

FCC PART 15 CLASS B
EMI MEASUREMENT AND TEST REPORT
For

HL Instore Tech AB
Box 1118, SE-131 26 Nacka Strand, Stockholm , Sweden

FCC ID:SKF2013DSAP

May 03, 2013

This Report Concerns: Original Report	Equipment Type: HL Ad'Pulse
Test Engineer:	Lisa Chen <i>Lisa Chen</i>
Report No.:	BSL13031047YER-3
Receive EUT Date/Test Date:	May 03, 2013/ April 17, 2013- May 03, 2013
Reviewed By:	Sky Zhang <i>Sky Zhang</i>
Prepared By:	BSL Testing Co.,LTD. NO. 24, ZH Park, Nantou, Shenzhen, 518000 China Tel: 86- 755-26508703 Fax: 86- 755-26508703

Note: The test report is specially limited to the above company and this particular sample only. It may not be duplicated without prior written consent of BSL Testing Co.,LTD. This report must not be used by the client to claim product certification, approval,or endorsement by NVLAP, NIST or any agency of the US Government.

TABLE OF CONTENTS

1.	GENERAL INFORMATION	3
1.1.	Report information.....	3
2.	PRODUCT DESCRIPTION	4
2.1.	EUT Description	4
2.2.	Block Diagram of EUT Configuration	4
2.3.	Support Equipment List	4
2.4.	Test Conditions	5
2.5.	TEST Results SUmmary	5
3.	TEST EQUIPMENT USED	6
4.	CONDUCTED EMISSION TEST.....	7
4.1.	Measurement Uncertainty.....	7
4.2.	Block Diagram of Test Setup.....	7
4.3.	Test Standard	7
4.4.	Conducted Emission Limit(Class B)	8
4.5.	EUT Configuration on Test	8
4.6.	Operating Condition of EUT	8
4.7.	Test Procedure	8
4.8.	Test Result	8
5.	RADIATED EMISSION MEASUREMENT	11
5.1.	Measurement Uncertainty.....	11
5.2.	Block Diagram of EUT Configuration	11
5.3.	Test Standard	11
5.4.	Radiated Emission Limit(Class B)	12
5.5.	EUT Configuration on Test	12
5.6.	Operating Condition of EUT	12
5.7.	Test Procedure	13
5.8.	Test Result	13

1. GENERAL INFORMATION

1.1. Report information

1.1.1. This report is not a certificate of quality; it only applies to the sample of the specific product/equipment given at the time of its testing. The results are not used to indicate or imply that they are application to the similar items. In addition, such results must not be used to indicate or imply that HL Instore Tech AB approves recommends or endorses the manufacture, supplier or use of such product/equipment, or that HL Instore Tech AB in any way guarantees the later performance of the product/equipment.

1.1.2. The sample/s mentioned in this report is/are supplied by Applicant, HL Instore Tech AB therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture or any information supplied.

Additional copies of the report are available to the Applicant at an additional fee. No third part can obtain a copy of this report through HL Instore Tech AB, unless the applicant has authorized HL Instore Tech AB in writing to do so.

Test Facility -

The test site used to collect the radiated data is located on the address of
BSL Testing Co.,LTD.

(FCC Registered Test Site Number: 191509) on
NO. 24, ZH Park, Nantou, Shenzhen, 518000 China

The Test Site is constructed and calibrated to meet the FCC requirements.

2. PRODUCT DESCRIPTION

2.1. EUT Description

Applicant : HL Instore Tech AB
 Address : Box 1118, SE-131 26 Nacka Strand, Stockholm , Sweden

Manufacturer : Emayse (Shen Zhen) Technology Co. Ltd.
 Address : 3/F, NO.4/B Building, HuiYe Science and Technology Park,
 No.1 Guanguang Road, Guangming District, Shenzhen Guangdong
 Province, China


EUT Description : HL Ad'Pulse

Trade Name : Ad'Pulse™

Model Number : 2013DSAP-T/C 10.1

Power Supply : Powered by 120V/60 Hz Adapter

2.2. Block Diagram of EUT Configuration

2.3. Support Equipment List

Name	Model No	S/N	Manufacturer	Used (Y/N)
AC Adapter Input: 100-240Vac, 50/60Hz, Max 0.5A Output: 12Vdc, 1.5A	QX18W120150 FU	--	--	Y
PC system	AM1830	N/A	Acer	Y
Printer	HP1020	N/A	HP	Y
Router	PL-R860	N/A	TP-LINK	Y

