

BEC INCORPORATED

CERTIFICATION APPLICATION TEST REPORT

TEST STANDARDS:

FCC Part 15 Subpart C, IC RSS-Gen, IC RSS-247
DSS Intentional Radiator

Woodstream Corporation Model V430 Lora Radio Rat Snap Trap

FCC ID: SNA-V430
ISED ID: 9458A-V430

REPORT BEC-2127-04 REV2

TEST DATES: 03/08/2021 – 06/23/2021

CUSTOMER:
Woodstream Corporation
69 North Locust Street
Lititz, PA 17543

PREPARED BY:
Paul Banker, Test Engineer

REVIEWED and APPROVED BY:
Steve Fanella, Quality Manager

The results described in this report relate only to the item(s) tested. This document shall not be reproduced except in full without prior written permission of BEC Incorporated



TABLE OF CONTENTS

Revision History	4
1.0 Administrative Information.....	5
1.1 Project Details	5
1.2 Preface.....	6
1.3 Laboratory and Customer Information.....	6
1.4 Measurement Uncertainty	6
1.5 Test Result Summary Table	7
1.6 Condition of Received Sample.....	8
1.7 Climatic Environment	8
1.8 Test Equipment	8
2.0 Equipment Under Test	9
2.1 EUT Description	9
2.2 Product Category.....	9
2.3 Product Classification	9
2.4 Test Configuration.....	9
2.5 Test Configuration Rationale	9
2.6 Test Configuration Diagrams	10
2.7 EUT Information, Interconnection Cabling and Support Equipment	11
2.8 Test Signals and Test Modulation	12
2.9 Antenna Gain.....	13
2.10 Grounding	13
2.11 EUT Modifications	13
2.12 EUT Pictures Woodstream Model V430 LoRa Radio Rat Snap Trap	13
3.0 Applicable Requirements, Methods, and Procedures	14
3.1 Applicable Requirements	14
3.1.1 FCC Requirements	14
3.1.2 Innovation, Science and Economic Development Canada (ISED)	14
3.1.3 Basic Test Methods and Test Procedures	14
3.2 Deviations or Exclusions from the Requirements.....	14
4.0 Test Results.....	15
4.1 Antenna Requirement (47 CFR 15.203)(RSS-GEN ANNEX A (10)(g)).....	15
4.2 External RF power amps/antenna modifications (47 CFR 15.204)(RSS-GEN 8.3).....	15
4.3 Duty Cycle of the DSS Fundamental Transmission.....	15
4.3.1 Duty Cycle Measurement Test Results (03/17/2021).....	15
4.4 DSS Emissions in Non-restricted Frequency Bands (FCC Section 15.247(d), RSS-247 Sec.5) 16	16
4.4.1 DSS Emissions in Non-restricted Frequency Bands Test Procedure	16
4.4.2 DSS Emissions in Non-restricted Frequency Bands Reference Measurement Channel 0	16
4.4.3 DSS Emissions in Non-restricted Frequency Bands Channel 0 Test Results (03/25/2021).....	17
4.4.4 DSS Emissions in Non-restricted Frequency Bands Reference Measurement Channel 32 (03/25/2021).....	20
4.4.5 DSS Emissions in Non-restricted Frequency Bands Channel 32 Test Results (03/25/2021).....	21

4.4.6 DSS Emissions in Non-restricted Frequency Bands Reference Measurement Channel 63 (03/25/2021).....	24
4.4.7 DSS Emissions in Non-restricted Frequency Bands Channel 63 Test Results (03/25/2021).....	25
4.5 DSS Radiated Emissions in Non-restricted and Restricted Frequency Bands, 30 MHz - 10 GHz (47 CFR 15.205 & 15.209)(RSS-GEN 8.9 & 8.10)	28
4.5.1 Non-restricted and Restricted Bands Test Facility	28
4.5.2 Non-restricted and Restricted Bands Radiated Emissions Test Procedure	29
4.5.3 DSS Emissions in Non-restricted and Restricted Bands of Operation, 30 MHz – 1000 MHz Test Results (03/30/2021).....	30
4.5.4 DSS Emissions in Non-restricted and Restricted Bands of Operation, 1 – 10 GHz Test Results (03/25/2021 - 04/07/2021)	32
4.6 DSS 20 dB Occupied Bandwidth (FCC Section 15.247(a)(2) RSS-247 5.2(a)).....	34
4.6.1 20 dB Occupied Bandwidth – Test Procedure.....	34
4.6.2 DSS (20 dB) Occupied Bandwidth Test Results (03/15/2021)	34
4.7 DSS 99% Occupied Bandwidth RSS-Gen 6.7	38
4.7.1 DSS 99% Occupied Bandwidth – Test Procedure.....	38
4.7.2 DSS 99% Occupied Bandwidth Test Results (03/15/2021)	38
4.8 Maximum Conducted Output Power and EIRP (FCC Part 15.247(b)(3), RSS-247 Section 5.4(d)).....	42
4.8.1 Maximum Peak Conducted Output Power Test Procedure	42
4.8.1.1 Maximum Peak Conducted Output Power Test Results (03/15/2021).....	42
4.8.2 Maximum Average Conducted Output Power, Hybrid Mode, Test Procedure.....	47
4.8.2.1 Maximum Average Conducted Output Power Test Results (06/23/2021)	48
4.8.3 EIRP Calculation RSS-247 (03/15/2021).....	50
4.9 Carrier Frequency Separation 47 CFR 15.247(a)(1) RSS-247 (5.1)(b) (03/22/2021) ...	50
4.9.1 Carrier Frequency Separation Test Procedure	50
4.9.2 Carrier Frequency Separation Test Results (03/22/2021)	51
4.10 Number of Hopping Frequencies 47 CFR 15.247(a)(1)(i), RSS-247 (5.1)(c) (03/24/2021).....	52
4.10.1 Number of Hopping Frequencies Test Procedure	52
4.10.2 Number of Hopping Frequencies Test Results (04/01/2021).....	52
4.11 Time of Occupancy (Dwell Time) 47 CFR 15.247(a)(1)(i) RSS-247 (5.1)(c) (03/25/2021).....	55
4.11.1 Time of Occupancy (Dwell Time) Test Procedure	55
4.11.2 Time of Occupancy (Dwell Time) Test Results (03/23/2021 and 03/24/2021)	55
4.12 Band Edge Measurement 47 CFR 15.247(d) and RSS-247 (5.5).....	64
4.12.1 Band Edge Measurement Test Procedure.....	64
4.12.2 Band Edge Measurement Test Results (04/01/2021)	64
4.13 Average Power Spectral Density, Hybrid Mode (FCC Section 15.247(e), RSS-247 Section 5.2(b)).....	67
4.13.1 Average Power Spectral Density Test Procedure	67
4.13.1.1 Average Power Spectral Density Test Results (06/23/2021).....	67
5.0 Test Setup Photos.....	70
Appendix A – Test Equipment.....	71

Notice to Customer

This report and any recommendations it contains represent the result of BEC's testing and assessment on behalf of your company. Testing has been conducted according to accepted engineering standards and practices. This report reflects testing and assessment of product samples provided by your company and may not reflect the characteristics of other samples, especially those produced at different times. This report and its findings and recommendations, if implemented, should not be construed as an assurance or implied warranty for the continuing electromagnetic compatibility (EMC) of the product. **BEC shall not be liable for incidental or consequential damages, even if advised of the possibility thereof.**

BEC will not disseminate this report to other parties without your express permission. You may reproduce this report in its entirety including this notice and the entireties of any supplemental test reports on the same product (e.g. reports on additional testing following modification). However 'you may not reproduce portions of the report (except for the entirety of the summary section) or quote from it for any purpose without specific prior written permission from BEC'.

Revision History

Revision #	Description of Changes	Date of Changes	Date Released
0	Test Report Initial Release	N/A	04/15/2021
1	Added EUT Test Software Version to Section 1.1. Added Section 2.9 Antenna Gain Information. Edited Section 2.11 to add the Serial Port Connection added to the Samples 2127-02 and 2127-04. Added description of X, Y and Z Orientation Planes Examined for Emissions Testing in Section 4.5.2. Edited 4.12 Band Edge Results to reflect the data measured with EUT in Hopping Mode	04/26/2021	04/26/2021
2	Added Hybrid mode information in the EUT Description section. Added Power Spectral Density Test for operation in Hybrid Mode. Added Average Conducted Measurement for Maximum Output Power. Lowered limit from 20 dBc to 30 dBc for conducted emissions in non-restricted bands and band edge tests	06/28/2021	06/28/2021

1.0 Administrative Information

1.1 Project Details

Project Number	BEC-2127	
Manufacturer	Woodstream Corporation	
Model Number	V430	
EUT Description	VLINK Rat Snap Trap with LoRa Radio Communication	
Serial Number	None	
Sample Types	Modified with SMA connector on transmitter output port (Antenna Conducted Sample)	Unmodified Sample (Radiated Sample)
Sample Numbers	2127-02	2127-04
FCC ID	SNA-V430	
ISED ID	9458A-V430	
Radio Chip Manufacturer	Semtech Corporation	
Radio Chip Model Number	SX1272	
Frequency of Operation	902 – 915 MHz	
Frequencies Tested	Low (902.3 MHz), Middle (908.7 MHz), High (914.9 MHz)	
Antenna Gain	-0.04 dBi	
FCC Classification	DSS Spread Spectrum Transmitter	
EUT Firmware Version	1.3.1, built Tue 03/09/2021 7:59:52.26 (US 915)	
Date Samples Received	03/08/2021	
Condition Samples Received	Suitable for test	
Sample Type	Production unit	
Applicable FCC Rules	FCC Rules Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz Part 15 Spread Spectrum Transmitter	
Applicable ISED Rules	RSS-Gen: General Requirements for Compliance of Radio Apparatus & RSS-247: Digital Transmission Systems (DTSS), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices	

1.2 Preface

This report documents product testing conducted to verify compliance of the specified EUT with applicable standards and requirements as identified herein. EUT, test instrument configurations, test procedures, and recorded data are generally described in this report. The reader is referred to the applicable test standards for detailed procedures. The following table summarizes the test results obtained during this evaluation.

1.3 Laboratory and Customer Information

Test Laboratory Location	BEC Incorporated 970 East High Street Pottstown, PA 19464
Test Personnel	Paul Banker / Steve Fanella / JR Fanella
BEC Laboratory Number FCC Registration	US1118
BEC Laboratory Number ISED Registration	7342A-1
Test Performed For	Woodstream Corporation 69 North Locust Street Lititz, PA 17543
Customer Technical Contact	Dwayne Arrighy
Customer Reference Number	PO # 183621


1.4 Measurement Uncertainty

Measurement	Measurement Distance	Frequency Range	Measurement Limit	Expanded Uncertainty
Radiated Disturbance	3 Meter	30 MHz – 1 GHz	Class B	4.12
Conducted Disturbance AC Mains	N/A	150 kHz – 30 MHz	Class A or B	2.69

No adjustments to measured data presented in this report are required because all values of uncertainty are less than the CISPR 16-4-2:2018 recommendations. These uncertainties have a coverage factor of $k = 2$, which yields approximately a 95% level of confidence for the near-normal distribution typical of most measurement results.

FCC Registered Test Site Number: US1118

ISED Registered Test Site Number: 7342A-1

1.5 Test Result Summary Table

The Woodstream Model V430 LoRa Radio Rat Snap Trap was tested and found to be compliant to the sections of the FCC Part 15 Subpart C and ISED standards listed below:

Report Section	FCC Part 15, Subpart C	IC RSS-Gen	IC RSS-247	Test Description	Result
N/A	15.207(b)	7.2		Conducted Emissions, AC 150 kHz to 30 MHz	N/A
4.1	15.203(b)	Annex A 10(g)		Antenna Requirement	PASS
4.2	15.204	8.3		External RF power amps/antenna modifications	PASS
4.3	ANSI C63.10, Section 11.6			Duty Cycle	Measured
4.4	15.247(d)	5.5	3.3	DSS Emissions in Non-Restricted Frequency Bands 30 MHz to 10 GHz	PASS
4.5	15.205, 15.209 15.35(b)	8.1, 8.9, 8.10		DSS Emissions in Restricted & Non-restricted Frequency Bands 30 MHz to 10GHz	PASS
4.6	15.247(a)(1)		5.1 c)	20 dB Occupied Bandwidth	PASS
4.7	2.1049(h)	6.7		DSS 99% Occupied Bandwidth	PASS
4.8	15.247(b)(3)		5.4 d)	Maximum Output Power, Peak and Average, EIRP	PASS
4.9	15.247(a)(1)		5.1 c)	Carrier Frequency Separation	PASS
4.10	15.247(a)(1)(iii)		5.1 c)	Number of Hopping Frequencies	PASS
4.11	15.247(a)(1)(i)		5.1 c)	Time of Occupancy	PASS
4.12	15.247(d)		5.5	Band Edge Measurement	PASS
4.13	15.247(e)		5.2 b)	Average Power Spectral Density	PASS

1.6 Condition of Received Sample

An evaluation of the EUT was conducted in order to verify test subject identity and condition and to ensure suitability for testing. No evidence of physical damage was noted. The test item condition was deemed acceptable for the performance of the requested test services.

1.7 Climatic Environment

Unless noted elsewhere in this report, the following were the ambient conditions in the laboratory during testing:

Temperature: $22^\circ \pm 5^\circ$

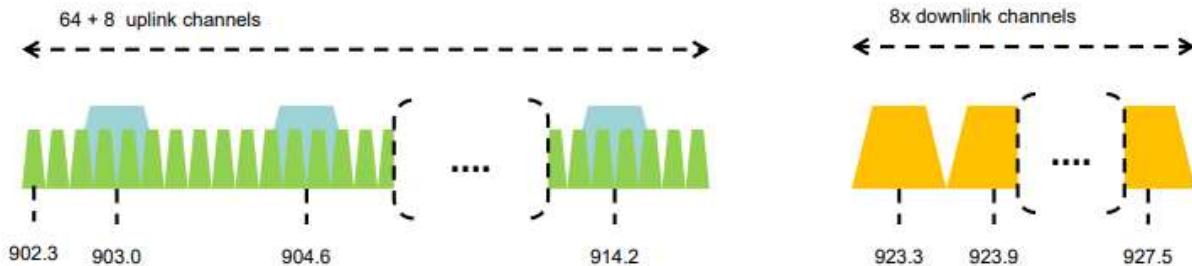
Humidity: $50\% \pm 20\%$

Barometric Pressure: $1000\text{mb} \pm 20\%$

1.8 Test Equipment

All test equipment is checked to manufacturer's specifications and, when applicable, have current N.I.S.T. traceable, ISO 9002 conforming certificates of calibration. Test equipment used for the tests described herein is listed in Appendix A.

2.0 Equipment Under Test


Unless otherwise noted in the individual test results sections, testing was performed on the EUT as follows.

2.1 EUT Description

The Woodstream Model V430 VLINK is a Rat Snap Trap which incorporates a LoRa Radio to communicate trap status to a smart phone or network application.

The device is powered by two CR2032 coin cell batteries in parallel (3 V dc).

The V430 operates in FHSS mode while in the joining phase and then switches to Hybrid mode for data phase. FHSS mode uses 64 channels and Hybrid mode uses a subset of 8 channels.

2.2 Product Category

FCC Part 15, Subpart C (Section 15.247), IC RSS-Gen, IC RSS-247

2.3 Product Classification

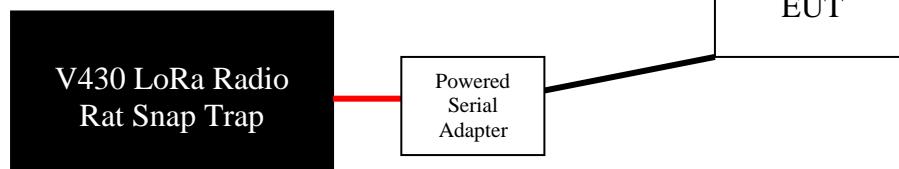
Intentional Radiator Testing Requirements, DSS Operation within the band of 902 - 928 MHz.

2.4 Test Configuration

The Woodstream Model V430 LoRa Radio Rat Snap Trap Sample # 2127-02 was tested without a trap enclosure for all antenna terminal measurements. The Woodstream Model V430 LoRa Radio Rat Snap Trap Sample # 2127-04 was tested for all radiated emissions tests.

2.5 Test Configuration Rationale

The modified radio of the Woodstream Model V430 LoRa Radio Rat Snap Trap allows direct access to the output of the radio, without a transmission antenna. The unmodified unit is factory produced with modified software for EMI test purposes.


2.6 Test Configuration Diagrams

Block diagrams of the EUT configuration showing interconnection cables are illustrated below. The drawing shows the physical hardware layout used for the tests along with I/O cables and AC power distribution.

Antenna Conducted Test Configuration (modified with SMA connector in place of antenna)

Radiated Emission Test Configuration (un-modified EUT)

2.7 EUT Information, Interconnection Cabling and Support Equipment

EUT Hardware

Description	Manufacturer	Model	Serial Number	Sample Number
Lora Radio Rat Snap Trap (modified with SMA)	Woodstream Corporation	V430	None	2127-02
Lora Radio Rat Snap Trap (unmodified, test software)				2127-04

Interconnection Cable List (Conducted Test Setup)

Manufacturer	Model	Type	Shielding	Length	Description
Suhner	S04272B	High Frequency RF Cable 1 to 40 GHz	Double Braid	1 Meter	Measurement Cable from the Antenna SMA Connector to the Rohde and Schwarz ESIB26 Receiver. Asset # BEC-962

Support Equipment

Description	Manufacturer	Model	Serial Number
Powered Serial Adapter	Woodstream	2457159A_Y40	none
Lap Top Computer	Dell	Inspiron 15-3567	E4B4B16C-F475-4A3F-9795-A06C5CB4AB43

2.8 Test Signals and Test Modulation

By design this product does not have an external Modulation input connector, therefore, normal operating modulation was used for all testing reported herein. The only test where modulation was not active was during testing of the Maximum Peak Power Output FCC Section 15.247(b) (3) (Section 4.8 of this report) to ensure that the un-modulated carrier was not higher than the modulated carrier.

The product is a Frequency Hopping Spread Spectrum System (FHSS) transmitter. The Woodstream Model V430 LoRa Radio Rat Snap Trap hops on 64 Channels. The Channels and frequencies that can be transmitted by the EUT are as follows:

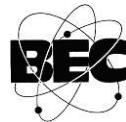
Low	0	902.3	16	905.5	Middle	32	908.7	48	911.9
1	902.5		17	905.7		33	908.9	49	912.1
2	902.7		18	905.9		34	909.1	50	912.3
3	902.9		19	906.1		35	909.3	51	912.5
4	903.1		20	906.3		36	909.5	52	912.7
5	903.3		21	906.5		37	909.7	53	912.9
6	903.5		22	906.7		38	909.9	54	913.1
7	903.7		23	906.9		39	910.1	55	913.3
8	903.9		24	907.1		40	910.3	56	913.5
9	904.1		25	907.3		41	910.5	57	913.7
10	904.3		26	907.5		42	910.7	58	913.9
11	904.5		27	907.7		43	910.9	59	914.1
12	904.7		28	907.9		44	911.1	60	914.3
13	904.9		29	908.1		45	911.3	61	914.5
14	905.1		30	908.3		46	911.5	62	914.7
15	905.3		31	908.5		47	911.7	63	914.9
									High

The EUT was configured to transmit on all channels for some tests and also dwell on a low, middle and high channel as depicted in the above table. The EUT operates with a 125 KHz bandwidth and a Spread Factor of 7 - 10. Examination of the Spread Factor affect on emission amplitude and bandwidth determined that a Spread Factor of 10 produced the highest emission. The maximum output power setting of 20 was used for all tests. The Duty Cycle of the LoRa Modulation signal is greater than 100%.

2.9 Antenna Gain

The antenna gain was derived using the formulae outlined in Appendix G of ANSI C63.10. The maximum peak output of the transmitter was measured at the SMA connector. The maximum radiated emission from the EUT with the internal antenna attached was measured at a distance of 3 meters from the EUT. The resultant antenna gain was the difference between EIRP at the transmitter terminals and the EIRP calculated from the field strength measured at 3m.

2.10 Grounding


There was no ground connection used; the EUT is battery powered and self-contained.

2.11 EUT Modifications

The Woodstream Model V430 LoRa Radio Rat Snap Trap Samples 2127-02 and 2127-04 were modified to add a Serial Port for programming the EUTs radio. Also, an SMA connector was added directly to the antenna output on the main board of the Woodstream Model V430 LoRa Radio Rat Snap Trap Sample 2127-02.

2.12 EUT Pictures Woodstream Model V430 LoRa Radio Rat Snap Trap

See Appendix B Woodstream V430 LoRa Radio Rat Snap Trap External Photos

3.0 Applicable Requirements, Methods, and Procedures

3.1 Applicable Requirements

The results of the measurement of the radio disturbance characteristics of the EUT described herein may be applied and where appropriate, provide a presumption of compliance to one or more of the following requirements or to other requirements at the discretion of the customer, regulatory agencies, or other entities.

3.1.1 FCC Requirements

Code of Federal Regulations: Title 47 – Telecommunication

Chapter I - Federal Communications Commission

Sub-chapter A – General

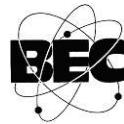
Part 15 – Radio Frequency Devices

Subpart C - Intentional Radiators

3.1.2 Innovation, Science and Economic Development Canada (ISED)

RSS-Gen Issue 5 March 2019 Amendment 1: General Requirements for Compliance of Radio Apparatus

RSS-247 Issue 2 February 2017: Digital Transmission Systems (DSSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices


3.1.3 Basic Test Methods and Test Procedures

KDB Document 558074 D01 15.247 Meas Guidance v05r02, Guidance for Performing Compliance Measurements on Digital Transmission Systems, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of the FCC Rules.

ANSI C63.10-2020, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

3.2 Deviations or Exclusions from the Requirements

No deviations or exclusions were made.

