

Certification Test Report

FCC ID: SK9NIC

FCC Rule Part: 15.247

Report Number: AT72154075-1P1

Manufacturer: Itron, Inc.

Model: NIC

Test Begin Date: October 08, 2019 Test End Date: March 13, 2020

Report Issue Date: March 16, 2020

FOR THE SCOPE OF ACCREDITATION UNDER Certificate Number: 2955.09

This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.

Prepared By:

Jeremy Pickens Senior Wireless Engineer TÜV SÜD America Inc. Reviewed by:

Ryan McGann Senior Engineer TÜV SÜD America Inc.

This test report shall not be reproduced except in full. This report may be reproduced in part with prior written consent of TÜV SÜD America, Inc. The results contained in this report are representative of the sample(s) submitted for evaluation.

This report contains 21 pages

TABLE OF CONTENTS

1	GENERAL	3
	1.1 Purpose	3
	1.2 PRODUCT DESCRIPTION	3
	1.3 TEST METHODOLOGY AND CONSIDERATIONS	6
2	TEST FACILITIES	7
	2.1 LOCATION	7
	2.2 LABORATORY ACCREDITATIONS/RECOGNITIONS/CERTIFICATIONS	
	2.3 RADIATED EMISSIONS TEST SITE DESCRIPTION	8
	2.3.1 Semi-Anechoic Chamber Test Site – Chamber A	8
	2.3.2 Semi-Anechoic Chamber Test Site – Chamber B	9
	2.4 CONDUCTED EMISSIONS TEST SITE DESCRIPTION	
	2.4.1 Conducted Emissions Test Site	10
3	APPLICABLE STANDARD REFERENCES	11
	A ACT OF THE CT FOLLOW MINE	4.4
4	LIST OF TEST EQUIPMENT	11
5	SUPPORT EQUIPMENT	12
6	EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAM	12
7	SUMMARY OF TESTS	13
	7.1 ANTENNA REQUIREMENT – FCC: SECTION 15.203	13
	7.2 POWER LINE CONDUCTED EMISSIONS – FCC: SECTION 15.207; ISED CANADA: RSS-GEN 8.	
	7.2.1 Measurement Procedure	13
	7.2.2 Measurement Results	13
	7.3 PEAK OUTPUT POWER – FCC: SECTION 15.247(B)(2); ISED CANADA: RSS-247 5.4(A)	15
	7.3.1 Measurement Procedure (Conducted Method)	15
	7.3.2 Measurement Results	
	7.4 RADIATED SPURIOUS EMISSIONS – FCC: SECTION 15.205, 15.209; ISED CANADA: RSS-GEI	N
	8.9/8.10	
	7.4.2 Sample Calculation:	17
8	ESTIMATION OF MEASUREMENT UNCERTAINTY	17
9	CONCLUSION	17
Δ	PPENDIX A. PLOTS	18

1 GENERAL

1.1 Purpose

The purpose of this report is to demonstrate compliance with Part 15 Subpart C of the FCC's Code of Federal Regulations for a Class II Permissive Change.

The purpose of this Class II Permissive Change is to add a new antenna and host combination.

1.2 Product description

The Itron NIC is an electricity metering module which includes a 902.4 MHz to 927.6 MHz transmitter. The module operates on AC as well as DC voltage which is supplied by a host device.

For this evaluation, the NIC was installed in a Socket Based Router (SBR) which incorporates the following co-located radios:

FCC ID: SK9ITR9002 FCC ID: SK9WF111 FCC ID: N7NEM7455

Additionally, the utility meter to which the SBR was mounted housed a Zigbee radio:

FCC ID: SK9ITR24

This test report documents the compliance of the 902.4 MHz to 927.6 MHz FHSS transceiver mode of operation on the NIC.

Technical Details (SK9NIC):

Detail	Description		
Frequency Range	902.4 – 927.6 MHz		
Number of Channels	64 / 31 ¹		
Channel Spacing	400kHz / 800kHz ¹		
Modulation Format	FSK, OFDM, DSSS		
Data Rates	FSK: 50kbps, 150kbps OFDM: 200kbps, 600kbps, 1200kbps DSSS: 12.5kbps		
Operating Voltage	12Vdc		
Antenna Type(s) / Gain(s) PCB Trace Antenna / 2.04dBi			

¹⁾ The 31 channels at 800kHz spacing only apply to the 1200kbps OFDM operation.

