

RF Exposure Test Report

**FCC ID: SK9G5R1
IC: 864G-G5R1**

**FCC Rule Part: 1.1310
ISED Canada Radio Standards Specification: RSS-102**

Report Number: AT72160720-4C0

**Manufacturer: Itron, Inc.
Model: G5R1**

**Test Begin Date: July 14, 2020
Test End Date: July 14, 2020**

Report Issue Date: August 27, 2020

FOR THE SCOPE OF ACCREDITATION UNDER Certificate Number: 2955.09

This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.

Prepared By:

**Ryan McGann
Team Leader
TÜV SÜD America Inc.**

Reviewed by:

**Kirby Munroe
Technical Manager, US Wireless
TÜV SÜD America Inc.**

This test report shall not be reproduced except in full. This report may be reproduced in part with prior written consent of TÜV SÜD America Inc. The results contained in this report are representative of the sample(s) submitted for evaluation.

This report contains 12 pages

TABLE OF CONTENTS

1	GENERAL	3
1.1	PURPOSE	3
1.2	MANUFACTURER INFORMATION	3
1.3	PRODUCT DESCRIPTION	3
1.4	TEST METHODOLOGY AND CONSIDERATIONS.....	4
2	TEST FACILITIES	5
2.1	LOCATION	5
2.2	LABORATORY ACCREDITATIONS/RECOGNITIONS/CERTIFICATIONS	5
2.3	RADIATED EMISSIONS TEST SITE DESCRIPTION	6
2.3.1	<i>Semi-Anechoic Chamber Test Site – Chamber A.....</i>	6
2.3.2	<i>Semi-Anechoic Chamber Test Site – Chamber B.....</i>	7
3	APPLICABLE STANDARD REFERENCES	8
4	LIST OF TEST EQUIPMENT	8
5	SUPPORT EQUIPMENT.....	9
6	EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAM.....	9
7	SUMMARY OF TESTS.....	10
7.1	MAXIMUM PERMISSIBLE EXPOSURE – FCC: SECTION 1.1310; ISED CANADA: RSS-102 SECTION 4.....	10
7.1.1	<i>Measurement Procedure.....</i>	10
7.1.2	<i>Measurement Results</i>	10
7.1.3	<i>Summation of MPE Ratios – Simultaneous Transmissions</i>	11
8	ESTIMATION OF MEASUREMENT UNCERTAINTY	12
9	CONCLUSION.....	12

1 GENERAL

1.1 Purpose

The purpose of this report is to demonstrate compliance with Part 1 Subpart I of the FCC's Code of Federal Regulations and Innovation, Science, and Economic Development Canada's Radio Standards Specification RSS-102 Certification for Maximum Permissible Exposure.

1.2 Manufacturer Information

Itron, Inc.
313 N Hwy 11
West Union, SC 29696

1.3 Product Description

The Itron G5R1 is an electricity metering module which includes a 902.4 MHz to 927.6 MHz transmitter as well as 2.4GHz WLAN. The module operates on AC as well as DC voltage which is supplied by a host device.

This test report documents the compliance of the maximum permissible exposure for uncontrolled exposure of a fixed device.

Technical Information (WiFi):

Detail	Description
Frequency Range (MHz)	2412 – 2462
Number of Channels	11 (20MHz Channels) 7 (40MHz Channels)
Channel Spacing	5 MHz
Modulation Format	802.11b: DSSS (DBPSK / DQPSK / CCK) 802.11g/n (HT 20/40): OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rates	802.11b: 1 – 11 Mbps 802.11g: 6 – 54 Mbps 802.11n (HT 20): 6.5 – 72 Mbps 802.11n (HT 40): 13.5 – 150 Mbps
Operating Voltage	24Vdc
Antenna Type / Gain	PCB Embedded Antenna / 2.9dBi

Technical Information (Sub-1GHz):

