

Certification Test Report

FCC ID: SK9AMI7 IC: 864G-AMI7

FCC Rule Part: 15.247 IC Radio Standards Specification: RSS-210

ACS Report Number: 11-0093.W06.12.A

Manufacturer: Itron Electricity Metering, Inc.

Model: AMI7

Test Begin Date: April 4, 2011 Test End Date: April 14, 2011

Report Issue Date: April 26, 2011

FOR THE SCOPE OF ACCREDITATION UNDER LAB Code 200612-0

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Reviewed by:

Kirby Munroe

Director, Wireless Certifications ACS, Inc.

This test report shall not be reproduced except in full. This report may be reproduced in part with prior written consent of ACS, Inc. The results contained in this report are representative of the sample(s) submitted for evaluation.

This report contains 30 pages

TABLE OF CONTENTS

1	GENERAL	4
	1.1 Purpose	4
	1.2 PRODUCT DESCRIPTION	4
	1.3 TEST METHODOLOGY AND CONSIDERATIONS	4
2	TEST FACILITIES	5
	2.1 Location	5
	2.2 LABORATORY ACCREDITATIONS/RECOGNITIONS/CERTIFICATIONS	
	2.3 RADIATED EMISSIONS TEST SITE DESCRIPTION	
	2.3.1 Semi-Anechoic Chamber Test Site	
	2.3.2 Open Area Tests Site (OATS)	
	2.4 CONDUCTED EMISSIONS TEST SITE DESCRIPTION	8
3	APPLICABLE STANDARD REFERENCES	
4	LIST OF TEST EQUIPMENT	9
5	SUPPORT EQUIPMENT	10
_		
6	EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAM	10
7	SUMMARY OF TESTS	11
7		
	7.1 Antenna Requirement – FCC: Section 15.203	
	7.2 POWER LINE CONDUCTED EMISSIONS – FCC: SECTION 15.207 IC: RSS-GEN 7.2.4	
	7.2.1 Measurement Procedure	
	7.2.2 Measurement Results	
	7.3 PEAK OUTPUT POWER - FCC SECTION 15.247(B)(2) IC: RSS-210 A8.4(1)	
	7.3.1 Measurement Procedure (Conducted Method)	
	7.3.2 Measurement Results	
	7.4.1 Carrier Frequency Separation – FCC: Section 15.247(a)(1) IC: RSS-210 A8.1(b) 7.4.1.1 Measurement Procedure	13
	7.4.1.1 Measurement Procedure	
	7.4.2 Number of Hopping Channels – FCC: Section 15.247(a)(1)(i) IC: RSS-210 A8.1(c)	
	7.4.3 Channel Dwell Time – FCC: Section 15.247(a)(1)(i) IC: RSS-210 A8.1(c)	
	7.4.3.1 Measurement Procedure	
	7.4.3.2 Measurement Results	
	7.4.4 20dB / 99% Bandwidth - FCC: Section 15.247(a)(1)(i) IC: RSS-210 A8.1(c)	19
	7.4.4.1 Measurement Procedure	
	7.4.4.2 Measurement Results	
	7.5 BAND-EDGE COMPLIANCE AND SPURIOUS EMISSIONS-FCC 15.247(D) IC:RSS-210 2.2, A8.5	
	7.5.1 Band-Edge Compliance of RF Conducted Emissions	
	7.5.1.1 Measurement Procedure	
	7.5.1.2 Measurement Results	
	7.5.2 RF Conducted Spurious Emissions	
	7.5.2.2 Measurement Results	
	7.5.3 Radiated Spurious Emissions - FCC Section 15.205 IC: RSS-210 2.2	
	7.5.3.1 Measurement Procedure	
	7.5.3.2 Measurement Results	
	7.5.3.3 Sample Calculation:	31
8	CONCLUSION	32

1 GENERAL

1.1 Purpose

The purpose of this report is to demonstrate compliance with Part 15 Subpart C of the FCC's Code of Federal Regulations and Industry Canada's Radio Standards Specification RSS-210 for a single limited modular approval.