Technical Details (SK9ITR9002):

Detail	Description
Frequency Range	902.25 – 927.75 MHz
Number of Channels	52
Channel Spacing	400kHz ¹ / 500kHz
Modulation Format	FSK,
Data Rates	FSK: 19.2kbps, 150kbps, 152.3kbps
Operating Voltage	5Vdc
Antenna Type(s) / Gain(s)	PCB Trace Antenna / 1.0dBi

^{1) 400}kHz spacing applies to FSK 150k data rate

Technical Details (SK9WF111):

Detail	Description
Frequency Range	2412 – 2462MHz
Number of Channels	11
Modulation Format	802.11 b/g/n(HT20)
Data Rates (kbps)	802.11b: 1,2,5.5,11 Mbps 802.11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps 802.11n: 7.2, 14.4, 21.7, 28.9, 43.3, 57.8, 65.5, 72.2 Mbps
Operating Voltage	3.3Vdc (Supplied by host)
Antenna Type(s) / Gain(s)	Taoglas GW26.0112 Monopole / 1.8 dBi

Technical Information (N7NEM7455):

Detail	Description		
Frequency Range	2110 – 2155 (LTE B4) 728 – 746 (LTE B12) 746 – 756 (LTE B13)		
Operating Voltage	12Vdc		
Antenna Type / Gain	PCB Trace 728: -0.94dBi 746: -0.49dBi 2110: 0.10dBi		
Manufacturer	Sierra Wireless		

Technical Details (SK9ITR24):

Detail	Description
Frequency Range	2405 - 2475 MHz
Number of Channels	15
Channel Spacing	5 MHz
Modulation Format	O-QPSK
Operating Voltage	24Vdc (via host)
Antenna Type(s) / Gain(s)	PCB quarter-wave embedded slot antenna / 3.8dBi

Manufacturer Information: Itron, Inc. 313 N Hwy 11 West Union, SC 29696

Test Sample Serial Number: Not Labeled

Test Sample Condition: The test samples were provided in good working order with no visible defects.

1.3 Test Methodology and Considerations

All modes of operation, including all available data rates, were evaluated. The data presented in this report represents the worst case where applicable. From the original NIC certification, the worst-case data rate for spurious emissions was DSSS modulation at 12.5kbps.

For radiated emissions, the EUT was evaluated in the SBR host which was oriented in its intended mounting configuration. The EUT was programmed to generate a continuously modulated signal on each channel evaluated.

Additionally, an intermodulation product evaluation with all radios operating at full power was performed and found to be compliant.

For power line conducted emissions, the host device was connected directly to the measuring equipment via the AC cable. All radios within the host device were turned on at max power.

Software power setting during test: RFIC: 12 and DMCC: 0x3C6A for non-OFDM

RFIC: 12 and DMCC: 0x132F for OFDM

2 TEST FACILITIES

2.1 Location

The radiated and conducted emissions test sites are located at the following addresses:

TÜV SÜD America, Inc. 5945 Cabot Pkwy, Suite 100 Alpharetta, GA 30005 Phone: (678) 341-5900

2.2 Laboratory Accreditations/Recognitions/Certifications

TÜV SÜD America, Inc. is accredited to ISO/IEC 17025 by the American Association for Laboratory Accreditation/A2LA accreditation program and has been issued certificate number 2955.09 in recognition of this accreditation.

Unless otherwise specified, all tests methods described within this report are covered under the ISO/IEC 17025 scopes of accreditation.

The Semi-Anechoic Chamber Test Sites and Conducted Emissions Sites have been fully described, submitted to, and accepted by the FCC, ISED Canada and the Japanese Voluntary Control Council for Interference by information technology equipment.

