

FCC - TEST REPORT

Report Number	:	68.940.15.019.01	Date of Issue:	<u>November 25, 2015</u>
Model	:	BTC100		
Product Type	:	MIPOW PLAYBULB SPHERE		
Applicant	:	Shenzhen Baojia Battery Technology Co., Ltd		
Address	:	Block A, Yonghe Road, Tongfuyu Industrial Zone, Heping, Fuyong, Baoan, Shenzhen,China		
Production Facility	:	Shenzhen Baojia Battery Technology Co.,Ltd		
Address	:	Block A, Yonghe Road, Tongfuyu Industrial Zone, Heping, Fuyong, Baoan, Shenzhen,China		
Test Result	:	<input checked="" type="checkbox"/> Positive <input type="checkbox"/> Negative		
Total pages	:	21		

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

1 Table of Contents

1	Table of Contents.....	2
2	Details about the Test Laboratory	3
3	Description of the Equipment Under Test.....	4
4	Summary of Test Standards.....	5
5	Summary of Test Results.....	6
6	General Remarks	7
7	Test Setups.....	8
8	Test Methodology	9
8.1	Conducted Emission	9
8.2	Radiated Emission	9
8.3	Field Strength Calculation	9
9	Systems test configuration	10
10	Technical Requirement	11
10.1	Conducted Emission Test 150KHz – 30MHz.....	11
10.2	Radiated Emission of Fundamental Frequency.....	13
10.3	Field strength of the harmonics and spurious	15
10.4	Bandwidth Measurement	19
11	Test Equipment List	20
12	System Measurement Uncertainty	21

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch
Building 12&13, Zhiheng Wisdomland Business Park,
Nantou Checkpoint Road 2, Nanshan District,
Shenzhen City, 518052,
P. R. China

FCC Registration No.: 502708

IC Registration No: 10320A-1

Telephone: 86 755 8828 6998
Fax: 86 755 8828 5299

Test Site 2:

Company name: Dongguan Precise Testing Service Co., Ltd.
Building D, Baoding Technology Park, Guangming Road 2,
Dongcheng District, Dongguan,
Guangdong, China.

FCC Registration Number: 371540

Remark: All test items were performed at Site 2.

3 Description of the Equipment Under Test

Product:	MIPOW PLAYBULB SPHERE
Model no.:	BTC100
FCC ID:	SL7BTC100
Rating:	Input: 5VDC/250mA Output: 4.2VDC/150mA
RF Transmission Frequency:	117KHz
Modulation:	FSK
Antenna Type:	Integral Antenna
Antenna Gain:	0dBi
Description of the EUT:	The Equipment Under Test (EUT) is a MIPOW PLAYBULB COMET operated at 117KHz.

4 Summary of Test Standards

Test Standards	
FCC Part 15 Subpart C 10-1-2014 Edition	PART 15 - RADIO FREQUENCY DEVICES Subpart C - Intentional Radiators

5 Summary of Test Results

Technical Requirements				
FCC Part 15 Subpart C				
Test Condition		Pages	Test Site	Test Result
§15.207	Conducted emission AC power port	11	Site 2	Pass
§15.209	Field strength of fundamental	13	Site 2	Pass
§15.215	20dB&99% bandwidth	15	Site 2	Pass
§15.209(a)	Filed strength of harmonics and spurious	17	Site 2	Pass
§15.203	Antenna requirement	See note 1		Pass

Note 1: N/A=Not Applicable.

Note 2: The EUT uses an integral antenna, which gain is 0dBi. In accordance to §15.203, It is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: SL7BTC100 complies with Section 15.207, 15.209, 15.231 of the FCC Part 15, Subpart C Rules.

SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed

- **Not** Performed

The Equipment Under Test

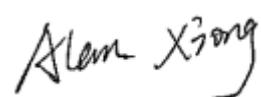
- **Fulfills** the general approval requirements.

- **Does not** fulfill the general approval requirements.

