	Margin dB	Comments	
High Channel												
2482.27	121.7	0	1.5	v	28.1	2.0	35.5	116.3				Fund/Peak
2482.27	111.9	15	1.5	h	28.1	2.0	35.5	106.5				Fund/Peak
2482.27	94.9	0	1.5	v	28.1	2.0	35.5	89.5				Fund/Ave.
2482.27	86.1	15	1.5	h	28.1	2.0	35.5	80.7				Fund/Ave.
7446.81	49.6	45	1.2	v	34.1	3.4	34.5	52.6	54	-1.4		Ave.
7446.81	68.6	45	1.2	v	34.1	3.4	34.5	71.6	74	-2.4		Peak
7446.81	46.3	90	1.2	h	34.1	3.4	34.5	49.3	54	-4.7		Ave.
2483.50	52.9	0	1.8	v	28.1	2.0	35.5	47.5	54	-6.5		Ave.
2483.50	51.3	15	1.6	h	28.1	2.0	35.5	45.9	54	-8.1		Ave.
7446.81	61.2	90	1.2	h	34.1	3.4	34.5	64.2	74	-9.8		Peak
4964.54	39.8	90	1.5	v	32.5	3.1	34.6	40.8	54	-13.2		Ave.
2483.50	65.8	0	1.8	v	28.1	2.0	35.5	60.4	74	-13.6		Peak
4964.54	34.7	45	1.2	h	32.5	3.1	34.6	35.7	54	-18.3		Ave.
2483.50	60.2	15	1.6	h	28.1	2.0	35.5	54.8	74	-19.2		Peak
4964.54	51.2	90	1.5	v	32.5	3.1	34.6	52.2	74	-21.8		Peak
4964.54	46.9	45	1.2	h	32.5	3.1	34.6	47.9	74	-26.1		Peak

FUND: Fundamental

AVG: Average

Unintentional Emission

Frequency MHz	Indicated Ampl. dB μ V/m		Direction Degree	Antenna Height Meter	Antenna Polar H/V		Correction Factor			FCC 15 Subpart C	
	Ampl. dB μ V/m	Direction Degree			Antenna dB	Cable Loss dB	Amp. dB	Corr. Ampl. dB μ V/m	Limit dB μ V/m	Margin dB	
36.79	45.1	210	1.6	h	11.5	2.2	28.9	29.9	40	-10.1	
347.15	48.5	60	1.5	v	11.8	2.2	28.4	34.1	46	-11.9	
987.39	47.7	180	1.6	h	11.8	2.2	28.4	33.3	46	-12.7	
420.03	41.7	290	1.5	v	11.5	2.2	28.9	26.5	46	-19.5	

§15.247 (a) (1) - HOPPING CHANNEL SEPARATION

Standard Applicable

According to §15.247(a)(1), frequency hopping system shall have, hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies.

Measurement Procedure

1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
2. Position the EUT on a bench without connection to measurement instrument Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
3. By using the Max-Hold function record the separation of two adjacent channels.
4. Measure the frequency difference of these two adjacent channels by SA MARK function, and then plot the result on SA screen.
5. Repeat above procedures until all frequencies measured were complete.

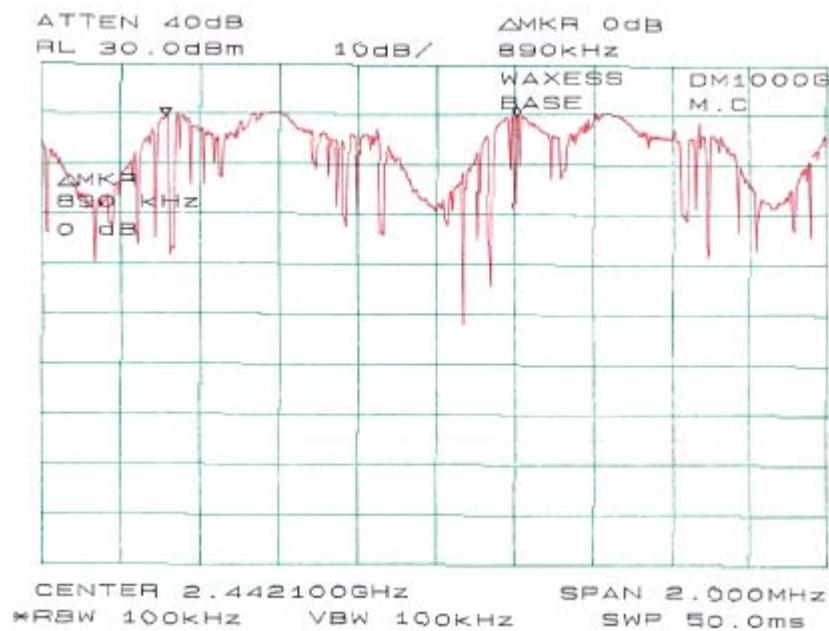
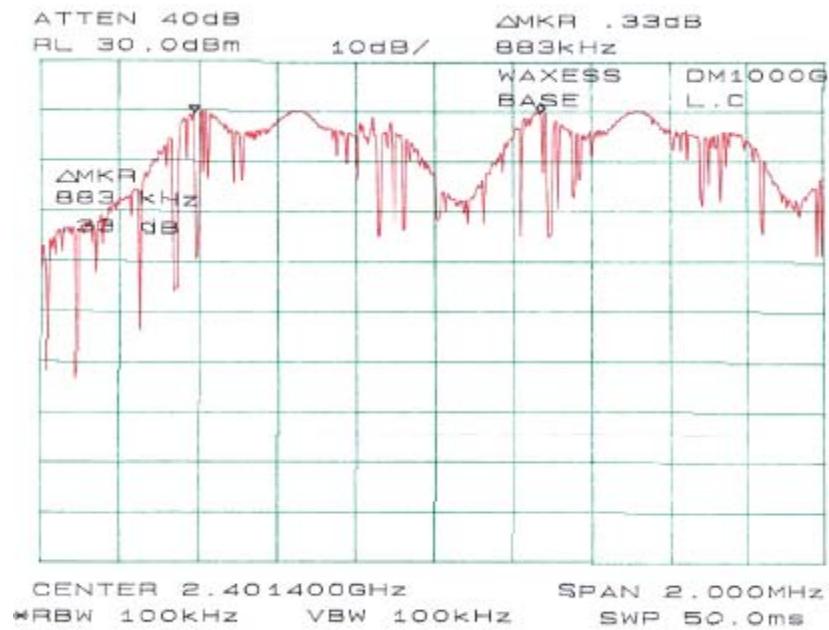
Test Equipment

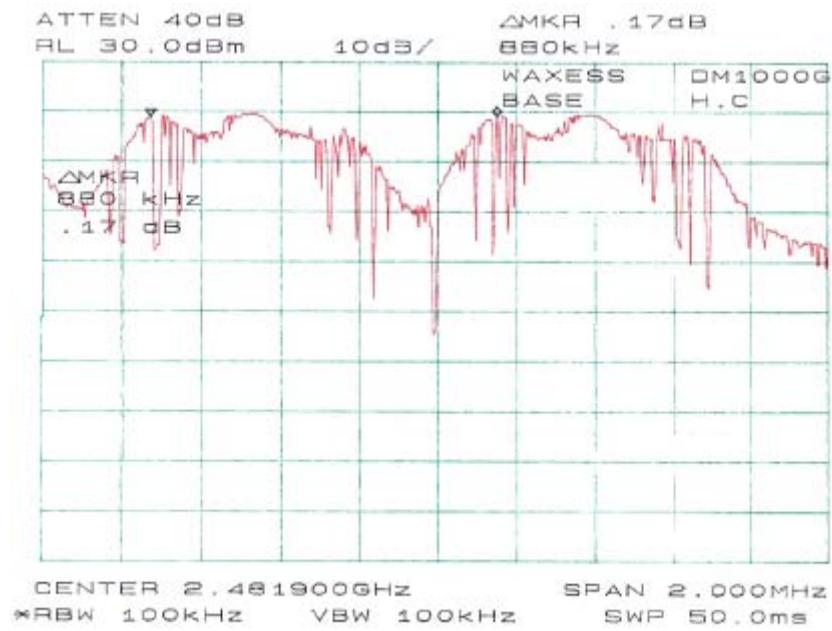
Manufacturer	Model No.	Description	Calibration Date
Agilent	8564E	Spectrum Analyzer	2004-10-04

* **Statement of Traceability:** **BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

Environmental Conditions

Temperature:	21° C
Relative Humidity:	40%
ATM Pressure:	1019 mbar



The testing was performed by Ming Jin on 2004-10-27.


Measurement Results

Unit	Channel	Measurement (KHz)	Result
Base	Low	883	Compliant
	Middle	890	Compliant
	High	880	Compliant

Plots of Hopping Channel Separation

Please refer to the following plots.

§15.247 (a) (1) - CHANNEL BANDWIDTH

Standard Applicable

According to §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Measurement Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
4. Repeat above procedures until all frequencies measured were complete.

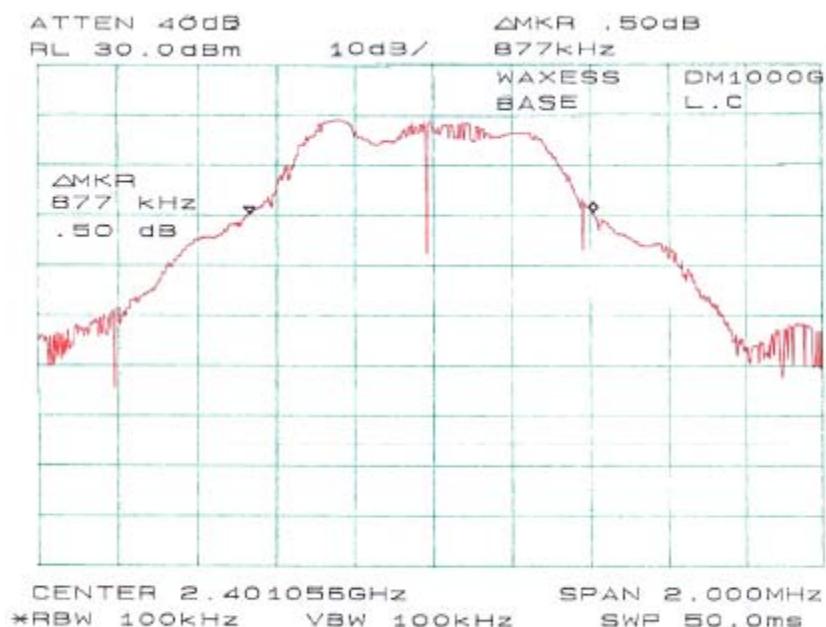
Test Equipment

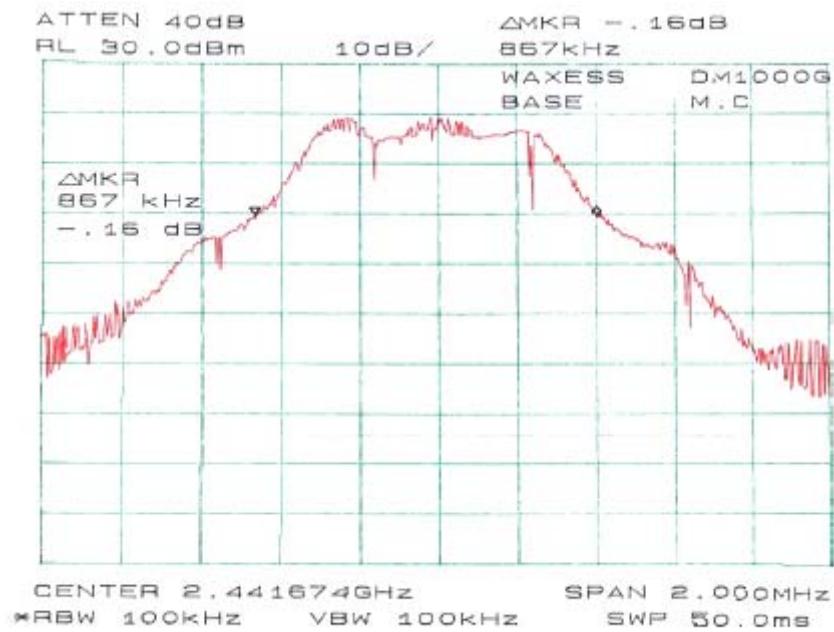
Manufacturer	Model No.	Serial No.	Calibration Date
Agilent	8564E	Spectrum Analyzer	2004-10-04

* **Statement of Traceability:** **BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

Environmental Conditions

Temperature:	21° C
Relative Humidity:	40%
ATM Pressure:	1019 mbar


The testing was performed by Ming Jin on 2004-10-27.