FCC Designation Accreditation Number: US1233
ISED Canada Lab Code: 23932
VCCI Member Number: 1831

• VCCI Registration Number A-0295

2.3 Radiated Emissions Test Site Description

2.3.1 Semi-Anechoic Chamber Test Site – Chamber A

The Semi-Anechoic Chamber Test Site consists of a 20' x 30' x 18' shielded enclosure. The chamber is lined with Toyo Ferrite Grid Absorber, model number FFG-1000. The ferrite tile grid is 101 x 101 x 19mm thick and weighs approximately 550 grams. These tiles are mounted on steel panels and installed directly on the inner walls of the chamber.

The turntable is 5' in diameter and is located 5'6" from the back wall of the chamber. The chamber is grounded via 1 - 8' copper ground rod, installed at the center of the back wall, it is bound to the ground plane using 3/4" stainless steel braided cable.

The turntable is all steel, flush mounted EMCO Model 1060 installed in an all steel frame. The table is remotely operated from inside the control room located 25' from the range. The turntable is electrically bonded to the surrounding ground plane via steel fingers installed on the edge of the turn table. The steel fingers make constant contact with the ground plane during operation.

Behind the turntable is a 3' x 6' x 4' deep shielded pit used for support equipment if necessary. The pit is equipped with 1 - 4" PVC chase from the turntable to the pit that allows for cabling to the EUT if necessary. The underside of the turntable can be accessed from the pit, so cables can be supplied to the EUT from the pit.

The chamber rear wall is covered with a mixture of Siepel pyramidal absorber. The side walls of the chamber are partially covered with Siepel pyramidal absorber.

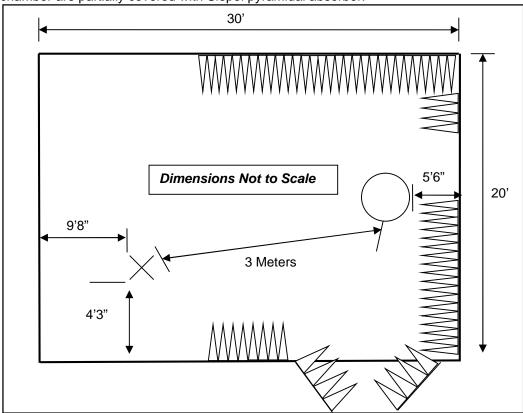


Figure 2.3.1-1: Semi-Anechoic Chamber Test Site - Chamber A

2.3.2 Semi-Anechoic Chamber Test Site - Chamber B

The Semi-Anechoic Chamber Test Site consists of a 20'W x 30'L x 20'H shielded enclosure. The chamber is lined with ETS-Lindgren Ferrite Absorber, model number FT-1500. The ferrite tile 600 mm x 600 mm (2.62 in x 23.62 in) panels and are mounted directly on the inner walls of the chamber shield.

The specular regions of the chamber are lined with additional ETS-Lindgren PS-600 hybrid absorber to extend its frequency range up to 18GHz and beyond.

The turntable is a 2m ETS-Lindgren Model 2170 and installed off the center axis is located 5'6" from the back wall of the chamber. The chamber is grounded via 1 - 8' copper ground rod, installed at the center of the back wall, it is bound to the shield using #8 solid copper wire.

The antenna mast is an EMCO 1060 and is remotely controlled from the control room for both antenna height and polarization.