1.2 Product description

The AMI7 module is a utility meter module designed to be integrated into a variety of electric meter form factors. The AMI7 contains (1) 900 MHz LAN frequency hopping spread spectrum radio and (1) 2.4 GHz direct sequence spread spectrum Zigbee radio. This report addresses the 900 MHz LAN radio only.

Technical details:

Modulation	Frequency edulation Range (MHz)		Channel Separation (kHz)	Data Rates Supported (kbps)
FSK	902.25 - 927.75	52	500	19.2
FSK	902.25 - 927.75	52	500	152.3
OOK	909.6 – 921.8	50	200	16.4

Antenna Type / Gain: PCB quarter wave embedded slot antenna, 2.2dBi

Operating Voltage: 24Vdc

Manufacturer Information: Itron Electricity Metering, Inc. 313 North Highway 11 West Union, SC 29696

Test Sample Serial Number(s): 6240000602

Test Sample Condition: The test samples were provided in good working order with no visible defects.

1.3 Test Methodology and Considerations

This AMI7 is a composite device by definition. The 900 MHz LAN radio and the 2.4 GHz Zigbee radio operate under CFR 47 Part 15.247 and IC RSS-210. This report addresses the 900 MHz LAN radio only. A separate report, 11-0093.W06.22.A, will be issued to address the 2.4 GHz Zigbee radio.

The AMI7 was integrated into a 3S meter form for AC power line conducted emissions and radiated emissions.

Both the 900 MHz LAN radio and the 2.4 GHz Zigbee radio can transmit simultaneously therefore radiated inter-modulation products were evaluated and found to be in compliance.

For the purpose of RF conducted measurements, the AMI7 module was modified with a temporary 50 ohm antenna port.

2 TEST FACILITIES

2.1 Location

The radiated and conducted emissions test sites are located at the following address:

Advanced Compliance Solutions 5015 B.U. Bowman Drive Buford, GA 30518 Phone: (770) 831-8048

Fax: (770) 831-8598

2.2 Laboratory Accreditations/Recognitions/Certifications

ACS is accredited to ISO/IEC 17025 by the National Institute of Standards and Technology under their National Voluntary Laboratory Accreditation Program (NVLAP), Lab Code 200612-0. Unless otherwise specified, all tests methods described within this report are covered under the ISO/IEC 17025 scope of accreditation.

The Semi-Anechoic Chamber Test Site, Open Area Test Site (OATS) and Conducted Emissions Site have been fully described, submitted to, and accepted by the FCC, Industry Canada and the Japanese Voluntary Control Council for Interference by information technology equipment.

FCC Registration Number: 894540 Industry Canada Lab Code: IC 4175A-1

VCCI Member Number: 1831

VCCI OATS Registration Number R-1526

VCCI Conducted Emissions Site Registration Number: C-1608

2.3 Radiated Emissions Test Site Description

2.3.1 Semi-Anechoic Chamber Test Site

The Semi-Anechoic Chamber Test Site consists of a 20° x 30° x 18° shielded enclosure. The chamber is lined with Toyo Ferrite Grid Absorber, model number FFG-1000. The ferrite tile grid is $101 \times 101 \times 19$ mm thick and weighs approximately 550 grams. These tiles are mounted on steel panels and installed directly on the inner walls of the chamber.

The turntable is 150cm in diameter and is located 160cm from the back wall of the chamber. The chamber is grounded via 1 - 8' copper ground rod, installed at the center of the back wall, it is bound to the ground plane using 3/4" stainless steel braided cable.

The turntable is all steel, flush mounted table installed in an all steel frame. The table is remotely operated from inside the control room located 25' from the range. The turntable is electrically bonded to the surrounding ground plane via steel fingers installed on the edge of the turn table. The steel fingers make constant contact with the ground plane during operation.