Measurement Result

Unit	Frequency	Measurement (kHz)	Result
Base	Low	877	Compliant
	Middle	867	Compliant
	High	873	Compliant

Plot of Channel Bandwidth

Please see the following plots

§15.247 (a) (1) (iii) - NUMBER OF HOPPING FREQUENCY USED

Standard Applicable

According to §15.247(a)(1)(iii), frequency hopping systems operating in the 2400-2483.5Mhz band shall use at least 75 hopping frequencies.

Measurement Procedure

1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
2. Position the EUT on the bench without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
3. Set the SA on Max-Hold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
4. Set the SA on View mode and then plot the result on SA screen.
5. Repeat above procedures until all frequencies measured were complete.

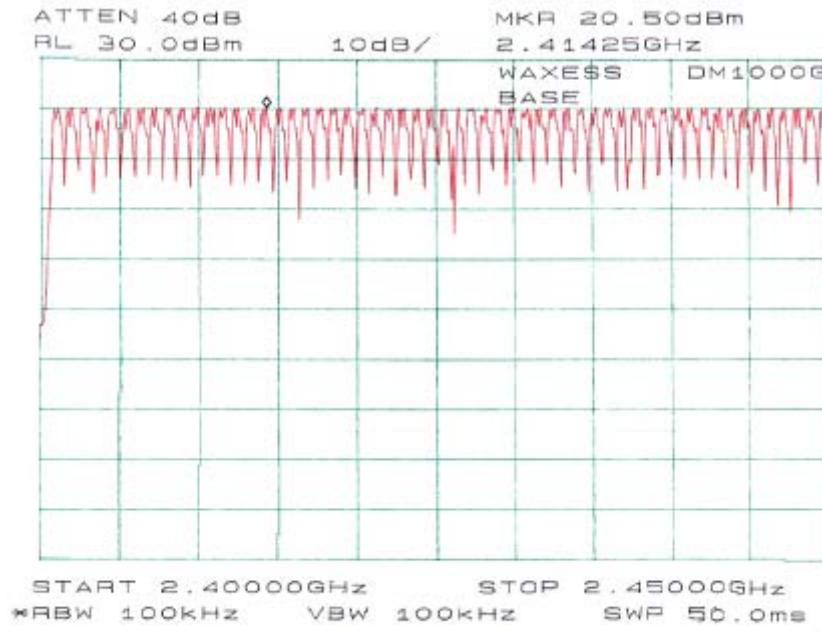
Test Equipment

Manufacturer	Model No.	Serial No.	Calibration Date
Agilent	8564E	Spectrum Analyzer	2004-10-04

* **Statement of Traceability:** **BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

Environmental Conditions

Temperature:	21° C
Relative Humidity:	40%
ATM Pressure:	1019 mbar


The testing was performed by Ming Jin on 2004-10-27.

Measurement Results

UNIT	Measurement	Standard	Result
Base	95	75	Compliant

Plots of Number of Hopping Frequency

Please refer to the following plots.

§15.247 9 (a) (1) (iii) - DWELL TIME

Standard Applicable

According to §15.247 (a)(1)(iii), the average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Measurement Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
3. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
4. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
5. Repeat above procedures until all frequencies measured were complete.

Test Equipment

Manufacturer	Model No.	Serial No.	Calibration Date
Agilent	8564E	Spectrum Analyzer	2004-10-04

* **Statement of Traceability:** BACL Corp. certifies that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

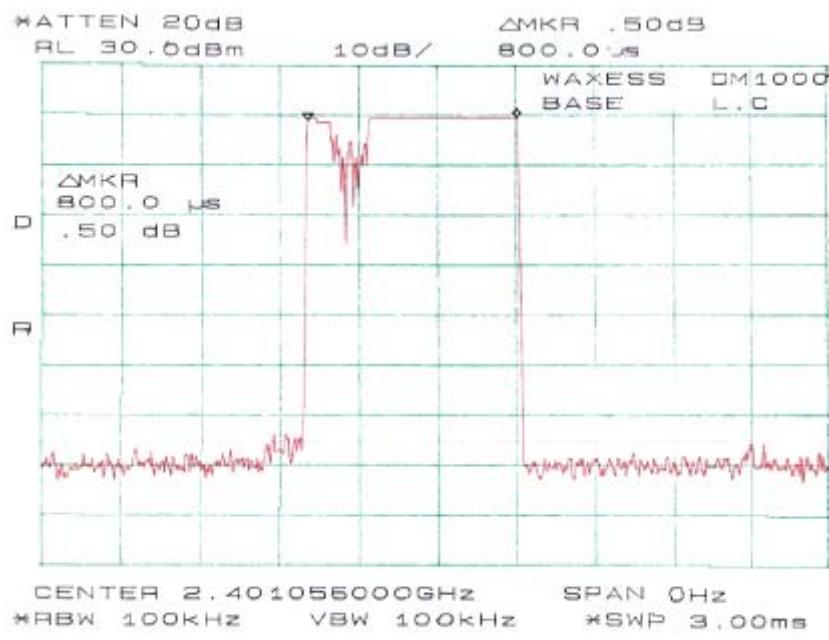
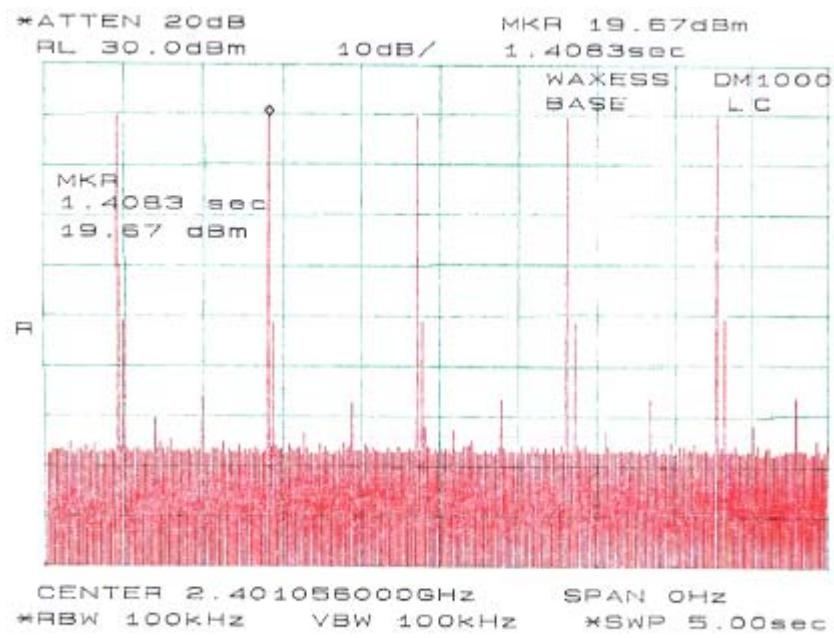
Environmental Conditions

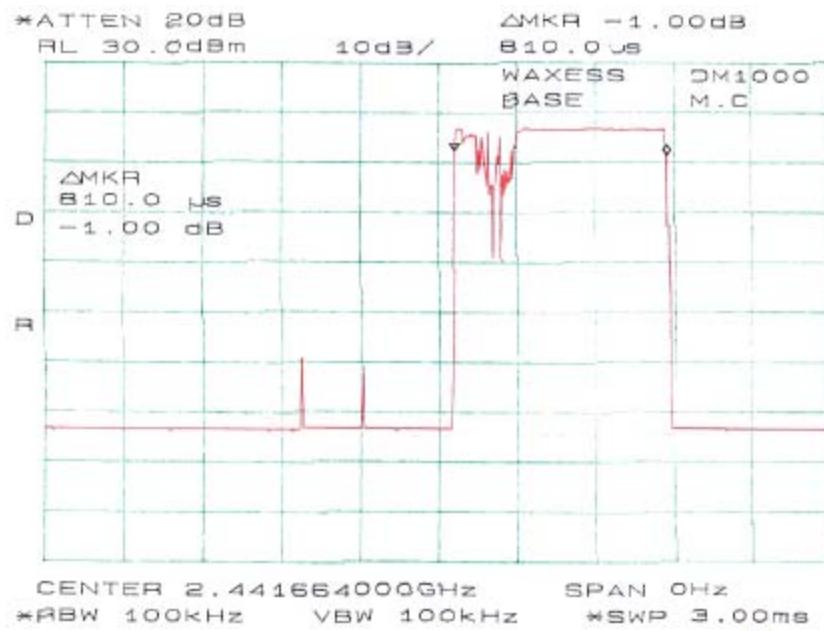
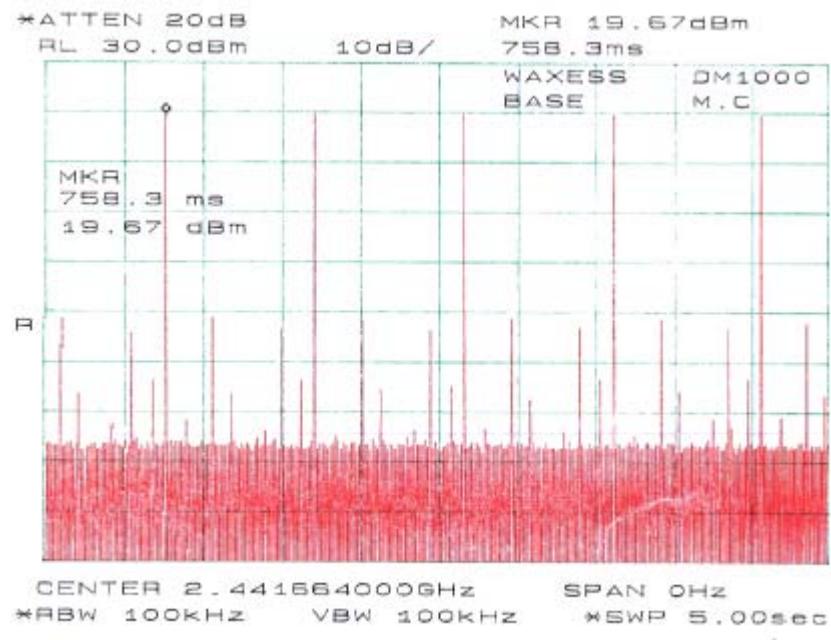
Temperature:	21° C
Relative Humidity:	40%
ATM Pressure:	1019 mbar

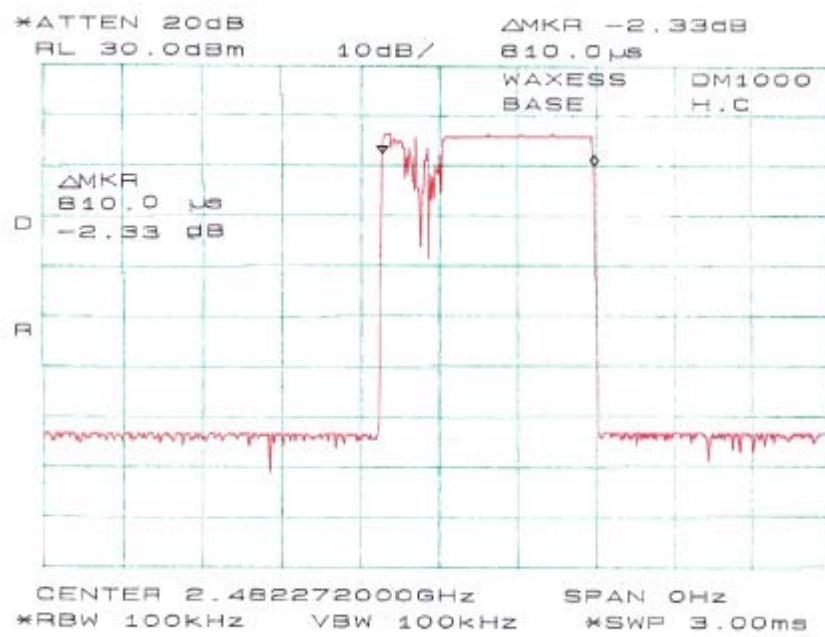
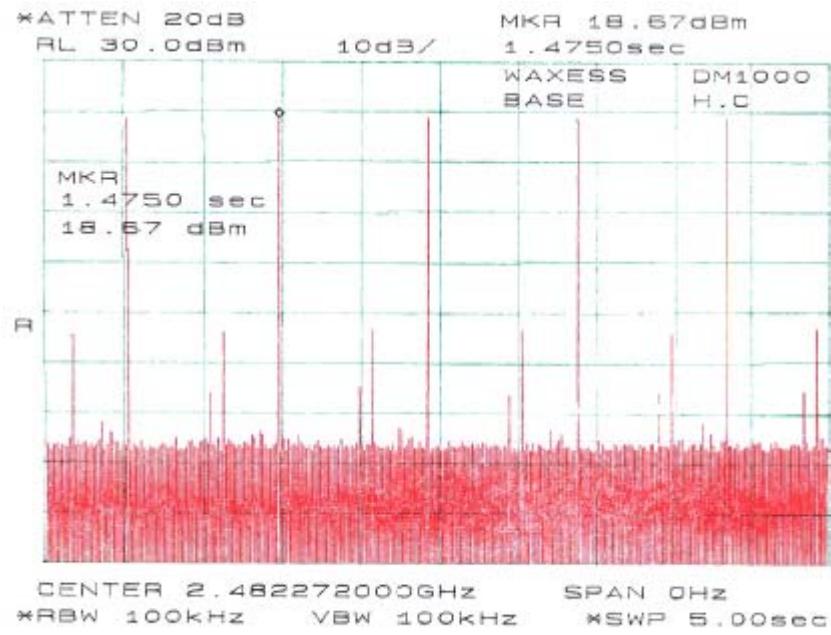
The testing was performed by Ming Jin on 2004-10-27.