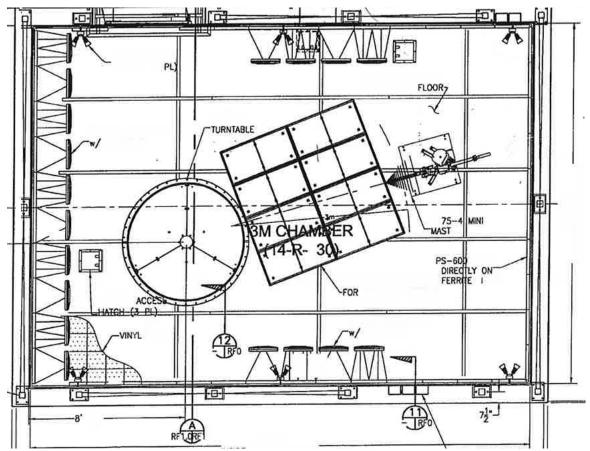


Figure 2.3.2-1: Semi-Anechoic Chamber Test Site – Chamber B

2.4 Conducted Emissions Test Site Description

2.4.1 Conducted Emissions Test Site

The AC mains conducted EMI site is located in the main EMC lab. It consists of a 12' x 10' horizontal coupling plane (HCP) as well as a 12'x8' vertical coupling plane (VCP). The HGP is constructed of 4' x 10' sheets of particle board sandwiched by galvanized steel sheets. These panels are bonded using 11AWG 1/8" x 2" by 10' galvanized sheet steel secured to the panels via by screws. The VCP is constructed of three 4'x8' sheets of 11AWG solid aluminum.

The HCP and VCP are electrically bonded together using 1"x1" angled aluminum secured with screws.

The site is of sufficient size to test table top and floor standing equipment in accordance with section 6.1.4 of ANSI C63.10.

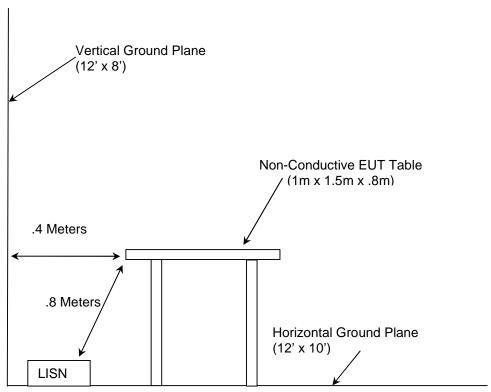


Figure 2.4.1-1: AC Mains Conducted EMI Site

3 APPLICABLE STANDARD REFERENCES

The following standards were used:

ANSI C63.10-2013: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

- US Code of Federal Regulations (CFR): Title 47, Part 2, Subpart J: Equipment Authorization Procedures, 2019
- US Code of Federal Regulations (CFR): Title 47, Part 15, Subpart C: Radio Frequency Devices, Intentional Radiators, 2019

4 LIST OF TEST EQUIPMENT

The calibration interval of test equipment is annually or the manufacturer's recommendations. Where the calibration interval deviates from the annual cycle based on the instrument manufacturer's recommendations, it shall be stated below.

Table 4-1: Test Equipment

Asset ID	Asset ID Manufacturer Model		Equipment Type	Serial Number	Last Calibration Date	Calibration Due Date
30	Spectrum Technologies	DRH-0118	1-18GHz Horn Antenna	970102	05/29/2019	05/29/2021
321	Hewlett Packard	HPC 8447D	Low Freq. Pre-Amp	1937A02809	09/12/2019	09/12/2020
324	ACS	Belden	Conducted EMI Cable	8214	03/19/2019	03/19/2020
337	Microwave Circuits	H1G513G1	Microwave Bandpass Filter	282706	05/31/2019	05/31/2020
338	Hewlett Packard	8449B	High Frequency Pre-Amp	3008A01111	07/15/2019	07/15/2021
628	EMCO	6502	Active Loop Antenna 10kHz-30MHz	9407-2877	02/11/2019	11/02/2021
813	PMM	9010	EMI Receiver; RF Input 50ohm; 10Hz-50MHz; 10Hz-30MHz	697WW30606	02/25/2019	02/25/2020
819	Rohde & Schwarz	ESR26	EMI Test Receiver	101345	11/1/2018	05/01/2020
831	Rohde & Schwarz	FSP38	Spectrum Analyzer 9kHz-40GHz	100380	05/10/2019	11/10/2019
851	TUV ATLANTA	FMC0101951-100CM	ASAC Cable Set Consisting of 566, 619, and 564	N/A	10/01/2019	10/01/2020
852	Teseq	CBL 6112D	Bilog Antenna; Attenuator	51617	10/15/2018	10/15/2020
3010	Rohde & Schwarz	ENV216	Two-Line V-Network	3010	07/10/2019	07/10/2020

NOTE: All test equipment was used only during active calibration cycles.

