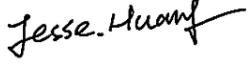


FCC PART 15.247


TEST REPORT

For

Circus World Displays Ltd.

4080 Montrose Rd, Niagara Falls, Ontario, L2H 1J9, Canada

FCC ID: SMH-32201

Report Type: Class II Permissive Change	Product Type: 2.4GHz Video Baby Monitor (Camera unit)
Report Number: <u>RSZ161025010-00A1TX</u>	
Report Date: <u>2016-11-23</u>	
Jesse Huang 	
Reviewed By: <u>Manager</u>	
Bay Area Compliance Laboratories Corp. (Kunshan) No.248 Chenghu Road, Kunshan, Jiangsu province, China Prepared By: Tel: +86-0512-86175000 Fax: +86-0512-88934268 www.baclcorp.com.cn	

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

TABLE OF CONTENTS

GENERAL INFORMATION.....	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	3
OBJECTIVE	3
RELATED SUBMITTAL(S)/GRANT(S).....	3
TEST METHODOLOGY	3
MEASUREMENT UNCERTAINTY	4
TEST FACILITY.....	4
SYSTEM TEST CONFIGURATION.....	5
DESCRIPTION OF TEST CONFIGURATION	5
EUT EXERCISE SOFTWARE	5
EQUIPMENT MODIFICATIONS	5
EXTERNAL I/O CABLE.....	5
BLOCK DIAGRAM OF TEST SETUP	5
SUMMARY OF TEST RESULTS.....	6
TEST EQUIPMENT LIST	7
FCC §15.247 (i) & §1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE).....	8
APPLICABLE STANDARD	8
RESULT	8
FCC §15.203 – ANTENNA REQUIREMENT.....	9
APPLICABLE STANDARD	9
ANTENNA CONNECTOR CONSTRUCTION	9
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	10
APPLICABLE STANDARD	10
EUT SETUP	10
EMI TEST RECEIVER SETUP.....	10
TEST PROCEDURE	10
TEST RESULTS SUMMARY	11
TEST DATA	11
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS.....	14
APPLICABLE STANDARD	14
EUT SETUP	14
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	15
TEST PROCEDURE	15
CORRECTED AMPLITUDE & MARGIN CALCULATION	15
TEST RESULTS SUMMARY	15
TEST DATA	16

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Circus World Displays Ltd.*'s product, model number: 32201 (FCC ID: SMH-32201) (the "EUT") in this report was a camera unit of *2.4GHz Video Baby Monitor*, which was measured approximately: 7.98 cm (L) x 7.98 cm (W) x 9.01 cm (H), rated with input voltage: DC 5.9V from adapter.

Adapter Information:

Model: NBS05B059080VU
Input: 100-240V~50/60Hz, 0.2A
Output: DC5.9V, 0.8A

Note: This product, model 32209, 32206, 32203, 32211 and 32201, they are identical schematics, the difference between them is explained in the attached product similarity declaration letter. Model 32201 was selected for full test.

** All measurement and test data in this report was gathered from production sample serial number: 1603512 (Assigned by BACL, Kunshan). The EUT supplied by the applicant was received on 2016-10-25.*

Objective

This report is prepared on behalf of *Circus World Displays Ltd.* in accordance with Part 2-Subpart J, Part 15-Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

This is a CIIPC application of the device; the differences between the original device and the current one are as follows:

1. Changing the adapter manufacture base on the original.
2. Adding the adapter.

For the change made to the device, the test item "AC LINE CONDUCTED EMISSIONS" and "SPURIOUS EMISSIONS (below 1GHz)" were performed.

Related Submittal(s)/Grant(s)

The monitor unit of a system with FCC ID: SMH-35052.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Item	Uncertainty	
AC Power Lines Conducted Emissions	±3.26 dB	
RF conducted test with spectrum	±0.9dB	
RF Output Power with Power meter	±0.5dB	
Radiated emission	30MHz~1GHz	±5.91dB
	Above 1G	±4.92dB
Occupied Bandwidth	±0.5kHz	
Temperature	±1.0 °C	
Humidity	±6%	

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Test site at Bay Area Compliance Laboratories Corp. (Kunshan) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 06, 2014. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.10-2013.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 815570. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