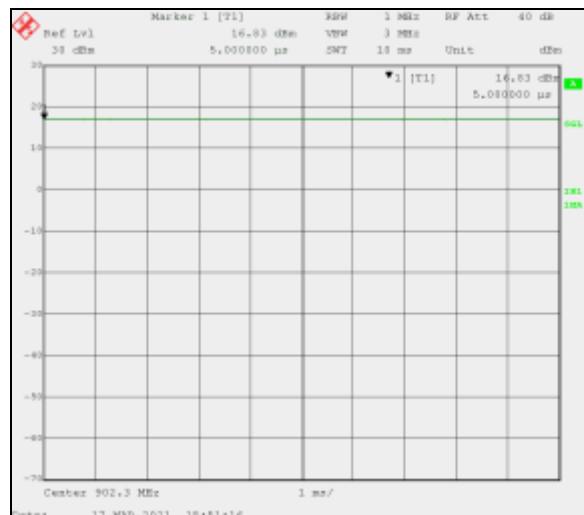
4.0 Test Results

4.1 Antenna Requirement (47 CFR 15.203)(RSS-GEN ANNEX A (10)(g))

The antenna used by the Woodstream Model V430 LoRa Radio Rat Snap Trap is the external, metal bail. There are no detachable parts of the antenna. The antenna is not replaceable, nor changeable, and therefore complies with the requirements of this section.

4.2 External RF power amps/antenna modifications (47 CFR 15.204)(RSS-GEN 8.3)

There are no RF power amplifier kits available to be used with the Woodstream Model V430 LoRa Radio Rat Snap Trap. There are no detachable parts of the antenna. The antenna is not replaceable, nor changeable, and therefore complies with the requirements of this section.


4.3 Duty Cycle of the DSS Fundamental Transmission

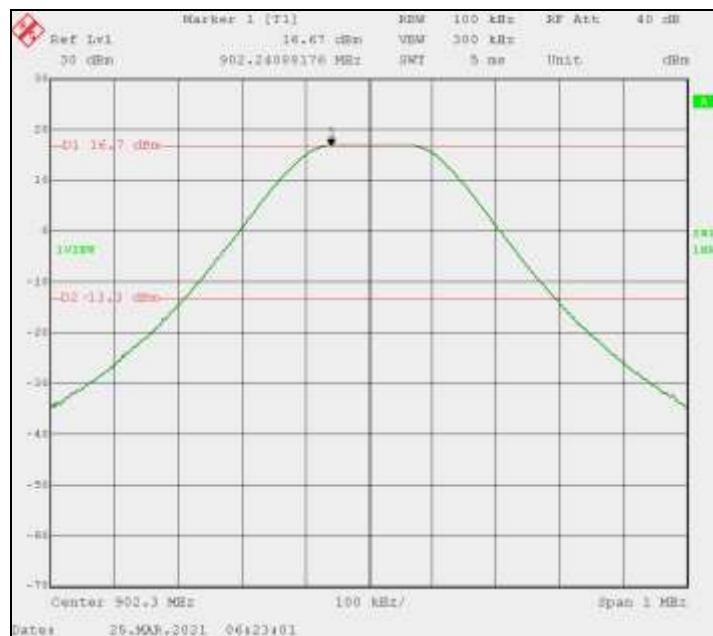
The duty cycle of the DSS transmission should be 100%. This ensures that the various emissions measured for this certification test will be made with the transmitter fully active. Duty cycles less than 98% can be used and a duty cycle correction factor can be calculated to reduce the peak level of the emission for radiated emission tests. The procedure of ANSI C63.10, Section 11.6 was used to evaluate the duty cycle of this device.

4.3.1 Duty Cycle Measurement Test Results (03/17/2021)

The fundamental transmission signal, tuned to 902.3 MHz, was displayed on the spectrum analyzer with zero frequency span and 1 MHz RBW and 3 MHz VBW to determine the duty cycle. The depiction below shows a continuous transmission. There is no off time while the transmitter is active with LoRa modulation. Therefore, the duty cycle is 100%.

Duty Cycle of DSS Transmission

4.4 DSS Emissions in Non-restricted Frequency Bands (FCC Section 15.247(d), RSS-247 Sec.5)

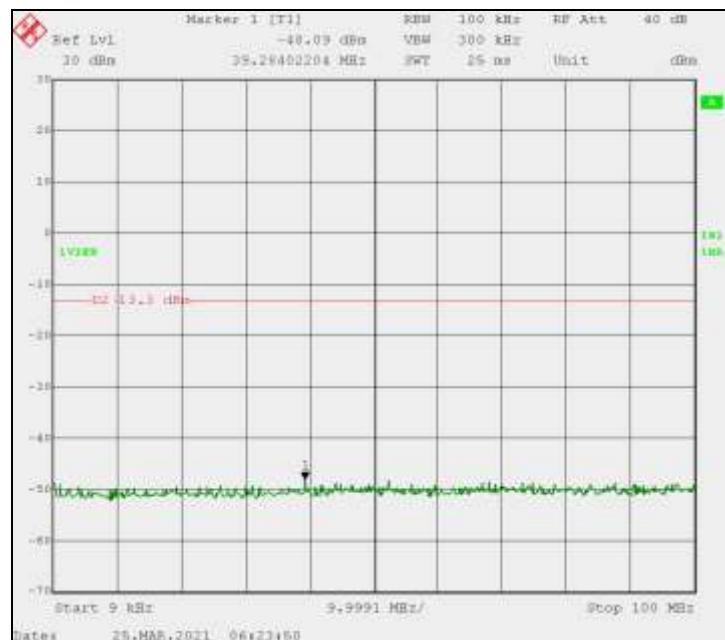

4.4.1 DSS Emissions in Non-restricted Frequency Bands Test Procedure

A measurement of the emissions in non-restricted frequency bands was made for to low (Channel 0), middle (Channel 32) and high (Channel 63) channel frequencies. The signal output was maximized with LoRa modulation with 125 kHz bandwidth and Spread Factor of 10. The procedure for the test is ANSI C63.10, Section 11.11. The frequency spectrum from 9 kHz to 10 GHz was divided into five bands: 9 kHz – 100 MHz, 100-500 MHz, 500 M – 1 GHz , 1 – 5 GHz and 5 – 10 GHz. An in-line high-pass filter was used to measure frequencies above 1 GHz. Each of the three fundamental test frequencies was measured for the reference value to determine the -30 dBc value.

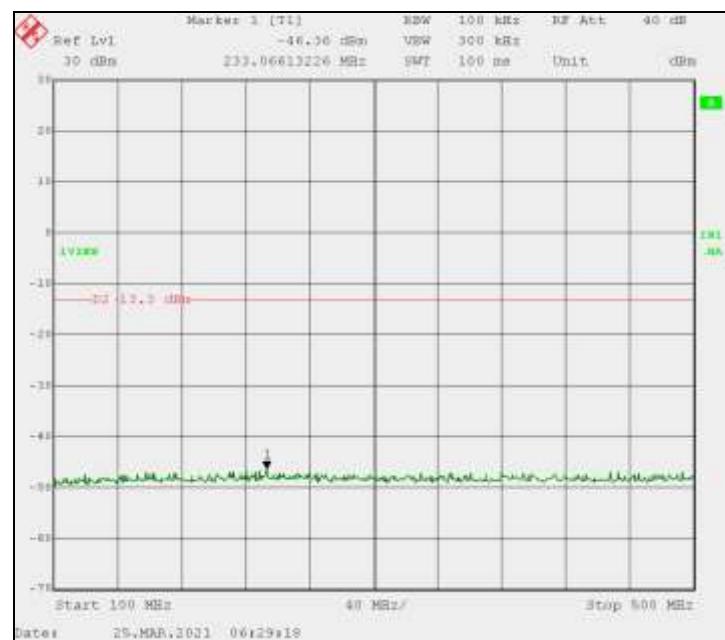

Spectrum Analyzer Settings

RBW	100	kHz
VBW	300	kHz
Span	Varies	MHz
Sweep(Auto)	Varies	ms

4.4.2 DSS Emissions in Non-restricted Frequency Bands Reference Measurement Channel 0 (03/25/2021)

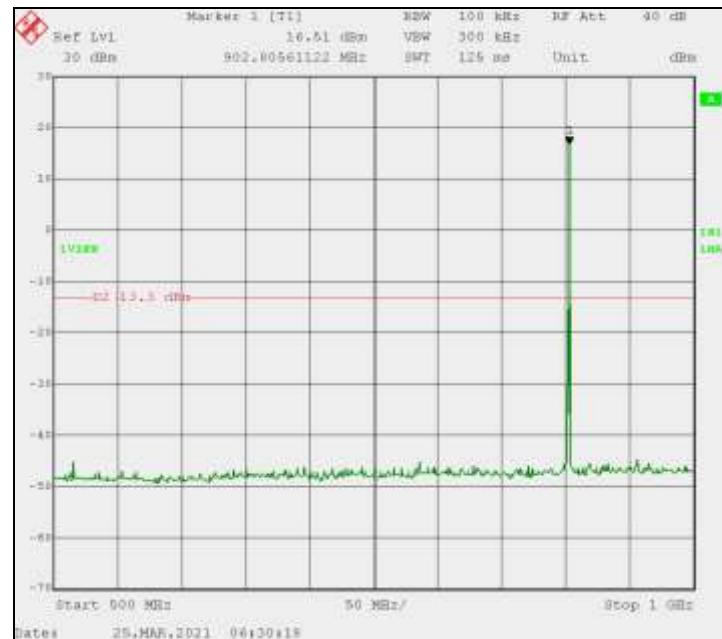


The peak level of 16.7 dBm is the maximum peak output of the Woodstream Model V430 LoRa Radio Rat Snap Trap. The conducted spurious emissions from the antenna port must be 30 dB down from this peak. The resultant limit is therefore -13.3 dBm and is displayed on the plots below.

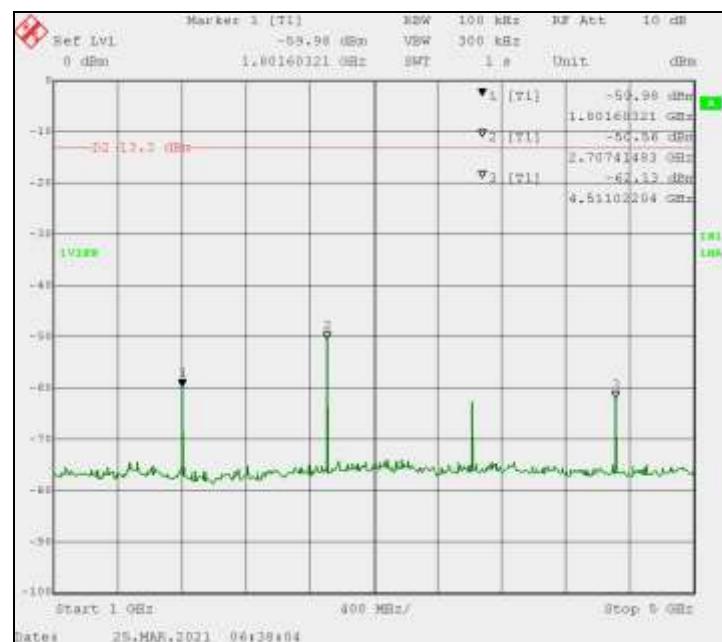


4.4.3 DSS Emissions in Non-restricted Frequency Bands Channel 0 Test Results (03/25/2021)

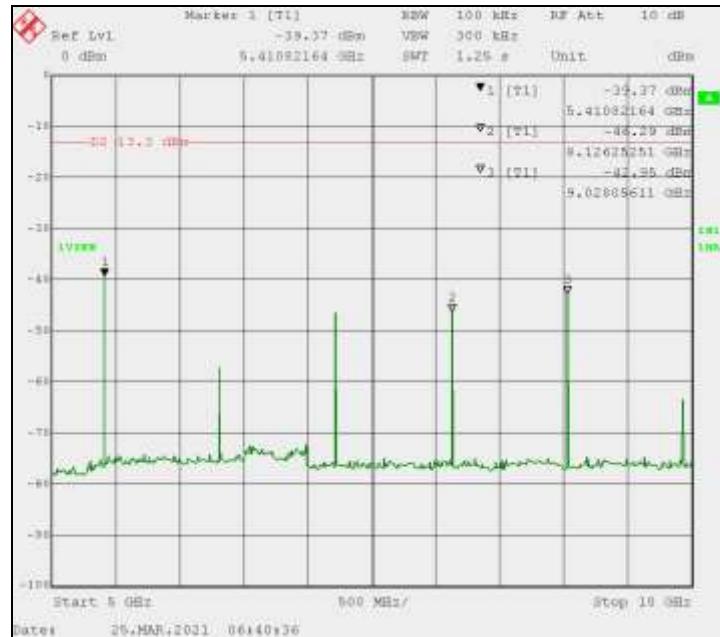
9 kHz – 100 MHz



100 MHz – 500 MHz

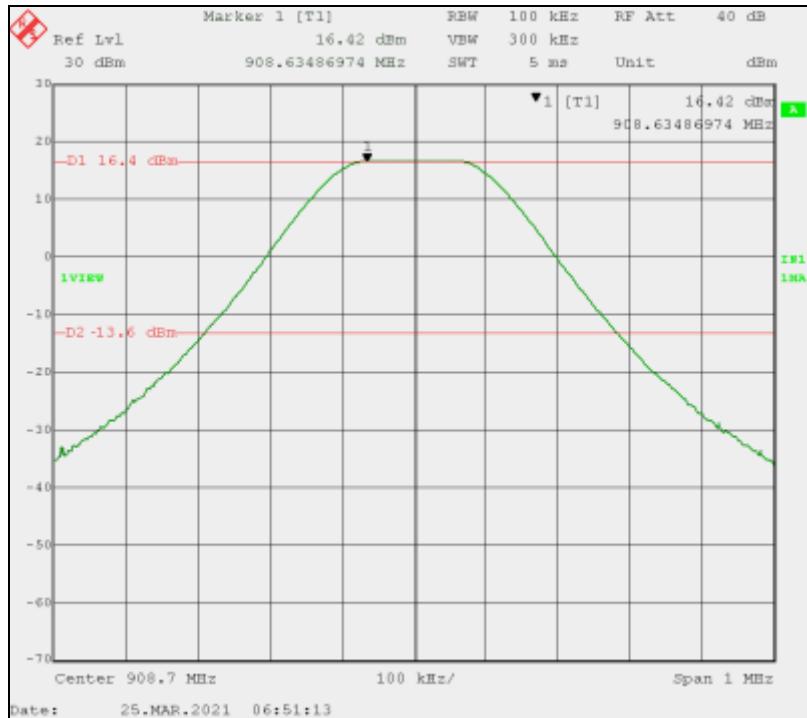


500 MHz – 1000 MHz



1 GHz – 5 GHz

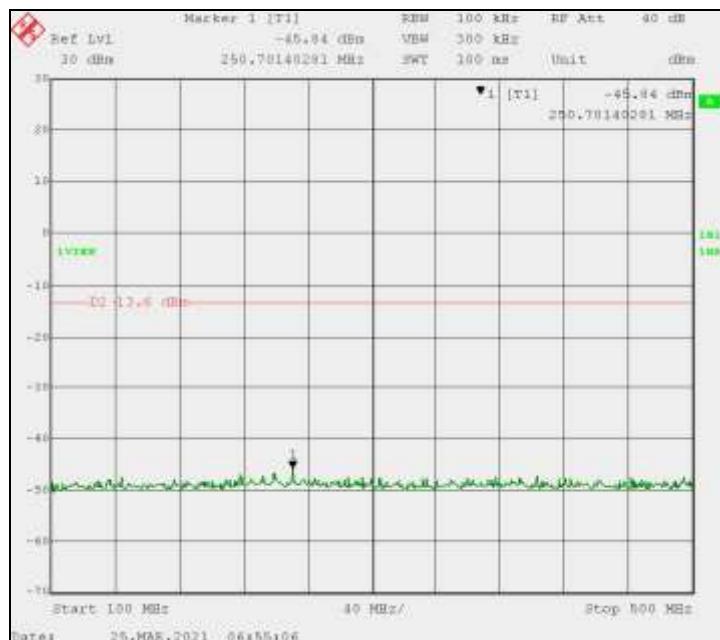
5 GHz – 10 GHz



Highest Emissions: Channel 0

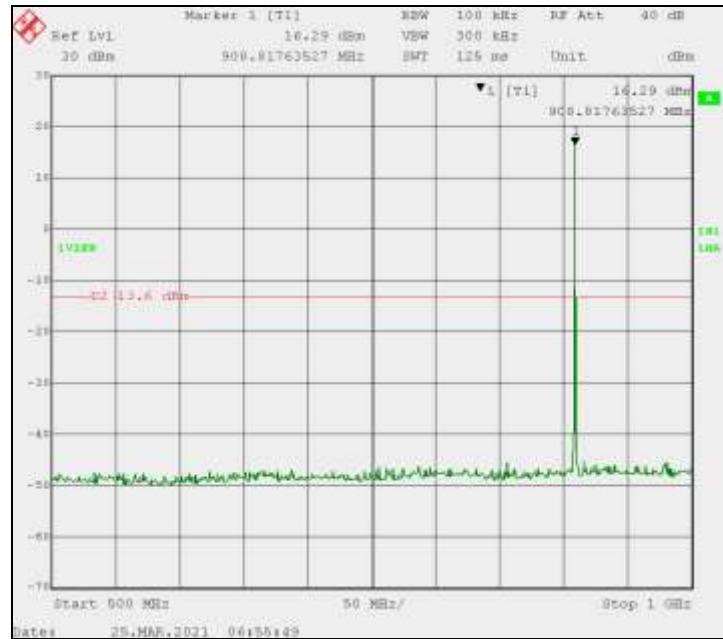
Channel	Frequency	Level	Limit	Margin	Result
#	GHz	dBc	dBc	dB	
0	5.4108	-56.07	-30.00	-26.07	Pass
0	8.1263	-62.99	-30.00	-32.99	Pass
0	9.0281	-59.65	-30.00	-29.65	Pass


4.4.4 DSS Emissions in Non-restricted Frequency Bands Reference Measurement Channel 32 (03/25/2021)

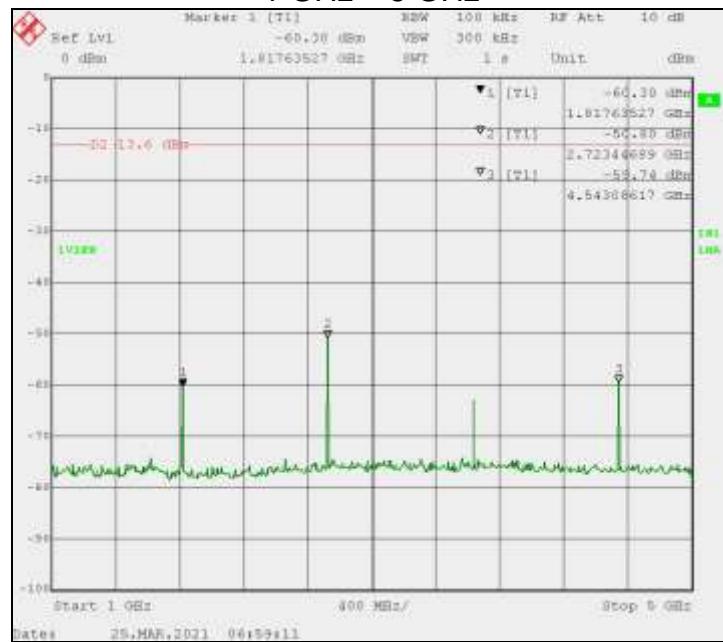

The peak level of 16.4 dBm is the maximum peak output of the Woodstream Model V430 LoRa Radio Rat Snap Trap. The conducted spurious emissions from the antenna port must be 30 dB down from this peak. The resultant limit is therefore -13.6 dBm and is displayed on the plots below.