Measurement Results

Base:



Low Channel: $5 \times 0.800(\text{ms}) \times [(95 \times 0.4) / 5 (\text{s})] = 0.0304 \text{ s} < 0.4 \text{ s}$



Middle Channel: $5 \times 0.810(\text{ms}) \times [(95 \times 0.4) / 5 (\text{s})] = 0.0308 \text{ s} < 0.4 \text{ s}$



High Channel: $5 \times 0.810(\text{ms}) \times [(95 \times 0.4) / 5 (\text{s})] = 0.0308 \text{ s} < 0.4 \text{ s}$

Plots of Dwell Time

Please refer the following plots.

§15.247 (b) (1) - MAXIMUM PEAK OUTPUT POWER

Standard Applicable

According to §15.247(b) (1), for frequency hopping systems in the 2400-2483.5MHz band employing at least 75 hopping channels, and all direct sequence systems, the maximum peak output power of the transmitter shall not exceed 1 Watt.

Measurement Procedure

1. Place the EUT on the turntable and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

Test Equipment

Manufacturer	Model No.	Serial No.	Calibration Date
Agilent	8564E	Spectrum Analyzer	2004-10-04

* **Statement of Traceability:** **BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

Environmental Conditions

Temperature:	21° C
Relative Humidity:	40%
ATM Pressure:	1019 mbar

The testing was performed by Ming Jin on 2004-10-27.

Measurement Result

Unit	Channel	Frequency	Output Power in dBm	Output Power in mW	Standard	Result
Base	Low	2401.056	22.8	190.5	≤ 1W	Compliant
	Middle	2441.664	23.1	204.2	≤ 1W	Compliant
	High	2482.272	22.5	177.8	≤ 1W	Compliant

§15.247 (c) - 100 KHZ BANDWIDTH OF BAND EDGES

Standard Applicable

According to §15.247(c), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required.

Measurement Procedure

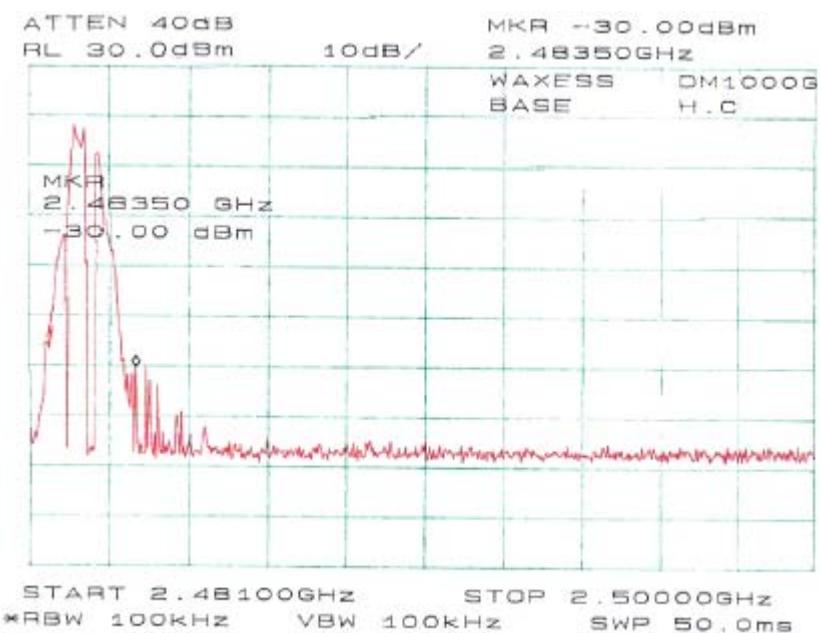
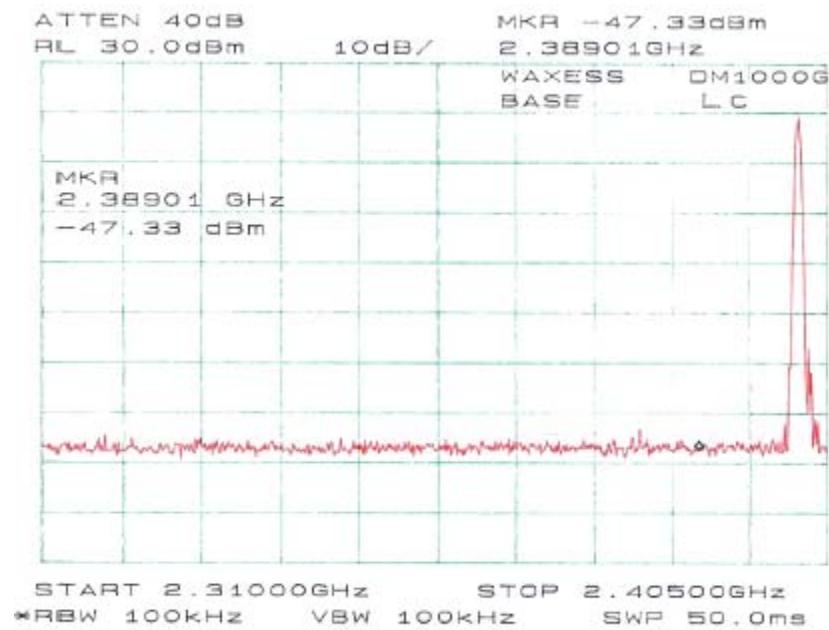
1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
3. Set both RBW and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100kHz bandwidth from band edge.
4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
5. Repeat above procedures until all measured frequencies were complete.

Test Equipment

Manufacturer	Model No.	Serial No.	Calibration Date
Agilent	8564E	Spectrum Analyzer	2004-10-04

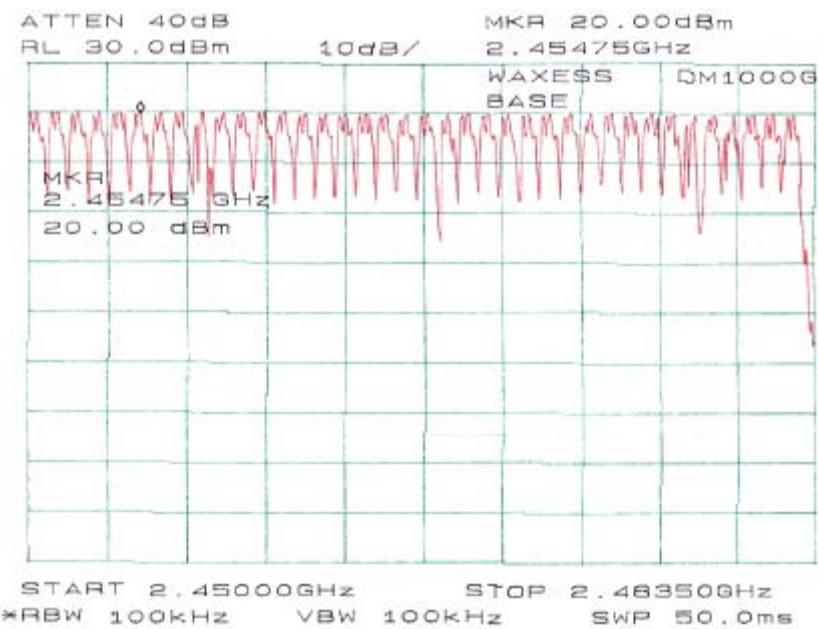
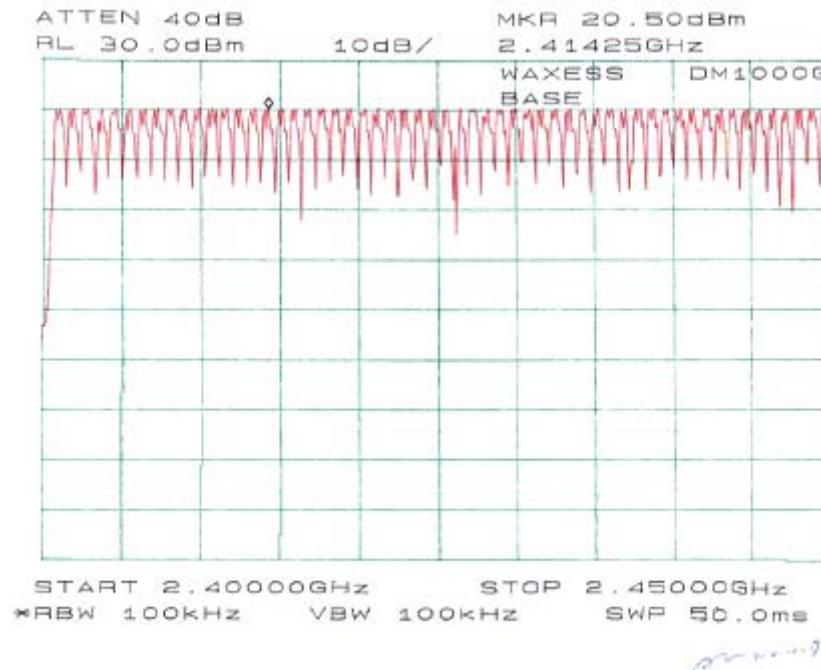
* **Statement of Traceability:** BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

Environmental Conditions



Temperature:	21° C
Relative Humidity:	40%
ATM Pressure:	1019 mbar

The testing was performed by Ming Jin on 2004-10-27.

Plots of 100kHz Bandwidth of Band Edge



Please refer the following plots.

1. Hopping is stopped

2. Hopping is enabled

Please refer to the following plots.

§2.1051 - SPURIOUS EMISSION AT ANTENNA PORT

Standard Applicable

According to §15.209 (f) and §15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in §15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in §15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit.