2.4. Test Conditions

Temperature: 23~27°C

Relative Humidity: 50~63 %

2.5. TEST Results Summary

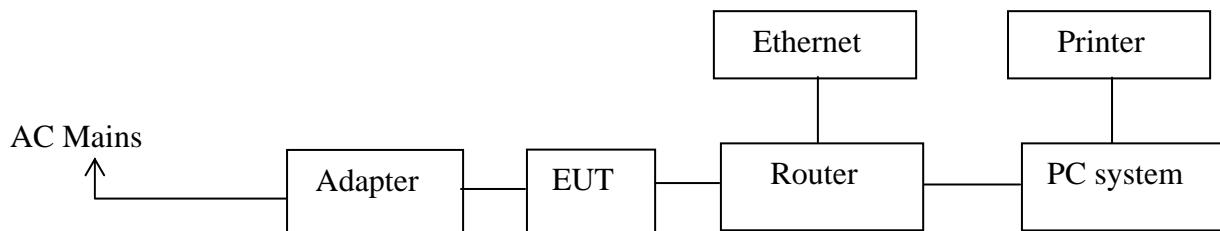
Table 1 Test Results Summary

Test Items	Test Results
Conducted disturbance	Pass
Radiated disturbance	Pass

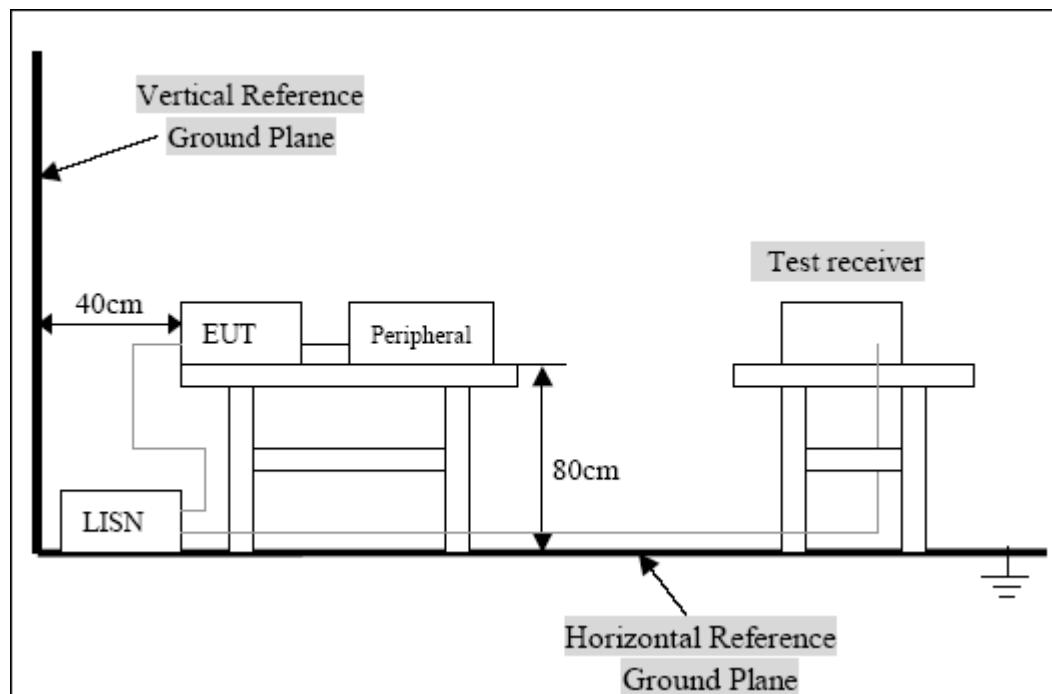
Remark: “N/A” means “Not applicable.”

3. TEST EQUIPMENT USED

EQUIPMENT/FACILITIES	MANUFACTURER	MODEL	SERIAL NO.	DATE OF CAL.	CAL. INTERVAL
3m Semi-Anechoic Chamber	Chengyu Electron	9 (L)*6 (W)* 6 (H)	BSL086	Aug. 23 2012	1 Year
EMI Test Receiver	Rohde & Schwarz	ESCI3	BSL001	Sep. 28 2012	1 Year
BiConiLog Antenna	Rohde & Schwarz	HL562	BSL009	Sep. 28 2012	1 Year
Double -ridged waveguide horn	Rohde & Schwarz	9120D	BSL008	Aug. 27 2012	1 Year
Horn Antenna	ETS-LINDGREN	3160	BSL072	Dec. 28 2012	1 Year
Cable	Rohde & Schwarz	N/A	BSL045	Aug. 27 2012	1 Year
Cable	Rohde & Schwarz	N/A	BSL046	Aug. 27 2012	1 Year
Cable	Rohde & Schwarz	N/A	BSL047	Aug. 27 2012	1 Year
Amplifier(100kHz-40G Hz)	R&S	SMR40	BSL007	Sep. 28 2012	1 Year
Band filter	Amindeon	82346	BSL049	Aug. 27 2012	1 Year
Active Loop Antenna	EMTES	EM15	BSL011	Sep. 28 2012	1 Year
Power Meter	R&S	NRVS	BSL052	Aug. 3, 2012	1 Year
Power Sensor	R&S	NRV-Z33	BSL053	Aug. 3, 2012	1 Year
Shielding Room	Chengyu Electron	7.0(L)x3.0(W)x3.0(H)	BSL085	Jul. 25 2012	1 Year
EMI Test Receiver	R&S	ESPI13	BSL002	Sep. 28 2012	1 Year
10dB Pulse Limita	R&S	N/A	BSL003	Sep. 28 2012	1 Year
Coaxial Switch	YUANFANG	TA218B	BSL004	Aug. 27 2012	1 Year
LISN	Rohde & Schwarz	ESH3-Y5	BSL005	Sep. 28 2012	1 Year
Coaxial Cable	Rohde & Schwarz	N/A	BSL048	Aug. 27 2012	1 Year
Spectrum analyzer	Rohde & Schwarz	FSP40	BSL049	N/A	N/A


4. CONDUCTED EMISSION TEST

4.1. Measurement Uncertainty


The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement is + 1.25 dB.