5 SUPPORT EQUIPMENT

Table 5-1: Support Equipment

Item	Equipment Type	Manufacturer	Model/Part Number	Serial Number
1	Socket Based Router	Itron, Inc.	SBR	N/A

Table 5-2: Cable Description

Cable	Cable Type	Length	Shield	Termination
Α	AC Power Cable	1.8m	No	Host to AC Mains

6 EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAM

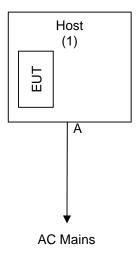


Figure 6-1: Test Setup Block Diagram

7 SUMMARY OF TESTS

Along with the tabular data shown below, plots were taken of all signals deemed important enough to document.

7.1 Antenna Requirement – FCC: Section 15.203

The NIC module utilizes a female QMR connector which meets the unique antenna connector requirements in 15.203.

7.2 Power Line Conducted Emissions – FCC: Section 15.207; ISED Canada: RSS-Gen 8.8

7.2.1 Measurement Procedure

ANSI C63.10 was the guiding document for this evaluation. Conducted emissions were performed from 150kHz to 30MHz with the spectrum analyzer's resolution bandwidth set to 9kHz and the video bandwidth set to 30kHz. The calculation for the conducted emissions is as follows:

Corrected Reading = Analyzer Reading + LISN Loss + Cable Loss Margin = Corrected Reading - Applicable Limit

7.2.2 Measurement Results

Performed by: Sean Vick

Table 7.2.2-1: Conducted EMI Results - Line 1

	Corrected	l Reading	Lie	nit	Mar	rain	
Frequency	Corrected Reading		Liiliit		margin		Correction
(MHz)	Quasi-Peak	Average	Quasi-Peak	Average	Quasi-Peak	Average	(dB)
	(dBµV)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dB)	
0.15	48.53	39.67	66	56	-17.47	-16.33	9.45
0.158	47.72	40.86	65.57	55.57	-17.85	-14.71	9.45
0.226	46.7	40.06	62.6	52.6	-15.9	-12.54	9.48
0.398	48.18	36.54	57.9	47.9	-9.72	-11.36	9.5
0.454	51.95	44.62	56.8	46.8	-4.85	-2.18	9.53
0.638	48.99	40.78	56	46	-7.01	-5.22	9.56
1.094	47.52	41.24	56	46	-8.48	-4.76	9.61
1.634	46.7	41.8	56	46	-9.3	-4.2	9.66
2.014	45.94	41.57	56	46	-10.06	-4.43	9.7
18.722	45.46	42.79	60	50	-14.54	-7.21	9.74

Table 7.2.2-2: Conducted EMI Results –Line 2

Frequency	Corrected	d Reading	Limit Margin		Correction		
(MHz)	Quasi-Peak	Average	Quasi-Peak	Average	Quasi-Peak	Average	(dB)
	(dBµV)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dB)	
0.15	45.66	35.89	66	56	-20.34	-20.11	9.43
0.234	45.35	39.77	62.31	52.31	-16.96	-12.54	9.44
0.354	46.48	37.51	58.87	48.87	-12.39	-11.36	9.46
0.362	46.45	33.23	58.68	48.68	-12.23	-15.45	9.46
0.394	45.38	34.77	57.98	47.98	-12.6	-13.21	9.47
0.434	52.4	41.26	57.18	47.18	-4.78	-5.92	9.47
0.45	53.3	43.16	56.88	46.88	-3.58	-3.72	9.48
3.042	43.34	40.73	56	46	-12.66	-5.27	9.72
3.51	43.4	40.75	56	46	-12.6	-5.25	9.72
18.838	44.54	41.34	60	50	-15.46	-8.66	9.75

7.3 Peak Output Power – FCC: Section 15.247(b)(2); ISED Canada: RSS-247 5.4(a)

7.3.1 Measurement Procedure (Conducted Method)

The RF output port of the EUT was directly connected to the input of a power meter using suitable attenuation. The device employs > 50 channels at any given time therefore the power is limited to 1 Watt.