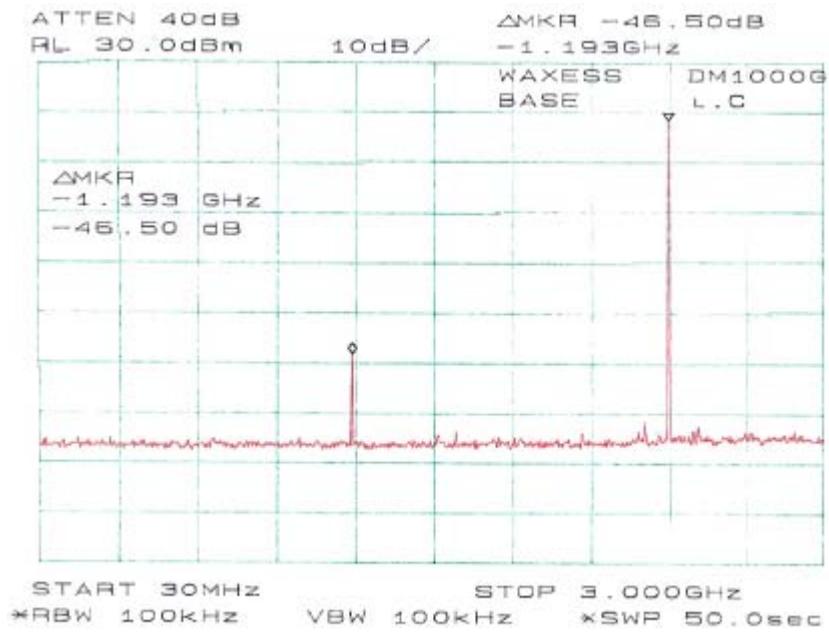
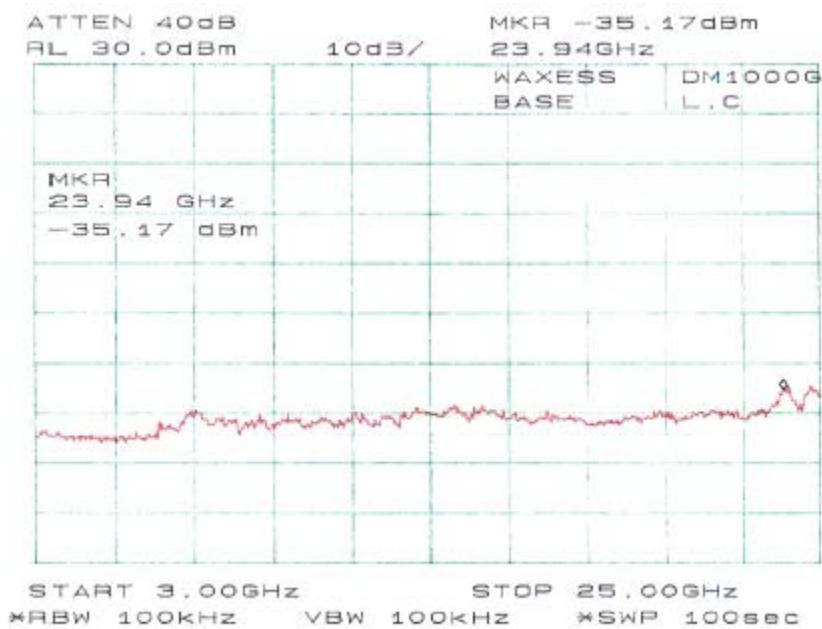
Measurement Procedure

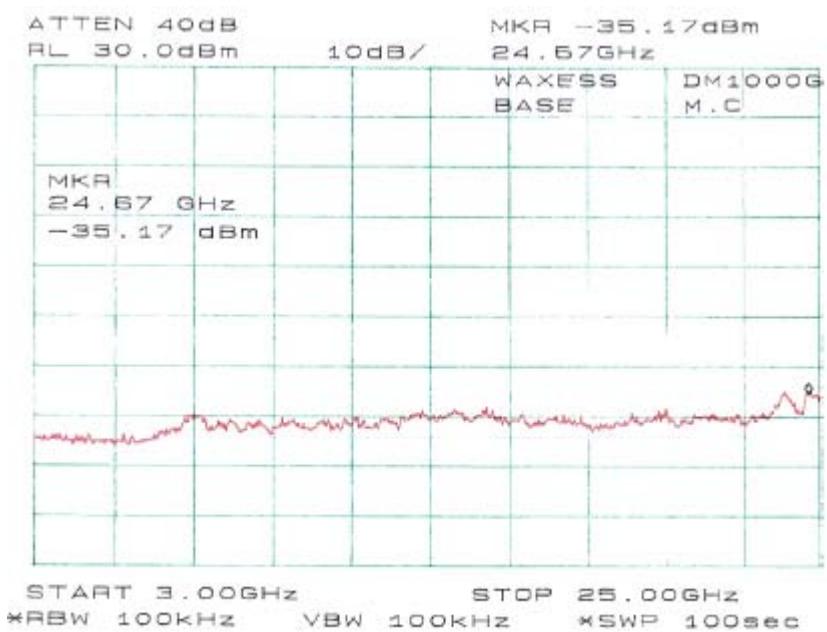
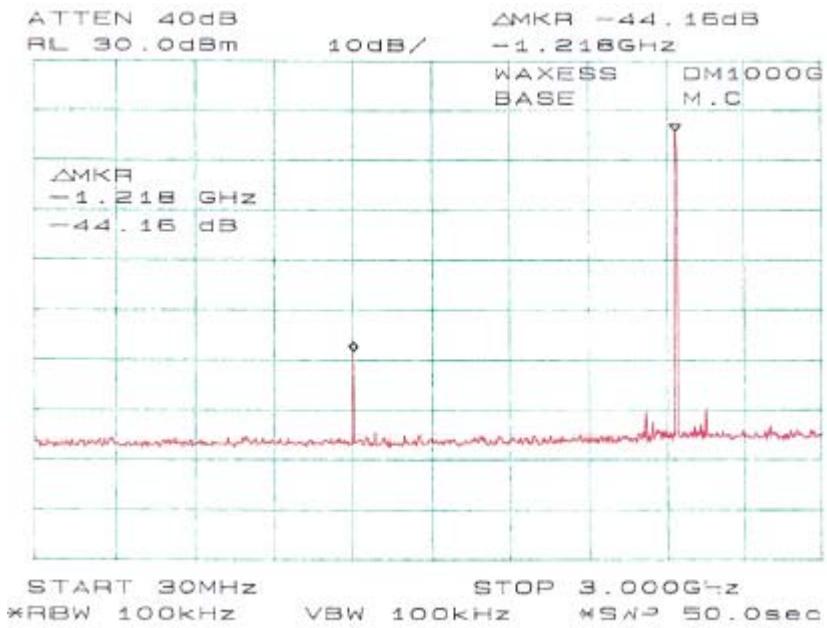
1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
2. Position the EUT on a bench without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
3. Set the SA on Max-Hold Mode, and then keep the EUT in transmitting mode. Record all the signals from each channel until each one has been recorded.
4. Set the SA on View mode and then plot the result on SA screen.
5. Repeat above procedures until all frequencies measured were complete.

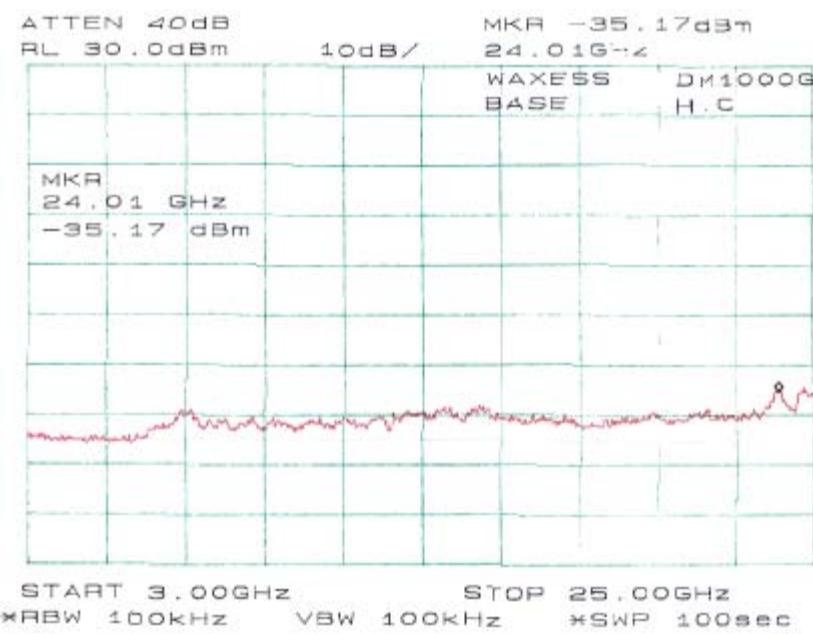
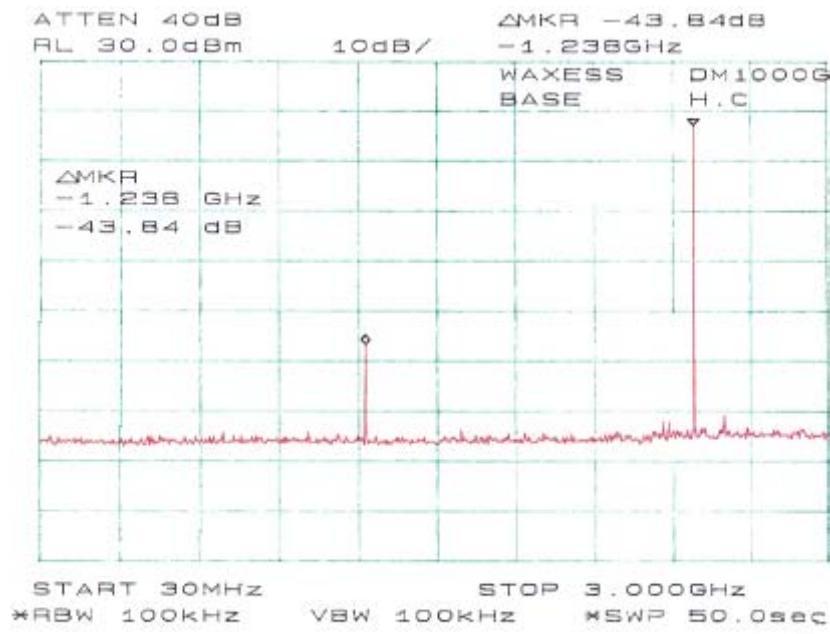
Test Equipment

Manufacturer	Model No.	Serial No.	Calibration Date
Agilent	8564E	Spectrum Analyzer	2004-10-04

* **Statement of Traceability:** BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.



Environmental Conditions



Temperature:	21° C
Relative Humidity:	40%
ATM Pressure:	1019 mbar



The testing was performed by Ming Jin on 2004-10-27.

Measurement Results

Please refer to the following plots.

*2014-12-17**2014-12-17*

SUMMARY OF TEST RESULTS FOR PART 22 & 24

FCC RULE	DESCRIPTION OF TEST	RESULT
§ 2.1047	Modulation Characteristics	Compliant
§ 2.1053	Spurious Radiated Emission	Compliant
§1.1307(b)(1), §2.1091	RF Exposure	Compliant
§ 15.107	Conducted Emissions	Compliant
§ 2.1046, § 22.912 (d) § 24.232	RF Output Power	Compliant
§ 2.1046, § 22.913 (a) § 24.232	Conducted Output Power	Compliant
§ 2.1049 § 22.917 § 22.905 § 24.238	Out of Band Emission, Occupied Bandwidth	Compliant
§ 2.1051, § 22.917 § 24.238(a)	Spurious Emissions at Antenna Terminals	Compliant
§ 2.1055 (a) § 2.1055 (d) § 22.355 § 24.235	Frequency stability vs. temperature Frequency stability vs. voltage	Compliant
§ 22.917 §24.238	Band Edge	Compliant

§1.1307(b)(1) & §2.1091 - RF EXPOSURE

According to §15.247(b)(4) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to §1.1310 and §2.1093 RF exposure is calculated.

Limits for Maximum Permissive Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minute)
Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-15000	/	/	1.0	30

f = frequency in MHz

* = Plane-wave equivalent power density

MPE Prediction

Predication of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

850MHz:

Maximum peak output power at antenna input terminal: 26 (dBm)

Maximum peak output power at antenna input terminal: 398.1 (mW)

Predication distance: 20 (cm)

Predication frequency: 850 (MHz)

Antenna Gain (typical): 0 (dBi)

Maximum antenna gain: 1 (numeric)

Power density at predication frequency at 20 cm: 0.079 (mW/cm²)

MPE limit for uncontrolled exposure at prediction frequency: 0.57 (mW/cm²)

1900MHz:

Maximum peak output power at antenna input terminal: 26 (dBm)

Maximum peak output power at antenna input terminal: 398.1 (mW)

Predication distance: 20 (cm)

Predication frequency: 1900 (MHz)

Antenna Gain (typical): 0 (dBi)

Maximum antenna gain: 1 (numeric)

Power density at predication frequency at 20 cm: 0.079 (mW/cm²)

MPE limit for uncontrolled exposure at prediction frequency: 1 (mW/cm²)

Test Result

Base Unit at 850MHz and 1900MHz band: The predicted power density level at 20 cm is 0.079 mW/cm². This is below the uncontrolled exposure limit of 0.57mW/cm² at 850MHz and 1mW/cm² at 1900 MHz.

§2.1047 - MODULATION CHARACTERISTIC

Applicable Standard

Requirement: FCC § 2.1047.