Sample Received Date: November 11, 2015

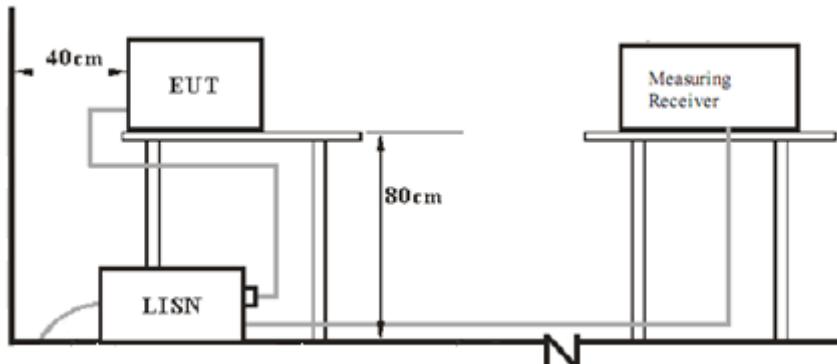
Testing Start Date: November 11, 2015

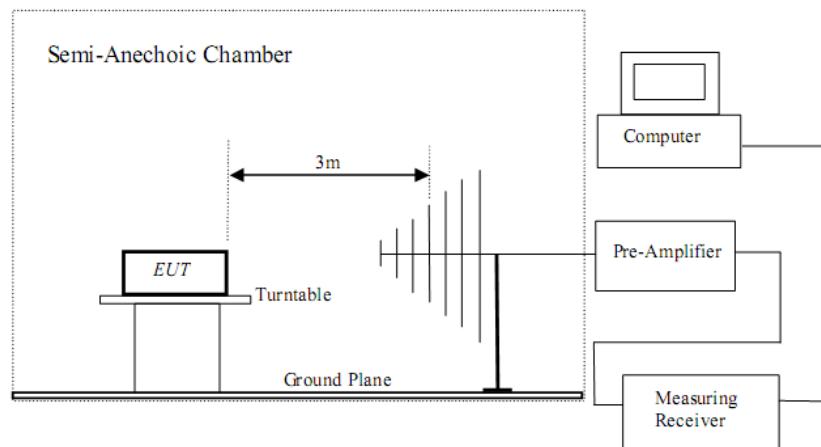
Testing End Date: November 20, 2015


TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

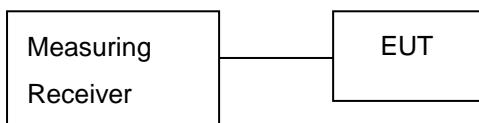
Reviewed by:

John Zhi
EMC Project Manager


Prepared by:


Alan Xiong
EMC Project Engineer

7 Test Setups


7.1 AC Power Line Conducted Emission test setups

7.2 Radiated test setups

7.3 Conducted RF test setups

8 Test Methodology

8.1 Conducted Emission

Test Method

1. The EUT was placed on a table, which is 0.8m above ground plane
2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
3. Maximum procedure was performed to ensure EUT compliance
4. A EMI test receiver is used to test the emissions from both sides of AC line
- 5.

8.2 Radiated Emission

The sample was placed 0.8m above the ground plane on a standard emission test site *. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

*On a standard emission test site with a metal ground plane filed with the FCC pursuant to section 2.948 of the FCC rules.

8.3 Field Strength Calculation

The field strength at 3 m was established by adding the meter reading of the spectrum analyzer to the factors associated with antenna correction factor, cable loss, preamplifiers and filter attenuation.

The equation is expressed as follow:

FS = R + System Factor

System Factor = AF + CF + FA – PA

Where FS = Net Field Strength in dBuV/m at 3 meters.

R = Reading of Spectrum Analyzer / Test Receiver in dBuV.

AF = Antenna Factor in dB.

CF = Cable Attenuation Factor in dB.

FA = Filter Attenuation Factor in dB.

PA = Preamplifier Factor in dB.

FA and PA are only be used for the measuring frequency above 1 GHz.