7.3.2 Measurement Results

Performed by: Jeremy Pickens

Table 7.3.2-1: Maximum Conducted Peak Output Power

Frequency (MHz)	Level (dBm)	Modulation Format	Data Rate (kbps)
902.4	26.82	FSK	50
915.2	26.95	FSK	50
927.6	26.51	FSK	50
902.4	26.73	FSK	150
915.2	27.00	FSK	150
927.6	26.63	FSK	150
902.4	26.98	OFDM	200
915.2	27.00	OFDM	200
927.6	26.33	OFDM	200
902.4	26.97	OFDM	600
915.2	26.97	OFDM	600
927.6	26.53	OFDM	600
902.4	26.84	DSSS	12.5
915.2	26.99	DSSS	12.5
927.6	26.63	DSSS	12.5

7.4 Radiated Spurious Emissions – FCC: Section 15.205, 15.209; ISED Canada: RSS-Gen 8.9/8.10

7.4.1.1 Measurement Procedure

Radiated emissions tests were made over the frequency range of 9kHz to 10GHz, 10 times the highest fundamental frequency.

The EUT was rotated through 360° and the receive antenna height was varied from 1 meter to 4 meters so that the maximum radiated emissions level would be detected. For frequencies below 1000 MHz, quasi-peak measurements were made using a resolution bandwidth RBW of 120 kHz and a video bandwidth VBW of 300 kHz. For frequencies above 1000 MHz, peak and average measurements were made with RBW and VBW of 1 MHz and 3 MHz respectively.

The EUT was caused to generate a continuous modulated carrier on the hopping channel.

Each emission found to be in a restricted band was compared to the applicable radiated emission limits.

Radiated spurious emissions were evaluated for all combinations of operating modes and data rates with worst case data provided. Emissions not reported were below the noise floor of the measurement system. Peak data below 30MHz was more than 20dB below the applicable limits.

7.4.1.2 Measurement Results

Performed by: Jeremy Pickens

Table 7.4.1.2-1: Radiated Spurious Emissions Tabulated Data

Table 7.4.1.2-1. Radiated Spurious Linissions Tabulated Data										
Frequency (MHz)	Level (dBuV)		Antenna Polarity	Correction Factors	Corrected Level (dBµV/m)		Limit (dBµV/m)		Margin (dB)	
	pk	Qpk/Avg	(H/V)	(dB)	pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
902.4 MHz										
2707.2	54.9	48.8	Н	-0.79	54.11	48.01	74.0	54.0	19.9	6.0
2707.2	52.8	46.6	V	-0.79	52.01	45.81	74.0	54.0	22.0	8.2
3609.6	47.6	34.2	Н	2.22	49.82	36.42	74.0	54.0	24.2	17.6
3609.6	47.4	33.9	V	2.22	49.62	36.12	74.0	54.0	24.4	17.9
915.2 MHz										
2745.6	56.30	50.70	Н	-0.54	55.76	50.16	74.0	54.0	18.2	3.8
2745.6	55.20	50.00	V	-0.54	54.66	49.46	74.0	54.0	19.3	4.5
3660.8	47.30	33.70	Н	2.46	49.76	36.16	74.0	54.0	24.2	17.8
3660.8	47.10	33.70	V	2.46	49.56	36.16	74.0	54.0	24.4	17.8
927.6 MHz										
2782.8	55.60	50.10	Н	-0.31	55.29	49.79	74.0	54.0	18.7	4.2
2782.8	55.00	49.90	V	-0.31	54.69	49.59	74.0	54.0	19.3	4.4
3710.4	47.40	33.50	Н	2.69	50.09	36.19	74.0	54.0	23.9	17.8
3710.4	47.70	33.50	V	2.69	50.39	36.19	74.0	54.0	23.6	17.8

7.4.2 Sample Calculation:

 $R_C = R_U + CF_T$

Where:

CF_T = Total Correction Factor (AF+CA+AG)-DC (Average Measurements Only)

Ru = Uncorrected Reading
Rc = Corrected Level
AF = Antenna Factor
CA = Cable Attenuation
AG = Amplifier Gain

DC = Duty Cycle Correction Factor

Example Calculation: Peak

Corrected Level: 56.3 - 0.54 = 55.76 dBuV/mMargin: 74 dBuV/m - 55.76 dBuV/m = 18.2 dB