4.4.5 DSS Emissions in Non-restricted Frequency Bands Channel 32 Test Results (03/25/2021)

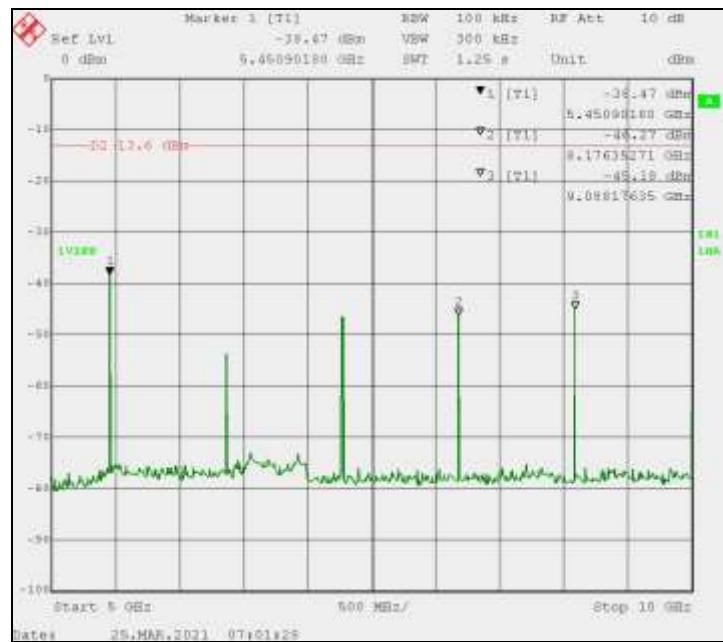
9 kHz – 100 MHz



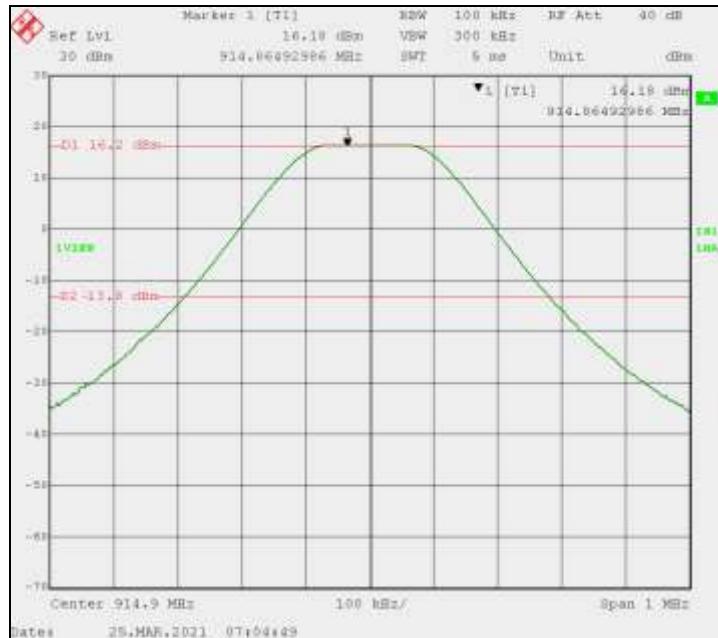
100 MHz – 500 MHz



500 MHz – 1000 MHz

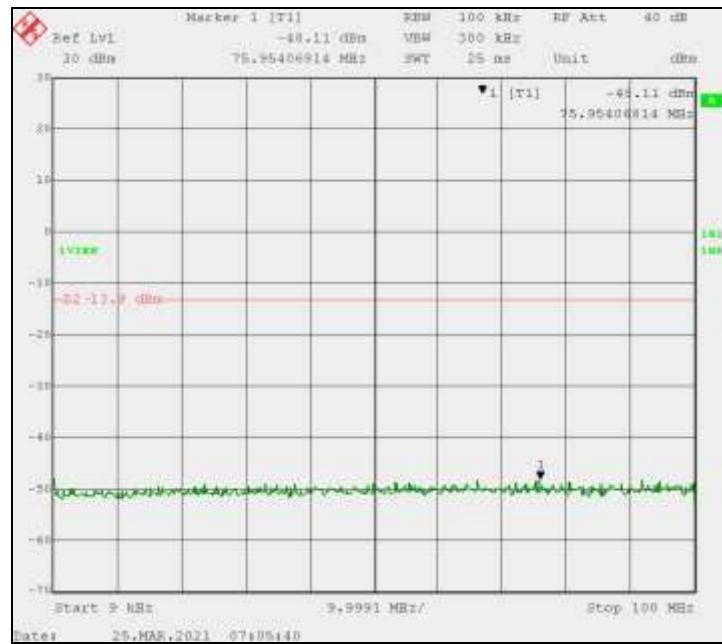


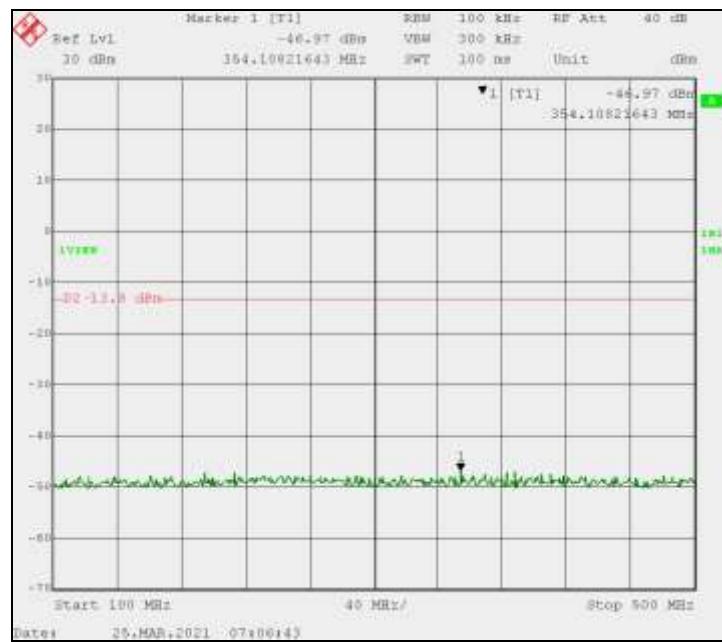
1 GHz – 5 GHz


5 GHz – 10 GHz

Highest Emissions: Channel 32

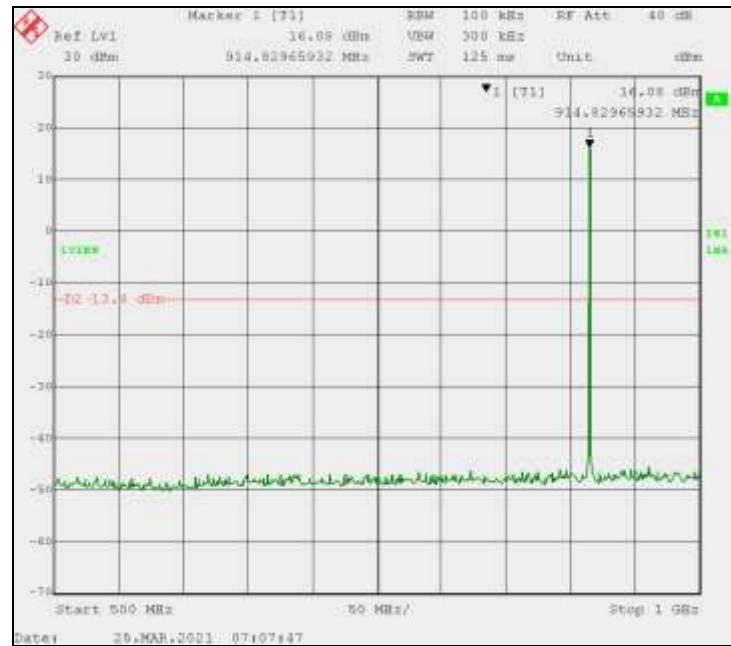
Channel	Frequency	Level	Limit	Margin	Result
#	GHz	dBc	dBc	dB	
32	5.4509	-54.87	-30.00	-24.87	Pass
32	8.1764	-62.67	-30.00	-32.67	Pass
32	9.0882	-61.58	-30.00	-31.58	Pass


4.4.6 DSS Emissions in Non-restricted Frequency Bands Reference Measurement Channel 63 (03/25/2021)

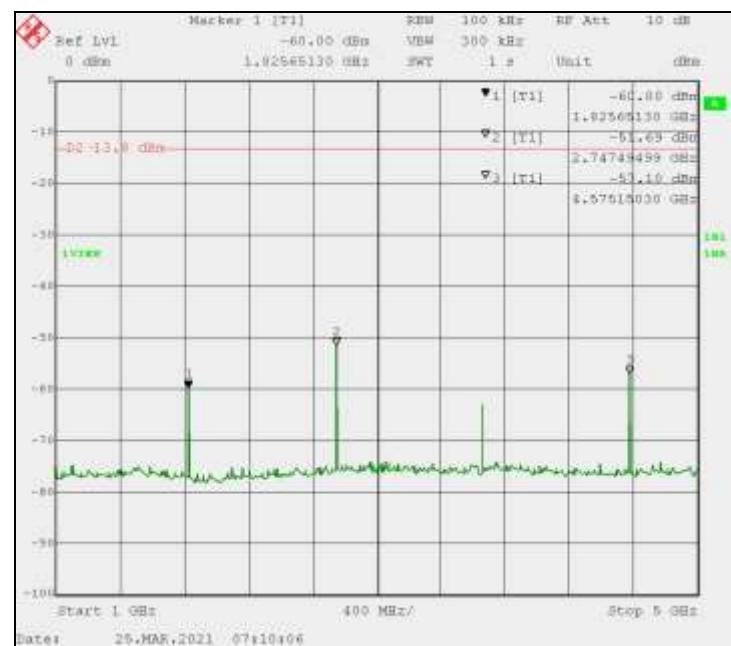

The peak level of 16.2 dBm is the maximum peak output of the Woodstream Model V430 LoRa Radio Rat Snap Trap. The conducted spurious emissions from the antenna port must be 30 dB down from this peak. The resultant limit is therefore -13.8 dBm and is displayed on the plots below.

4.4.7 DSS Emissions in Non-restricted Frequency Bands Channel 63 Test Results (03/25/2021)

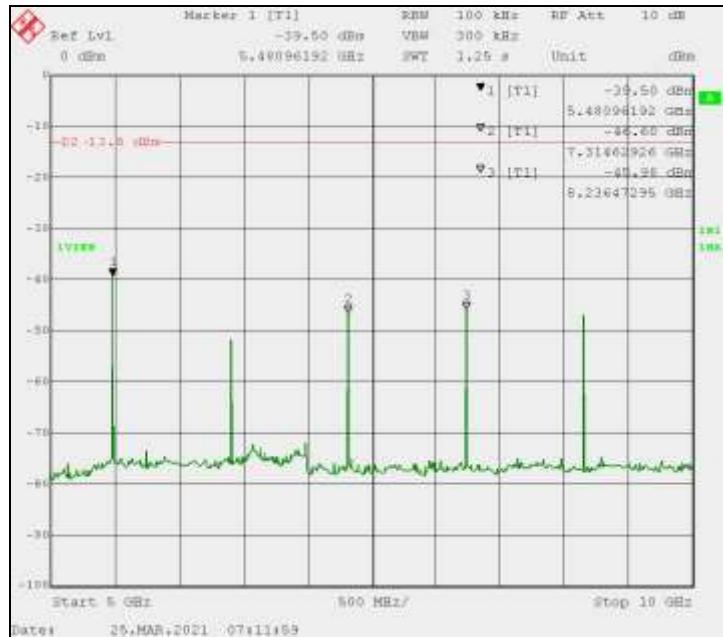
9 kHz – 100 MHz



100 MHz – 500 MHz



500 MHz – 1000 MHz



1 GHz – 5 GHz

5 GHz – 10 GHz

Highest Emissions: Channel 63

Channel	Frequency	Level	Limit	Margin	Result
#	GHz	dBc	dBc	dB	
63	5.4810	-55.70	-30.00	-25.70	Pass
63	7.3146	-62.80	-30.00	-32.80	Pass
63	8.2365	-62.18	-30.00	-32.18	Pass

Test Results: The Antenna Conducted Spurious Emissions of the Woodstream Model V430 LoRa Radio Rat Snap Trap, at Low, Middle and High Frequencies, are below the carrier 30 dBc limit and therefore compliant with the limits specified in FCC Section 15.247(d).

4.5 DSS Radiated Emissions in Non-restricted and Restricted Frequency Bands, 30 MHz - 10 GHz (47 CFR 15.205 & 15.209)(RSS-GEN 8.9 & 8.10)

The emissions from the Woodstream Model V430 LoRa Radio Rat Snap Trap, which fall in the restricted bands of operation and unrestricted bands of operation, detailed in this section, comply with the limits of 15.209. The Woodstream Model V430 LoRa Radio Rat Snap Trap was tested at three frequencies: low (902.3 MHz), middle (908.7 MHz) and high (914.9 MHz). The transmitter was operated at maximum output power (20), 125 kHz bandwidth and Spread Factor of 10.

Measurement of the signals was performed with the EUT on a turntable and a variable height antenna mast at 3 meters distance. The signals residing in restricted bands of operation are indicated in the tables below.

4.5.1 Non-restricted and Restricted Bands Test Facility

OATS

The Open Area Test Site (OATS) is an all-weather facility with a wooden enclosure that contains a ground level 4-foot diameter turntable capable of rotating equipment 360 degrees. The enclosure is free of reflective metallic objects and extraneous electromagnetic signals. This non-metallic enclosure and the 3 and 10 meter test range existing outside the enclosure rest upon a protective insulating material, which in turn covers a flat, metal, continuous ground plane.

Instrumentation for remote control of the antenna mast, turntable, and other equipment are controlled by personnel indoors. The EUT and support peripherals required for EUT operation were placed on a table 80 cm high for tabletop equipment or directly on the turntable surface for floor standing equipment. The test site complies with the requirements of ANSI C63.4 and ANSI C63.10.

SR#1

The Semi-Anechoic Shielded Room (SR#1) is a ferrite and absorber lined chamber which houses a 5-foot diameter turntable capable of rotating equipment 360 degrees and antenna mast for Horizontal and Vertical polarity measurements. The enclosure is free of reflective metallic objects and extraneous electromagnetic signals. This 3 meter shielded enclosure has a raised computer floor with metal tile bottoms providing a continuous ground plane.

Instrumentation for remote control of the antenna mast, turntable, and other equipment are controlled by personnel outside the chamber. The EUT and support peripherals required for EUT operation were placed on a table 80 cm high for tabletop equipment or directly on the turntable surface for floor standing equipment.

The chamber complies with the requirements of ANSI C63.4 and ANSI C63.10.

4.5.2 Non-restricted and Restricted Bands Radiated Emissions Test Procedure

Radiated Emissions 30 MHz – 40 GHz

The EMI receiver was set to quasi-peak mode for frequencies from 30MHz to 1GHz and the appropriate CISPR bandwidths were employed. The receiver was set to average mode for frequencies above 1GHz with the appropriate CISPR bandwidths were employed.

Three orthogonal positions of the EUT were evaluated for maximum emissions. The position of the EUT, with the base of the trap placed on the horizontal surface of the 80-cm table, was determined to be the axis that produced the highest emissions.

Significant emissions found during the preliminary scans were maximized by rotating the turntable and varying the antenna height. Both horizontal and vertical antenna polarities were also investigated for suspect emissions. The signals are maximized and measured using the in house generated RADE or off the shelf TILE software. The support equipment and test item(s) were powered off in turn to determine the source of the emissions where appropriate.

Field strengths were calculated as follows:

Field Strength (dB μ V/m) = Meter Reading (dB μ V) + Antenna Factor (dB/m) + Cable Loss (dB) – Amplifier Gain (dB)

Measurements were made with the Woodstream Model V430 LoRa Radio Rat Snap Trap transmitting at low (Channel 0), middle (Channel 32) and high (Channel 63). LoRa modulation with 125 kHz bandwidth was applied with the spread factor = 10. The following tables are the highest emissions recorded and summarized. Restricted band signals are marked with an asterisk. Other spurious emissions are shown to demonstrate compliance of the EUT enclosure to 15.209 limits.

4.5.3 DSS Emissions in Non-restricted and Restricted Bands of Operation, 30 MHz – 1000 MHz Test Results (03/30/2021)

Low Channel 0 (902.3 MHz)

Freq	PkLevel	Quasi-Peak	Pol	Azimuth	Hght	C/F	Limit	Margin	Result
MHz	dBuV/m	dBuV/m	H or V	degrees	cm	dB	dBuV/m	dB	
119.57*	13.41	12.27	V	202	239	-6.72	43.52	-31.25	Pass
131.898*	14.44	12.09	H	007	104	-6.86	43.52	-31.43	Pass
285.826	14.70	13.32	V	345	181	-5.35	46.02	-32.70	Pass
327.289*	16.23	13.86	H	286	111	-4.81	46.02	-32.16	Pass
537.509	21.08	18.64	H	216	171	-1.49	46.02	-27.38	Pass
583.028	21.07	19.68	V	026	116	-0.71	46.02	-26.34	Pass
600.180	21.68	19.28	H	053	131	-0.64	46.02	-26.74	Pass
736.094	26.24	24.80	V	214	255	1.61	46.02	-21.22	Pass
790.490	25.06	22.38	H	279	104	2.52	46.02	-23.64	Pass
809.576	23.20	22.82	V	258	193	2.97	46.02	-23.20	Pass
966.271*	26.07	24.20	V	025	188	4.72	53.98	-29.78	Pass
969.143*	27.02	24.47	H	354	199	4.80	53.98	-29.51	Pass

*Restricted Band Signal

Mid Channel 32 (908.7 MHz)

Freq	PkLevel	Quasi-Peak	Pol	Azimuth	Hght	C/F	Limit	Margin	Result
MHz	dBuV/m	dBuV/m	H or V	degrees	cm	dB	dBuV/m	dB	
125.133*	12.94	12.24	H	095	135	-6.63	43.52	-31.28	Pass
145.204	12.43	11.55	V	112	244	-7.27	43.52	-31.97	Pass
197.563	13.46	11.31	V	155	147	-7.36	43.52	-32.21	Pass
288.005	18.97	13.63	H	323	141	-5.35	46.02	-32.39	Pass
523.841	19.81	18.47	H	292	240	-1.49	46.02	-27.55	Pass
634.463	22.44	20.28	V	114	205	0.13	46.02	-25.74	Pass
640.625	22.17	20.30	H	011	220	0.24	46.02	-25.72	Pass
742.556	24.16	22.03	V	185	245	1.69	46.02	-23.99	Pass
862.296	24.03	23.27	H	331	247	3.37	46.02	-22.75	Pass
864.517	24.66	23.32	V	317	225	3.42	46.02	-22.70	Pass
964.162*	25.93	24.43	H	324	101	4.72	53.98	-29.55	Pass
977.204*	25.99	24.17	V	197	240	4.85	53.98	-29.81	Pass

*Restricted Band Signal

High Channel 63 (914.9 MHz)

Freq	PkLevel	Quasi-Peak	Pol	Azimuth	Hght	C/F	Limit	Margin	Result
MHz	dBuV/m	dBuV/m	H or V	degrees	cm	dB	dBuV/m	dB	
122.930	14.82	12.23	V	191	161	-6.65	43.52	-31.29	Pass
155.662	13.97	11.67	H	063	240	-7.15	43.52	-31.85	Pass
189.140	11.83	10.35	V	021	255	-8.43	43.52	-33.17	Pass
287.987	24.86	22.70	H	185	135	-5.35	46.02	-23.32	Pass
516.809	18.75	18.38	V	057	247	-1.63	46.02	-27.64	Pass
517.664	19.99	18.46	H	165	110	-1.61	46.02	-27.56	Pass
636.358	21.37	20.32	H	142	240	0.24	46.02	-25.70	Pass
669.752	20.45	20.02	V	114	168	0.42	46.02	-26.00	Pass
809.592	25.71	22.77	V	171	235	2.97	46.02	-23.25	Pass
836.572	25.48	22.66	H	046	135	3.23	46.02	-23.36	Pass
951.169	26.95	24.26	H	180	205	4.51	46.02	-21.76	Pass
966.837*	25.59	24.31	V	057	230	4.72	53.98	-29.67	Pass

*Restricted Band Signal

Receive Mode

Freq	PkLevel	Quasi-Peak	Pol	Azimuth	Hght	C/F	Limit	Margin	Result
MHz	dBuV/m	dBuV/m	H or V	degrees	cm	dB	dBuV/m	dB	
31.182	19.81	18.81	V	325	127	-1.14	40.00	-21.19	Pass
31.728	20.19	18.32	H	359	188	-1.63	40.00	-21.68	Pass
120.883*	15.56	13.19	H	104	173	-6.70	43.52	-30.33	Pass
157.550	14.40	12.46	H	091	178	-7.18	43.52	-31.06	Pass
167.240	14.15	11.97	H	174	230	-7.70	43.52	-31.55	Pass
196.878	11.85	12.12	H	017	208	-7.53	43.52	-31.40	Pass
256.000*	17.94	17.45	H	171	141	-8.52	46.02	-28.57	Pass
351.985	15.91	16.52	H	049	130	-7.86	46.02	-29.50	Pass
482.351	15.50	13.14	V	244	142	-7.73	46.02	-32.88	Pass
514.932	17.18	14.01	H	254	100	-6.83	46.02	-32.01	Pass
568.709	15.67	14.11	V	175	141	-6.25	46.02	-31.91	Pass
704.566	18.76	15.23	V	254	156	-5.46	46.02	-30.79	Pass
712.066	17.54	15.14	V	253	214	-5.41	46.02	-30.88	Pass
784.840	17.05	15.50	H	225	208	-4.89	46.02	-30.52	Pass
797.563	17.63	15.88	V	275	216	-4.86	46.02	-30.14	Pass
912.785	17.42	16.53	V	199	214	-3.96	46.02	-29.49	Pass

*Restricted Band Signal

Test Results: The Woodstream Model V430 LoRa Radio Rat Snap Trap, operating in DSS mode and receive mode, comply with the requirements of 47 CFR Part 15.205 and RSS-Gen Section 8.10 for restricted bands of operation with a margin of 21.19 dB.