4.2. Block Diagram of Test Setup

4.2.1. Block Diagram of connection between the EUT and the simulators

4.2.2. Test Setup Diagram

4.3. Test Standard

FCC Part 15 CLASS B

ANSI C63.4 2003

4.4. Conducted Emission Limit(Class B)

Frequency		Limits dB(μ V)	
MHz		Quasi-peak Level	Average Level
0.15	~ 0.50	66 ~ 56*	56 ~ 46*
0.50	~ 5.00	56	46
5.00	~ 30.00	60	50

Notes: 1. *Decreasing linearly with logarithm of frequency.

4.5. EUT Configuration on Test

The following equipments are installed on conducted emission test to meet FCC Part 15 requirement and operating in a manner, which tends to maximize its emission characteristics in a normal application.

4.6. Operating Condition of EUT

4.6.1. Setup the EUT and simulators as shown in Section 4.2.1.

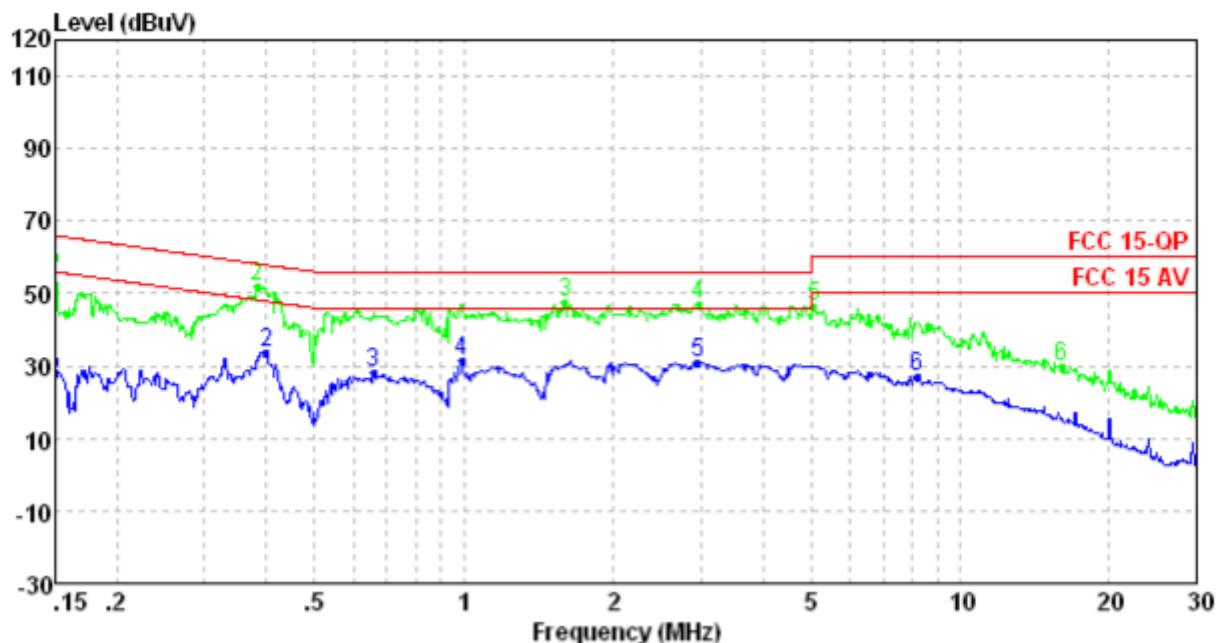
4.6.2. Turn on the power of all equipments.

4.6.3. Let the EUT work in test mode (Connect to a router and the router attached to PC) and test it.

4.7. Test Procedure

The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI test receiver is used to test the emissions form both sides of AC line. The bandwidth of EMI test receiver is set at 9kHz.