Behind the turntable is a $3' \times 6' \times 4'$ deep shielded pit used for support equipment if necessary. The pit is equipped with 1 - 4'' PVC chases from the turntable to the pit that allow for cabling to the EUT if necessary. The underside of the turntable can be accessed from the pit so cables can be supplied to the EUT from the pit.

A diagram of the Semi-Anechoic Chamber Test Site is shown in Figure 2.3-1 below:

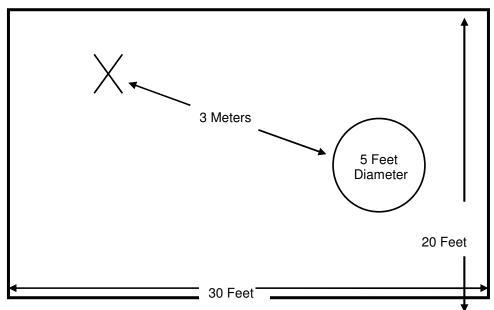


Figure 2.3-1: Semi-Anechoic Chamber Test Site

2.3.2 Open Area Tests Site (OATS)

The open area test site consists of a 40' x 66' concrete pad covered with a perforated electroplated galvanized sheet metal. The perforations in the sheet metal are 1/8" holes that are staggered every 3/16". The individual sheets are placed to overlap each other by 1/4" and are riveted together to provide a continuous seam. Rivets are spaced every 3" in a 3 x 20 meter perimeter around the antenna mast and EUT area. Rivets in the remaining area are spaced as necessary to properly secure the ground plane and maintain the electrical continuity.

The entire ground plane extends 12' beyond the turntable edge and 16' beyond the antenna mast when set to a 10 meter measurement distance. The ground plane is grounded via 4 - 8' copper ground rods, each installed at a corner of the ground plane and bound to the ground plane using 3/4" stainless steel braided cable.

The turntable is an all aluminum 10' flush mounted table installed in an all aluminum frame. The table is remotely operated from inside the control room located 40' from the range. The turntable is electrically bonded to the surrounding ground plane via steel fingers installed on the edge of the turn table. The steel fingers make constant contact with the ground plane during operation.

Adjacent to the turntable is a 7' x 7' square and 4' deep concrete pit used for support equipment if necessary. The pit is equipped with 5 - 4" PVC chases from the pit to the control room that allow for cabling to the EUT if necessary. The underside of the turntable can be accessed from the pit so cables can be supplied to the EUT from the pit. The pit is covered with 2 sheets of 1/4" diamond style re-enforced steel sheets. The sheets are painted to match the perforated steel ground plane; however the underside edges have been masked off to maintain the electrical continuity of the ground plane. All reflecting objects are located outside of the ellipse defined in ANSI C63.4.

A diagram of the Open Area Test Site is shown in Figure 2.3-2 below:

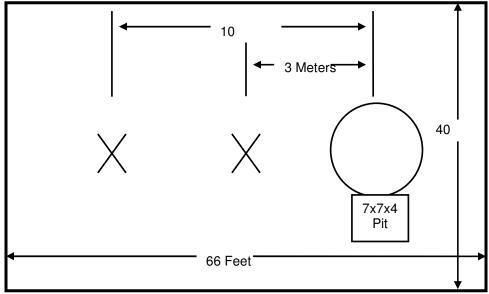


Figure 2.3-2: Open Area Test Site

2.4 Conducted Emissions Test Site Description

The AC mains conducted EMI site is located in the main EMC lab. It consists of an 8' x 8' solid aluminum horizontal group reference plane (GRP) bonded every 3" to an 8' X 8' vertical ground plane.

The site is of sufficient size to test table top and floor standing equipment in accordance with section 6.1.4 of ANSI C63.4.