4.5.4 DSS Emissions in Non-restricted and Restricted Bands of Operation, 1 – 10 GHz Test Results (03/25/2021 - 04/07/2021)

Low Channel 0 (902.3 MHz)

Freq	PkLevel	AVG Level	Pol	Azimuth	Hght	C/F	15.35(b) Peak Limit	Peak Margin	15.209 AVG Limit	AVG Margin	Result
GHz	dBuV/m	dBuV/m	H or V	degrees	cm	dB	dBuV/m	dB	dBuV/m	dB	
1.8046	45.45	43.72	V	193	100	-8.18	73.98	-26.82	53.98	-10.26	Pass
1.8047	44.91	43.23	H	331	109	-8.17	73.98	-27.61	53.98	-10.75	Pass
2.4103	46.23	22.91	V	037	171	-5.51	73.98	-40.69	53.98	-31.07	Pass
2.4106	34.80	23.35	H	001	207	-5.51	73.98	-41.03	53.98	-30.63	Pass
2.7067*	45.54	42.92	H	304	242	-4.54	73.98	-29.13	53.98	-11.06	Pass
2.7068*	51.36	49.46	V	247	106	-4.54	73.98	-24.52	53.98	-4.52	Pass
6.7929	44.87	33.95	V	334	156	3.63	73.98	-30.29	53.98	-20.03	Pass
7.8741	46.24	36.26	H	347	109	4.98	73.98	-29.62	53.98	-17.72	Pass
8.2327*	46.95	37.50	V	303	151	5.56	73.98	-27.23	53.98	-16.48	Pass
8.5559	47.63	37.84	H	132	129	6.20	73.98	-27.29	53.98	-16.14	Pass

*Restricted Band Signal

Mid Channel 32 (908.7 MHz)

Freq	PkLevel	AVG Level	Pol	Azimuth	Hght	C/F	15.35(b) Peak Limit	Peak Margin	15.209 AVG Limit	AVG Margin	Result
GHz	dBuV/m	dBuV/m	H or V	degrees	cm	dB	dBuV/m	dB	dBuV/m	dB	
1.8173	47.16	44.86	V	242	199	-8.04	73.98	-29.88	53.98	-9.12	Pass
1.8175	46.37	43.47	H	302	262	-8.03	73.98	-41.38	53.98	-10.51	Pass
2.4098	33.29	22.74	H	042	229	-5.51	73.98	-40.62	53.98	-31.24	Pass
2.4102	32.95	23.53	V	284	138	-5.51	73.98	-23.15	53.98	-30.45	Pass
2.7260*	44.85	42.50	H	312	245	-4.50	73.98	-26.45	53.98	-11.48	Pass
2.7260*	49.46	47.87	V	241	101	-4.50	73.98	-30.87	53.98	-6.11	Pass
6.7378	43.69	33.54	V	239	104	3.58	73.98	-27.78	53.98	-20.44	Pass
6.7540	44.36	34.21	H	164	150	3.61	73.98	-27.48	53.98	-19.77	Pass
8.1003*	46.75	37.42	H	046	146	5.43	73.98	-26.69	53.98	-16.56	Pass
8.1165*	46.69	37.43	V	065	151	5.44	73.98	-73.98	53.98	-16.55	Pass

*Restricted Band Signal

High Channel 63 (914.9 MHz)

Freq	PkLevel	AVG Level	Pol	Azimuth	Hght	C/F	15.35(b) Peak Limit	Peak Margin	15.209 AVG Limit	AVG Margin	Result
GHz	dBuV/m	dBuV/m	H or V	degrees	cm	dB	dBuV/m	dB	dBuV/m	dB	
1.8299	44.08	41.96	H	316	116	-7.90	73.98	-29.90	53.98	-12.02	Pass
1.8297	44.10	42.73	V	176	104	-7.90	73.98	-29.88	53.98	-11.25	Pass
2.4102	32.60	23.22	V	166	127	-5.51	73.98	-41.38	53.98	-30.76	Pass
2.4135	33.36	23.02	H	033	227	-5.51	73.98	-40.62	53.98	-30.96	Pass
2.7446*	50.83	48.43	V	233	115	-4.47	73.98	-23.15	53.98	-5.55	Pass
2.7448*	47.53	45.83	H	278	239	-4.47	73.98	-26.45	53.98	-8.15	Pass
6.6428	43.11	33.67	V	060	160	3.24	73.98	-30.87	53.98	-20.31	Pass
7.9742	46.20	37.06	H	274	110	5.26	73.98	-27.78	53.98	-16.92	Pass
8.2538*	46.50	37.23	V	148	207	5.59	73.98	-27.48	53.98	-16.75	Pass
9.5387	47.29	38.64	H	318	105	7.59	73.98	-26.69	53.98	-15.34	Pass

*Restricted Band Signal



Receive Mode

Freq	PkLevel	Quasi-Peak	Pol	Azimuth	Hght	C/F	Limit	Margin	Result
MHz	dBuV/m	dBuV/m	H or V	degrees	cm	dB	dBuV/m	dB	
31.182	19.81	18.81	V	325	127	-1.14	40.00	-21.19	Pass
31.728	20.19	18.32	H	359	188	-1.63	40.00	-21.68	Pass
120.883*	15.56	13.19	H	104	173	-6.70	43.52	-30.33	Pass
157.550	14.40	12.46	H	091	178	-7.18	43.52	-31.06	Pass
167.240	14.15	11.97	H	174	230	-7.70	43.52	-31.55	Pass
196.878	11.85	12.12	H	017	208	-7.53	43.52	-31.40	Pass
256.000*	17.94	17.45	H	171	141	-8.52	46.02	-28.57	Pass
351.985	15.91	16.52	H	049	130	-7.86	46.02	-29.50	Pass
482.351	15.50	13.14	V	244	142	-7.73	46.02	-32.88	Pass
514.932	17.18	14.01	H	254	100	-6.83	46.02	-32.01	Pass
568.709	15.67	14.11	V	175	141	-6.25	46.02	-31.91	Pass
704.566	18.76	15.23	V	254	156	-5.46	46.02	-30.79	Pass
712.066	17.54	15.14	V	253	214	-5.41	46.02	-30.88	Pass
784.840	17.05	15.50	H	225	208	-4.89	46.02	-30.52	Pass
797.563	17.63	15.88	V	275	216	-4.86	46.02	-30.14	Pass
912.785	17.42	16.53	V	199	214	-3.96	46.02	-29.49	Pass

*Restricted Band Signal

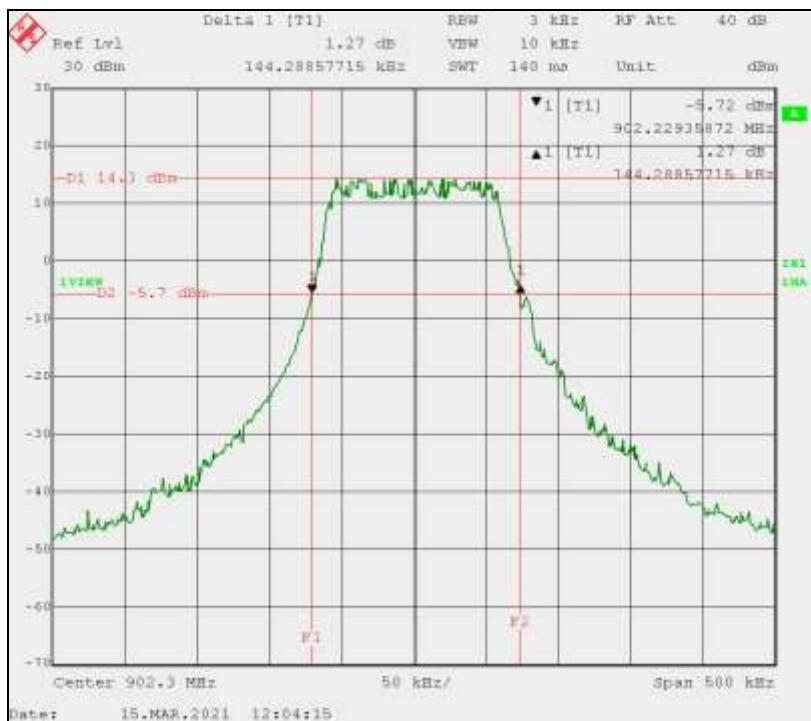
Test Results: The Woodstream Model V430 LoRa Radio Rat Snap Trap, operating in DSS and receive modes, comply with the requirements of 47 CFR Part 15.205 and RSS-Gen Section 8.10 with a margin of 4.52 dB.

4.6 DSS 20 dB Occupied Bandwidth (FCC Section 15.247(a)(2) RSS-247 5.2(a))

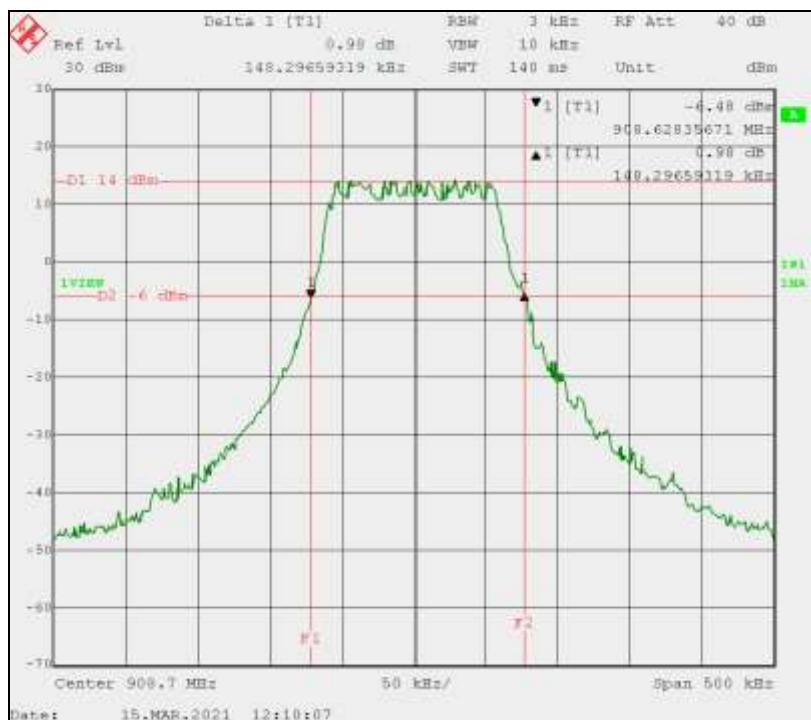
4.6.1 20 dB Occupied Bandwidth – Test Procedure

The maximum DSS (20 dB) bandwidth, specified in FCC Section 15.247(a)(1)(i) was measured using a Spectrum Analyzer with 3 kHz resolution bandwidth and 10 kHz video bandwidth. Transmission frequencies at low (Channel 0), middle (Channel 32) and high (Channel 63) were measured with LoRa modulation with a bandwidth of 125 kHz and spread factors of 7 and 10. The test procedure of ANSI C63.10, Section 11.8, Option 1, was used.

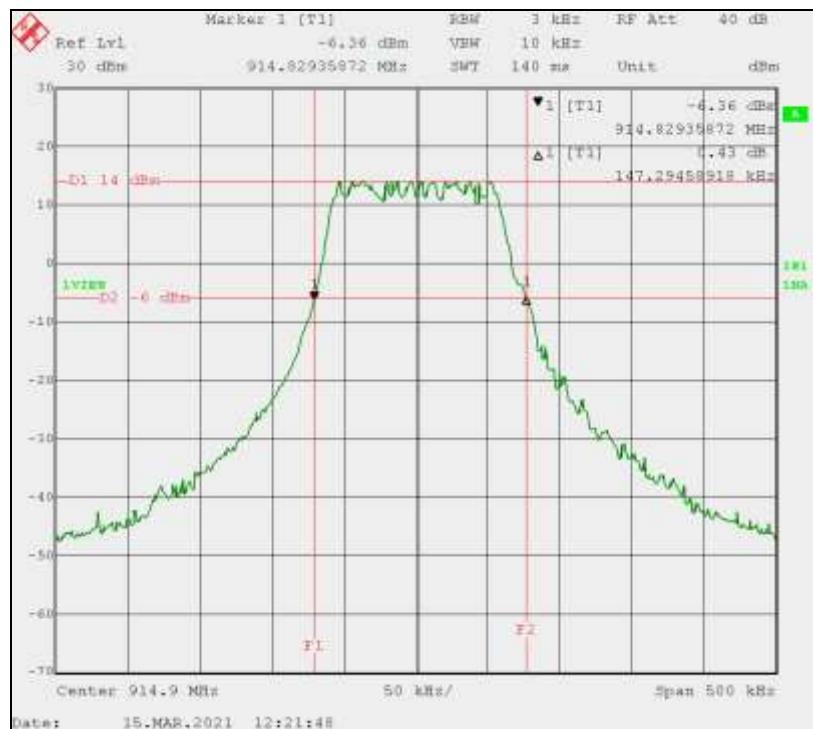
Spectrum Analyzer Settings:


Span	500 kHz
RBW	3 kHz
VBW	10 kHz
Sweep Time	140 ms (Auto)

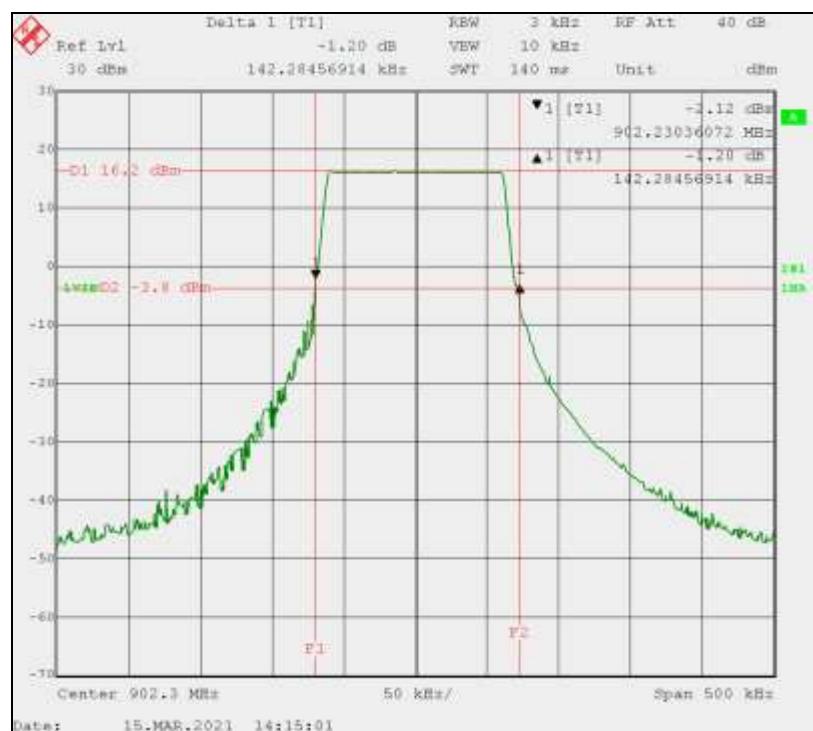
4.6.2 DSS (20 dB) Occupied Bandwidth Test Results (03/15/2021)


Channel	Spread Factor	Frequency	Measured 20 dB Bandwidth	RSS-247 5.1.3, FCC 15.247 (1)(a)(i) 20 dB BW Limit	Margin	Result
#		MHz	kHz	kHz	kHz	
0	7	902.3	144.29	500	-355.71	Pass
32		908.7	148.30		-351.70	Pass
63		914.9	147.29		-352.71	Pass
0	10	902.3	142.28		-357.72	Pass
32		908.7	142.28		-357.72	Pass
63		914.9	140.28		-359.72	Pass

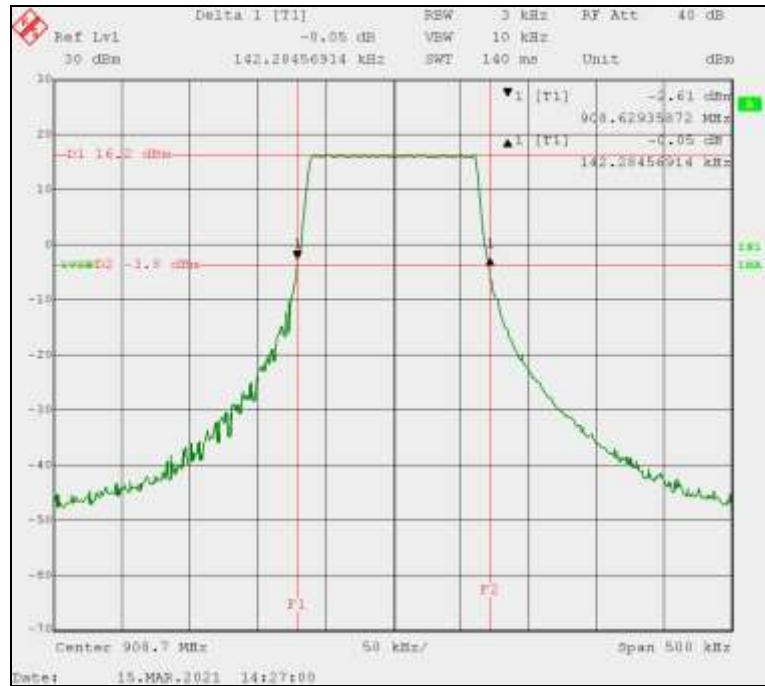
Channel 0: 902.30 MHz SF=7



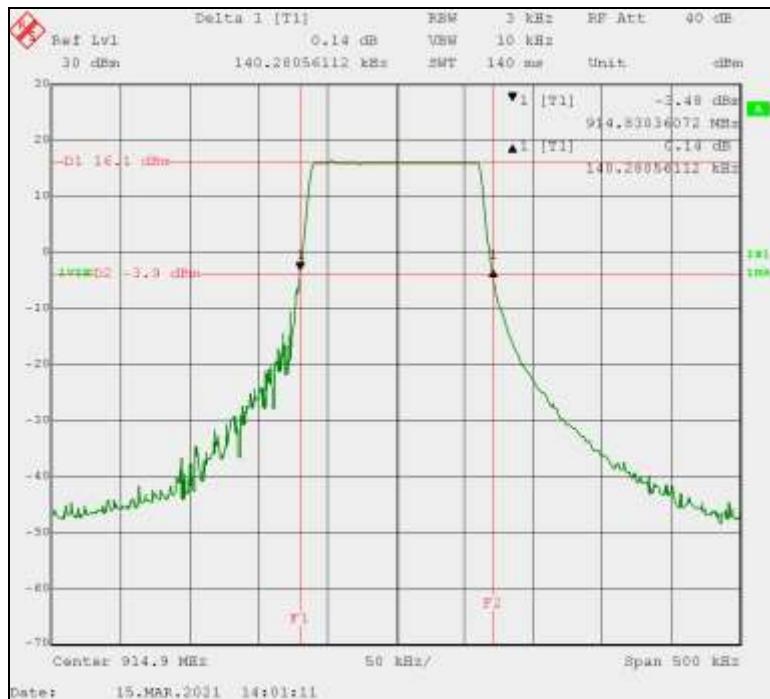
Channel 32: 908.70 MHz SF=7



Channel 63: 914.90 MHz SF=7



Channel 0: 902.30 MHz SF=10



Channel 32: 908.70 MHz SF=10

Channel 63: 914.90 MHz SF=10

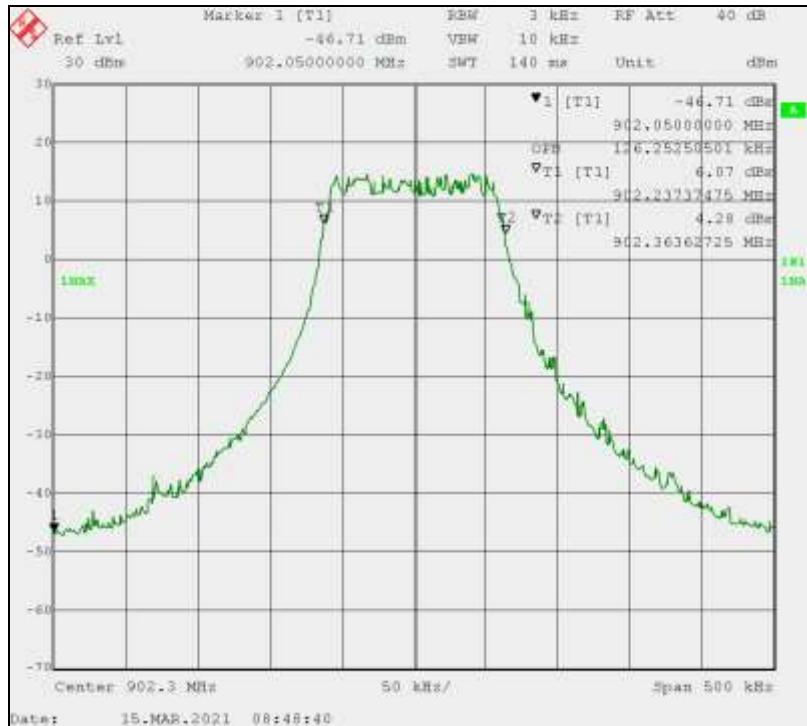
Test Results: The DSS, 20 dB, Occupied Bandwidth measurements for the Woodstream Model V430 LoRa Radio Rat Snap Trap were measured and are compliant to FCC and ISED requirements.

4.7 DSS 99% Occupied Bandwidth RSS-Gen 6.7

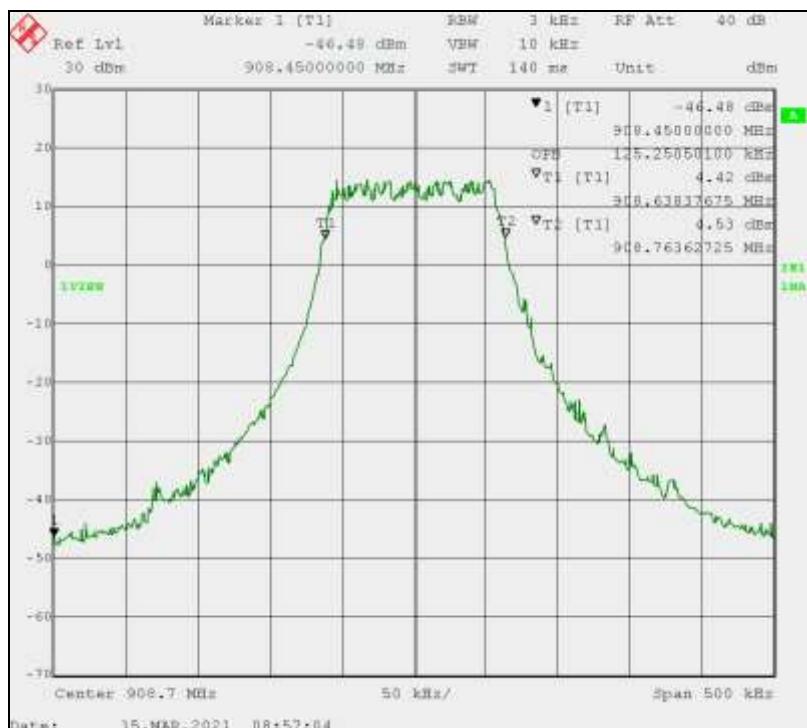
4.7.1 DSS 99% Occupied Bandwidth – Test Procedure

The 99% Occupied Bandwidth measurement per RSS-Gen Section 6.7 was measured using a Spectrum Analyzer with 3 kHz resolution bandwidth and 10 kHz video bandwidth. Transmission frequencies at low (Channel 0), middle (Channel 32) and high (Channel 63) were measured with LoRa modulation, 125 kHz bandwidth and spread factors of 7 and 10. The test procedure of ANSI C63.10, Section 6.9.3 was used.