4.8. Test Result

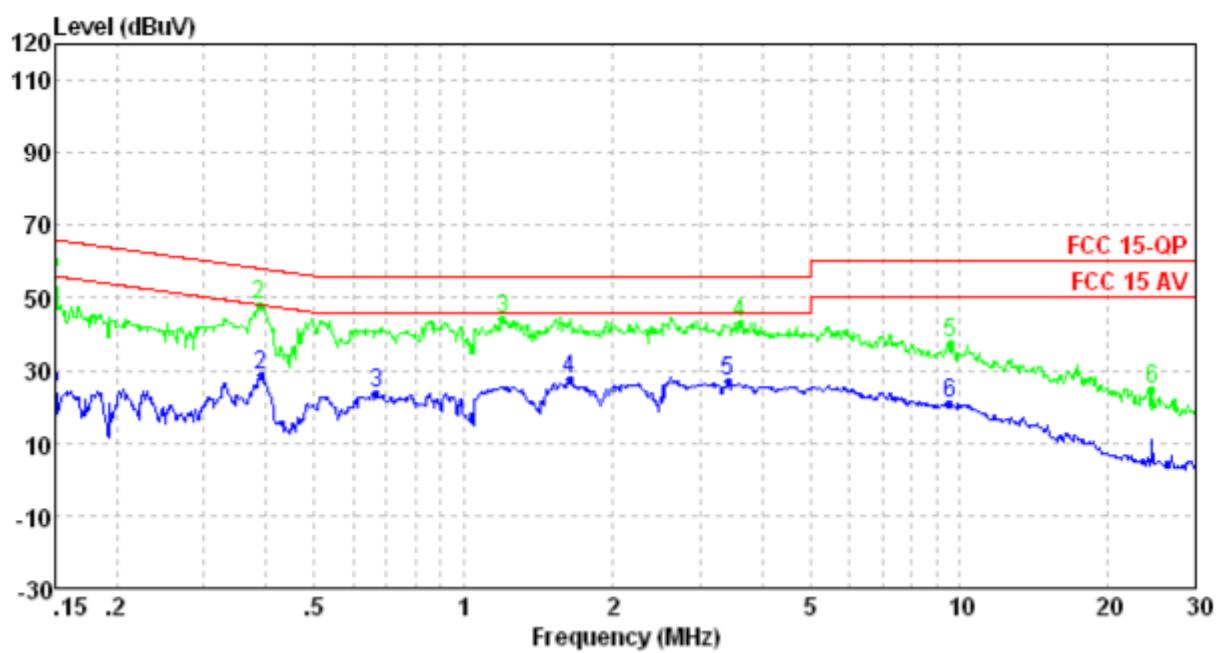

Pass

L Line

Frequency (MHz)	Meter Reading (dB μ V)	Factor (dB)	Emission Level (dB μ V)	Limits (dB μ V)	Margin (dB)	Detector Type
0.15	21.00	10.43	31.43	56.00	-24.57	AVG
0.40	23.24	10.42	33.66	47.86	-14.20	AVG
0.66	17.77	10.40	28.17	46.00	-17.83	AVG
0.99	21.12	10.37	31.49	46.00	-14.51	AVG
2.96	20.54	10.38	30.92	46.00	-15.08	AVG
8.19	16.94	10.29	27.23	50.00	-22.77	AVG
0.15	49.75	10.43	60.18	66.00	-5.82	QP
0.38	41.40	10.42	51.82	58.21	-6.39	QP
1.60	37.24	10.40	47.64	56.00	-8.36	QP
2.98	36.73	10.37	47.10	56.00	-8.90	QP
5.08	36.09	10.38	46.47	60.00	-13.53	QP
16.05	19.57	10.29	29.86	60.00	-30.14	QP

Remark:

1. All readings are Quasi-Peak and Average values.
2. Factor = Insertion Loss + Cable Loss.

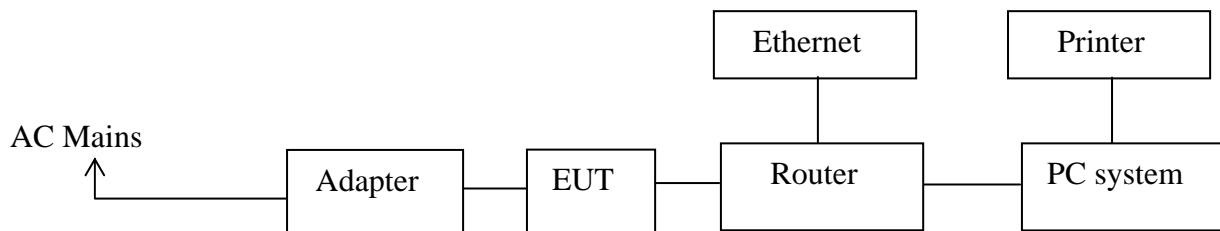

N Line

Frequency (MHz)	Meter Reading (dB μ V)	Factor (dB)	Emission Level (dB μ V)	Limits (dB μ V)	Margin (dB)	Detector Type
0.15	18.40	10.43	28.83	56.00	-27.17	AVG
0.39	18.23	10.42	28.65	48.03	-19.38	AVG
0.67	13.40	10.40	23.80	46.00	-22.20	AVG
1.64	17.04	10.37	27.41	46.00	-18.59	AVG
3.42	16.66	10.38	27.04	46.00	-18.96	AVG
9.55	10.54	10.29	20.83	50.00	-29.17	AVG
0.15	49.86	10.43	60.29	66.00	-5.71	QP
0.39	37.44	10.42	47.86	58.12	-10.26	QP
1.20	33.97	10.40	44.37	56.00	-11.63	QP
3.62	32.83	10.37	43.20	56.00	-12.80	QP
9.60	27.30	10.38	37.68	60.00	-22.32	QP
24.53	14.55	10.29	24.84	60.00	-35.16	QP