A diagram of the room is shown below in figure 4.1.3-1:

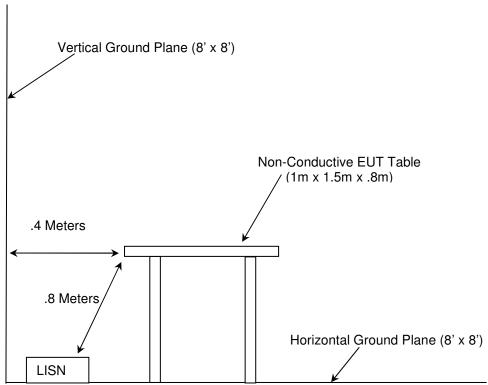


Figure 2.4-1: AC Mains Conducted EMI Site

3 APPLICABLE STANDARD REFERENCES

The following standards were used:

- ANSI C63.4-2003: Method of Measurements of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the 9KHz to 40GHz
- US Code of Federal Regulations (CFR): Title 47, Part 2, Subpart J: Equipment Authorization Procedures, 2010
- US Code of Federal Regulations (CFR): Title 47, Part 15, Subpart C: Radio Frequency Devices, Intentional Radiators, 2010
- FCC Public Notice DA 00-705 Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems, March 30, 2000
- Industry Canada Radio Standards Specification: RSS-210 Low-power License-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment, Issue 8 December 2010
- Industry Canada Radio Standards Specification: RSS-GEN General Requirements and Information for the Certification of Radiocommunication Equipment, Issue 3 December 2010.

4 LIST OF TEST EQUIPMENT

The calibration interval of test equipment is annually or the manufacturer's recommendations. Where the calibration interval deviates from the annual cycle based on the instrument manufacturer's recommendations, it shall be stated below.

Table 4-1: Test Equipment

			FT. TCSt Equip		Last Calibration	Calibration
AssetID	Manufacturer	Model#	Equipment Type	Serial#	Date	Due Date
1	Rohde & Schwarz	ESMI - Display	Spectrum Analyzers	833771/007	9/23/2010	9/23/2012
2	Rohde & Schwarz	ESMI-Receiver	Spectrum Analyzers	839587/003	9/23/2010	9/23/2012
22	Agilent	8449B	Amplifiers	3008A00526	9/2/2010	8/30/2011
25	Chase	CBL6111	Antennas	1043	9/13/2010	9/13/2012
30	Spectrum Technologies	DRH-0118	Antennas	970102	5/8/2009	5/8/2011
73	Agilent	8447D	Amplifiers	2727A05624	3/21/2011	3/21/2012
152	EMCO	3825/2	LISN	9111-1905	11/2/2010	11/2/2012
		Chamber EMI				
167	ACS	Cable Set	Cable Set	167	1/26/2011	1/26/2012
168	Hewlett Packard	11947A	Attenuators	44829	2/4/2011	2/4/2012
		SMRE-200W-				
291	Florida RF Cables	12.0-SMRE	Cables	None	12/7/2010	12/7/2011
324	ACS	Belden	Cables	8214	7/9/2010	7/9/2011
329	A.H.Systems	SAS-571	Antennas	721	8/4/2009	8/4/2011
331	Microwave Circuits	H1G513G1	Filters	31417	7/16/2010	7/16/2011
338	Hewlett Packard	8449B	Amplifiers	3008A01111	3/24/2011	3/24/2012
340	Aeroflex/Weinschel	AS-20	Attenuators	7136	10/5/2010	10/5/2011
		SMS-200AW-				
422	Florida RF	72.0-SMR	Cables	805	12/29/2010	12/29/2011
		SMS-290AW-480-				
430	RF Cables	SMS	Cables	N/A	4/15/2011	4/15/2012

5 SUPPORT EQUIPMENT

Table 5-1: Support Equipment

Item	Equipment Type	Manufacturer	Model Number	Serial Number
1	Form 3S Electric Utility Meter	Itron	CP2SOA	303 904 979
2	Step-up Transformer	Sangamo Weston	T7R	88547576