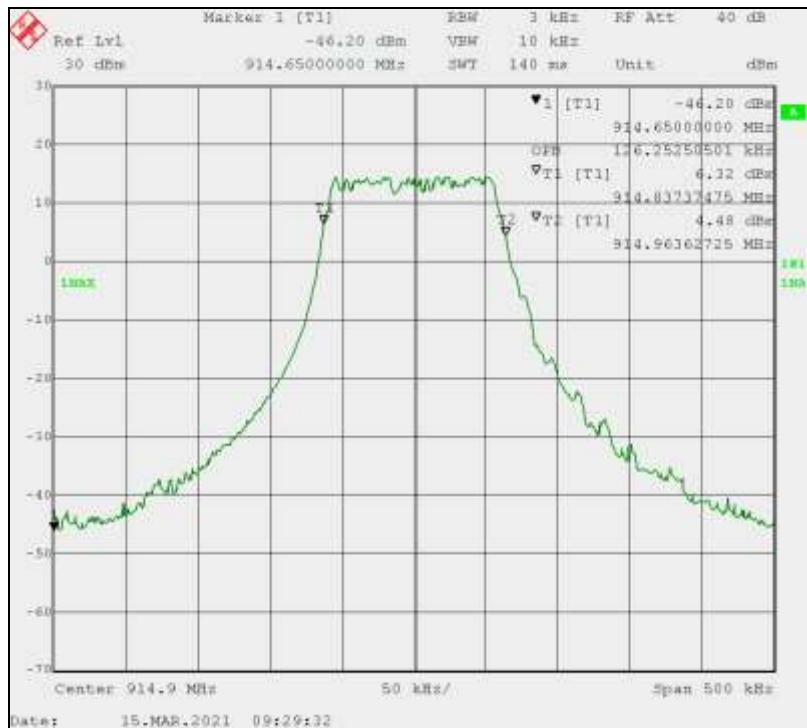
Spectrum Analyzer Settings:


Span	500 kHz
RBW	3 kHz
VBW	10 kHz
Sweep Time	140 ms (Auto)

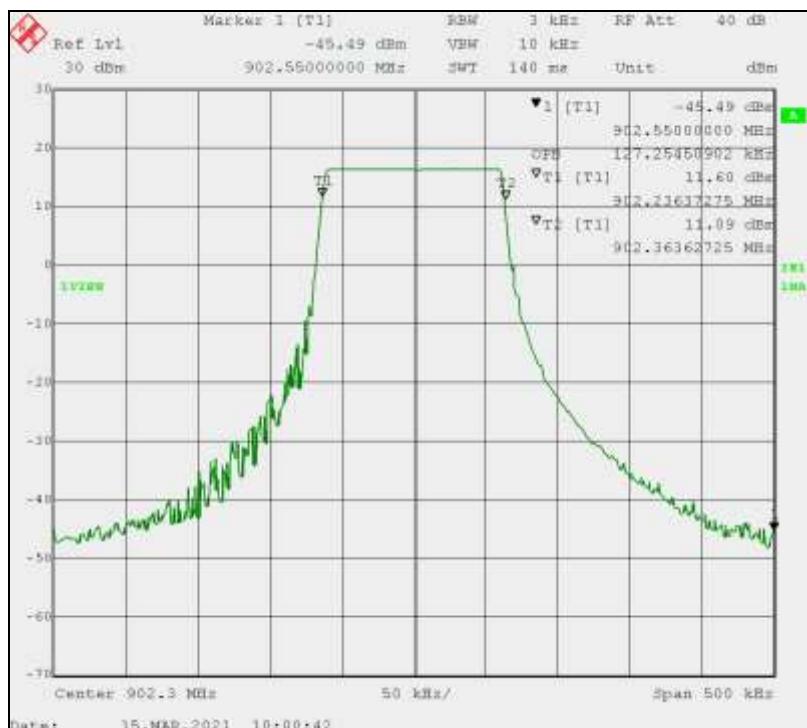
4.7.2 DSS 99% Occupied Bandwidth Test Results (03/15/2021)


Channel	Spread Factor	Modulation	Frequency (MHz)	99% OBW (kHz)
0	7	LoRa	902.3	126.25
32	7		908.7	125.25
63	7		914.9	126.25
0	10	LoRa	902.3	127.25
32	10		908.7	127.25
63	10		914.9	127.25

Channel 0: 902.30 MHz SF=7

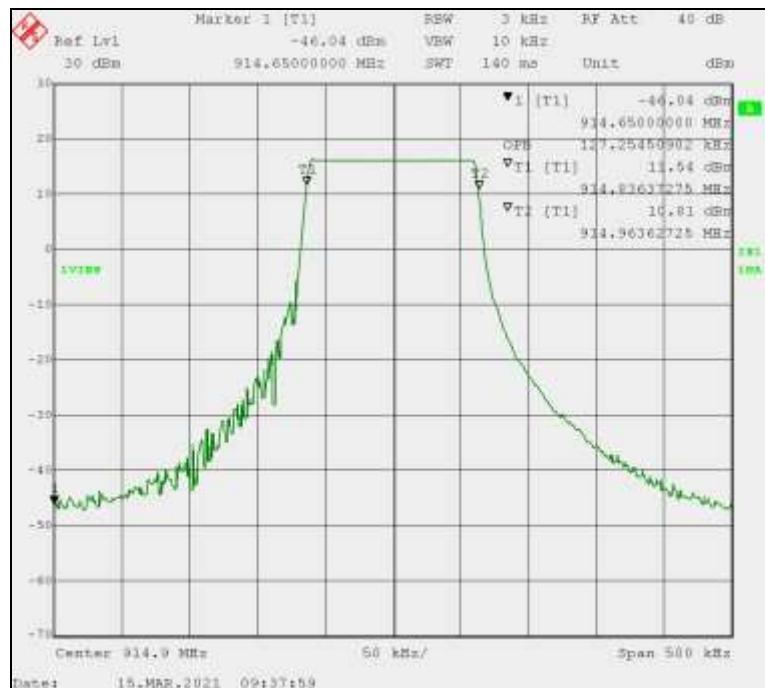


Channel 32: 908.70 MHz SF=7



Channel 63: 914.90 MHz SF=7

Channel 0: 902.30 MHz SF=10



Channel 32: 908.70 MHz SF=10

Channel 63: 914.90 MHz SF=10

Test Results: The DSS 99% Occupied Bandwidth measurements for the Woodstream Model V430 LoRa Radio Rat Snap Trap were measured for RSS-Gen Section 6.7 requirement.

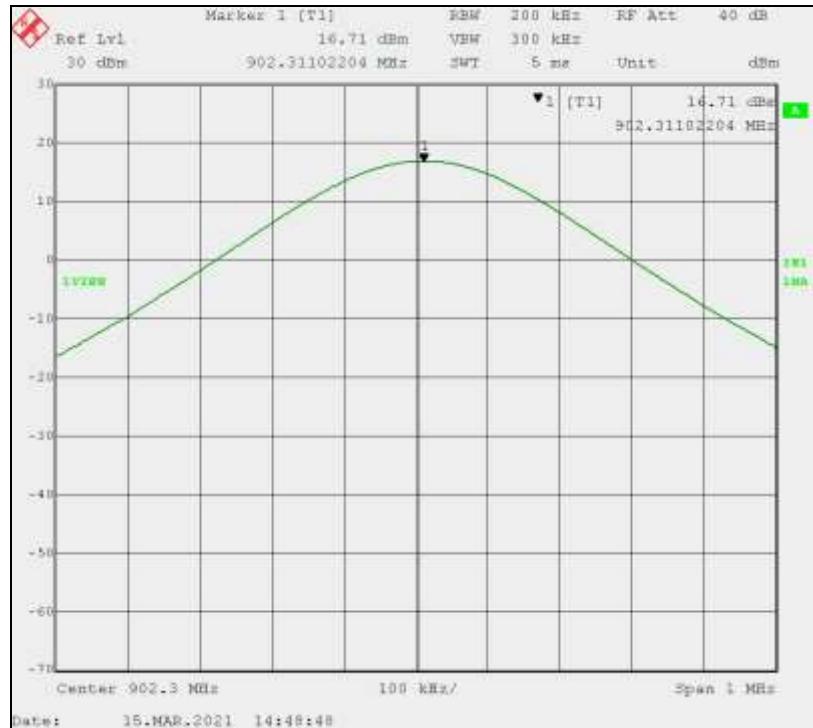
4.8 Maximum Conducted Output Power and EIRP (FCC Part 15.247(b)(3), RSS-247 Section 5.4(d))

4.8.1 Maximum Peak Conducted Output Power Test Procedure

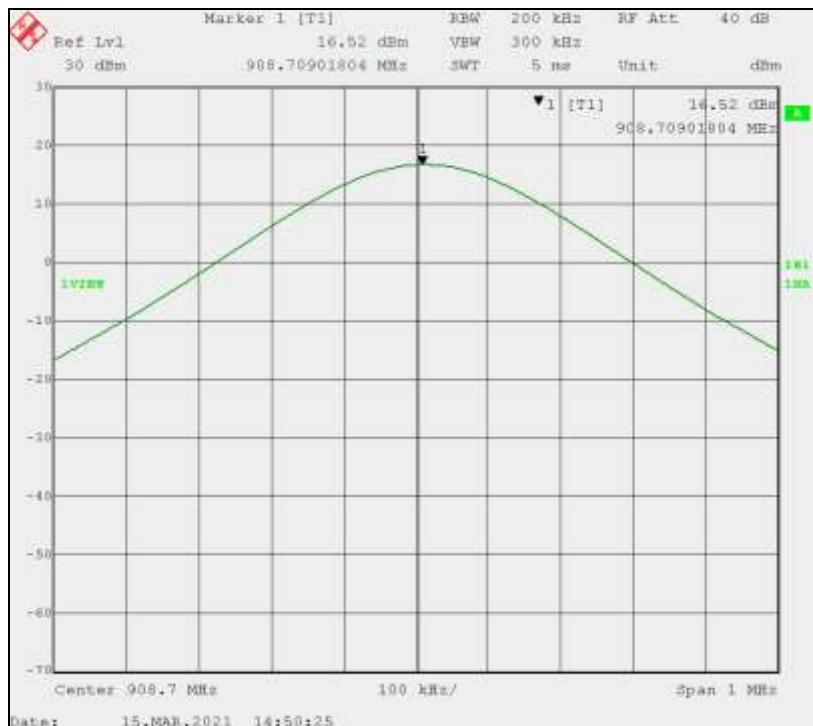
A conducted power measurement of the output frequency was measured according to ANSI C63.10, Section 11.9.1.1. Spectrum Analyzer Resolution Bandwidth and Frequency Span were based upon the Operating Bandwidth (OBW) measured in the previous section. Transmission frequencies at low (Channel 0), middle (Channel 32) and high (Channel 63) were measured without modulation and with LoRa modulation, bandwidth of 125 kHz and spread factors of 7 and 10. Measurements were made with a peak detector.

Spectrum Analyzer Settings using Peak Detection:

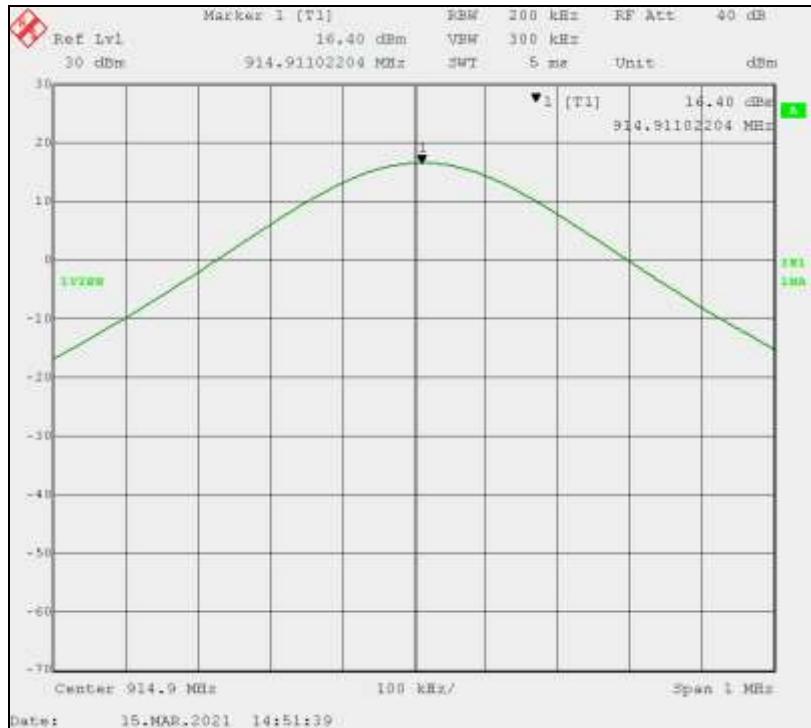
Span	1 MHz
RBW	200 kHz
VBW	300 kHz
Sweep Time	5 ms


4.8.1.1 Maximum Peak Conducted Output Power Test Results (03/15/2021)

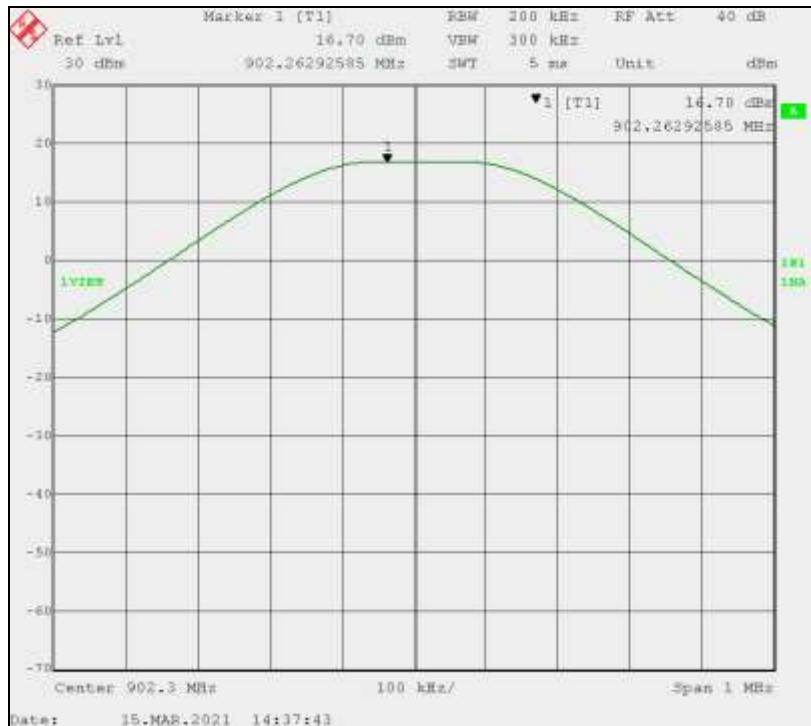
Channel	Modulation	Frequency (MHz)	Measured Level (dBm)	Cable # 962 Loss (dB)	Total		Limit		Margin	
					dBm	Watts	dBm	Watts	dBm	Watts
0	Unmodulated	902.3	16.71	0.26	16.97	0.050	30.00	1.000	-13.03	-0.950
32		908.7	16.52	0.26	16.78	0.048	30.00	1.000	-13.22	-0.952
63		914.9	16.40	0.26	16.66	0.046	30.00	1.000	-13.34	-0.954
0	LoRa 125 kHz BW SF=7	902.3	16.70	0.26	16.96	0.050	30.00	1.000	-13.04	-0.950
32		908.7	16.52	0.26	16.78	0.048	30.00	1.000	-13.22	-0.952
63		914.9	16.39	0.26	16.65	0.046	30.00	1.000	-13.35	-0.954
0	LoRa 125 kHz BW SF=10	902.3	16.69	0.26	16.95	0.050	30.00	1.000	-13.05	-0.950
32		908.7	16.52	0.26	16.78	0.048	30.00	1.000	-13.22	-0.952
63		914.9	16.40	0.26	16.66	0.046	30.00	1.000	-13.34	-0.954


The following pages display the spectrum analyzer screens of the peak output power measurements.

Channel 0: 902.30 MHz No Modulation



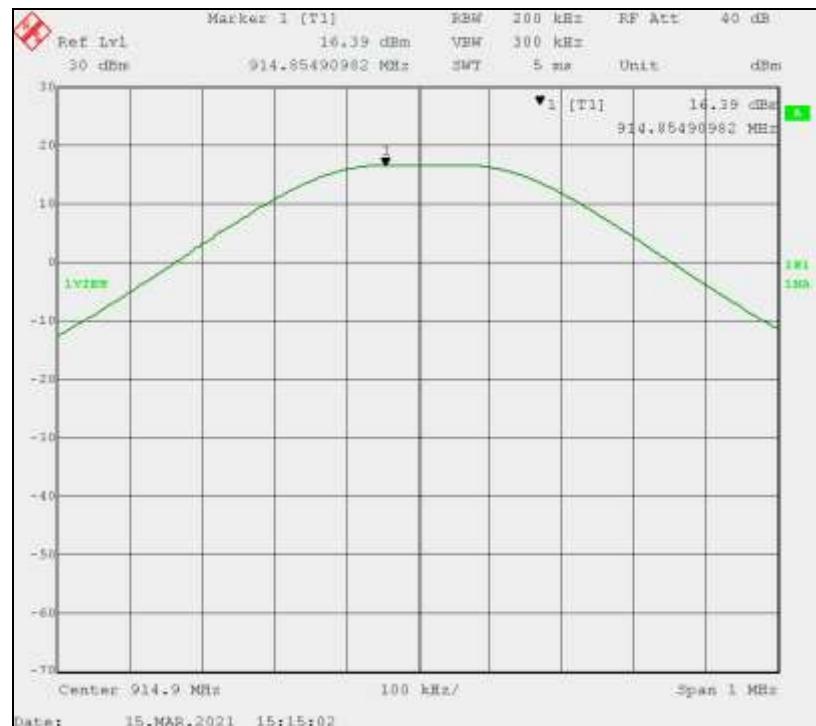
Channel 32: 908.70 MHz No Modulation



Channel 63: 914.9 MHz No Modulation

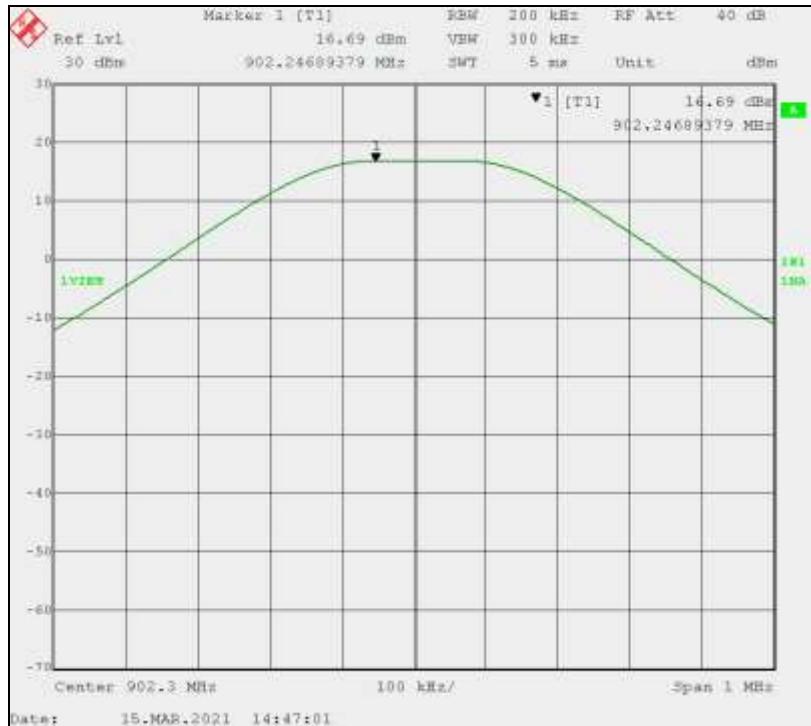


Channel 0: 902.30 MHz LoRa Modulation, SF = 7

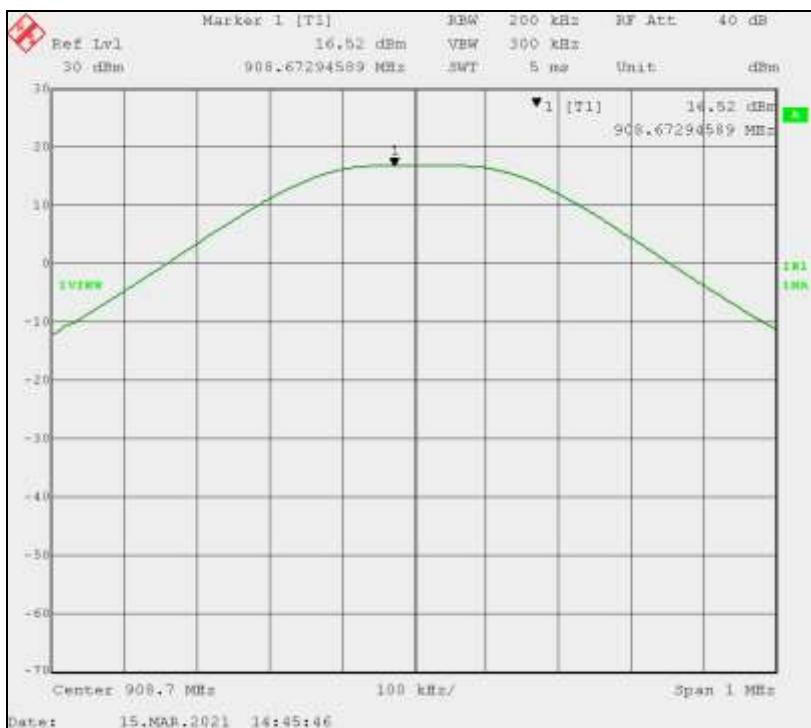




Channel 32: 908.70 MHz LoRa Modulation, SF = 7

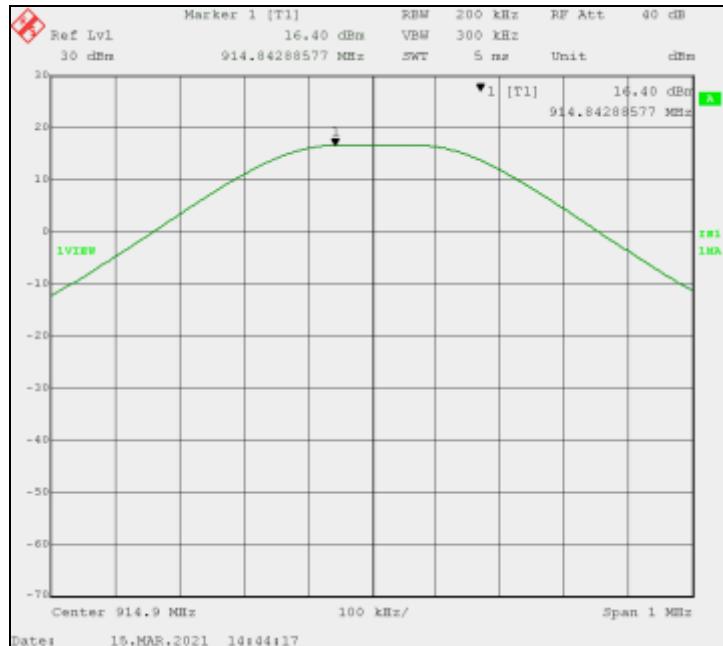


Channel 63: 914.9 MHz LoRa Modulation, SF = 7





Channel 0: 902.30 MHz LoRa Modulation, SF = 10



Channel 32: 908.70 MHz LoRa Modulation, SF = 10

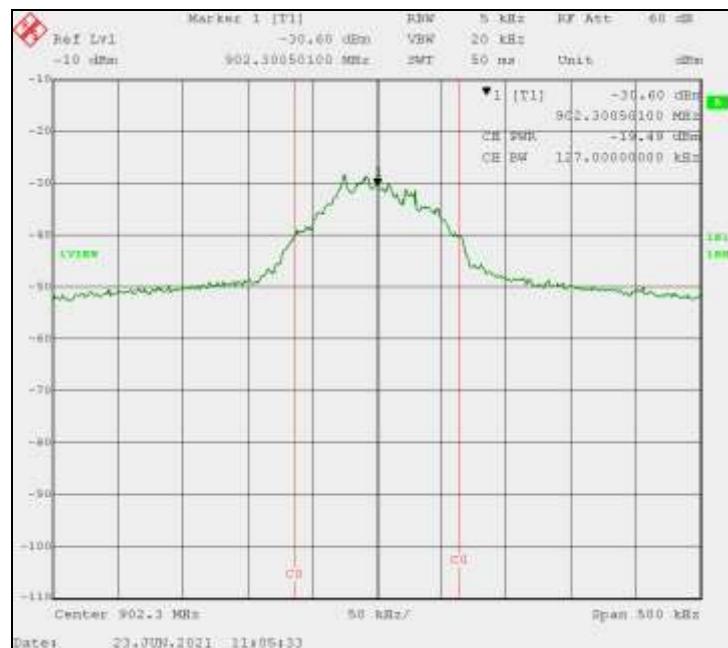
Channel 63: 914.9 MHz LoRa Modulation, SF = 10