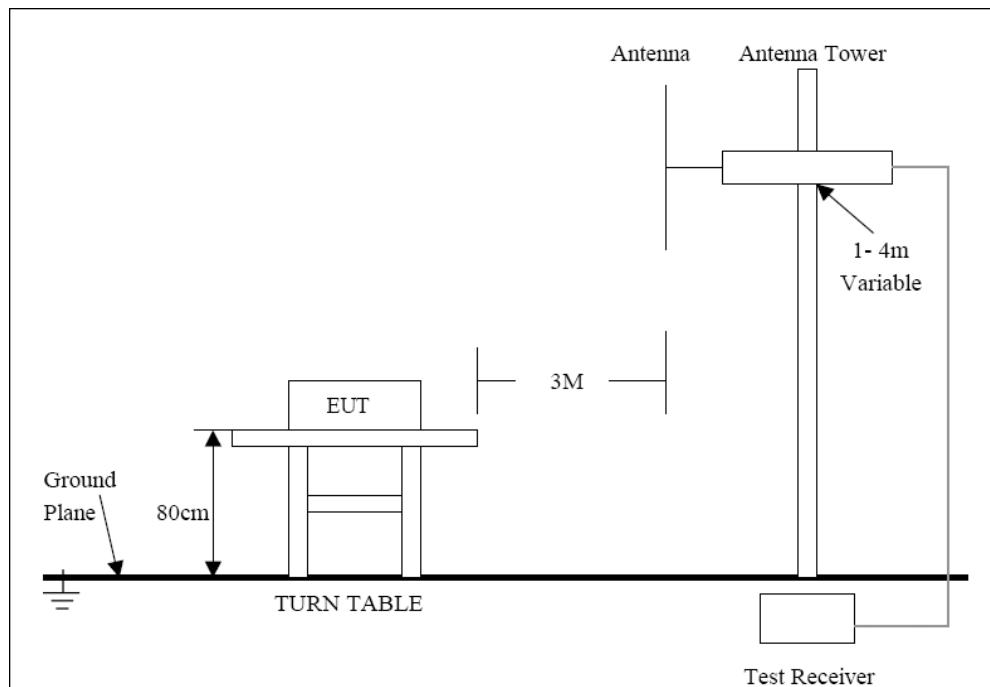
Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


5. RADIATED EMISSION MEASUREMENT

5.1. Measurement Uncertainty


The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any radiation emissions measurement is + 3.47 dB.

5.2. Block Diagram of EUT Configuration

5.2.1. Block Diagram of connection between the EUT and the simulators

5.2.2. Semi-anechoic Chamber Test Setup Diagram

5.3. Test Standard

FCC Part 15 CLASS B
ANSI C63.4 2003

5.4. Radiated Emission Limit(Class B)

FREQUENCY (MHz)	DISTANCE (Meters)	FIELD STRENGTHS LIMITS (dB μ V/m)
30 ~ 88	3	40.0
88 ~ 216	3	43.5
216 ~ 960	3	46.0
Above 1000	3	54.0

Note:(1) The smaller limit shall apply at the edge between two frequency bands.

(2) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the EUT or system.

5.5. EUT Configuration on Test

The following equipment are installed on Radiated Emission Measurement to meet the Commission requirements and operating regulations in a manner which tends to maximize Its emission characteristics in normal application.