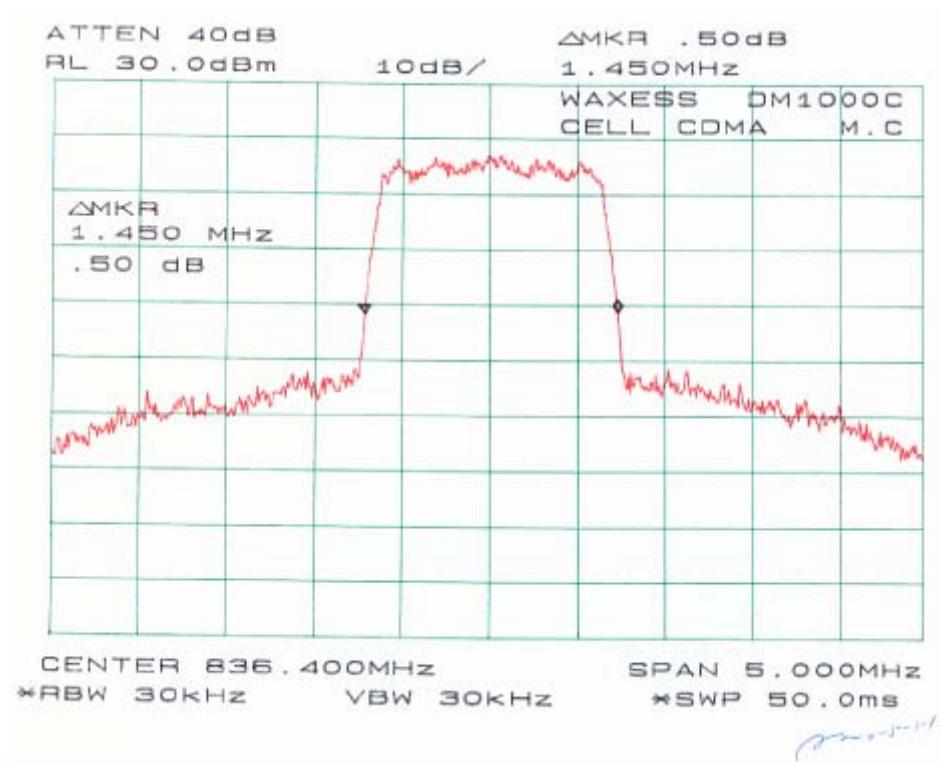
Test Procedure

CDMA digital mode is used by EUT.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date
HP	Spectrum Analyzer	HP8564E	3943A01781	2004-10-04
HP	Plotter	HP7470A	2541A49659	Not Required

* **Statement of Traceability:** BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.


Environmental Conditions

Temperature:	21° C
Relative Humidity:	37%
ATM Pressure:	1032 mbar

The testing was performed by Ming Jin on 2005-03-01.

Test Results

Please refer to the hereinafter plots.

§2.1053 - SPURIOUS RADIATED EMISSIONS

Applicable Standard

Requirements: CFR 47, § 2.1053.

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB = $10 \lg (\text{TXpwr in Watts}/0.001)$ – the absolute level

Spurious attenuation limit in dB = $43 + 10 \log_{10} (\text{power out in Watts})$

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date
HP	Spectrum Analyzer	8568B	2601A02165	2004-07-03
HP	Spectrum Analyzer	HP8565EC	3956A00131	2004-08-06
HP	Amplifier	8449B	3147A00400	2004-03-14
HP	Amplifier	8447E	2944A10187	2004-09-23
HP	Quasi-Peak Adapter	85650A	3019A05393	2004-06-13
EMCO	Biconical Antenna	3110B	9309-1165	2004-10-11
EMCO	Log Periodic Antenna	3146	2101	2004-10-11
AH System	Horn Antenna	SAS-200/511	261	2004-08-02
Rohde & Schwarz	Signal Generator	SMIQ03	1084.8004	2004-06-07

* **Statement of Traceability:** BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

Environmental Conditions

Temperature:	21° C
Relative Humidity:	37%
ATM Pressure:	1032 mbar

The testing was performed by Ming Jin on 2005-03-01.

Test Result

FCC Part 22: GSM850

-15.9 dB at 1672.8 MHz

FCC Part 24: PCS1900

-24.9 dB at 3760 MHz

Test Data for GSM 850

Indicated		EUT		Substitution		Generator		Standard	
Frequency MHz	Ampl. dBuV/m	Table	Test Antenna	Frequency MHz	Level dBm	Antenna	Cable	Absolute	FCC
		Angle Degree	Height Meter	Polar H/V		Gain Corrected	Loss dB	Level dBm	Margin dB
Primary Scan 30MHz – 10GHz									
836.4	99.8	270	1.5	v	836.4	20.6	5.6	0.8	25.4
836.4	97.6	0	1.5	h	836.4	18.3	5.6	0.8	23.1
1672.8	39.4	120	1.8	v	1672.8	-34.5	6.8	1.2	-28.9
1672.8	36.5	60	1.6	h	1672.8	-37.4	6.8	1.2	-31.8
2509.2	25.5	230	1.6	v	2509.2	-49.2	7.6	1.5	-43.1
2509.2	25.2	45	1.5	h	2509.2	-49.7	7.6	1.5	-43.6

Test Data for PCS 1900

Indicated		EUT		Substitution		Generator		Standard	
Frequency MHz	Ampl. dBuV/m	Table	Test Antenna	Frequency MHz	Level dBm	Antenna	Cable	Absolute	FCC
		Angle Degree	Height Meter	Polar H/V		Gain Corrected	Loss dB	Level dBm	Margin dB
Primary Scan 30MHz – 20GHz									
1880	98.3	240	1.5	v	1880	18.2	8.1	1.2	25.1
1880	96.1	30	1.6	h	1880	15.9	8.1	1.2	22.8
3760	27.6	180	1.4	v	3760	-45.8	10.3	2.4	-37.9
3760	26.5	90	1.5	h	3760	-47.4	10.3	2.4	-39.5
5640	25.2	0	1.6	v	5640	-48.9	10.5	2.8	-41.2
5640	24.8	320	1.5	h	5640	-49.6	10.5	2.8	-41.9

§2.1046, §22.913(a), & §24.232 – CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §2.1046 and §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

According to FCC §2.1046 and §24.232 (b), peak output power of mobile station is limited to 2 watt.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Test Equipment List and Details

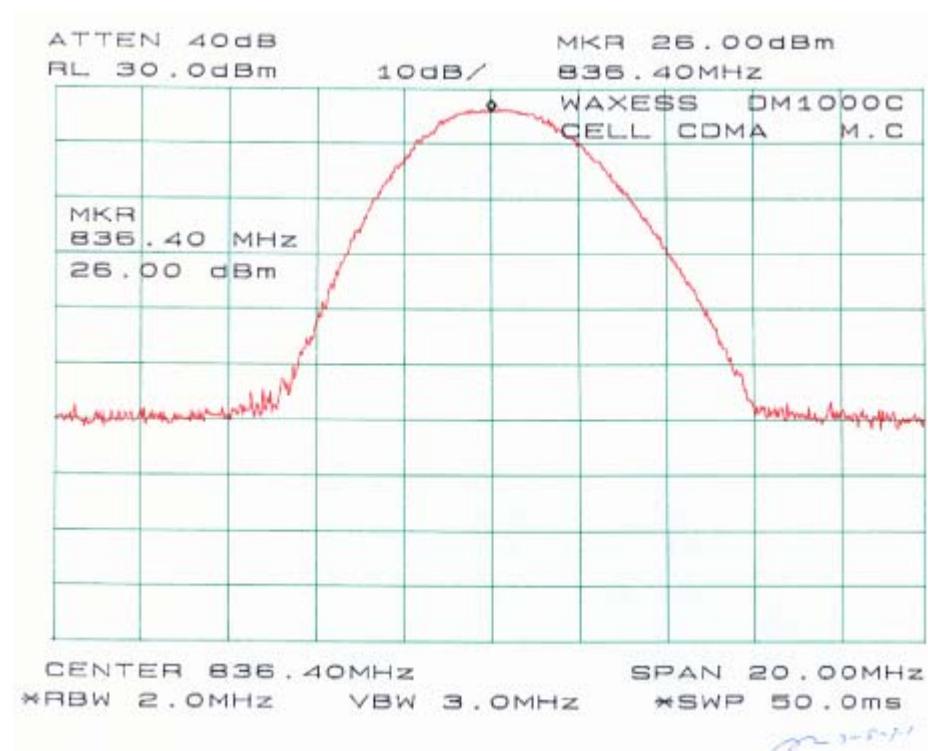
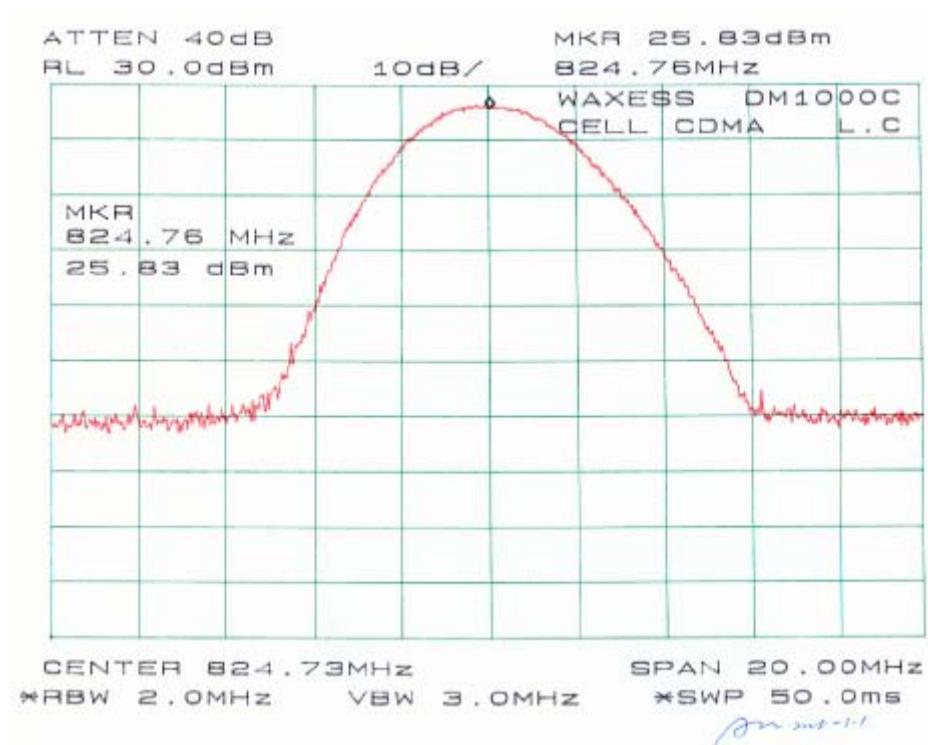
Manufacturer	Description	Model	Serial Number	Cal. Date
HP	Spectrum Analyzer	HP8564E	3943A01781	2004-10-04
HP	Plotter	HP7470A	2541A49659	Not Required
A.H. Systems	Horn Antenna	SAS200	261	2004-05-31
ETS	Logperiodic Antenna	3148	0004-1155	2004-10-11
EMCO	Biconical Antenna	3110B	9603-2315	2004-10-11

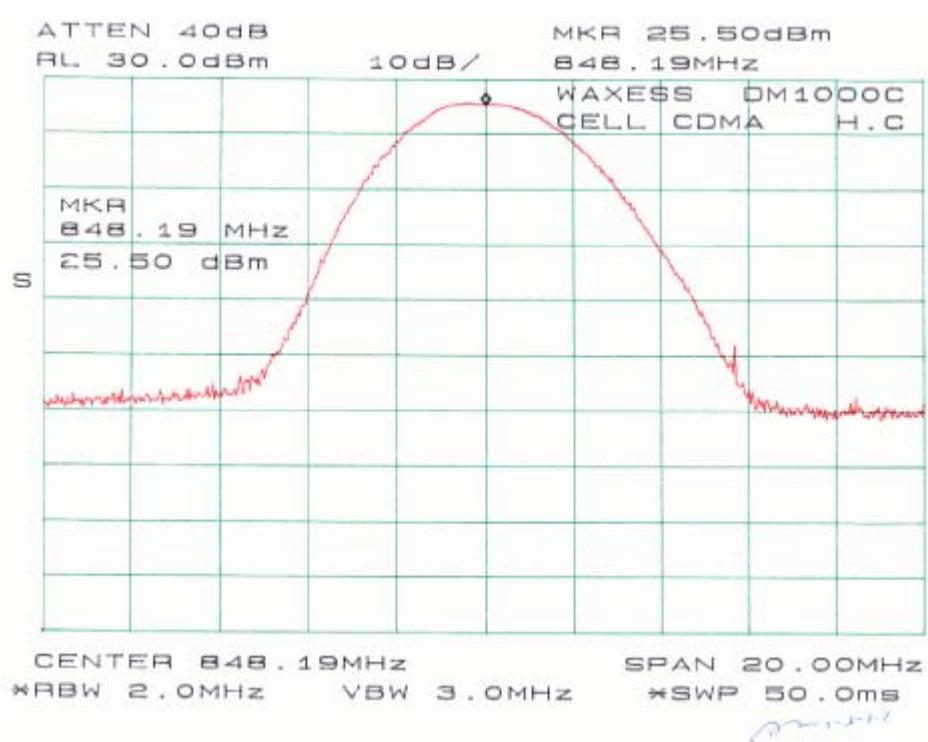
* **Statement of Traceability:** **BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