Test Results: The Maximum Conducted Output Power peak measurements for the Woodstream Model V430 LoRa Radio Rat Snap Trap, with and without modulation, are compliant with the limits specified in FCC Section 15.247(b)(3).

4.8.2 Maximum Average Conducted Output Power, Hybrid Mode, Test Procedure

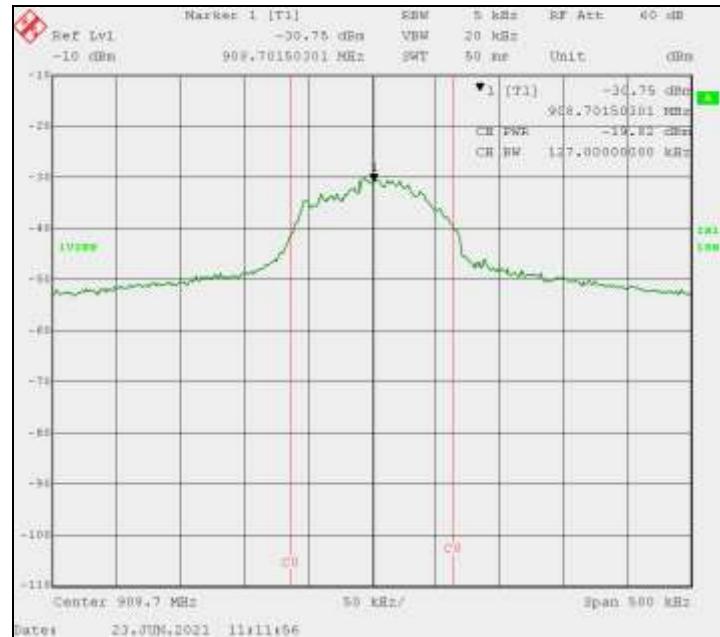
Average Conducted power measurement of the output frequency was measured according to ANSI C63.10, Section 11.9.2.2. Spectrum Analyzer Resolution Bandwidth and Frequency Span were based upon the Operating Bandwidth (OBW) measured in the previous section. Based upon the results of the Maximum Peak Conducted Output Power Test, modulation with a spread factor of 10 produced the highest peak level. The transmission frequencies at low (Channel 0), middle (Channel 32) and high (Channel 63) were measured with LoRa modulation, bandwidth of 125 kHz and spread factor of 10. Measurements were made using an RMS detector.

Spectrum Analyzer Settings using RMS Detection:

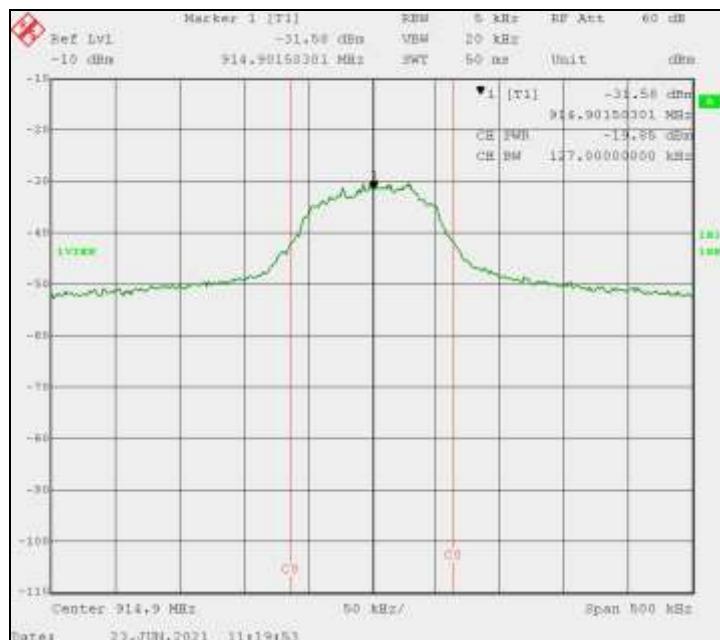

Span	500 kHz
RBW	5 kHz
VBW	20 kHz
Sweep Time	50 ms


4.8.2.1 Maximum Average Conducted Output Power Test Results (06/23/2021)

Channel	Modulation	Frequency (MHz)	Average Measured Level (dBm)	Cable # 962 Loss (dB)	Total		Limit		Margin		Result
					dBm	Watts	dBm	Watts	dBm	Watts	
0	LoRa 125 kHz	902.3	-19.49	0.26	-19.23	0.000012	30.00	1.000	-49.23	-0.999988	Pass
32		908.7	-19.82	0.26	-19.56	0.000011	30.00	1.000	-49.56	-0.999989	Pass
63		914.9	-19.85	0.26	-19.59	0.000011	30.00	1.000	-49.59	-0.999989	Pass


The following pages display the spectrum analyzer screens of the average output power measurements.

Channel 0: 902.30 MHz LoRa Modulation, SF = 10



Channel 32: 908.70 MHz LoRa Modulation, SF = 10

Channel 63: 914.9 MHz LoRa Modulation, SF = 10

Test Results: The Maximum Average Conducted Output Power peak measurements for the Woodstream Model V430 LoRa Radio Rat Snap Trap, with modulation and spread factor of 10, are compliant with the limits specified in FCC Section 15.247(b)(3).

4.8.3 EIRP Calculation RSS-247 (03/15/2021)

The gain of the antenna, used in the Woodstream Model V430 LoRa Radio Rat Snap Trap is –0.04 dBi. Applying the antenna gain to the maximum peak transmitter output produces the following values of EIRP.

Channel	Modulation and Settings	Frequency (MHz)	Transmitter Output Total		Antenna Gain		EIRP		EIRP Limit	Margin
			dBm	Watts	Isotropic	Numeric	dBm	Watts	Watts	Watts
0	Unmodulated	902.3	16.97	0.050	-0.04	0.991	16.93	0.049	4.00	-3.951
32		908.7	16.78	0.048	-0.04	0.991	16.74	0.047	4.00	-3.953
63		914.9	16.66	0.046	-0.04	0.991	16.62	0.046	4.00	-3.954
0	LoRa 125 kHz BW SF=7	902.3	16.96	0.050	-0.04	0.991	16.92	0.049	4.00	-3.951
32		908.7	16.78	0.048	-0.04	0.991	16.74	0.047	4.00	-3.953
63		914.9	16.65	0.046	-0.04	0.991	16.61	0.046	4.00	-3.954
0	LoRa 125 kHz BW SF=10	902.3	16.95	0.050	-0.04	0.991	16.91	0.049	4.00	-3.951
32		908.7	16.78	0.048	-0.04	0.991	16.74	0.047	4.00	-3.953
63		914.9	16.66	0.046	-0.04	0.991	16.62	0.046	4.00	-3.954

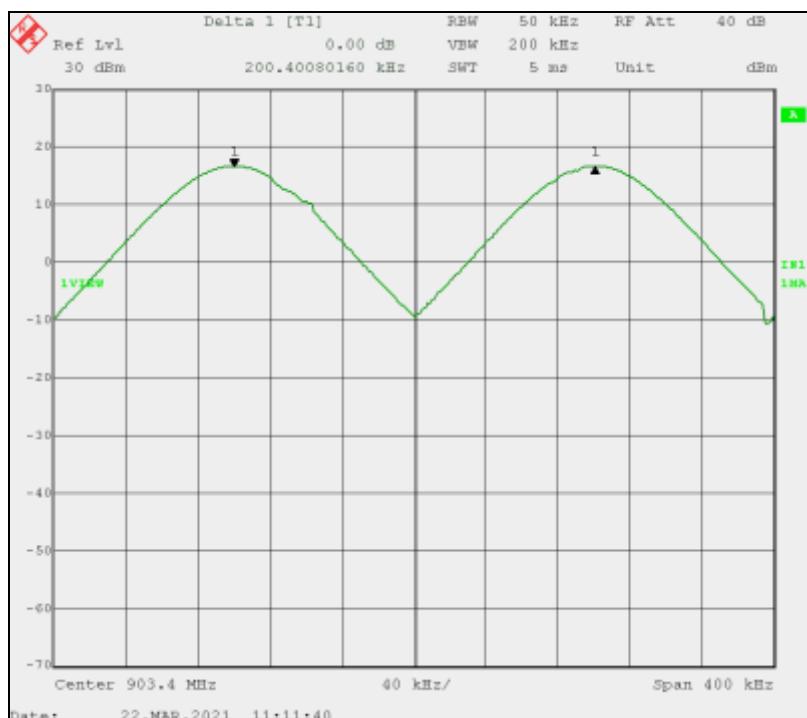
The results in the above table demonstrate compliance to the ISED requirements for EIRP limits of RSS-247.


4.9 Carrier Frequency Separation 47 CFR 15.247(a)(1) RSS-247 (5.1)(b) (03/22/2021)

4.9.1 Carrier Frequency Separation Test Procedure

47 CFR Part 15.247(a)(1) and RSS-247 (5.1)(b) specify Hopping Channels must be separated by a minimum of 25 kHz or the 20 dB bandwidth whichever is greater. The 20 dB Bandwidth of this device is 144.3 kHz and this value is the required minimum separation between FHSS channels. The test procedure of ANSI C63.10, Section 7.8.2 was used.

Spectrum Analyzer Settings:


Span	400 kHz
RBW	50 kHz
VBW	200 kHz
Sweep Time	140 ms (Auto)

4.9.2 Carrier Frequency Separation Test Results (03/22/2021)

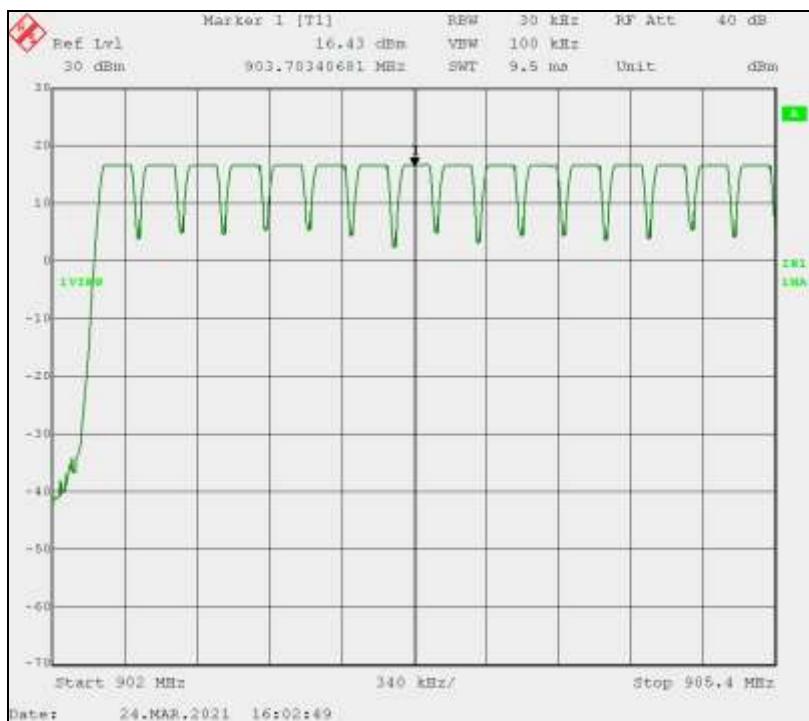
Hopping Channel	Channel Frequency	Channel Separation (Marker 1 - Delta 1)	Minimum Separation Limit (20 dB Bandwidth)	Margin	Result
#	MHz	kHz	kHz	kHz	
5	903.3	200.40	148.3	-52.10	Pass
6	903.5				

Channels 5 and 6 Carrier Frequency Separation

Test Results: The FHSS Carrier Frequency Separation of the Woodstream Model V430 LoRa Radio Rat Snap Trap is compliant with the limits specified in FCC Section 15.247(a)(1) and RSS-247(5.1)(b).

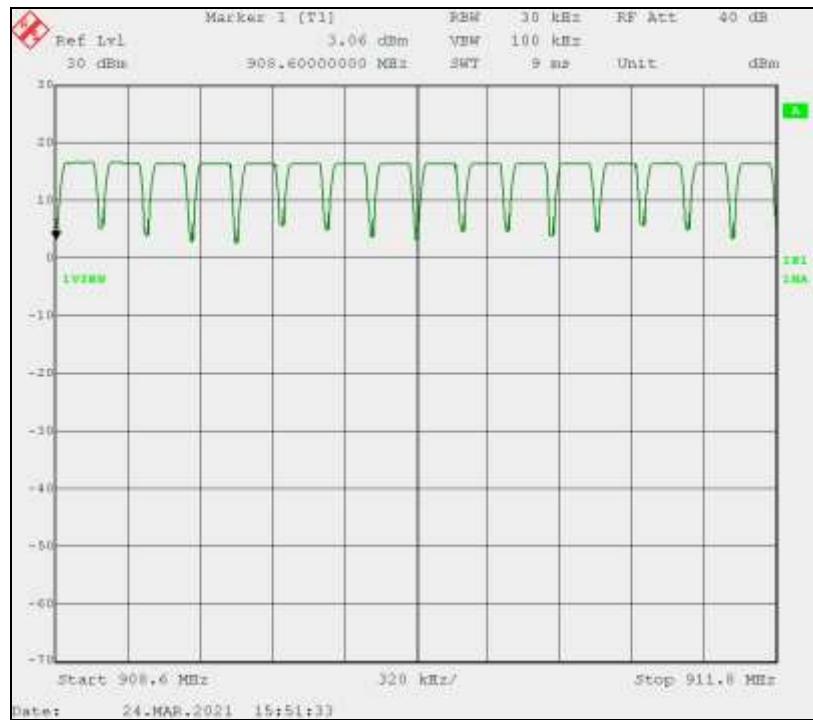
4.10 Number of Hopping Frequencies 47 CFR 15.247(a)(1)(i), RSS-247 (5.1)(c) (03/24/2021)

4.10.1 Number of Hopping Frequencies Test Procedure

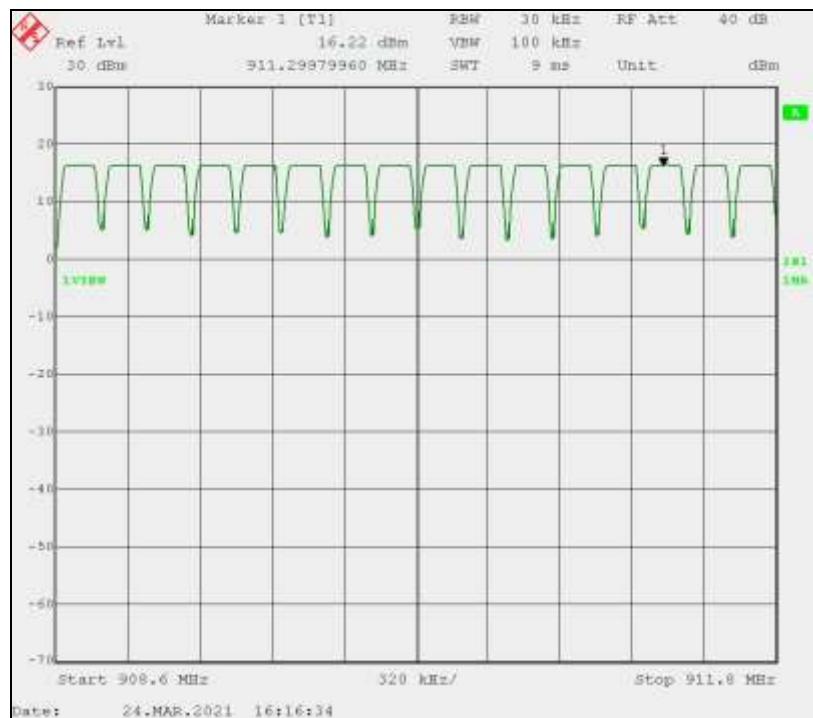

47 CFR Part 15.247(a)(1)(i) and RSS-247 (5.1)(c) specify a minimum of 50 channels for FHSS transmitters with 20-dB bandwidths less than 250 kHz. The test procedure of ANSI C63.10, Section 7.8.3 was used to demonstrate the number of hopping frequencies.

Spectrum Analyzer Settings:

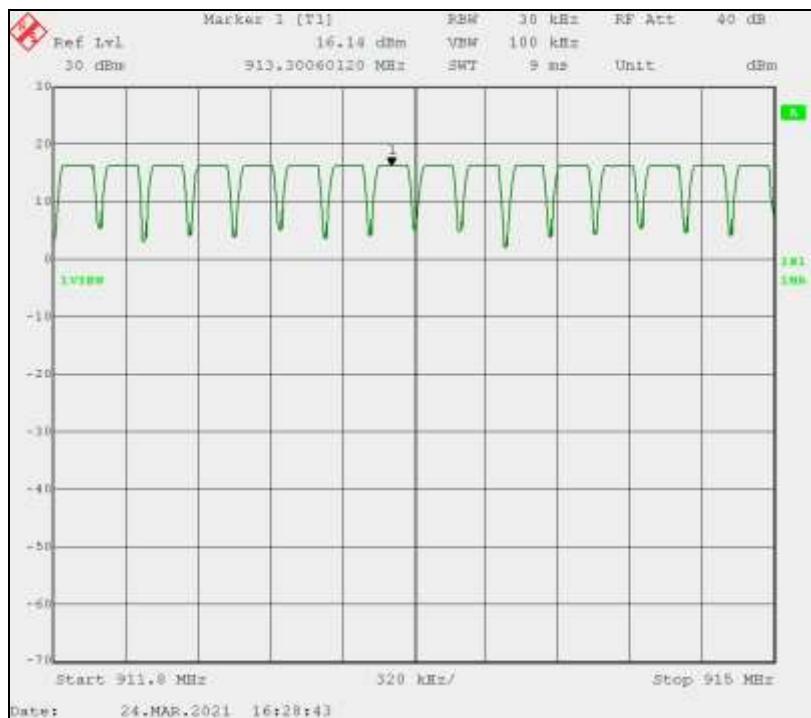
Span	320, 340 kHz
RBW	30 kHz
VBW	100 kHz
Sweep Time	9-9.5 ms (Auto)


4.10.2 Number of Hopping Frequencies Test Results (04/01/2021)

Channels 0 - 15



Channels 16 - 31



Channels 32-47



Channels 48-63

Test Results: The number of channels of the Woodstream Model V430 LoRa Radio Rat Snap Trap total 64 and are compliant to the minimum of 50 required by 47 CFR Part 15.247 (a)(1)(i) and RSS-247 (5.1)(c).