SYSTEM TEST CONFIGURATION

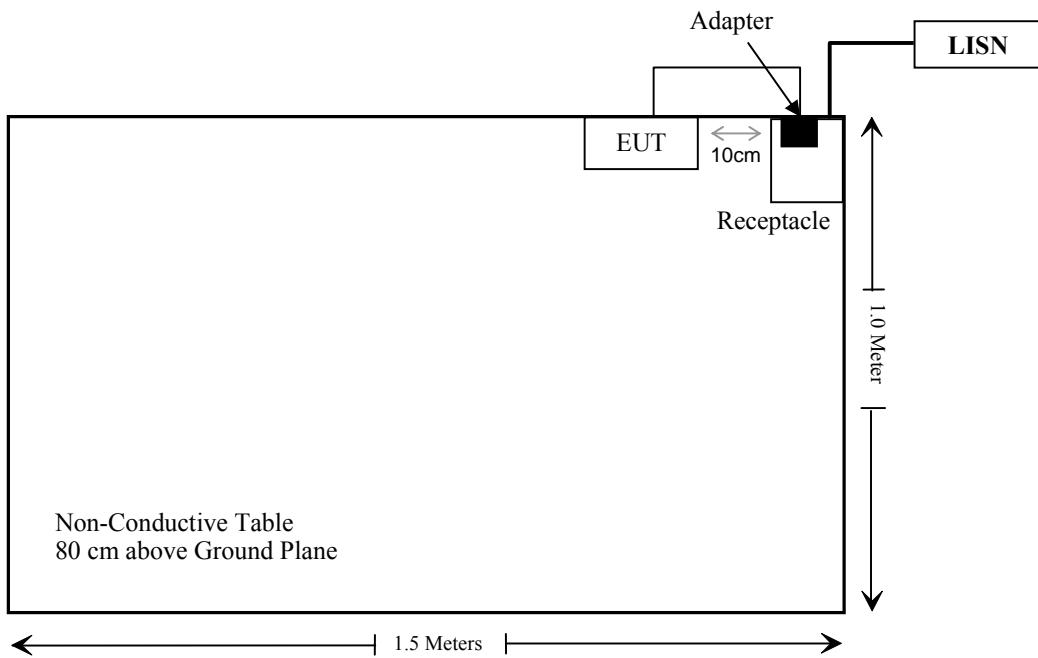
Description of Test Configuration

The system was configured for testing in an engineering mode which was selected by manufacturer.

EUT Exercise Software

No exercise software was used.

Equipment Modifications


No modification was made to the EUT tested.

External I/O Cable

Cable Description	Length (m)	From/Port	To
Un-shielding Un-detachable DC Power Cable	2.8	EUT	Adapter

Block Diagram of Test Setup

For Conducted Emission:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b)(1), §2.1091	Maximum Permissible Exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Radiated Emissions	Compliance
§15.247 (a)(1)	20 dB Emission Bandwidth	Compliance*
§15.247(a)(1)	Channel Separation	Compliance*
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance*
§15.247(a)(1)(iii)	Quantity of hopping channel	Compliance*
§15.247(b)(1)	Peak Output Power Measurement	Compliance*
§15.247(d)	Band Edges	Compliance*

Compliance*: Please refer to the original report RSZ151023006-00TX with the FCC ID: SMH-32201, granted on 2016-02-11, which was tested by Bay Area Compliance Laboratories Corp. (Shenzhen).

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
AC Line Conducted test					
Rohde & Schwarz	EMI Test Receiver	ESCS30	934115/007	2015-11-12	2016-11-11
Rohde & Schwarz	LISN	ESH3-Z5	862770/011	2016-10-10	2017-10-10
Rohde & Schwarz	Pulse limiter	ESH3-Z2	879940/0058	2016-06-19	2017-06-18
MICRO-COAX	Coaxial line	UFB-293B-1-0480-50X50	97F0173	2016-09-08	2017-09-08
Rohde & Schwarz	CE Test software	EMC 32	V 09.10.0	NCR	NCR
Radiation test					
Sonoma Instrument	Amplifier	330	171377	2016-10-21	2017-10-21
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2015-11-12	2016-11-11
Sunol Sciences	Broadband Antenna	JB3	A090314-2	2016-01-09	2019-01-08
R&S	Auto test Software	EMC32	V 09.10.0	NCR	NCR
BACL	RF cable	KS-LAB-012	KS-LAB-012	2015-12-16	2016-12-15
Ducommun technologies	RF Cable	104PEA	218124002	2016-04-22	2017-04-22

*** Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §15.247 (i) & §1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 1.1307 (b)(1), 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure

Limits for General Population/Uncontrolled Exposure				
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (Minutes)
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100,000	/	/	1.0	30

f = frequency in MHz

* = Plane-wave equivalent power density

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Frequency (MHz)	Antenna Gain		Conducted Power		Evaluation Distance (cm)	Power Density (mW/cm ²)	MPE Limit (mW/cm ²)
	(dBi)	(numeric)	(dBm)	(mW)			
2410.875	2	1.58	16.49	44.57	20	0.014	1.0

Note: To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliance

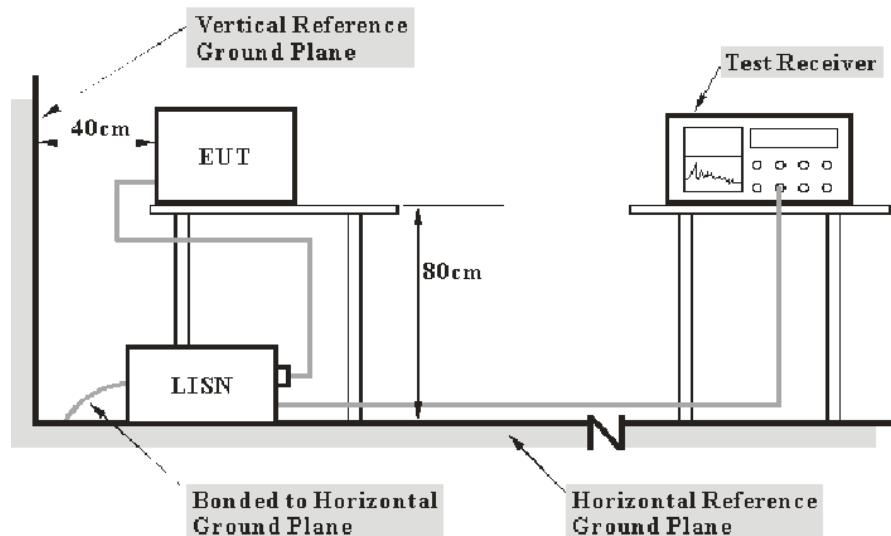
FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one integrated antenna arrangement, which was permanently attached and the antenna gain is 2.0 dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliance.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

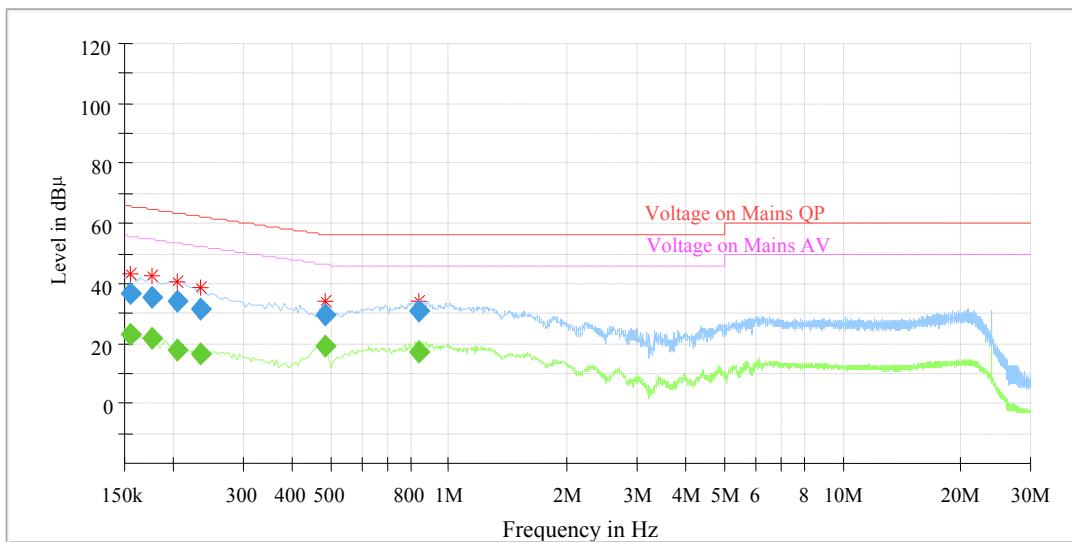
Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207,