Environmental Conditions

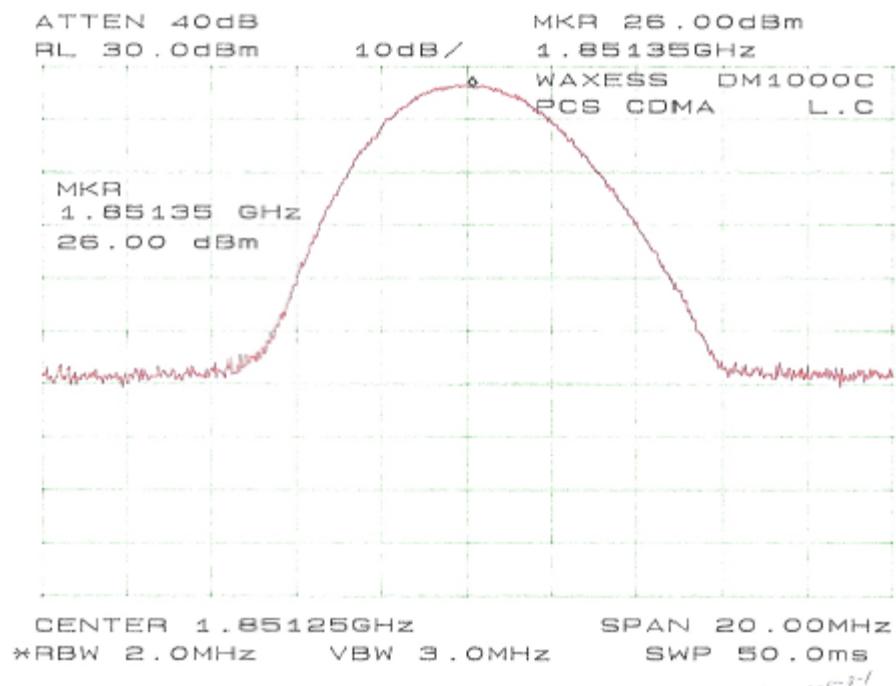
Temperature:	21° C
Relative Humidity:	37%
ATM Pressure:	1032 mbar

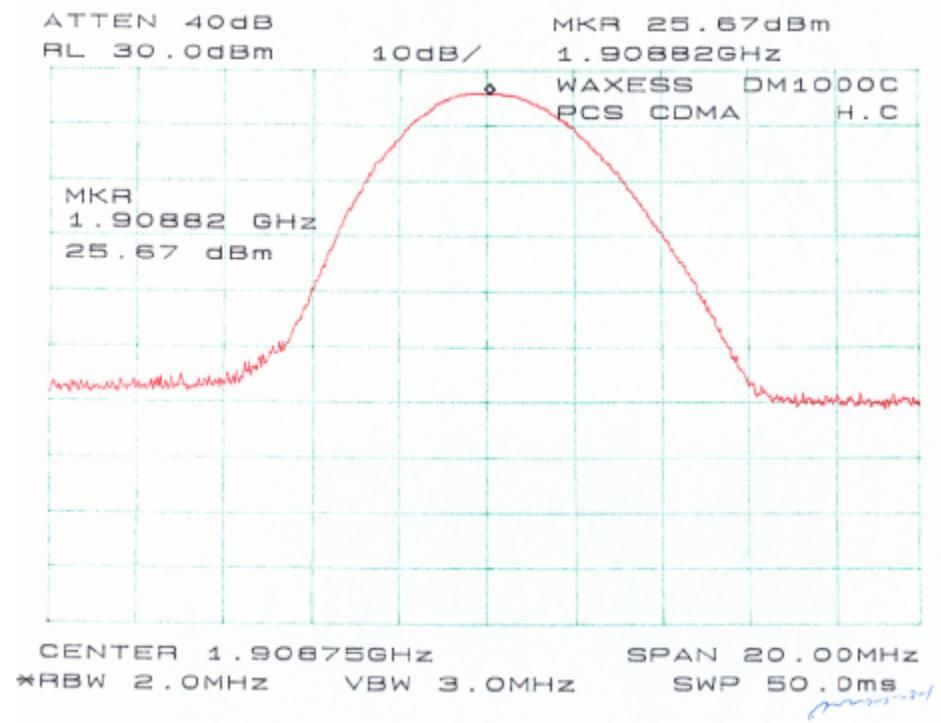
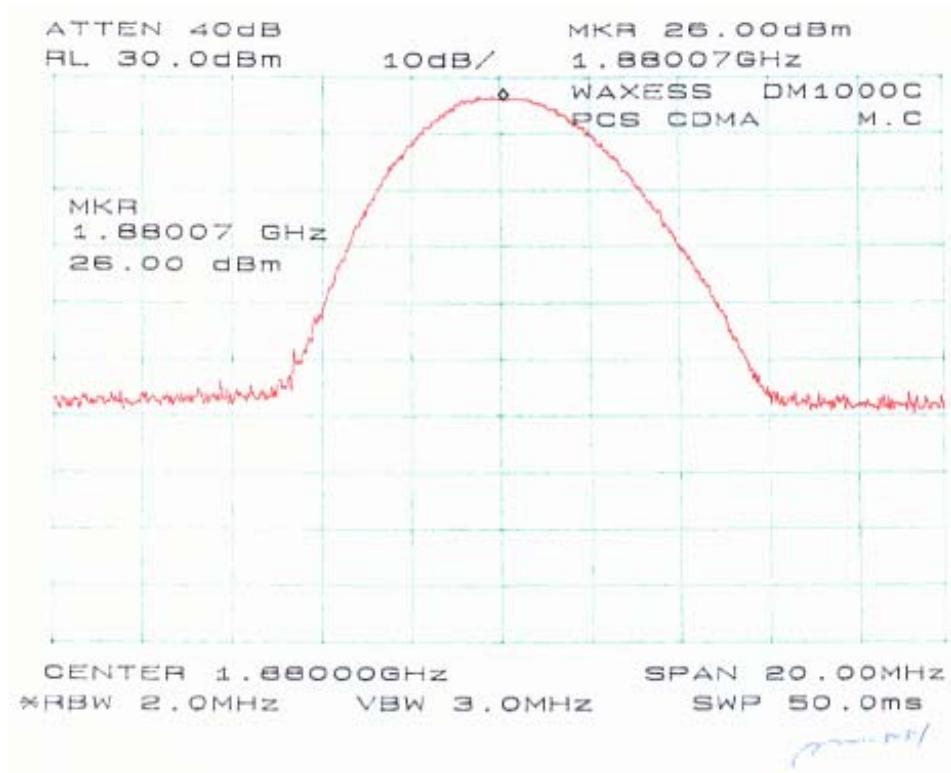
The testing was performed by Ming Jin on 2005-03-01.



Test Results


Part 22:

Channel	Frequency (MHz)	Output Power in dBm	Output Power in W	Limit in W
LOW	824.76	25.83	0.383	7
MIDDLE	836.40	26.00	0.398	7
HIGH	848.19	25.50	0.355	7


Part 24:



Channel	Frequency (MHz)	Output Power in dBm	Output Power in W	Limit in W
LOW	1851.25	26.00	0.398	2
MIDDLE	1880.00	26.00	0.398	2
HIGH	1908.82	25.67	0.369	2

Plots of Conducted Output Power (850MHz)

Plots of Conducted Output Power (1900MHz)

§2.1049, §22.917, §22.905, & §24.238 - OCCUPIED BANDWIDTH

Applicable Standard

Requirements: CFR 47, Section 2.1049, Section 22.901, Section 22.917 and Section 24.238.

Test Procedure

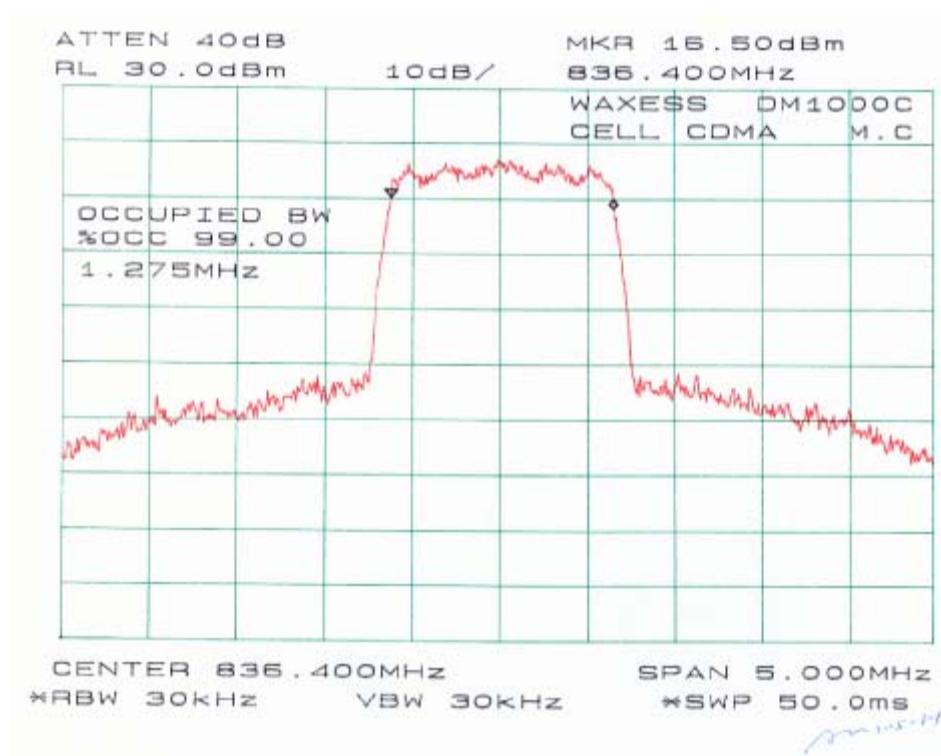
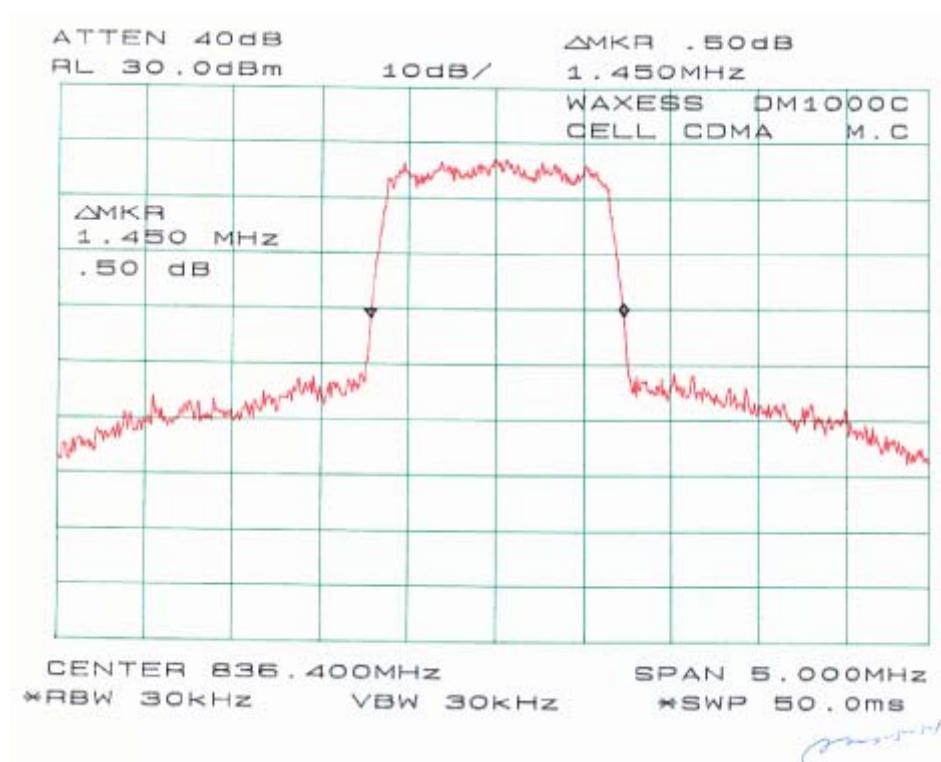
The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