Detail	Description
Frequency Range	FSK 100, GFSK 150/200: 902.3 – 926.9 MHz FSK 150, GFSK 300, OFDM: 902.4 – 927.6
Number of Channels	FSK 100, GFSK 150/200: 83 OQPSK, FSK 150, GFSK 300, OFDM: 62
Channel Spacing	FSK 100, GFSK 150/200: 300kHz FSK 150, GFSK 300, OFDM: 400kHz
Modulation Format	FSK, GFSK, OFDM
Data Rates	FSK: 100, 150kbps GFSK: 150, 200, 300kbps OFDM: 600, 1200, 2400kbps
Operating Voltage	24Vdc
Antenna Type(s) / Gain(s)	PCB Embedded Antenna / 3.6dBi

Model Number: G5R1

Test Sample Serial Number(s): Not labeled

Test Sample Condition: The test samples were provided in good working order with no visible defects.

1.4 Test Methodology and Considerations

The data presented in this report represents the worst case where applicable. The worst-case data rate for the WiFi radio was 802.11g at 12MBPS configured on the middle channel (2437MHz). the worst-case data rate for the 900MHz radio was FSK 150kbps on the middle channel (915.2MHz).

The EUT was positioned in three orthogonal orientations. The worst case orientation for the WiFi radio was X-orientation. The worst case orientation for the 900MHz radio was Y-orientation.

Software power setting during test: Each radio was configured for maximum intended power

2 TEST FACILITIES

2.1 Location

The radiated and conducted emissions test sites are located at the following addresses:

TÜV SÜD America, Inc.
5945 Cabot Pkwy, Suite 100
Alpharetta, GA 30005
Phone: (678) 341-5900

2.2 Laboratory Accreditations/Recognitions/Certifications

TÜV SÜD America, Inc. is accredited to ISO/IEC 17025 by the American Association for Laboratory Accreditation/A2LA accreditation program and has been issued certificate number 2955.09 in recognition of this accreditation.

Unless otherwise specified, all tests methods described within this report are covered under the ISO/IEC 17025 scopes of accreditation.

The Semi-Anechoic Chamber Test Sites and Conducted Emissions Sites have been fully described, submitted to, and accepted by the FCC, ISED Canada and the Japanese Voluntary Control Council for Interference by information technology equipment.

FCC Designation Accreditation Number:	US1233
FCC Test Site Registration Number:	967699
ISED Canada Lab Code:	23932
VCCI Member Number:	1831
• VCCI Registration Number	A-0295

2.3 Radiated Emissions Test Site Description

2.3.1 Semi-Anechoic Chamber Test Site – Chamber A

The Semi-Anechoic Chamber Test Site consists of a 20' x 30' x 18' shielded enclosure. The chamber is lined with Toyo Ferrite Grid Absorber, model number FFG-1000. The ferrite tile grid is 101 x 101 x 19mm thick and weighs approximately 550 grams. These tiles are mounted on steel panels and installed directly on the inner walls of the chamber.

The turntable is 5' in diameter and is located 5'6" from the back wall of the chamber. The chamber is grounded via 1 - 8' copper ground rod, installed at the center of the back wall, it is bound to the ground plane using 3/4" stainless steel braided cable.

The turntable is all steel, flush mounted EMCO Model 1060 installed in an all steel frame. The table is remotely operated from inside the control room located 25' from the range. The turntable is electrically bonded to the surrounding ground plane via steel fingers installed on the edge of the turn table. The steel fingers make constant contact with the ground plane during operation.

Behind the turntable is a 3' x 6' x 4' deep shielded pit used for support equipment if necessary. The pit is equipped with 1 - 4" PVC chase from the turntable to the pit that allows for cabling to the EUT if necessary. The underside of the turntable can be accessed from the pit, so cables can be supplied to the EUT from the pit.

The chamber rear wall is covered with a mixture of Siepel pyramidal absorber. The side walls of the chamber are partially covered with Siepel pyramidal absorber.