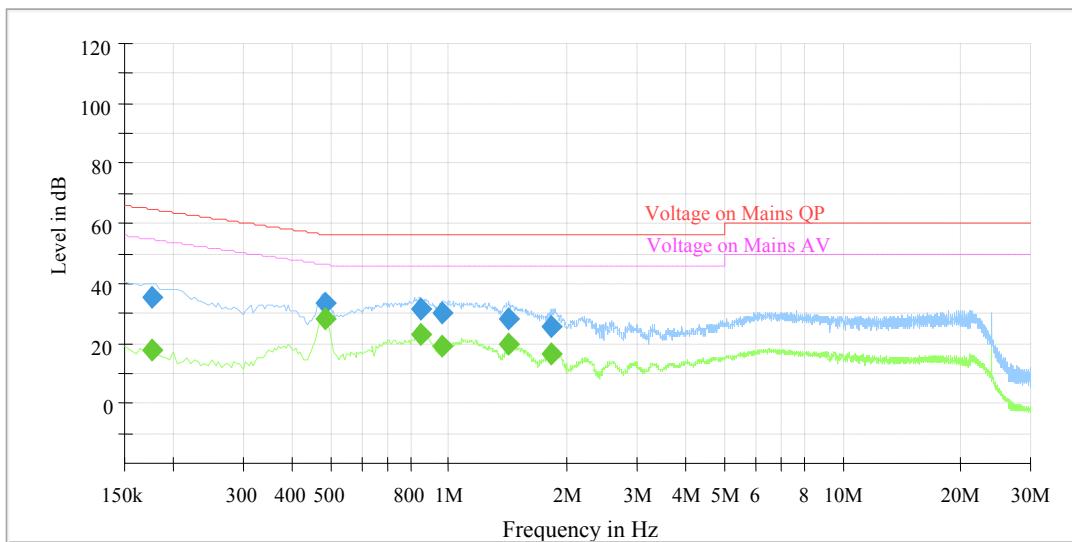
Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level compliance with the limit if

$$L_m + U_{(Lm)} \leq L_{lim} + U_{cisp}$$

In BACL., $U_{(Lm)}$ is less than U_{cisp} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.


Test Data

Environmental Conditions


Temperature:	27.3 °C
Relative Humidity:	61 %
ATM Pressure:	101.0 kPa

The testing was performed by Layne Li on 2016-11-03.

Test Mode: Transmitting

AC 120 V, 60 Hz, Line:

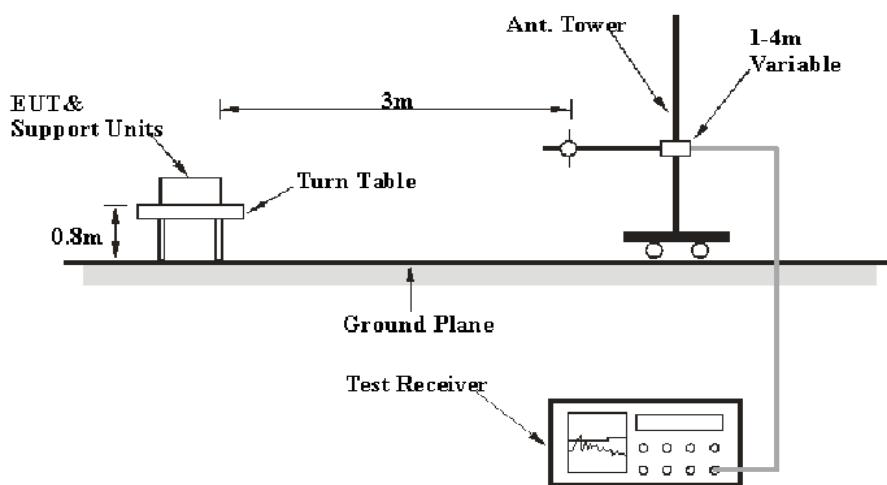
Frequency (MHz)	QuasiPeak (dB μ V)	Average (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)	Comment
0.155000	---	23.04	9.000	L1	10.3	32.69	55.73	Compliance
0.155000	36.95	---	9.000	L1	10.3	28.78	65.73	Compliance
0.175000	---	21.44	9.000	L1	10.3	33.28	54.72	Compliance
0.175000	35.59	---	9.000	L1	10.3	29.13	64.72	Compliance
0.205000	---	17.88	9.000	L1	10.3	35.53	53.41	Compliance
0.205000	34.07	---	9.000	L1	10.3	29.34	63.41	Compliance
0.235000	---	16.40	9.000	L1	10.3	35.87	52.27	Compliance
0.235000	31.27	---	9.000	L1	10.3	31.00	62.27	Compliance
0.485000	---	18.89	9.000	L1	10.3	27.36	46.25	Compliance
0.485000	29.79	---	9.000	L1	10.3	26.46	56.25	Compliance
0.840000	---	17.34	9.000	L1	10.3	28.66	46.00	Compliance
0.840000	30.62	---	9.000	L1	10.3	25.38	56.00	Compliance