6 EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAM

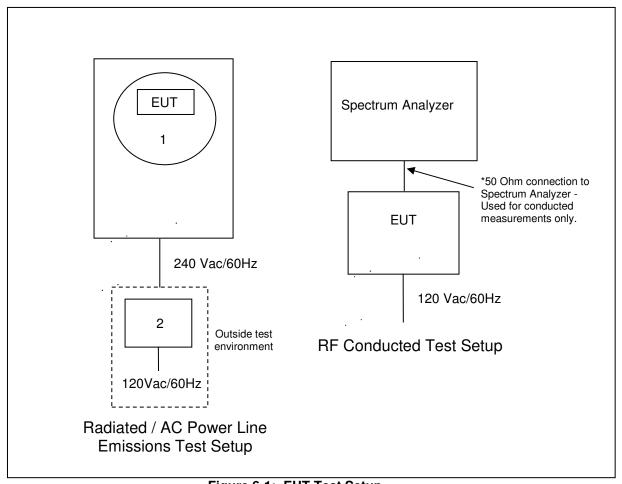


Figure 6-1: EUT Test Setup

Note: The AMI7 module was integrated into the 3S meter form for showing compliance for radiated emissions and AC power line conducted emissions.

7 SUMMARY OF TESTS

Along with the tabular data shown below, plots were taken of all signals deemed important enough to document.

7.1 Antenna Requirement – FCC: Section 15.203

The antenna is a quarter wave embedded slot antenna in the PWB ground plane with a measured gain of 2.2dBi.

7.2 Power Line Conducted Emissions – FCC: Section 15.207 IC: RSS-Gen 7.2.4

7.2.1 Measurement Procedure

ANSI C63.4 sections 6 and 7 were the guiding documents for this evaluation. Conducted emissions were performed from 150kHz to 30MHz with the spectrum analyzer's resolution bandwidth set to 9kHz and the video bandwidth set to 30kHz. The calculation for the conducted emissions is as follows:

Corrected Reading = Analyzer Reading + LISN Loss + Cable Loss Margin = Applicable Limit - Corrected Reading

7.2.2 Measurement Results

Results of the test are shown below in and Tables 7.2.2-1 to 7.2.2-2.

Table 7.2.2-1: Line 1 Conducted EMI Results

Frequency (MHz)	Uncorrected Reading (dBuV)		Total Correction Factor (dB)	Correcte (dB		Limit	(dBuV)	Margi	n (dB)
	Quasi- Peak	Average	(4.2)	Quasi- Peak	Average	Quasi- Peak	Average	Quasi- Peak	Average
0.167	37.54	24.41	10.09	47.63	34.50	65.11	55.11	17.5	20.6
0.232	31.77	19.31	10.02	41.79	29.33	62.38	52.38	20.6	23.0
0.269	30.58	21.95	10.02	40.60	31.97	61.15	51.15	20.6	19.2
0.501	27.52	20.66	10.00	37.52	30.66	55.98	45.98	18.5	15.3
0.666	25.27	16.59	10.00	35.27	26.59	56.00	46.00	20.7	19.4
1.36	25.6	18.93	10.00	35.60	28.93	56.00	46.00	20.4	17.1

Table 7.2.2-2: Line 2 Conducted EMI Results

Frequency (MHz)	3(, , ,		Total Correction Factor (dB)	Correcte (dB		Limit	(dBuV)	Margi	n (dB)
	Quasi- Peak	Average	(4.2)	Quasi- Peak	Average	Quasi- Peak	Average	Quasi- Peak	Average
0.169	37.96	29.05	10.09	48.05	39.14	65.01	55.01	17.0	15.9
0.397	34.67	27.18	10.22	44.89	37.40	57.92	47.92	13.0	10.5
0.503	36.57	29.97	10.00	46.57	39.97	55.95	45.95	9.4	6.0
0.671	34.48	26.24	10.00	44.48	36.24	56.00	46.00	11.5	9.8
1.38	34.26	27.36	10.00	44.26	37.36	56.00	46.00	11.7	8.6
2.12	31.56	25.58	10.11	41.67	35.69	56.00	46.00	14.3	10.3

7.3 Peak Output Power - FCC Section 15.247(b)(2) IC: RSS-210 A8.4(1)

7.3.1 Measurement Procedure (Conducted Method)

The 20dB bandwidth of the EUT was within the resolution bandwidth of spectrum analyzer, therefore the power measurement was made using the spectrum analyzer method. The RF output port of the EUT was directly connected to the input of the spectrum analyzer. The resolution and video bandwidth were set to > 20 dB bandwidth of the emission measured. The device employs >= 50 channels therefore the power is limited to 1 Watt.