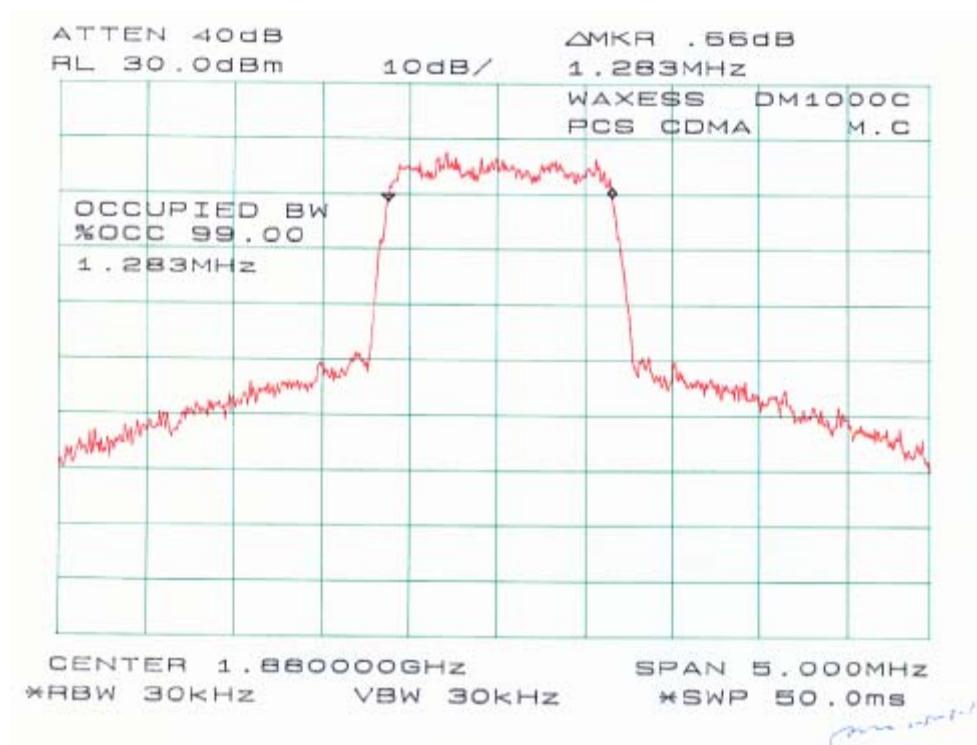
The resolution bandwidth of the spectrum analyzer was set at 30 KHz and the 26 dB bandwidth was recorded.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date
HP	Spectrum Analyzer	HP8564E	3943A01781	2004-10-04
HP	Plotter	HP7470A	2541A49659	Not Required

* **Statement of Traceability:** BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.



Environmental Conditions



Temperature:	21° C
Relative Humidity:	37%
ATM Pressure:	1032 mbar

The testing was performed by Ming Jin on 2005-03-01.

Test Results

Please refer to the following plots.

Plots of Occupied Bandwidth for GSM 850, Part22

Plots of Occupied Bandwidth for GSM 1900

§2.1051, §22.917, & §24.238(a) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

Requirements: CFR 47, § 2.1051. § 22.917 & §24.238(a).

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1057.

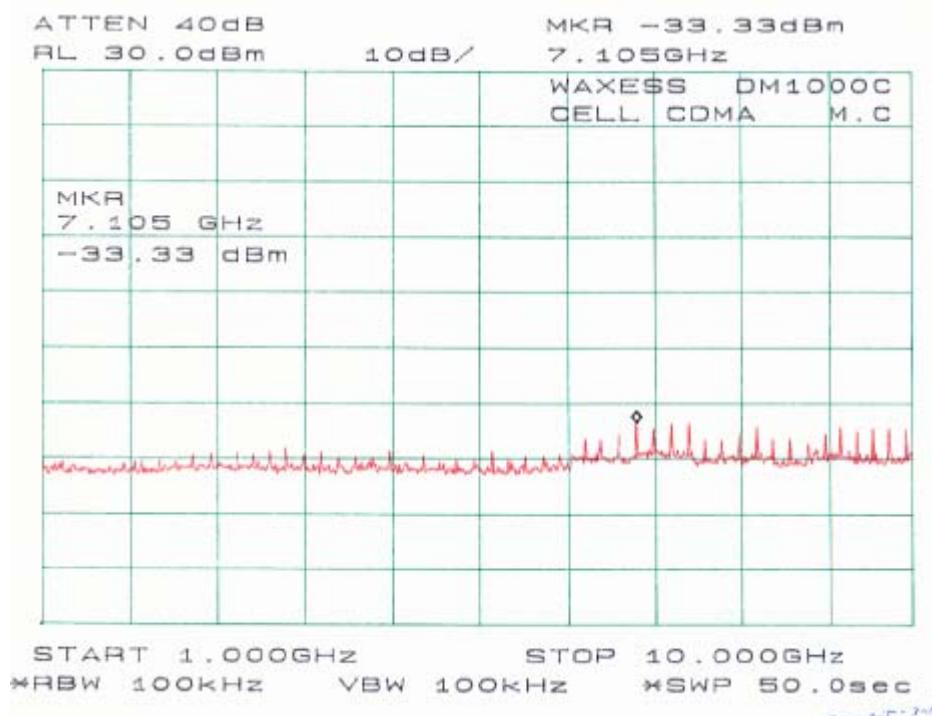
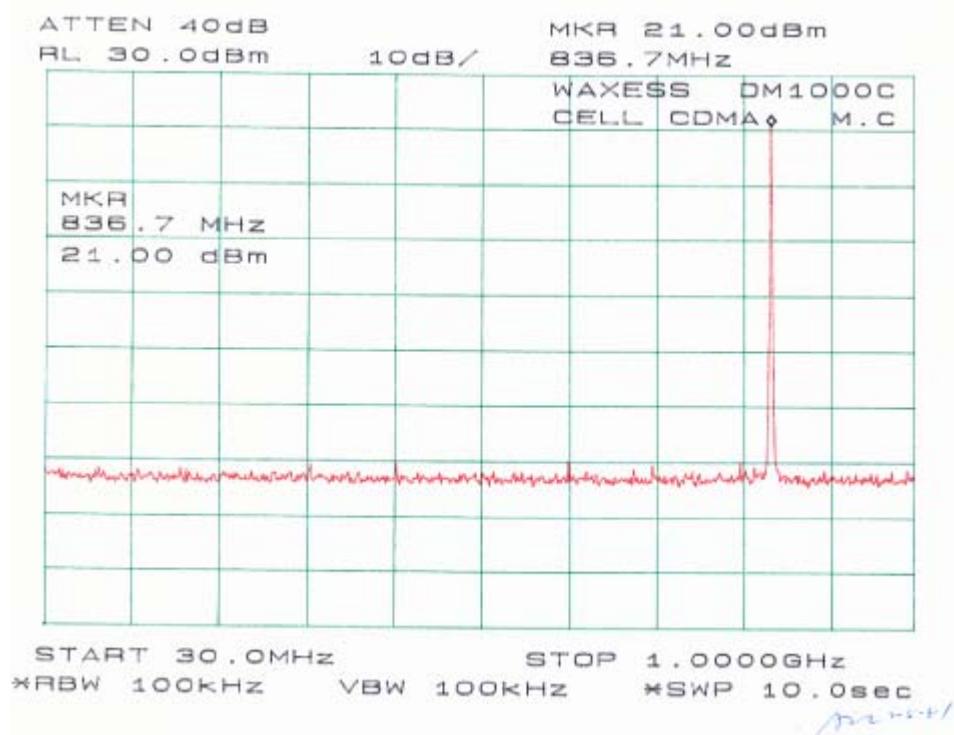
Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

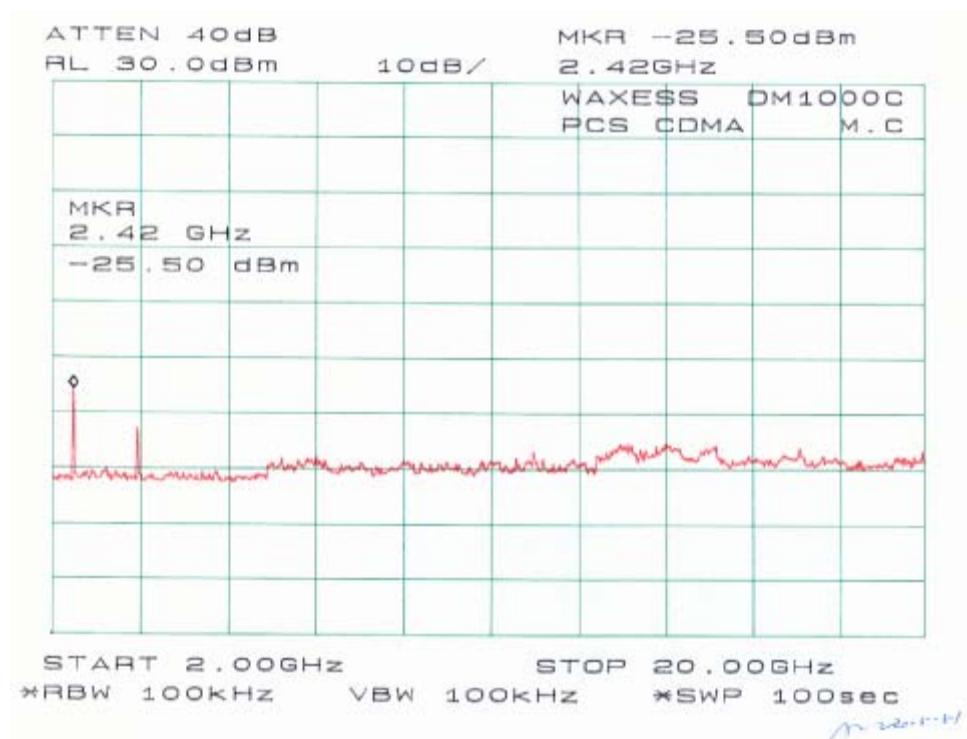
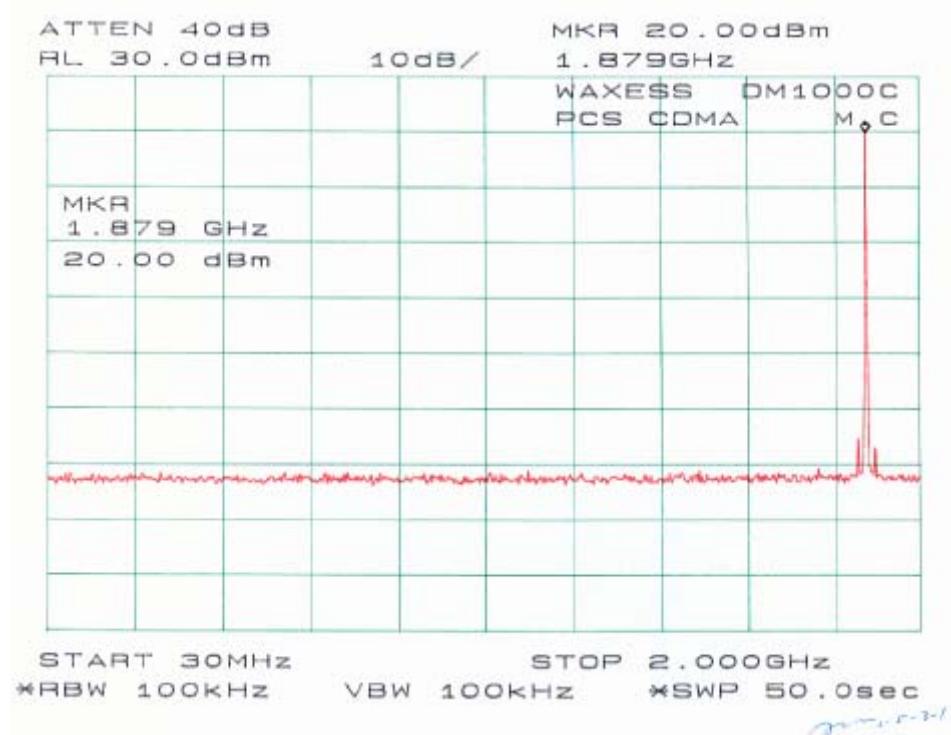
Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date
HP	Spectrum Analyzer	HP8564E	3943A01781	2004-10-04
HP	Plotter	HP7470A	2541A49659	Not Required

* **Statement of Traceability:** BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.



Environmental Conditions

Temperature:	21° C
Relative Humidity:	37%
ATM Pressure:	1032 mbar



The testing was performed by Ming Jin on 2005-03-01.

Test Results

Please refer to the hereinafter plots.

Plots of Spurious Emission for 850MHz

Plots of Spurious Emission for 1900MHz

§2.1055 (a), §2.1055 (d), §22.355, & §24.235 - FREQUENCY STABILITY

Applicable Standard

Requirements: FCC § 2.1055 (a), § 2.1055 (d) & following:

According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table C-1 of this section.