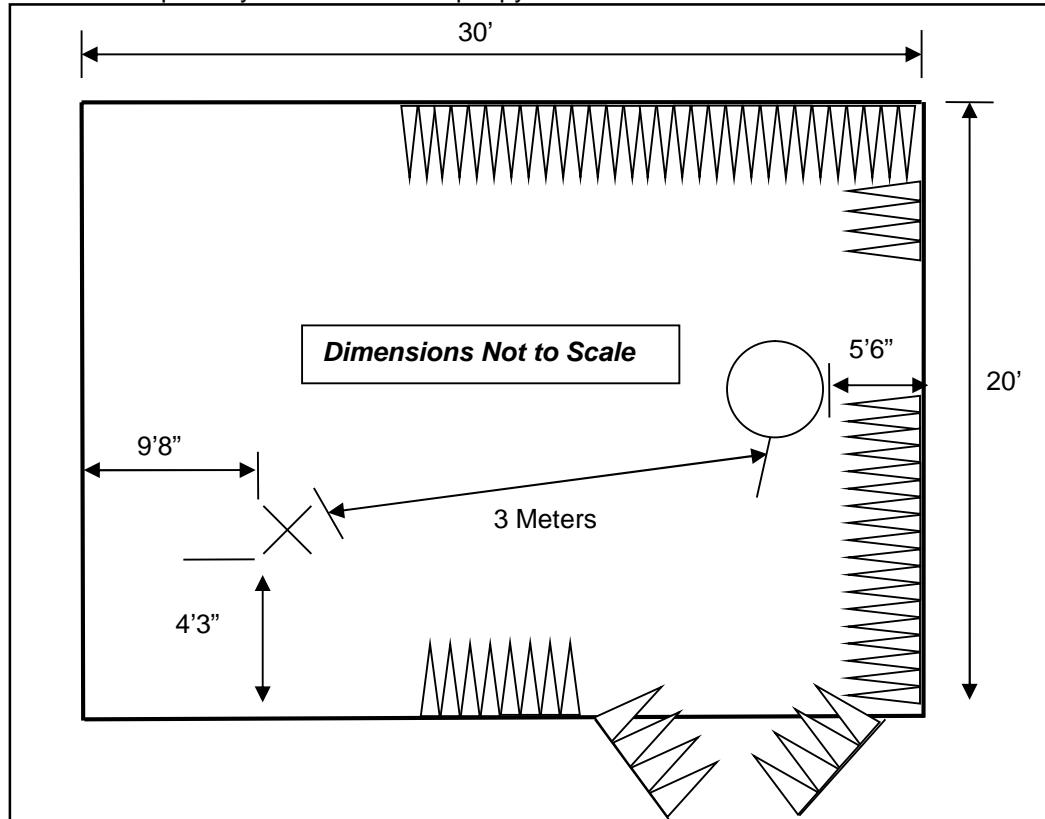


Figure 2.3.1-1: Semi-Anechoic Chamber Test Site – Chamber A

2.3.2 Semi-Anechoic Chamber Test Site – Chamber B

The Semi-Anechoic Chamber Test Site consists of a 20'W x 30'L x 20'H shielded enclosure. The chamber is lined with ETS-Lindgren Ferrite Absorber, model number FT-1500. The ferrite tile 600 mm x 600 mm (2.62 in x 23.62 in) panels and are mounted directly on the inner walls of the chamber shield.

The specular regions of the chamber are lined with additional ETS-Lindgren PS-600 hybrid absorber to extend its frequency range up to 18GHz and beyond.

The turntable is a 2m ETS-Lindgren Model 2170 and installed off the center axis is located 5'6" from the back wall of the chamber. The chamber is grounded via 1 - 8' copper ground rod, installed at the center of the back wall, it is bound to the shield using #8 solid copper wire.

The antenna mast is an EMCO 1060 and is remotely controlled from the control room for both antenna height and polarization.