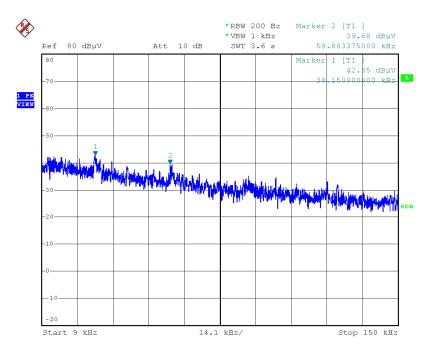
Example Calculation: Average

Corrected Level: 50.70 - 0.54 - 0 = 50.16dBuV

Margin: 54dBuV - 50.16dBuV = 3.8dB

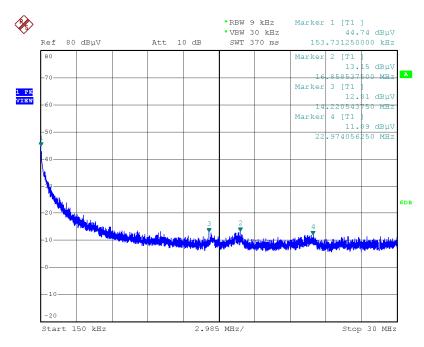
8 ESTIMATION OF MEASUREMENT UNCERTAINTY

The expanded laboratory measurement uncertainty figures (U_{Lab}) provided below correspond to an expansion factor (coverage factor) k = 1.96 which provide confidence levels of 95%.


Table 8-1: Estimation of Measurement Uncertainty

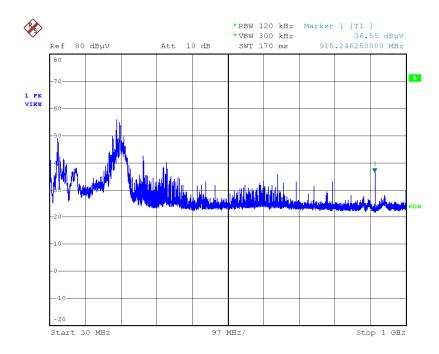
Parameter	U_lab		
Occupied Channel Bandwidth	± 0.009 %		
RF Conducted Output Power	± 0.349 dB		
Power Spectral Density	± 0.372 dB		
Antenna Port Conducted Emissions	± 1.264 dB		
Radiated Emissions ≤ 1 GHz	± 5.814 dB		
Radiated Emissions > 1 GHz	± 4.318 dB		
Temperature	± 0.860 °C		
Radio Frequency	± 2.832 x 10 ⁻⁸		
AC Power Line Conducted Emissions	± 3.360 dB		

9 CONCLUSION


In the opinion of TÜV SÜD America, Inc. the NIC, manufactured by Itron, Inc. meets the requirements of FCC Part 15 subpart C for the tests documented herein.

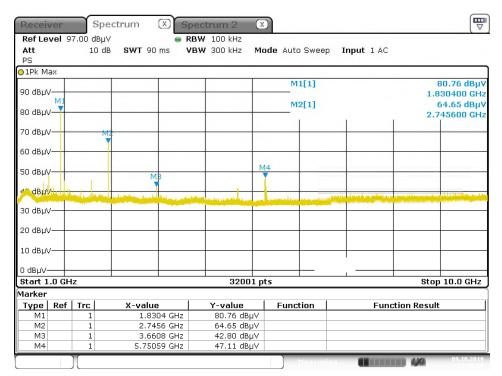
Appendix A: Plots

Date: 16.0CT.2019 15:59:01


Figure A-1: 9kHz-150kHz

Date: 16.0CT.2019 16:04:57

Note: Emissions above the noise floor are related to the driver and not associated with the DUT.


Figure A-2: 150kHz-30MHz

Date: 16.0CT.2019 15:13:44

Note: Emissions above the noise floor are from the digital sections of the DUT and not associated with the radio.

Figure A-3: 30MHz-1GHz

Date: 9.00T.2019 10.44:07

Note: Emissions at 5.74GHz are ambient from the local 5GHz WLAN network. Figure A-4: 1GHz-10GHz

END REPORT