Table C-1_Frequency Tolerance for Transmitters in the Public Mobile Services

Frequency range (MHz)	Mobile		
	Base, fixed (ppm)	[SU][le][/] SU]3 watts (ppm)	Mobile [le]3 watts (ppm)
25 to 50.....	20.0	20.0	50.0
50 to 450.....	5.0	5.0	50.0
450 to 512.....	2.5	5.0	5.0
821 to 896.....	1.5	2.5	2.5
928 to 929.....	5.0	n/a	n/a
929 to 960.....	1.5	n/a	n/a
2110 to 2220.....	10.0	n/a	n/a

According to §24.235, The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a frequency counter via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the counter.

Frequency Stability vs. Voltage: An external variable DC power supply was connected to the battery terminals of the equipment under test. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Due Date
HP	Frequency Counter	5342A	2232A06380	2004-09-07
HP	Plotter	HP7470A	2541A49659	Not Required
Tenney	Oven, Temperature	VersaTenn	12222-193	2004-06-04
SANKE	Transformer	TDGC2J	109048656	N/A

* **Statement of Traceability:** BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

Environmental Conditions

Temperature:	21° C
Relative Humidity:	37%
ATM Pressure:	1032 mbar

The testing was performed by Ming Jin on 2005-03-01.

Test Results

Cell CDMA 850

Reference Frequency: 836.4000 MHz,			
Temperature C	Power supplied Vac	Frequency Measure with Time Elapsed	
		MCF (MHz)	Error ppm
50	110	836.4998	-0.24
40	110	836.4998	-0.24
30	110	836.4000	0
20	110	836.4000	0
10	110	836.4002	0.24
0	110	836.4002	0.24
-10	110	836.4003	0.36
-20	110	836.4003	0.36
-30	110	836.4003	0.36

Reference Frequency: 836.4000 MHz,		
Power supplied Vac	Frequency Measure with Time Elapsed	
	Frequency (MHz)	Error ppm
126.5	836.4001	0.12
93.5	836.4001	0.12

PCS CDMA 1900

Reference Frequency: 1880.0000 MHz,			
Temperature C	Power supplied Vdc	Frequency Measure with Time Elapsed	
		MCF (MHz)	Error ppm
50	110	1879.9993	-0.37
40	110	1879.9996	-0.21
30	110	1879.9998	-0.11
20	110	1880.0000	0
10	110	1880.0000	0
0	110	1880.0002	0.11
-10	110	1880.0002	0.11
-20	110	1880.0004	0.22
-30	110	1880.0005	0.27

Reference Frequency: 1880 MHz,		
Power supplied Vac	Frequency Measure with Time Elapsed	
	Frequency (MHz)	Error ppm
126.5	1880.0002	0.11
93.5	1880.0002	0.11

§22.917 & §24.238 – BAND EDGE

Applicable Standard

According to § 22.917, the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

According to §24.238, the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

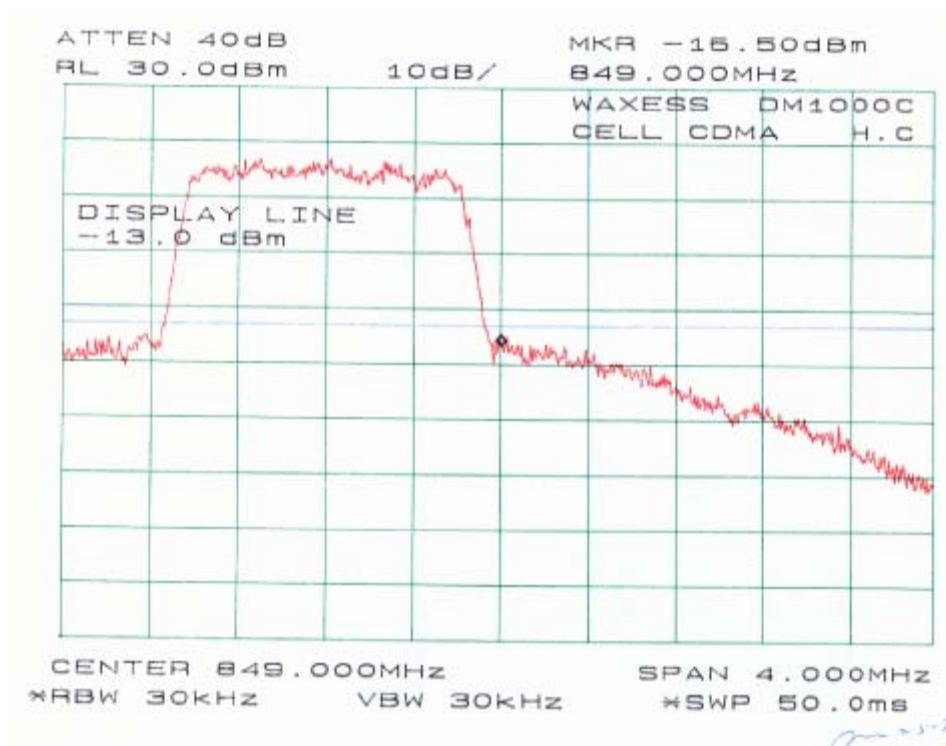
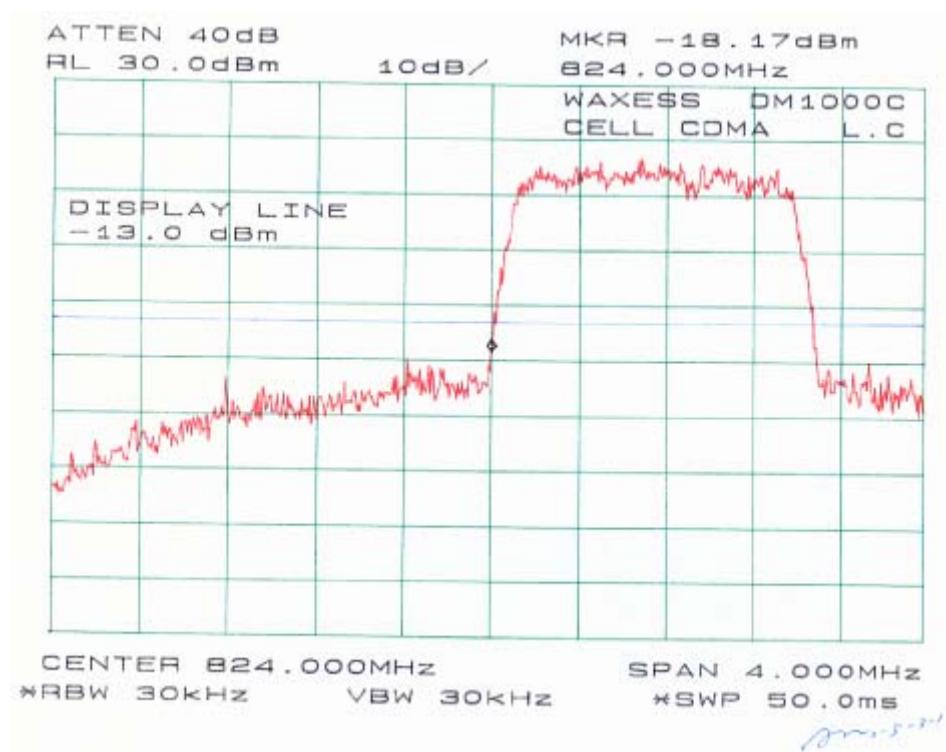
The center of the spectrum analyzer was set to block edge frequency, RBW set to 30KHz.

Test Equipment List and Details

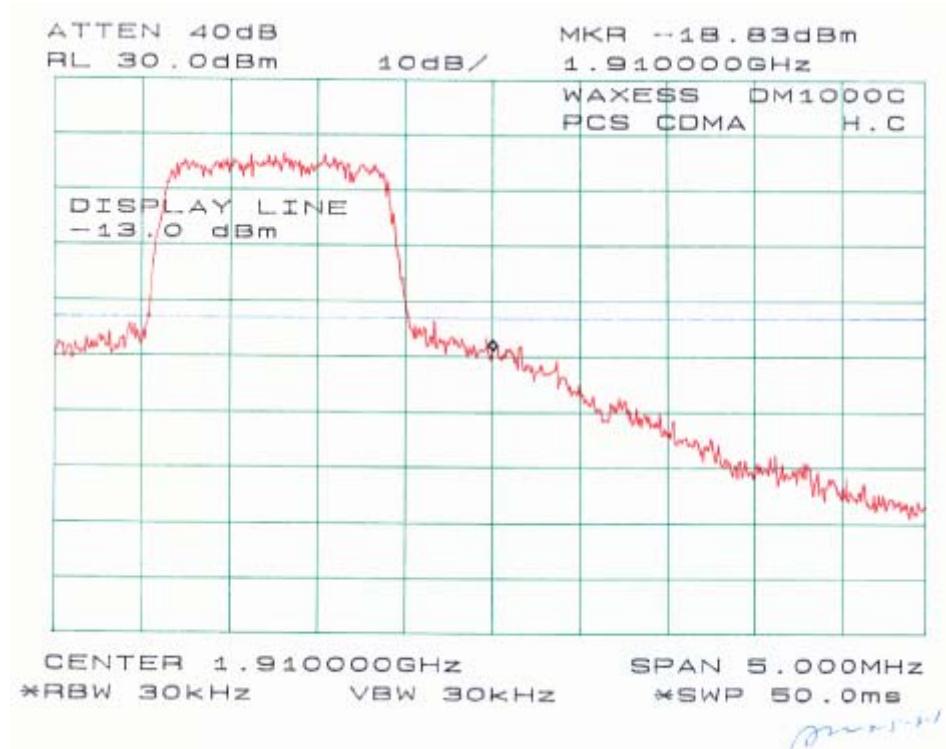
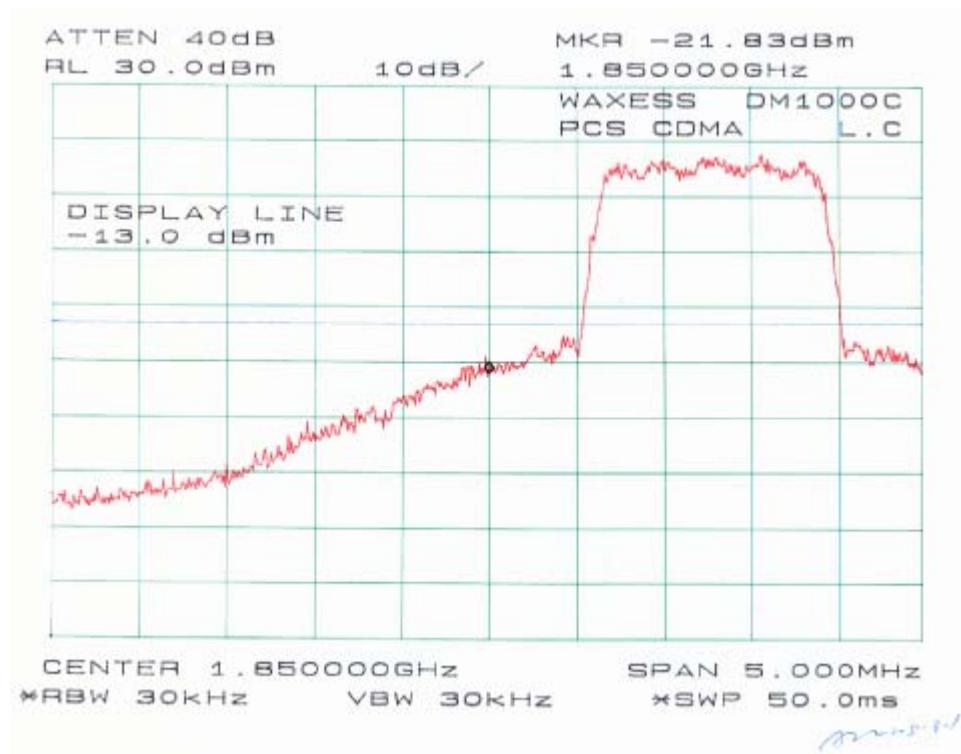
Manufacturer	Description	Model	Serial Number	Cal. Date
HP	Spectrum Analyzer	HP8564E	3943A01781	2004-10-04
HP	Plotter	HP7470A	2541A49659	Not Required

* **Statement of Traceability:** BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

Environmental Conditions



Temperature:	21° C
Relative Humidity:	37%
ATM Pressure:	1032 mbar

The testing was performed by Ming Jin on 2005-03-01.



Test Results

Please refer to the following plots.

Plots of Band Edge for 850MHz

Plots of Band Edge for 1900MHz