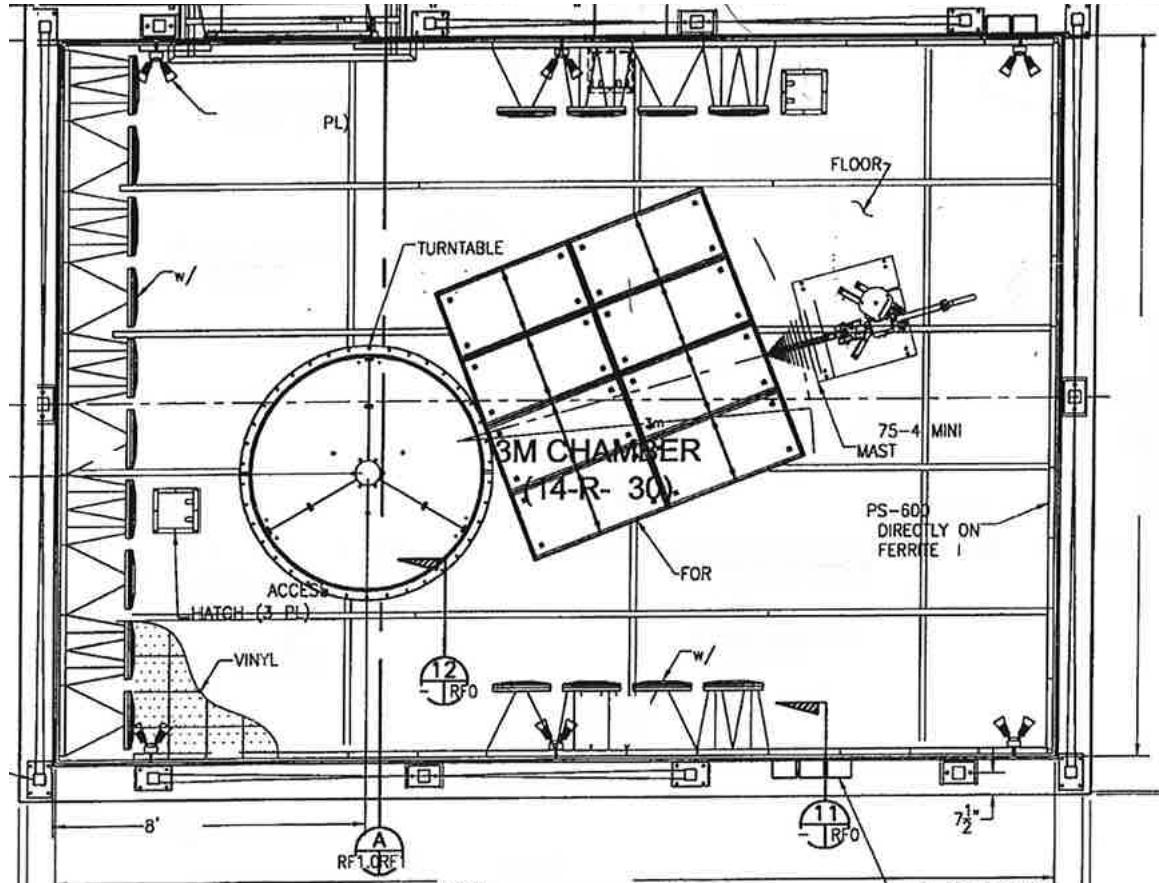


Figure 2.3.2-1: Semi-Anechoic Chamber Test Site – Chamber B

3 APPLICABLE STANDARD REFERENCES

The following standards were used:

- ❖ ANSI C63.4-2014: American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
- ❖ ANSI C63.10-2013: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- ❖ IEEE C95.3-2002: IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields with Respect to Human Exposure to Such Fields, 100 kHz to 300 GHz.
- ❖ US Code of Federal Regulations (CFR): Title 47, Part 1, Subpart I: Procedures Implementing the National Environmental Policy Act of 1969, 2019
- ❖ FCC KDB 447498 D01 General RF Exposure Guidance v06, Oct. 23, 2015.
- ❖ ISED Canada Radio Standards Specification: RSS-102 – Radio Frequency (RF) Exposure Compliance of Radiocommunications Apparatus (All Frequency Bands), Issue 5, March 2015.

