

Excellence in Compliance Testing

Certification Exhibit

**FCC ID: SK9PMCR1
IC: 864G-PMCR1**

**FCC Rule Part: 15.247
IC Radio Standards Specification: RSS-210**

ACS Report Number: 08-0399-15C

Manufacturer: Itron, Inc.
Model: Cell Relay Pole, Ethernet

RF Exposure

General Information:

Applicant: Itron Electricity Metering, Inc.
 ACS Project: 08-0399
 FCC ID: SK9PMCR1
 Device Category: Mobile
 Environment: General Population/Uncontrolled Exposure
 Simultaneous Transmission: Yes

Technical Information 900 MHz

Antenna Type: Phantom
 Antenna Gain: 3dBi
 Transmitter Radiated Power: 18.99dBm
 Maximum System EIRP: 21.99dBm

Technical Information 2400 MHz

Antenna Type: Omnidirectional
 Antenna Gain: 0dBi
 Transmitter Radiated Power: 17.21dBm
 Maximum System EIRP: 17.21dBm

MPE Calculation

The Power Density (mW/cm²) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

MPE Calculator for Mobile Equipment							
Limits for General Population/Uncontrolled Exposure*							
Transmit Frequency (MHz)	Radio Power (dBm)	Power Density Limit (mW/Cm2)	Radio Power (mW)	Antenna Gain (dBi)	Antenna Gain (mW eq.)	Distance (cm)	Power Density (mW/cm ²)
927.75	18.99	0.62	79.25	3	1.995	20	0.031
2405	17.21	1.00	52.60	0	1.000	20	0.010

Summation of Power Densities – Simultaneous Transmissions

This device contains multiple transmitters which can operate simultaneously and therefore the maximum RF exposure is determined by the summation of power densities. The 900 MHz LAN and 2.4GHz Zigbee radio can operate simultaneously there it is appropriate to include both of those power density values in the same summation of power densities.

The maximum power density is calculated by a summation of power densities for each simultaneous transmission combination as follows:

900MHz LAN: 0.031 (mW/cm²)
 2.4GHz Zigbee: 0.010 (mW/cm²)
TOTAL: **0.041 (mW/cm²)**

Installation Guidelines

The installation manual should contain text similar to the following advising how to install the equipment to maintain compliance with the FCC RF exposure requirements:

RF Exposure

In accordance with FCC requirements of human exposure to radio frequency fields, the radiating element shall be installed such that a minimum separation distance of 20 centimeters will be maintained.

Conclusion

This device complies with the MPE requirements by providing adequate separation between the device, any radiating structure and the general population.