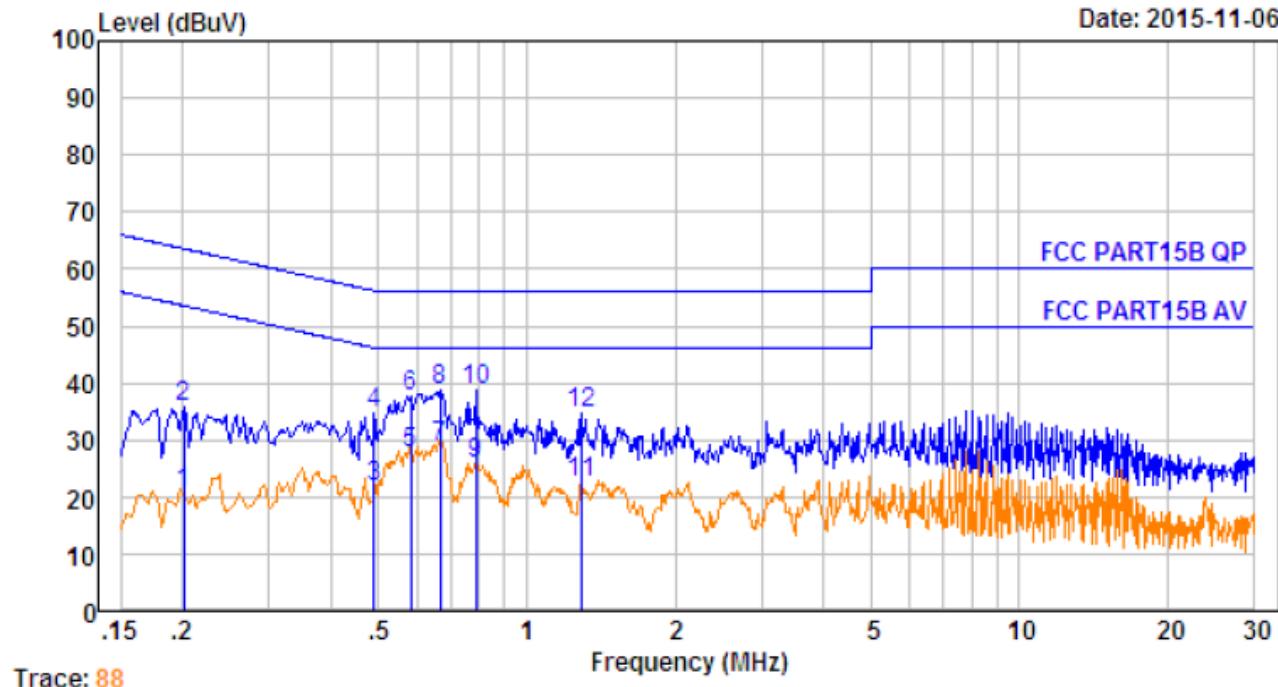
9 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
Adapter	5V/250mA	---	---