4 LIST OF TEST EQUIPMENT

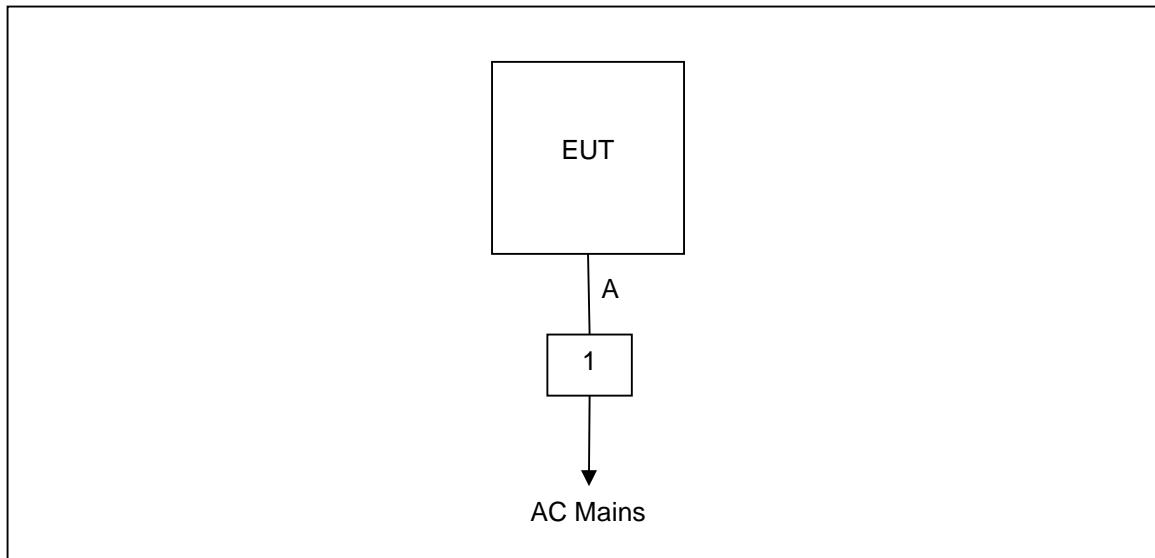
The calibration interval of test equipment is annually or the manufacturer's recommendations. Where the calibration interval deviates from the annual cycle based on the instrument manufacturer's recommendations, it shall be stated below.

Table 4-1: Test Equipment

Asset ID	Manufacturer	Model	Equipment Type	Serial Number	Last Calibration Date	Calibration Due Date
RE137	Holaday	HI-6005	Isotropic Probe	23667	3/9/2020	3/9/2021

NOTE: All test equipment was used only during active calibration cycles.

5 SUPPORT EQUIPMENT


Table 5-1: Support Equipment

Item	Equipment Type	Manufacturer	Model/Part Number	Serial Number
1	AC/DC Adapter	CUI, Inc.	SW125-24-N	N/A

Table 5-2: Cable Description

Cable	Cable Type	Length	Shield	Termination
A	DC Power Cable	1.75 m	No	EUT to Power Supply

6 EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAM

Figure 6-1: Test Setup Block Diagram

7 SUMMARY OF TESTS

Along with the tabular data shown below, plots were taken of all signals deemed important enough to document.

7.1 Maximum Permissible Exposure – FCC: Section 1.1310; ISED Canada: RSS-102 Section 4

7.1.1 Measurement Procedure

The EUT was placed on a non-conductive platform in the center of the turntable at a height of 1.5 meters above the ground plane. The measurement probe was located 20 centimeters away from the EUT on an adjustable antenna mast. The EUT was rotated through 360 degrees so that the maximum radiated emissions level would be detected. The mast was adjusted until the evaluated results are less than 10% of the applicable limit. Once a stable reading was obtained, the maximum was recorded. The azimuth and elevation leading to the direction of maximum exposure was identified. The evaluation points in the horizontal plane were along radials extending from the antenna axis 45 degrees apart starting from the direction of maximum exposure.