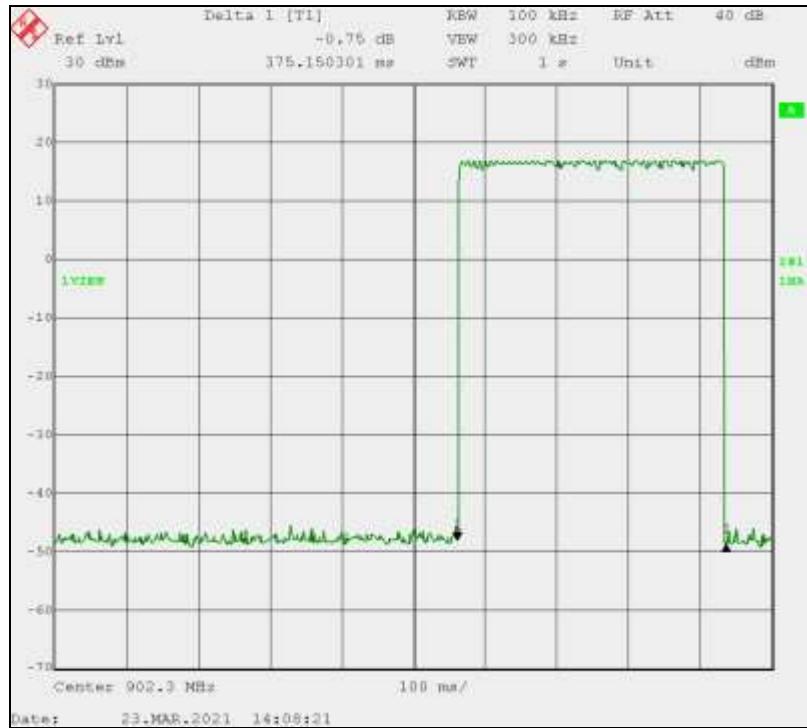
4.11 Time of Occupancy (Dwell Time) 47 CFR 15.247(a)(1)(i) RSS-247 (5.1)(c) (03/25/2021)

4.11.1 Time of Occupancy (Dwell Time) Test Procedure

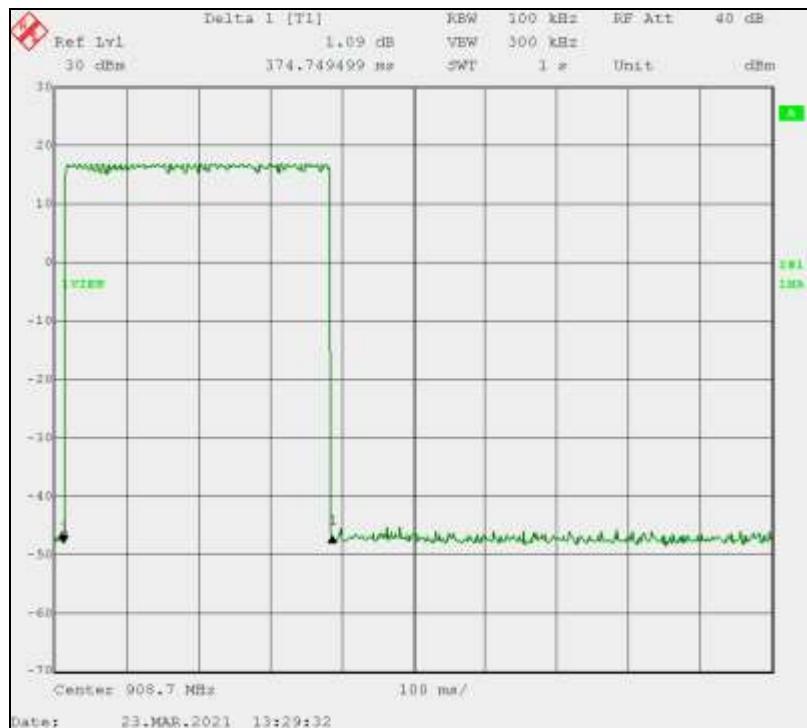
47 CFR Part 15.247 (a)(1)(iii) and RSS-245 (5.1(c) require the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period. Below are spectrum analyzer screens at low, middle and high frequencies that demonstrate the dwell time and period at all possible modulation parameters. The procedure of ANSI C63.10, Section 7.8.4 was used.

Spectrum Analyzer Settings:

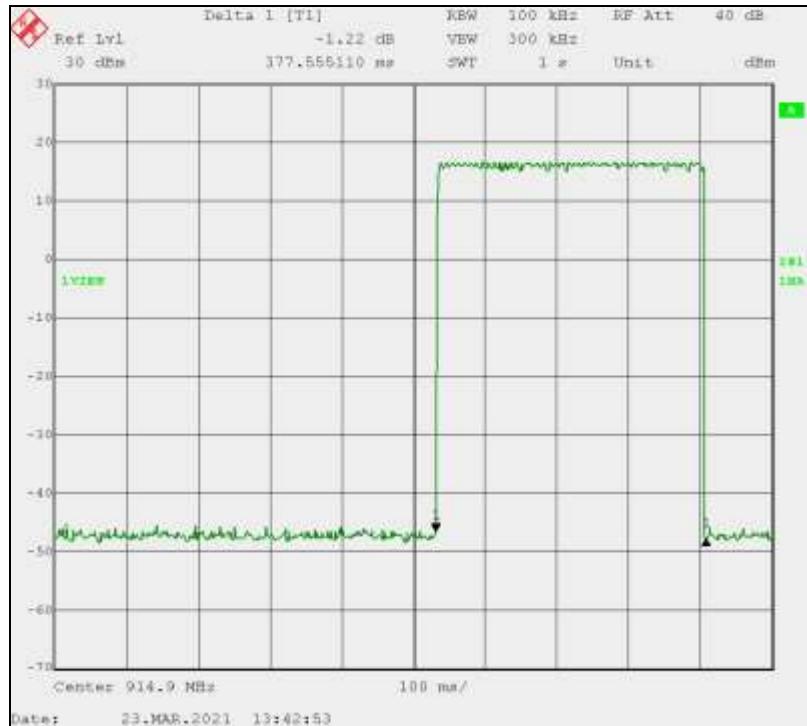
Span	0 Hz
RBW	100 kHz
VBW	300 kHz
Sweep Time	Various


4.11.2 Time of Occupancy (Dwell Time) Test Results (03/23/2021 and 03/24/2021)

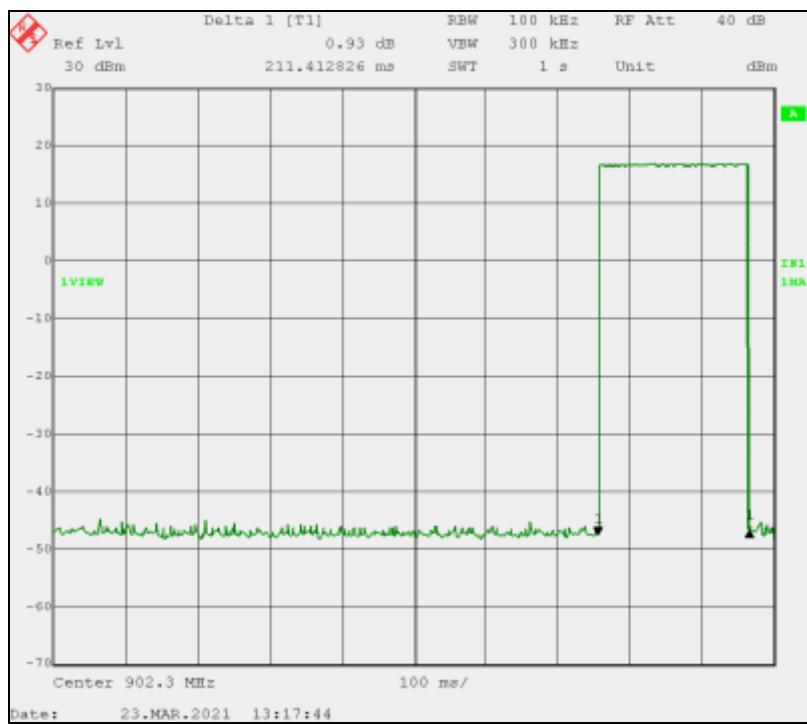
Channel #	Freq (MHz)	Modulation	Data Rate	Spread Factor	Bit Rate	Dwell Time (msec)	Limit (msec)	Margin (msec)
0	902.3	LoRa	0	10	980	375.15	400	-24.85
32	908.7					374.75	400	-25.25
64	914.9					377.55	400	-22.45
0	902.3		1	9	1760	211.41	400	-188.59
32	908.7					208.42	400	-191.58
64	914.9					208.42	400	-191.58
0	902.3		2	8	3125	117.22	400	-282.78
32	908.7					114.23	400	-285.77
64	914.9					114.23	400	-285.77
0	902.3		3	7	5470	62.52	400	-337.48
32	908.7					62.92	400	-337.08
64	914.9					62.52	400	-337.48


The following pages contain facsimiles of spectrum analyzer display screens demonstrating the time of occupancy.

Channel 0, Data Rate = 0 (SF=10)

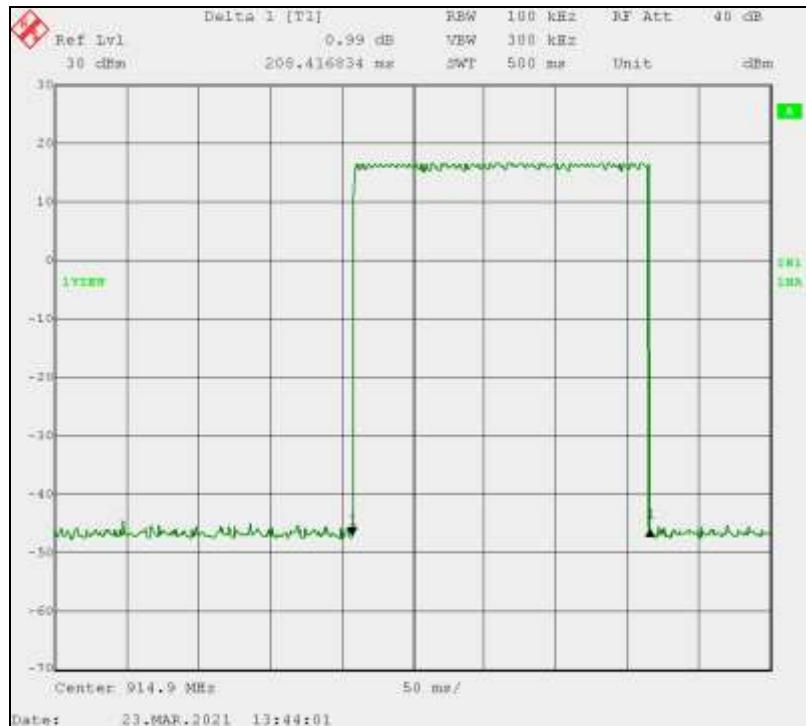


Channel 32, Data Rate = 0 (SF=10)

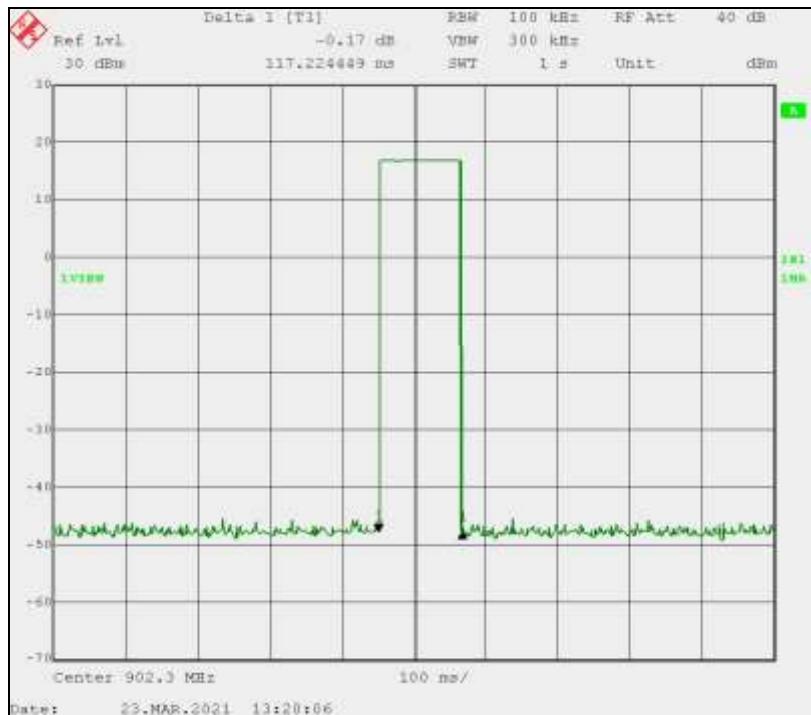


Channel 63, Data Rate = 0 (SF=10)

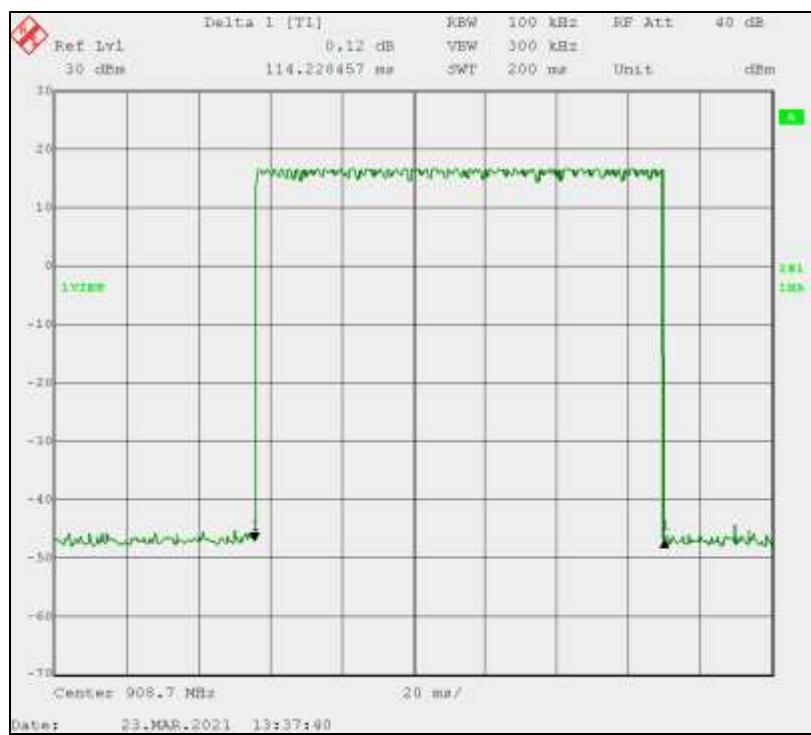
Channel 0, Data Rate = 1 (SF=9)



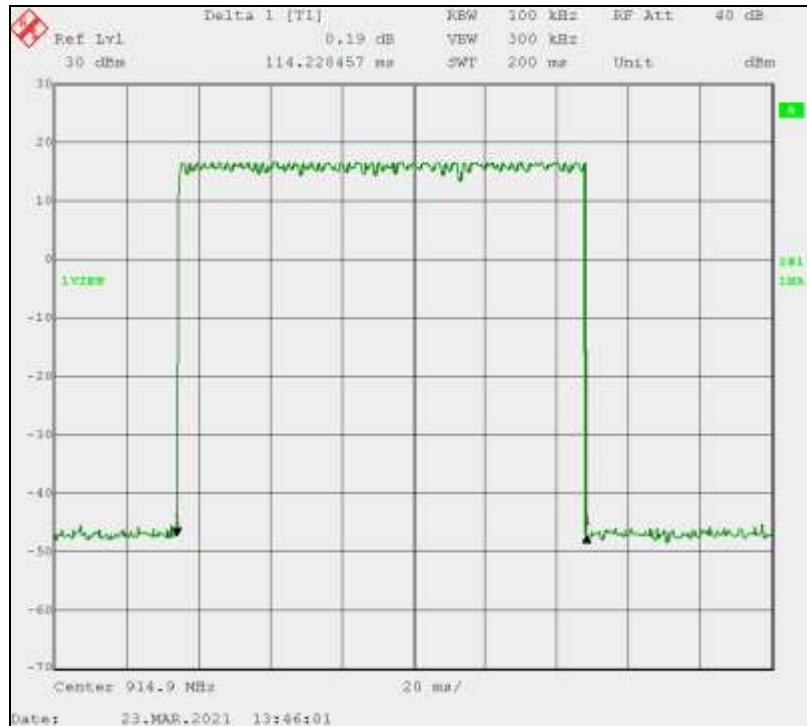
Channel 32, Data Rate = 1 (SF=9)



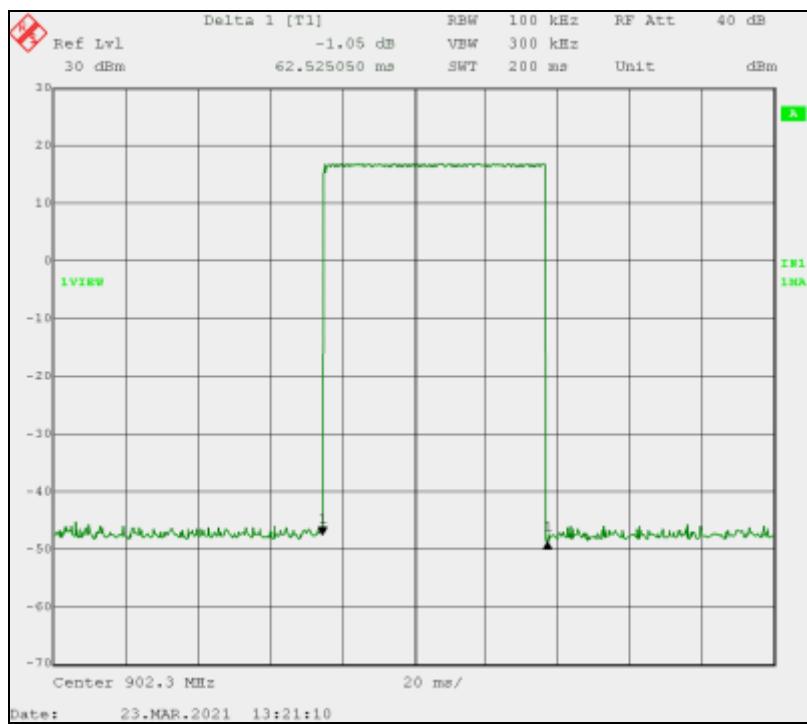
Channel 63, Data Rate = 1 (SF=9)



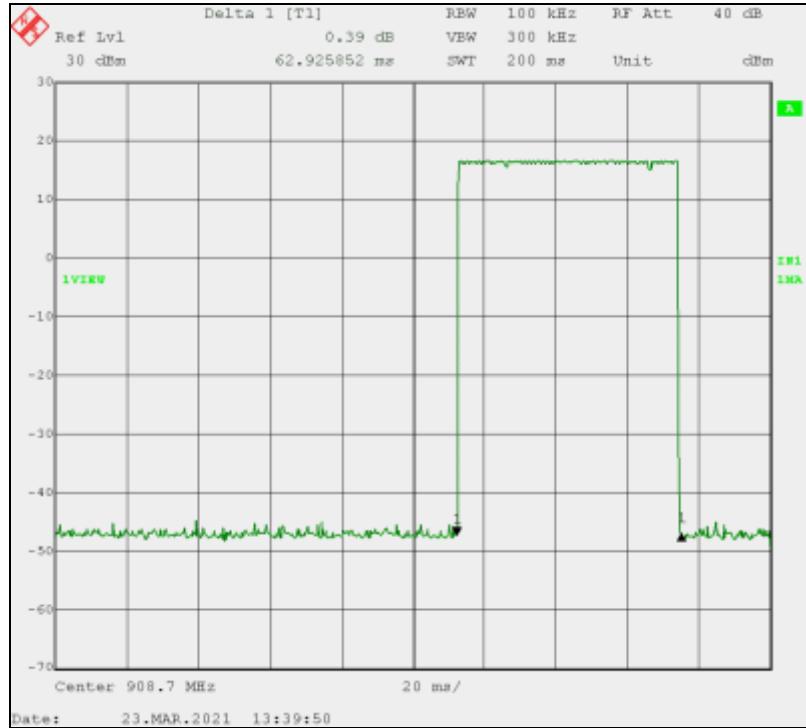
Channel 0, Data Rate = 2 (SF=8)



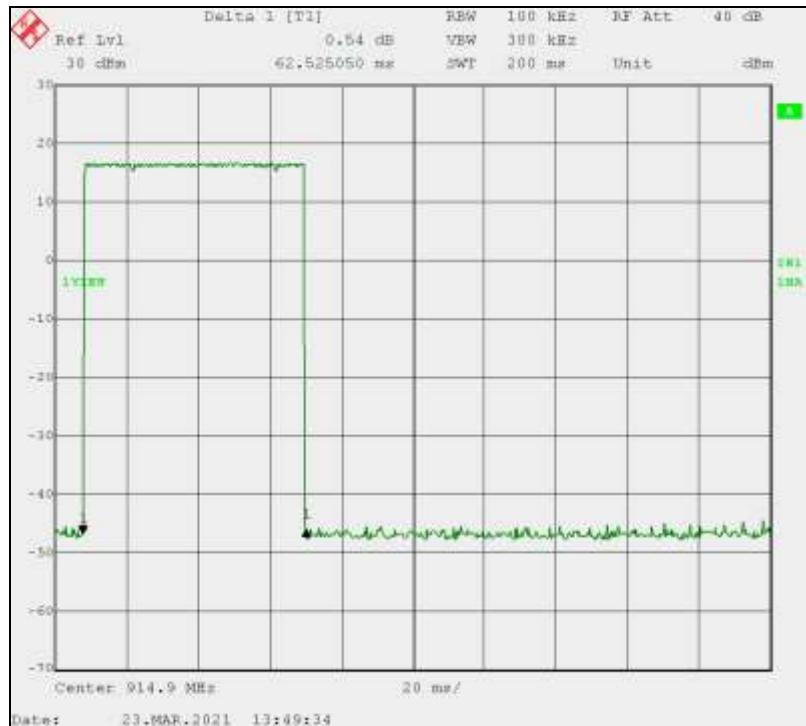
Channel 32, Data Rate = 2 (SF=8)