AC 120V, 60 Hz, Neutral:

Frequency (MHz)	QuasiPeak (dB μ V)	Average (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)	Comment
0.175000	---	17.50	9.000	N	10.3	37.22	54.72	Compliance
0.175000	35.33	---	9.000	N	10.3	29.39	64.72	Compliance
0.485000	---	28.43	9.000	N	10.3	17.82	46.25	Compliance
0.485000	33.07	---	9.000	N	10.3	23.18	56.25	Compliance
0.845000	---	22.97	9.000	N	10.3	23.03	46.00	Compliance
0.845000	31.42	---	9.000	N	10.3	24.58	56.00	Compliance
0.965000	---	19.16	9.000	N	10.3	26.84	46.00	Compliance
0.965000	30.08	---	9.000	N	10.3	25.92	56.00	Compliance
1.420000	---	19.40	9.000	N	10.3	26.60	46.00	Compliance
1.420000	28.46	---	9.000	N	10.3	27.54	56.00	Compliance
1.810000	---	16.50	9.000	N	10.4	29.50	46.00	Compliance
1.810000	25.61	---	9.000	N	10.4	30.39	56.00	Compliance

Note:

- 1) Corrected Amplitude = Reading + Correction Factor
- 2) Correction Factor = LISN VDF (Voltage Division Factor) + Cable Loss
- 3) Margin = Limit – Corrected Amplitude


FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 1 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz to 1GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

$$\text{Corrected Amplitude} = \text{Meter Reading} + \text{Antenna Factor} + \text{Cable Loss} - \text{Amplifier Gain}$$

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247,

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level compliance with the limit if

$$L_m + U_{(Lm)} \leq L_{lim} + U_{cisp}$$

In BACL., $U_{(Lm)}$ is less than $+ U_{cisp}$, if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

Temperature:	27.3 °C
Relative Humidity:	61 %
ATM Pressure:	101.0 kPa

The testing was performed by Layne Li on 2016-11-03.

30 MHz -1 GHz:

Test Mode: Transmitting

Frequency (MHz)	Receiver		Turn table Degree	Rx Antenna		Corrected Factor (dB)	Corrected Amplitude (dB μ V/m)	FCC Part 15.247	
	Reading (dB μ V)	Detector (PK/QP/Ave.)		Height (m)	Polar (H/V)			Limit (dB μ V/m)	Margin (dB)
119.99	53.75	QP	104	1.1	V	-14.70	39.05	43.5	4.45
431.99	49.71	QP	107	1.2	H	-7.39	42.32	46	3.68
576.00	39.38	QP	103	1.6	V	-5.10	34.28	46	11.72
672.05	32.42	QP	100	1.3	V	-3.17	29.25	46	16.75
768.01	38.40	QP	106	1.2	V	-1.87	36.53	46	9.47
958.48	34.57	QP	341	1.2	V	-6.63	27.94	46	18.06

Note:

1. Corrected Factor=Antenna factor (RX) +cable loss – amplifier factor
2. Corrected Amplitude = Corrected Factor + Receiver Reading
3. Margin = Limit- Corrected Amplitude

***** END OF REPORT *****