5.6. Operating Condition of EUT

5.6.1. Setup the EUT as shown on Section 5.2.1

5.6.2. Turn on the power of all equipments.

5.6.3. Let the EUT work in test mode (Connect to a router and the router attached to PC) and test it.

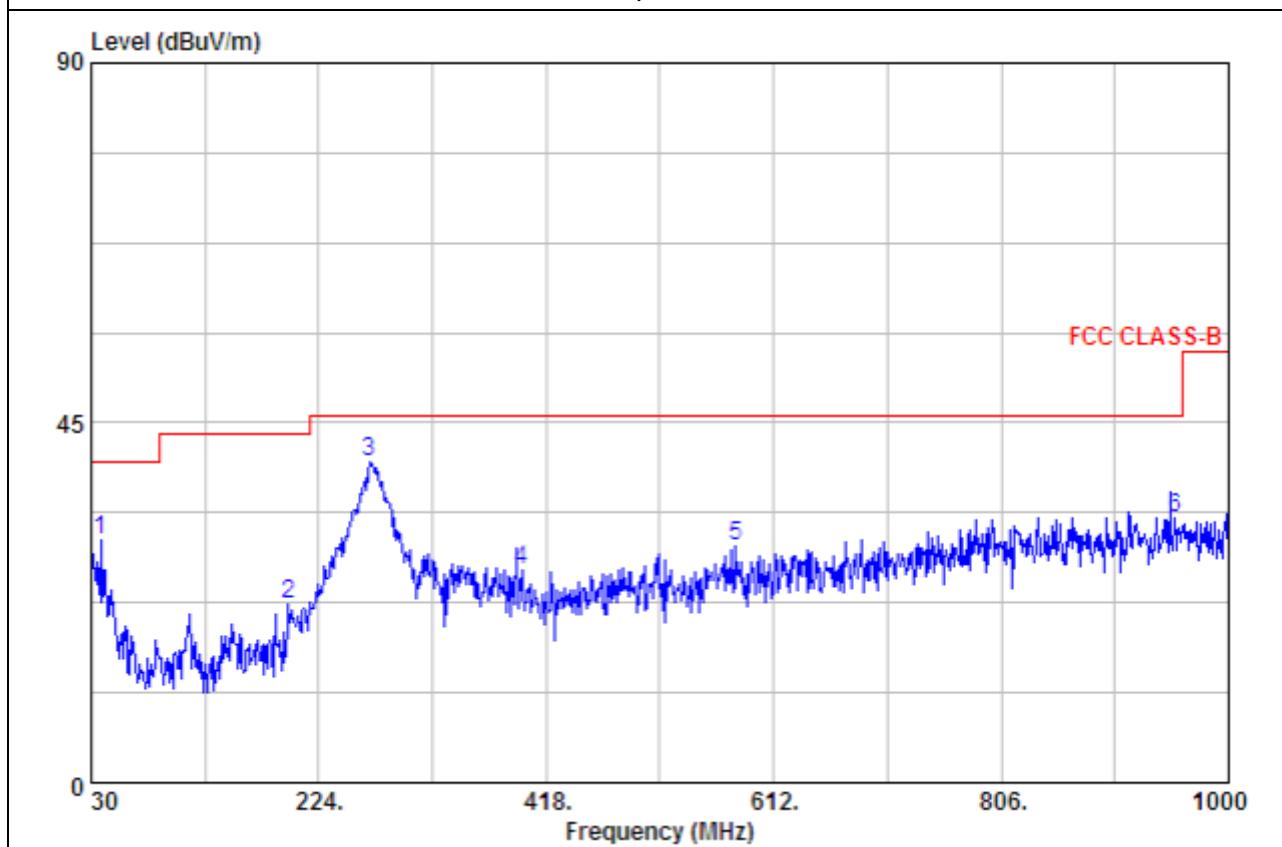
5.7. Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Calibrated Loop antenna is used as receiving antenna for frequencies below 30MHz, Calibrated Bilog antenna is used as receiving antenna for frequencies between 30 MHz and 1 GHz, Calibrated Horn antenna is used as receiving antenna for frequencies above 1000MHz. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2003 on radiated emission measurement.

The bandwidth of test receiver is set at 9kHz in below 30MHz. and set at 120kHz in 30-1000MHz.

The final measurement in band 9-90kHz, 110-490kHz and above 1000MHz is performed with Peak detector and Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector. The frequency range from 9kHz to 1000MHz is checked. All the test results are listed in Section 6.8. The measurements greater than 20dB below the limit are not report. Through three orthogonal axes to determine which attitude and equipment arrangement produces the highest emission relative to the limit. And X direction is worst mode