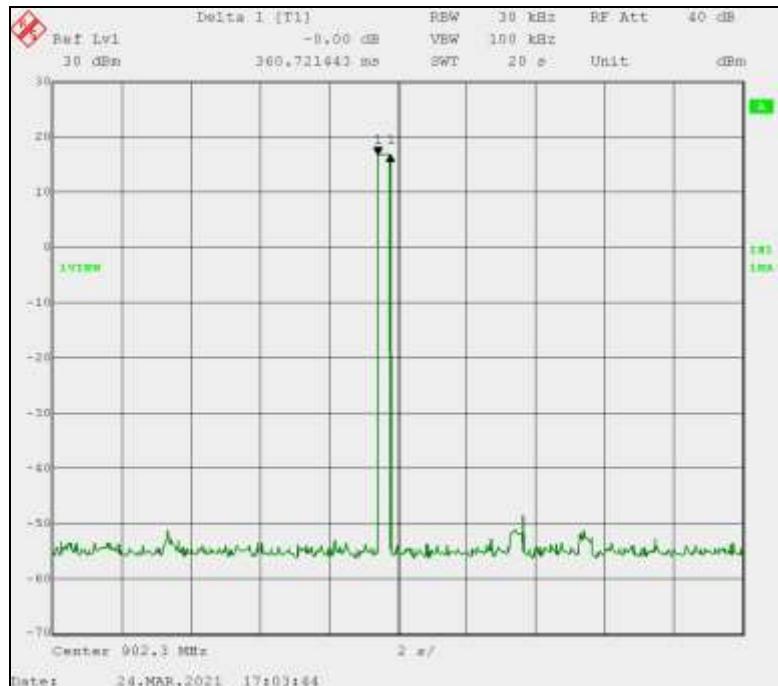
Channel 63, Data Rate = 2 (SF=8)

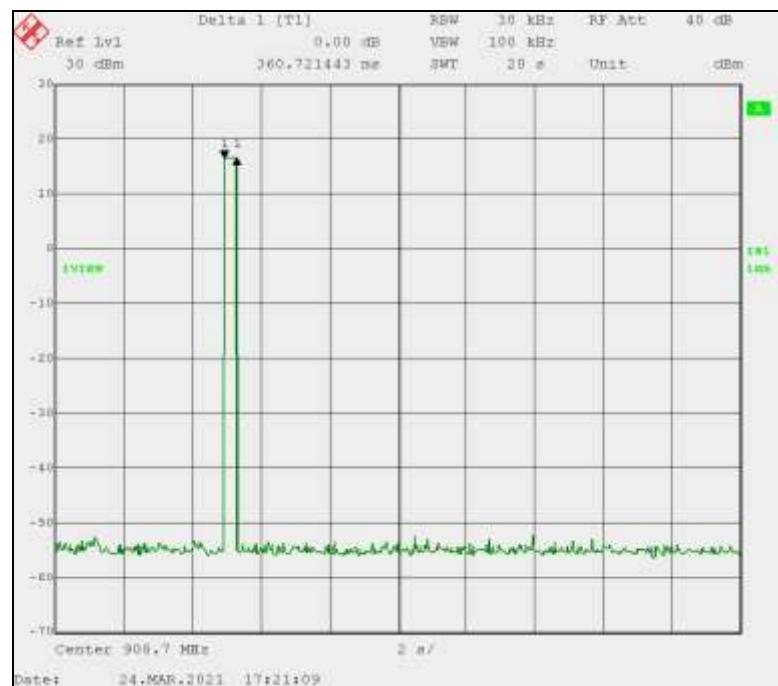


Channel 0, Data Rate = 3 (SF=7)



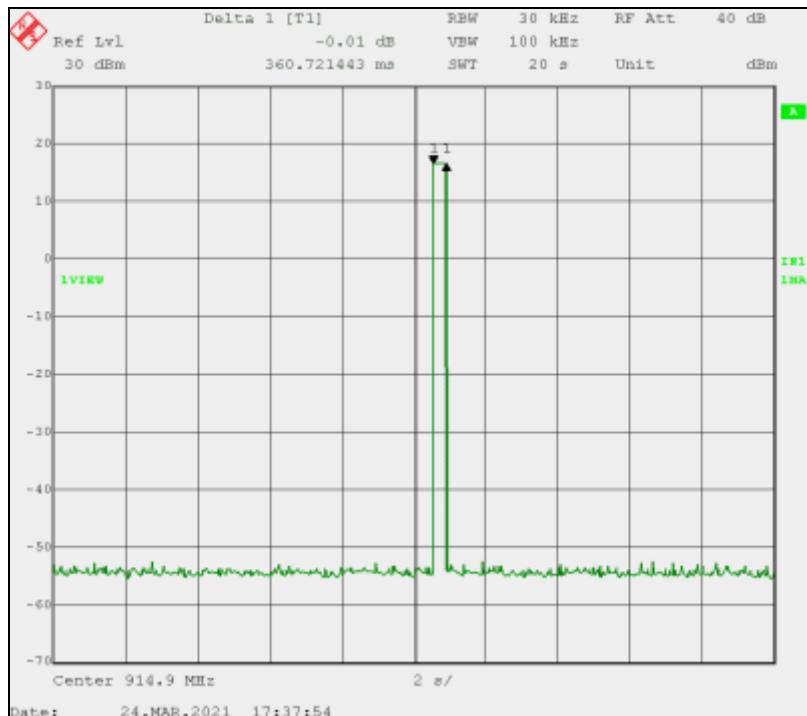
Channel 32, Data Rate = 3 (SF=7)


Channel 63, Data Rate = 3 (SF=7)



The following pages contain facsimiles of spectrum analyzer display screens demonstrating the requirement of the dwell time within a 20 second period.

Channel 0, Data Rate = 0 (SF=10)



Channel 32, Data Rate = 0 (SF=10)



Channel 63, Data Rate = 0 (SF=10)

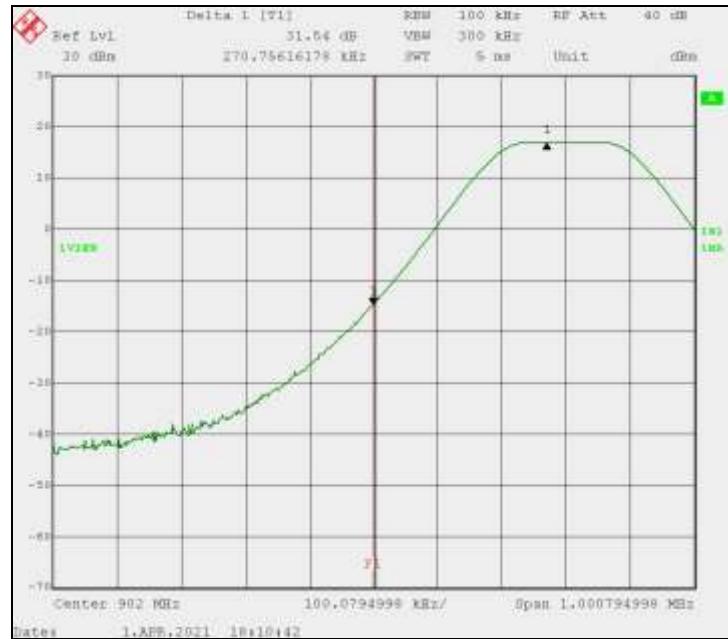
Test Results: The dwell time and period for each of the low, middle and high channels are compliant with the requirements of 47 CFR Part 15.247 and RSS-247.

4.12 Band Edge Measurement 47 CFR 15.247(d) and RSS-247 (5.5)

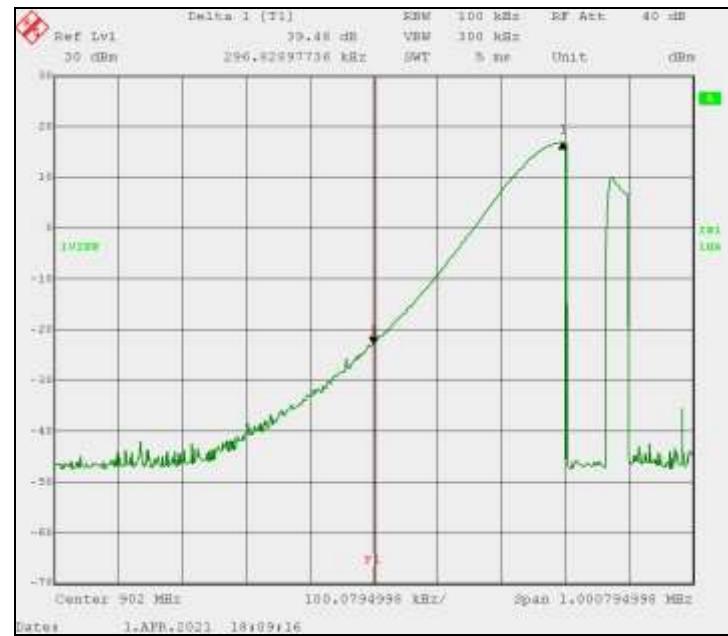
4.12.1 Band Edge Measurement Test Procedure

Band edge measurements were made while operating in non-hopping mode and hopping mode. Low Channel, 902.3 MHz (Channel 0) and High Channel, 914.9 MHz (Channel 63) were used as reference signals for the Low Band Edge and High Band Edge. The Authorized Band Edge measurements were made using the Relative Method of Section 6.10.4 of ANSI C63.10. The Spectrum Analyzer Screens below show emissions between the modulated carrier, at low and high frequencies and the lower and upper band edges. The limit is 30 dBc, based upon the Maximum Average Output Power Test Measurement procedure.

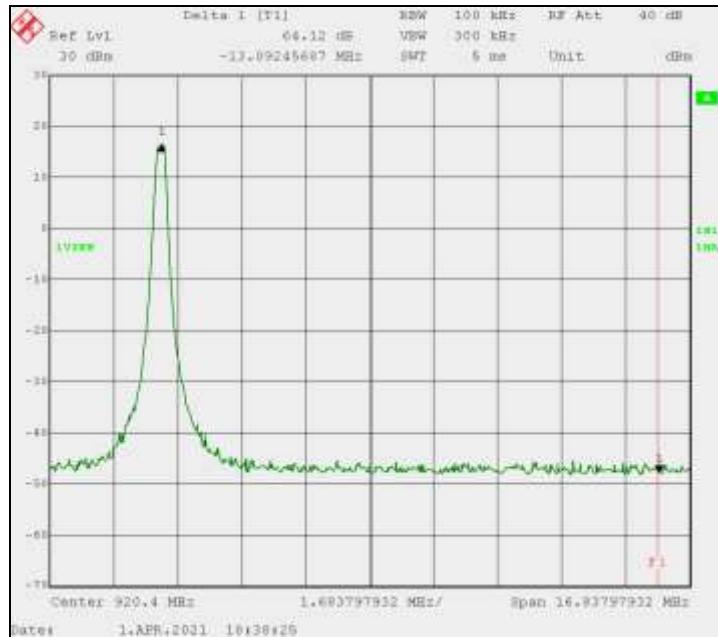
Spectrum Analyzer Settings:


Span	Various
RBW	100 kHz
VBW	300 kHz
Sweep	5 ms

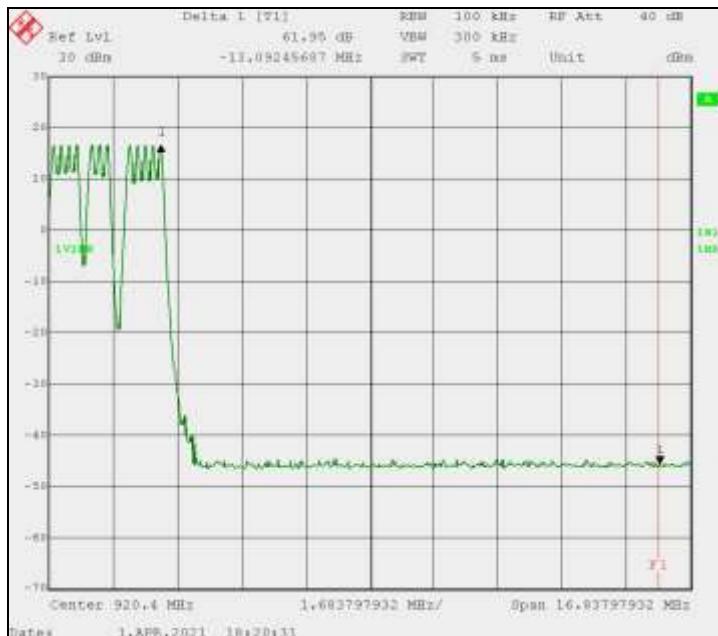
4.12.2 Band Edge Measurement Test Results (04/01/2021)


Mode	Frequency (MHz)	Peak Transmit	Band Edge Measurement				Result
			Peak Level	Limit	Delta	Margin	
non-hopping	902.3	17.66	-13.88	30.00	31.54	-1.54	Pass
hopping	902.3	17.54	-21.94	30.00	39.48	-9.48	Pass
non-hopping	914.9	16.24	-47.88	30.00	64.12	-34.12	Pass
hopping	914.9	16.28	-45.67	30.00	61.95	-31.95	Pass

Low Band Edge – Non-Hopping (Channel 0, 902.3 MHz, BW=125 kHz, SF=10)



Low Band Edge – Hopping (Data Rate=980 bits/sec)



High Band Edge – Non-Hopping (Channel 63, 914.9 MHz, BW=125 kHz, SF=10)

High Band Edge – Hopping (Data Rate=980 bits/sec)

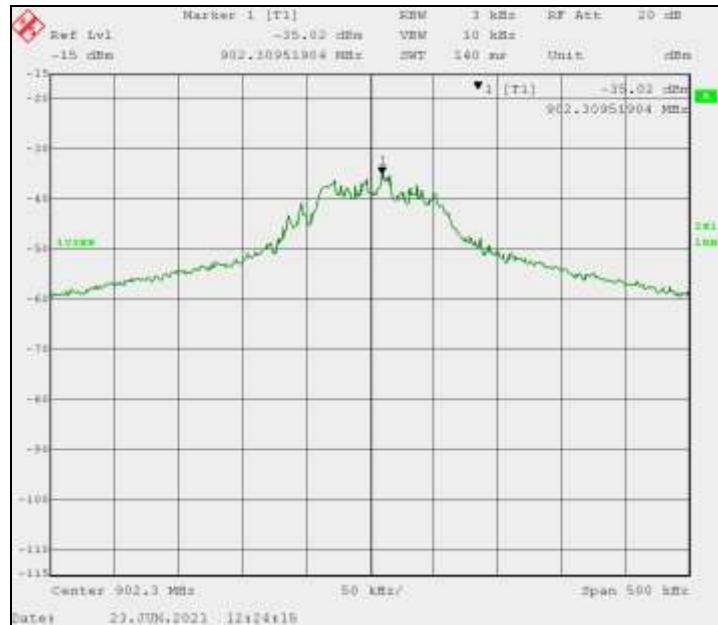
Test Results: The band edge emissions of each of the low and high channels, in non-hopping and hopping modes, are compliant with the requirements of 47 CFR Part 15.247 and RSS-247.

4.13 Average Power Spectral Density, Hybrid Mode (FCC Section 15.247(e), RSS-247 Section 5.2(b))

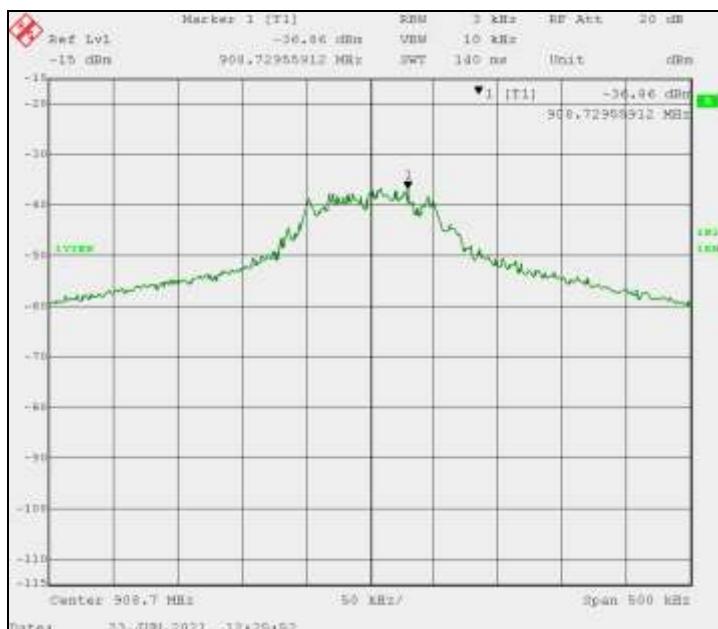
4.13.1 Average Power Spectral Density Test Procedure

A conducted power measurement of the output frequency was measured using an RMS detector for the Woodstream V430 for each of the low (Channel 0), middle (Channel 32) and high (Channel 64) channel frequencies. The signal output was maximized with LoRa modulation with 125 kHz bandwidth using a Spread Factor of 10. The test procedure of ANSI C63.10, Section 11.10.3 Method (AVG PSD-1) was used.

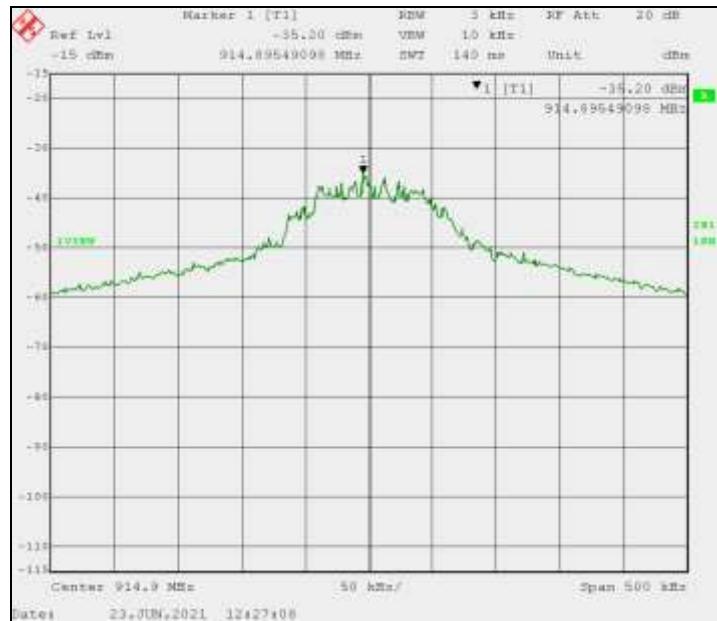
Spectrum Analyzer Settings using RMS Detection:


RBW	3	kHz
VBW	10	kHz
Span	500	kHz
Sweep(Auto)	140	ms

4.13.1.1 Average Power Spectral Density Test Results (06/23/2021)


Channel	Frequency (MHz)	LoRa Modulation Spread Factor	Measured Avg Level	Cable # 962 Loss	Total	Limit	Margin	Test Result
			dBm	dB	dBm	dBm	dBm	
0	902.3	10	-35.02	0.26	-34.76	8.00	-42.76	Pass
32	908.7		-36.86	0.26	-36.60	8.00	-44.60	Pass
63	914.9		-35.20	0.26	-34.94	8.00	-42.94	Pass

Channel 0, 902.3 MHz, LoRa Modulation



Channel 32, 908.7 MHz, LoRa Modulation

Channel 63, 914.9 MHz, LoRa Modulation

Test Results: The Average Power Spectral Density measurements of the Woodstream Model V430 LoRa Radio Rat Snap Trap are compliant with the limits specified in FCC Section 15.247(e) and RSS-247.

5.0 Test Setup Photos

See Appendix C Woodstream V430 LoRa Rat Snap Trap Test Setup Photos

Appendix A – Test Equipment

Equipment	Manufacturer	Model #	Serial #	BEC #	Calibration Date	Calibration Cycle	Calibration Due Date
EMI Receiver (20 Hz – 26.5 GHz)	Rohde & Schwarz	ESIB 26	836119/006	1010	07/02/19	3 Years	07/02/22
Antenna (30 MHz - 6 GHz)	Sunol Sciences	JB6	A022108	712	06/26/18	3 Years	06/26/21
9kHz-3GHz EMC Analyzer	Agilent	E7402A	US39440162	883	02/27/18	3 Years 3 Months	05/27/21
Antenna (30 MHz - 6 GHz)	Sunol Sciences	JB6	A020714	882	05/16/18	3 Years	05/16/21
Amplifier (.09 – 1300 MHz)	Hewlett Packard	8447F	3313A06658	807	01/13/21	2 Years	01/13/23
EMC Analyzer (9 kHz - 1.8 GHz)	Hewlett Packard	8593EM	3710A00214	1026	03/23/20	3 Years	03/23/23
Amplifier System (0.5 – 50 GHz)	Hewlett Packard	83015A 83017A	3123A00360 & 3332A00219	1027	10/13/20	2 Years	10/13/22
Double Ridged Horn Antenna (1 - 18 GHz)	EMCO	3115	9705-5225	1028	11/19/18	2 Years	11/19/21
Shielded Room #1	ETS Lindgren	12-2/2-0	4078	859	08/17/19	3 Years	08/17/22
OATS Site (30 MHz – 1 GHz)	BEC	N/A	N/A	705	08/03/20	1 Year	08/03/21
Temp/Humidity Meter	Control Company	4096	151872672	780	10/13/20	2 Years	10/13/22
Notch Filter	Anatech	AE915N S2095	10	923	08/16/18	3 Years	08/16/21

High-Pass Filter	Trilithic Inc.	6HC1500 /18000-3-KK	20044046	741	02/27/20	3 Years	02/27/23
Software (Tile Instrument Control System)	Quantum Change/EMC Systems	Version 3	N/A	N/A	No Cal. Required	No Cal. Required	No Cal. Required
Radiated Emissions Test Software	BEC	RADE	2.2	N/A	No Cal. Required	No Cal. Required	No Cal. Required