7.1.2 Measurement Results

Performed by: Arthur Sumner

Table 7.1.2-1: Maximum Permissible Exposure - WiFi

EUT Orientation	Frequency (MHz)	Distance cm	Azimuth degrees	Elevation cm	Probe Display V/m	Probe Factor	Field Strength V/m	Power Density mW/cm ²	FCC Limit mW/cm ²	ISED Canada Limit mW/cm ²	Result
XPOS	2437	20	0	160	3.167	1.31	4.14877	0.00456559	1	0.54039655	PASS
XPOS	2437	20	45	147	2.4	1.31	3.144	0.00262195	1	0.54039655	PASS
XPOS	2437	20	90	141	2.122	1.31	2.77982	0.00204971	1	0.54039655	PASS
XPOS	2437	20	135	132	1.961	1.31	2.56891	0.00175048	1	0.54039655	PASS
XPOS	2437	20	180	132	1.964	1.31	2.57284	0.00175584	1	0.54039655	PASS
XPOS	2437	20	225	163	2.855	1.31	3.74005	0.00371034	1	0.54039655	PASS
XPOS	2437	20	270	183	2.525	1.31	3.30775	0.00290218	1	0.54039655	PASS
XPOS	2437	20	315	185	2.392	1.31	3.13352	0.0026045	1	0.54039655	PASS

Table 7.1.2-2: Maximum Permissible Exposure – 900MHz

EUT orientation	Frequency (MHz)	Distance cm	Azimuth degrees	Elevation cm	Probe Display V/m	Probe Factor	Field Strength V/m	Power Density mW/cm ²	FCC Limit mW/cm ²	ISED Canada Limit mW/cm ²	Result
YPOS	915.2	20	0	164	1.274	1.21	1.54154	0.00063033	0.61013333	0.27671681	PASS
YPOS	915.2	20	45	156	1.136	1.21	1.37456	0.00050117	0.61013333	0.27671681	PASS
YPOS	915.2	20	90	152	0.909	1.21	1.09989	0.00032089	0.61013333	0.27671681	PASS
YPOS	915.2	20	135	149	0.757	1.21	0.91597	0.00022255	0.61013333	0.27671681	PASS
YPOS	915.2	20	180	147	0.733	1.21	0.88693	0.00020866	0.61013333	0.27671681	PASS
YPOS	915.2	20	225	155	0.833	1.21	1.00793	0.00026948	0.61013333	0.27671681	PASS
YPOS	915.2	20	270	155	1.045	1.21	1.26445	0.00042409	0.61013333	0.27671681	PASS
YPOS	915.2	20	315	164	1.249	1.21	1.51129	0.00060583	0.61013333	0.27671681	PASS

7.1.3 Summation of MPE Ratios – Simultaneous Transmissions

Performed by: Ryan McGann

This device contains multiple transmitters which can operate simultaneously; therefore, the maximum RF exposure is determined by the summation of MPE ratios. The limit is such that the summation of MPE ratios is ≤ 1.0 .

Table 7.1.3-1: Summation of MPE Ratios – FCC

Scenario 1	
WiFi Radio	x
900MHz Radio	x
WiFi MPE Ratio	0.0046
900MHz MPE Ratio	0.0008
MPE Summation	0.0054

Table 7.1.3-2: Summation of MPE Ratios – ISED Canada

Scenario 1	
WiFi Radio	x
900MHz Radio	x
WiFi MPE Ratio	0.0084
900MHz MPE Ratio	0.0018
MPE Summation	0.0102

8 ESTIMATION OF MEASUREMENT UNCERTAINTY

The expanded laboratory measurement uncertainty figures (U_{Lab}) provided below correspond to an expansion factor (coverage factor) $k = 1.96$ which provide confidence levels of 95%.

Parameter	U_{lab}
Electric Field	39.12%

9 CONCLUSION

In the opinion of TÜV SÜD America, Inc. the G5R1, manufactured by Itron, Inc. meets the requirements of FCC Part 1 subpart I and Innovation, Science, and Economic Development Canada's Radio Standards Specification RSS-102 for the tests documented in this test report.

END REPORT