10 Technical Requirement

10.1 Conducted Emission Test 150KHz – 30MHz


Product Type: MIPOW PLAYBULB SPHERE

M/N: BTC100

Operating Condition: TM1; Normal Working Mode

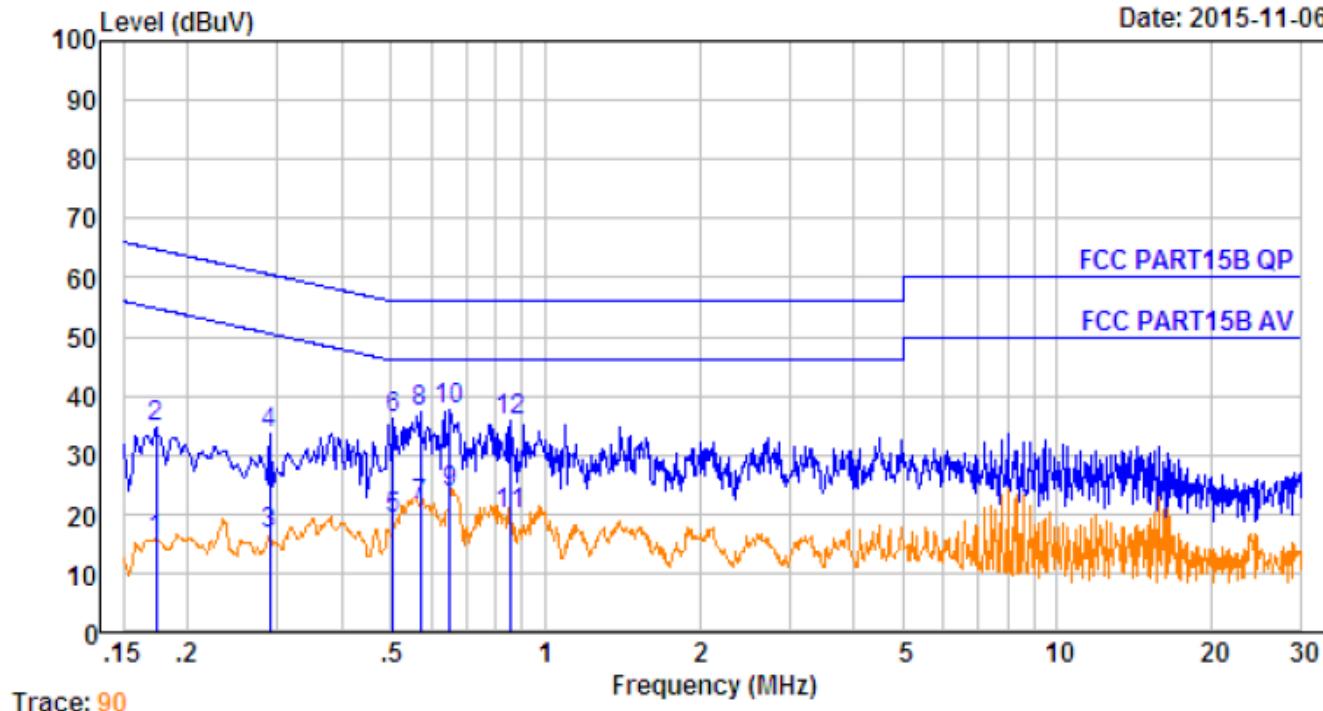
Test Specification: Power Line, Live

Comment: AC 120V/60Hz

No.	Freq MHz	Cable Loss dB	AMN Factor dB	Receiver Reading dBuV	Emission Level dBuV	Limit dBuV	Over Limit dB	Remark
1.	0.202	10.61	0.60	9.59	20.80	53.54	-32.74	Average
2.	0.202	10.61	0.60	24.59	35.80	63.54	-27.74	Peak
3.	0.489	10.64	0.60	10.46	21.70	46.19	-24.49	Average
4.	0.489	10.64	0.60	23.46	34.70	56.19	-21.49	Peak
5.	0.582	10.66	0.60	16.47	27.73	46.00	-18.27	Average
6.	0.582	10.66	0.60	26.47	37.73	56.00	-18.27	Peak
7.	0.668	10.66	0.60	17.43	28.69	46.00	-17.31	Average
8.	0.668	10.66	0.60	27.43	38.69	56.00	-17.31	Peak
9.	0.788	10.66	0.60	14.44	25.70	46.00	-20.30	Average
10.	0.788	10.66	0.60	27.44	38.70	56.00	-17.30	Peak
11.	1.289	10.68	0.60	11.34	22.62	46.00	-23.38	Average
12.	1.289	10.68	0.60	23.34	34.62	56.00	-21.38	Peak