5.8. Test Result

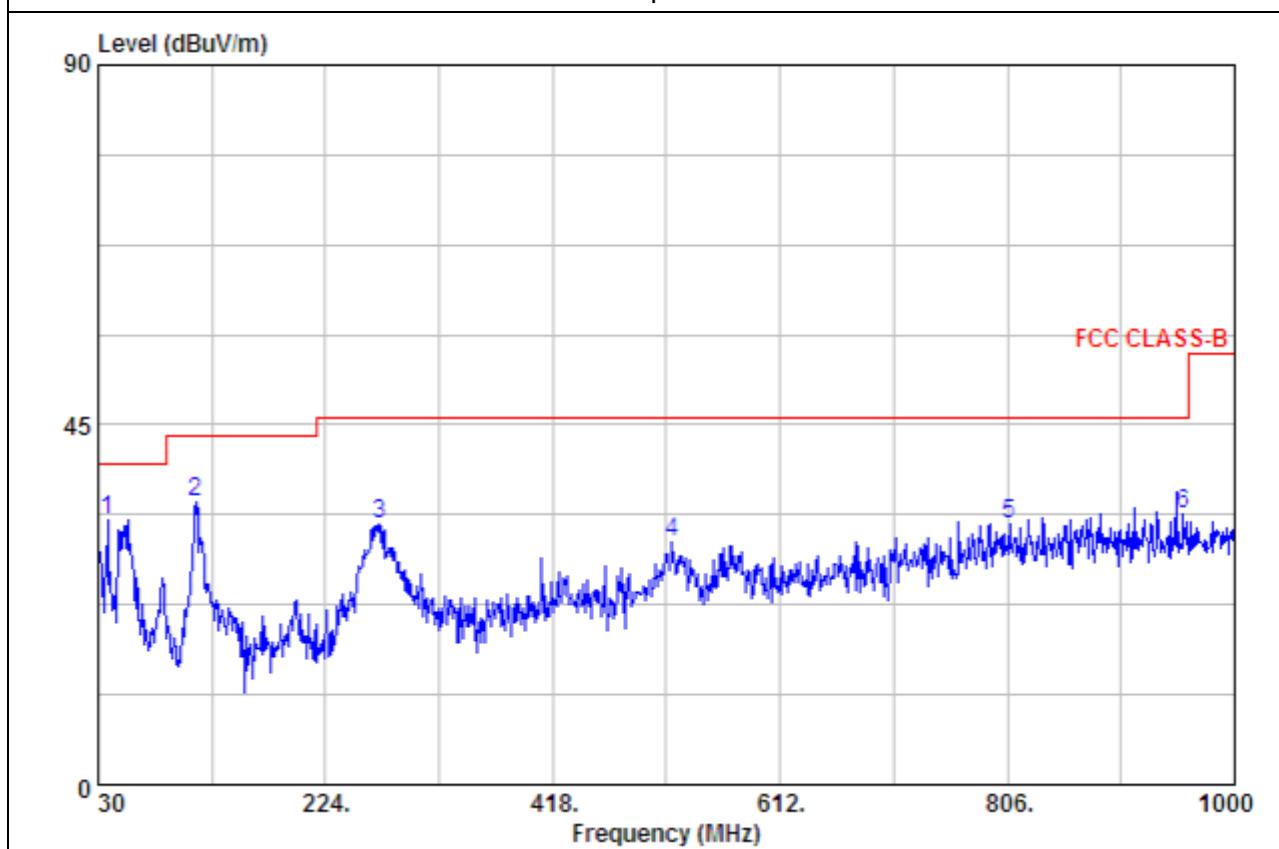

PASS

Horizontal

Frequency (MHz)	Meter Reading (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
37.76	18.28	11.93	30.21	40.00	-9.79	QP
197.81	11.81	10.42	22.23	43.50	-21.27	QP
267.65	30.27	9.87	40.14	46.00	-5.86	QP
397.63	16.81	9.65	26.46	46.00	-19.54	QP
579.99	21.23	8.36	29.59	46.00	-16.41	QP
954.41	24.45	8.72	33.17	46.00	-12.83	QP

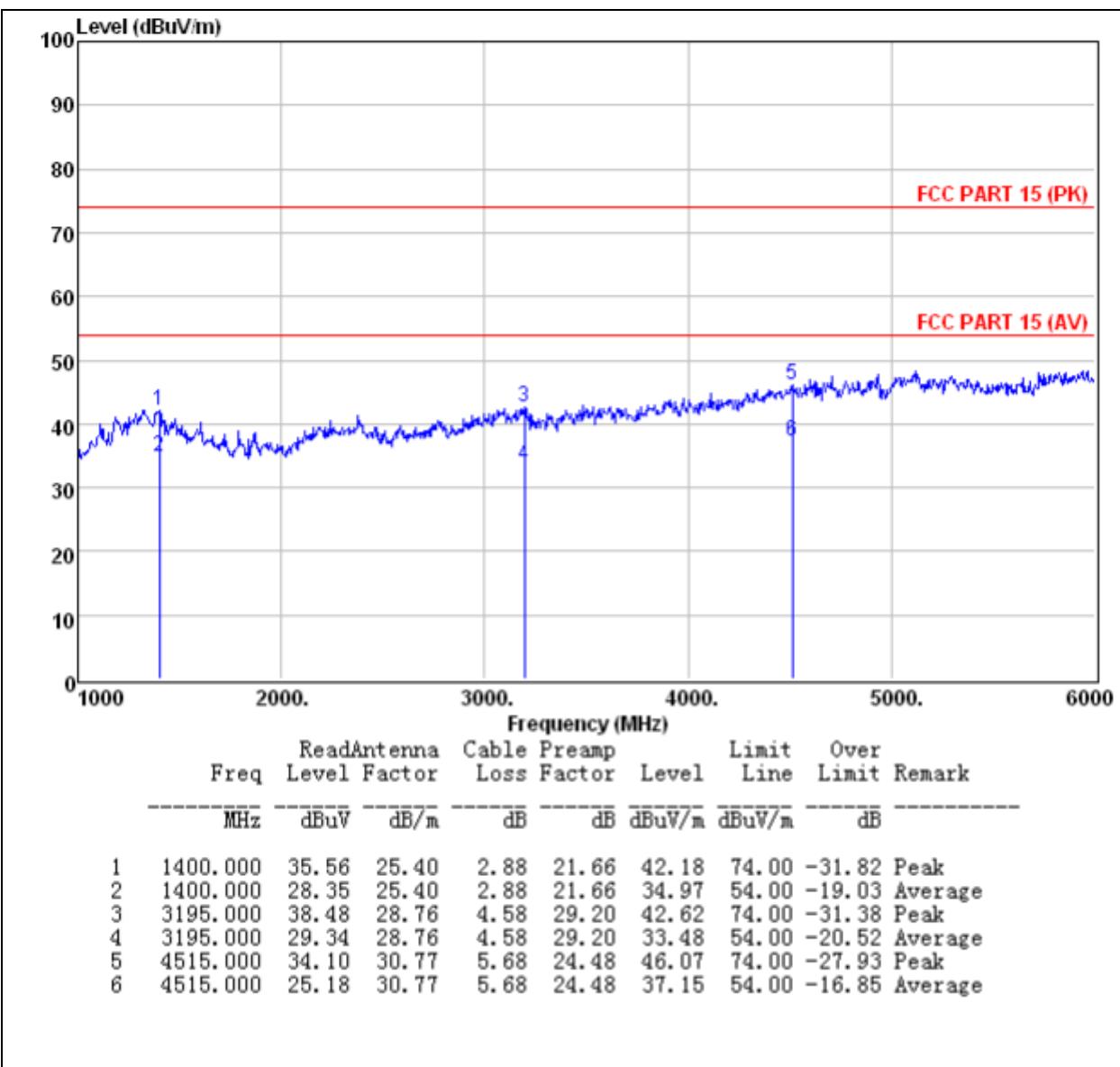
Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