Conducted Emission Test 150kHz – 30MHz

Product Type: MIPOW PLAYBULB SPHERE

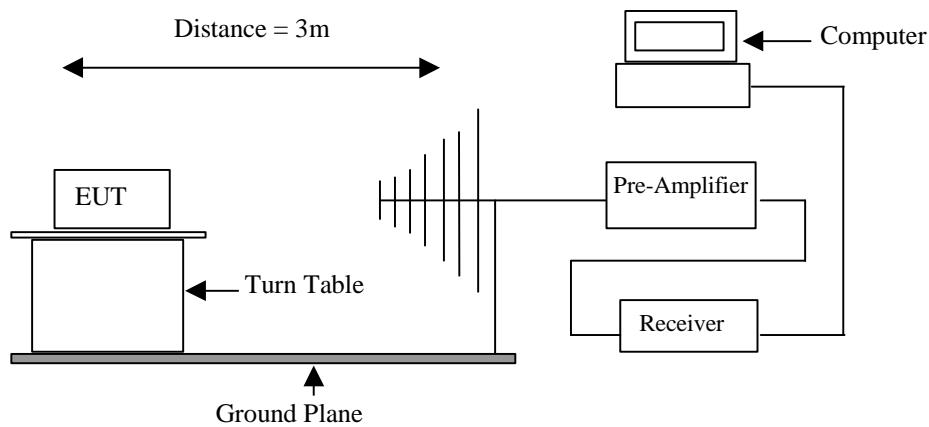

M/N: BTC100

Operating Condition: TM1; Normal Working Mode

Test Specification: Power Line, Neutral

Comment: AC 120V/60Hz

Date: 2015-11-06



No.	Freq MHz	Cable Loss dB	AMN Factor dB	Receiver Reading dBuV	Emission Level dBuV	Over Limit dB	Remark
1.	0.174	10.60	0.60	4.33	15.53	54.77	-39.24
2.	0.174	10.60	0.60	23.33	34.53	64.77	-30.24
3.	0.289	10.63	0.60	5.46	16.69	50.54	-33.85
4.	0.289	10.63	0.60	22.46	33.69	60.54	-26.85
5.	0.505	10.65	0.60	7.78	19.03	46.00	-26.97
6.	0.505	10.65	0.60	24.78	36.03	56.00	-19.97
7.	0.570	10.66	0.60	10.11	21.37	46.00	-24.63
8.	0.570	10.66	0.60	26.11	37.37	56.00	-18.63
9.	0.651	10.66	0.60	12.31	23.57	46.00	-22.43
10.	0.651	10.66	0.60	26.31	37.57	56.00	-18.43
11.	0.857	10.67	0.60	8.71	19.98	46.00	-26.02
12.	0.857	10.67	0.60	24.71	35.98	56.00	-20.02

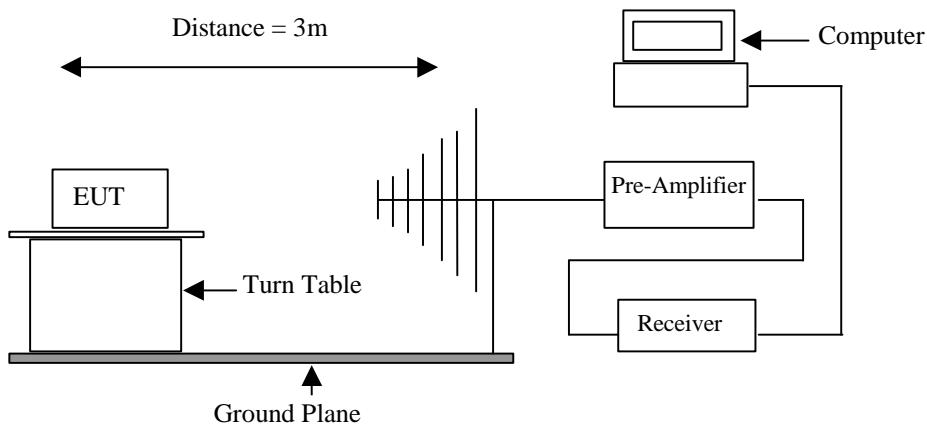
10.2 Radiated Emission of Fundamental Frequency

Test Requirement: FCC part 15 section 15.209(a)
 Test Method: ANSI C63.4:2003
 Test Date: 2015-11-14
 Mode of Operation: Transmitting mode.
 Detector Function: Quasi Peak(CISPR)
 Measurement BW: RBW 10KHz ; VBW 30KHz
 Trace mode: Max hold

Test Setup:

Results: PASS

Test conditions		Maximum power (dB μ V/m)	
Frequency		117KHz	
Mode		At 10 m distance	
T _{nom}	V _{nom}	18.93	-9.77

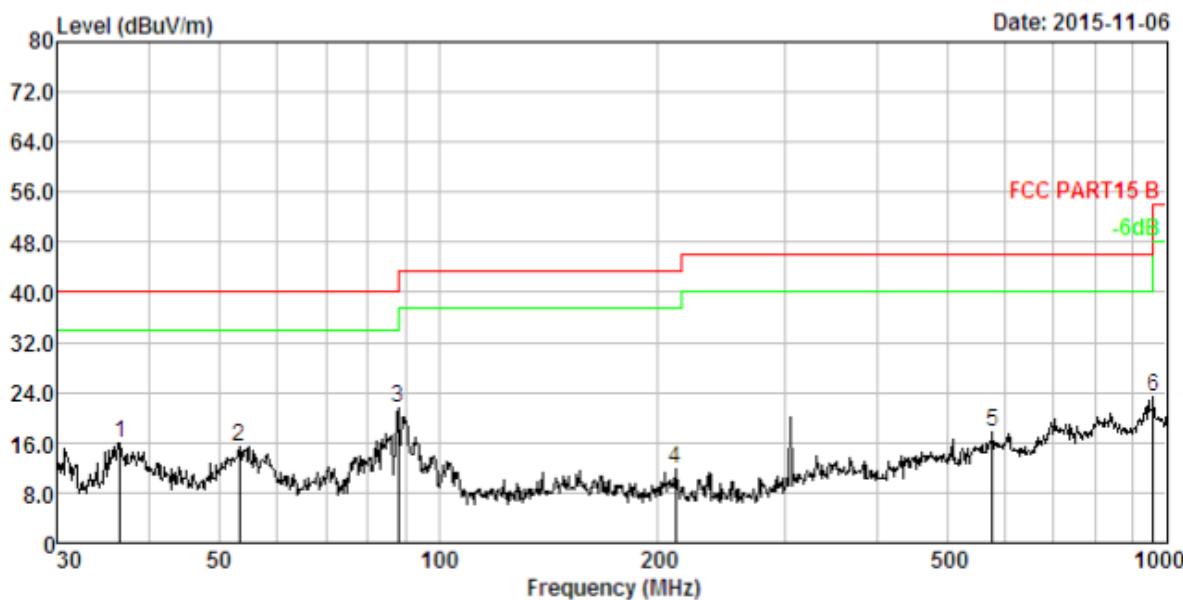

Limits for Fundamental Frequency: [Section 15.209(a)]:

Frequency (MHz)	Field strength (μ V/m)	Measurement distance (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30(29.5dB μ V/m)	30
30-88	100(40dB μ V/m)	3
88-216	150(43.5dB μ V/m)	3
216-960	200(46dB μ V/m)	3
Above 960	500(54dB μ V/m)	3

10.3 Field strength of the harmonics and spurious

Test Requirement: FCC part 15 section 15.209
 Test Method: ANSI C63.4:2003
 Test Date: 2015-11-14
 Mode of Operation: Transmitting mode.
 Detector Function Quasi Peak(CISPR)
 Measurement BW RBW 120KHz ; VBW 300KHz
 Trace mode: Max hold

Test Setup:

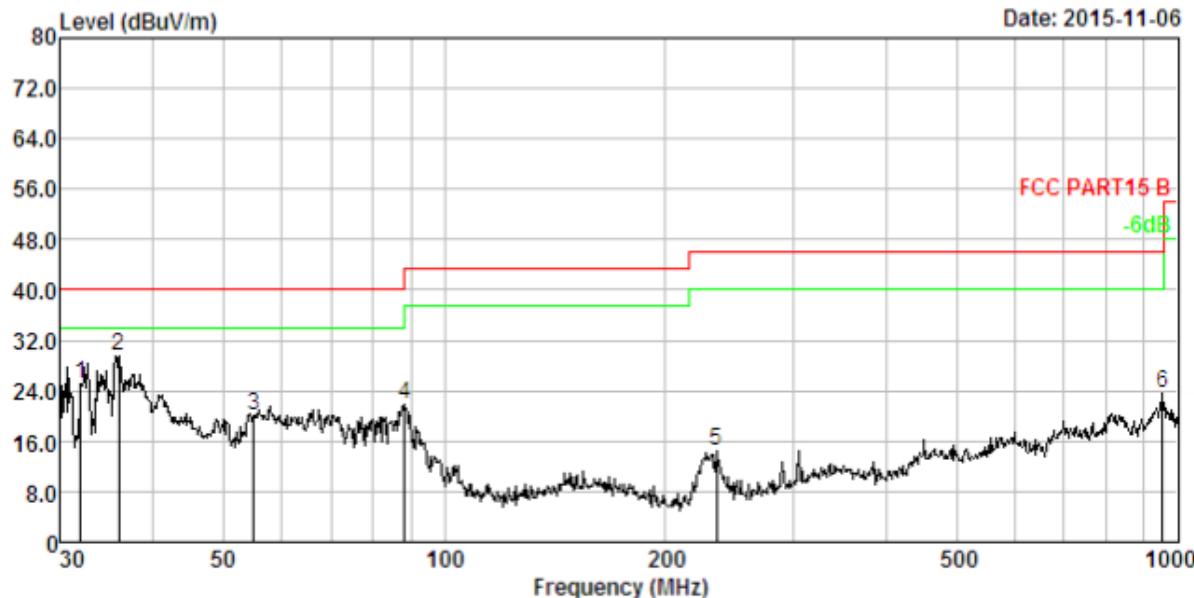

Results: PASS

EUT: MIPOW PLAYBULB SPHERE

M/N: BTC100

Operating Condition: Transmitting Mode

Test Specification: Horizontal


No.	Freq MHz	Cable Loss dB	ANT Factor dB/m	Receiver Reading dB _{uV}	Preamp Factor dB	Emission Level dB _{uV/m}	Limit dB _{uV/m}	Over Limit dB	Remark
1.	36.509	1.23	13.47	31.43	30.04	16.09	40.00	-23.91	Peak
2.	53.318	1.58	12.02	31.97	30.17	15.40	40.00	-24.60	Peak
3.	88.033	2.03	9.06	40.90	30.34	21.65	43.50	-21.85	Peak
4.	211.527	2.82	10.60	29.04	30.65	11.81	43.50	-31.69	Peak
5.	576.644	3.73	18.55	26.31	31.00	17.59	46.00	-28.41	Peak
6.	958.794	4.19	23.43	26.83	31.18	23.27	46.00	-22.73	Peak