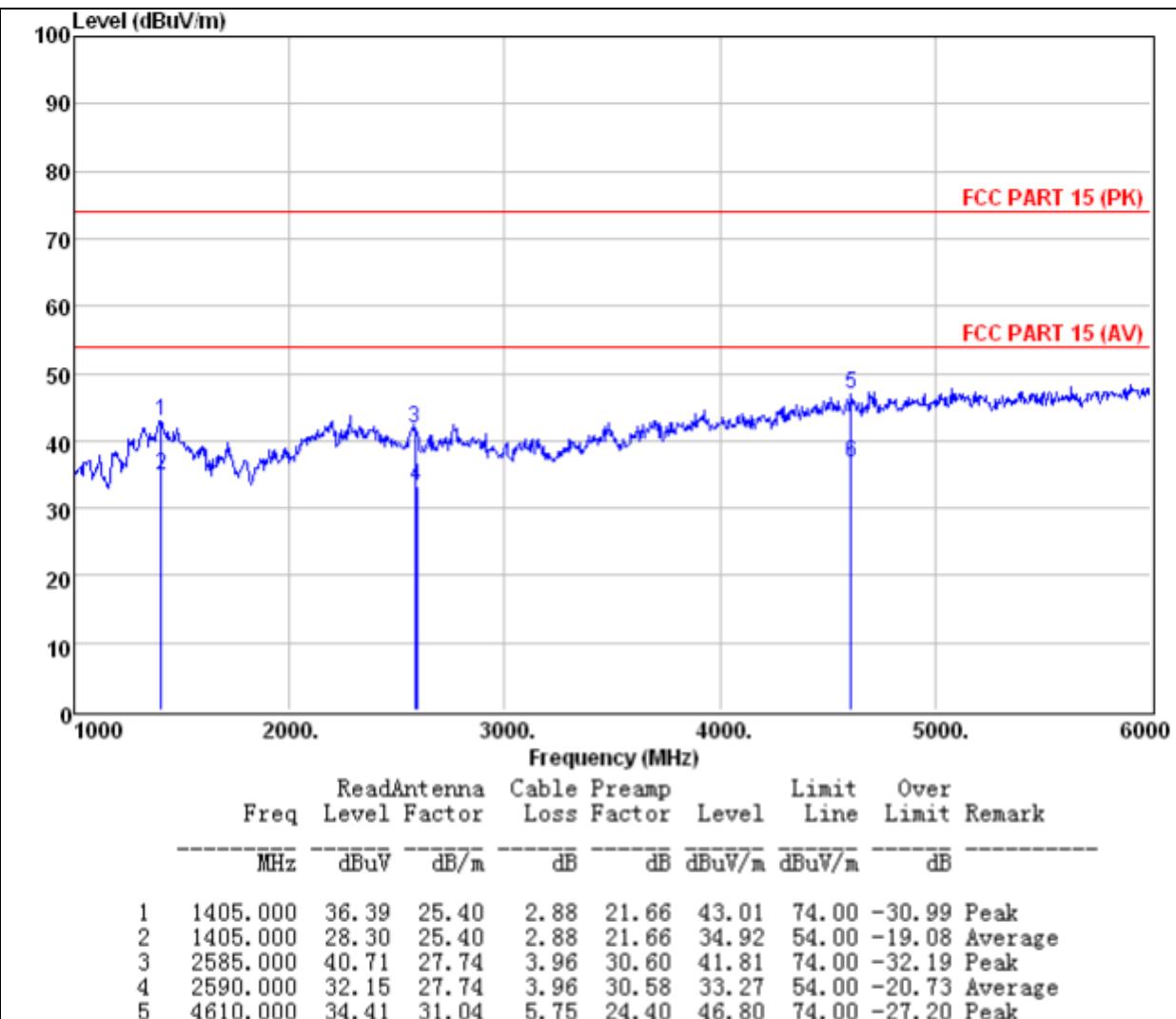


Vertical

Frequency (MHz)	Meter Reading (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
37.76	25.32	8.72	33.19	40.00	-6.81	QP
113.42	12.07	10.25	35.47	43.50	-8.03	QP
269.59	13.46	11.32	32.49	46.00	-13.51	QP
519.85	15.53	9.57	30.23	46.00	-15.77	QP
807.94	21.52	8.65	32.54	46.00	-13.46	QP
956.35	21.32	13.99	33.73	54.00	-12.27	QP


Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.



Plot of Radiation Emissions Test Data (Above 1GHz)

Horizontal

Vertical