EUT: MIPOW PLAYBULB SPHERE

M/N: BTC100

Operating Condition: Transmitting Mode

Test Specification: Vertical

No.	Freq MHz	Cable Loss dB	ANT Factor dB/m	Receiver Reading dBuV	Preamp Factor dB	Emission Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark
1.	31.955	1.11	13.22	40.85	29.99	25.19	40.00	-14.81	Peak
2.	36.001	1.22	13.44	45.04	30.03	29.67	40.00	-10.33	Peak
3.	55.027	1.60	11.90	36.75	30.18	20.07	40.00	-19.93	Peak
4.	88.342	2.03	9.10	41.15	30.35	21.93	43.50	-21.57	Peak
5.	234.991	2.92	11.48	30.70	30.69	14.41	46.00	-31.59	Peak
6.	952.094	4.19	23.43	27.21	31.17	23.66	46.00	-22.34	Peak

Note: No further spurious emissions found between 30 MHz and lowest internal used/generated frequency.

Limits for Radiated Emission [Section 15.209]:

Frequency (MHz)	Field strength (μ V/m)	Measurement distance (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30(29.5dB μ V/m)	30
30-88	100(40dB μ V/m)	3
88-216	150(43.5dB μ V/m)	3
216-960	200(46dB μ V/m)	3
Above 960	500(54dB μ V/m)	3

Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in section 15.209, whichever permits a higher field strength.

Radiated emissions, which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209.

The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector and above 1000MHz are based on measurements employing an average detector.

10.4 Bandwidth Measurement

Test Requirement: FCC part 15 section 15.215
 Test Method: ANSI C63.4:2003
 Test Date: 2015-11-17
 Mode of Operation: Transmitting continuously mode
 Detector Function: Peak
 Trace mode: Max hold

Test setup:

The bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.

Test Result: Pass

Result data graph is shown in the following for reference.

Occupied Bandwidth(KHz)	
20dB	2.90

11 Test Equipment List

List of Test Instruments

	DESCRIPTION	MANUFACTURE R	MODEL NO.	SERIAL NO.	CAL. DUE DATE
CE	EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 3, 2016
	Artificial Mains Network	Narda	L2-16B	000WX31025	July 7, 2016
	Artificial Mains Network (AUX)	Narda	L2-16B	000WX31026	July 7, 2016
	RF Cable	SCHWARZBECK	AK9515E	96222	July 3, 2016
	Shielded Room	CHENGYU	843	PTS-002	June 5, 2016
C	EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 3, 2016
RE	EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 3, 2016
	Trilog Broadband Antenna (25M-1GHz)	SCHWARZBECK	VULB9160	9160-3355	July 3, 2016
	Signal Amplifier	SCHWARZBECK	BBV 9475	9745-0013	July 3, 2016
	RF Cable	SCHWARZBECK	AK9515E	96221	July 3, 2016
	3m Anechoic Chamber	CHENGYU	966	PTS-001	June 5, 2016
	MULTI-DEVICE Positioning Controller	Max-Full	MF-7802	MF780208339	N/A
	Active loop antenna (9K-30MHz)	Schwarzbeck	FMZB1519	1519-038	June 5, 2016
	Spectrum analyzer	Agilent	E4407B	MY46185649	June 5, 2016
	Horn Antenna (1G-18GHz)	SCHWARZBECK	BBHA9120D	9120D-1246	June 5, 2016
	Horn Ant (18G-40GHz)	Schwarzbeck	BBHA 9170	9170-181	June 5, 2016

12 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty	
Items	Extended Uncertainty
Radiated Emissions Electric field 3 m distance	±3.80 dB
Conducted emissions mains	±2.45 dB
Conducted RF test	Power level test involved: 2.04dB Frequency test involved: 1.1×10^{-7}