7.3.2 Measurement Results

Results are shown in Table 7.3.2-1 and Figures 7.3.2-1 to 7.3.2-9 below.

Table 7.3.2-1: RF Output Power

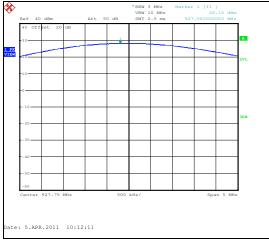

Frequency [MHz]	Modulation	Data Rate (kbps)	Level [dBm]		
902.25	FSK	19.2	28.22		
914.75	FSK	19.2	28.35		
927.75	FSK	19.2	28.16		
902.25	FSK	152.3	28.26		
914.75	FSK	152.3	28.13		
927.75	FSK	152.3	28.07		
909.6	OOK	16.4	28.38		
916.0	OOK	16.4	28.16		
921.8	OOK	16.4	28.38		

Figure 7.3.2-1: Output Power – LCH - FSK 19.2kbps

Figure 7.3.2-2: Output Power – MCH - FSK 19.2kbps

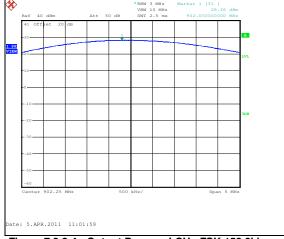
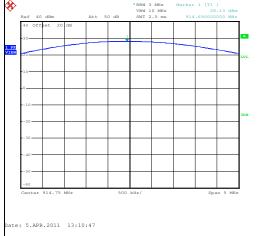



Figure 7.3.2-3: Output Power – HCH - FSK 19.2kbps

Figure 7.3.2-4: Output Power – LCH - FSK 152.3kbps

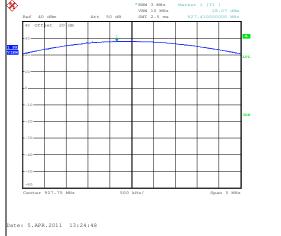
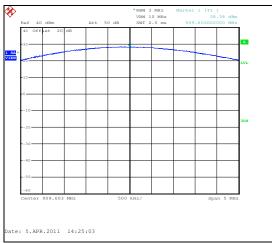



Figure 7.3.2-5: Output Power – MCH - FSK 152.3kbps

Figure 7.3.2-6: Output Power - HCH - FSK 152.3kbps



Figure 7.3.2-7: Output Power – LCH - OOK 16.4kbps

Figure 7.3.2-8: Output Power – MCH - OOK 16.4kbps

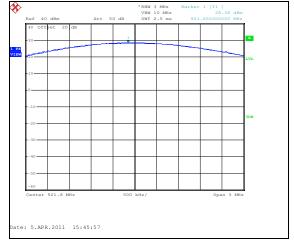


Figure 7.3.2-9: Output Power – HCH - OOK 16.4kbps

7.4 Channel Usage Requirements

7.4.1 Carrier Frequency Separation – FCC: Section 15.247(a)(1) IC: RSS-210 A8.1(b)

7.4.1.1 Measurement Procedure

The RF output port of the EUT was directly connected to the input of the spectrum analyzer. The span of the spectrum analyzer was set wide enough to capture two adjacent peaks and the RBW and VBW were set to \geq 1% of the span.

Carrier frequency separation was measured for all modulations and data presented in section 7.4.1.2 below.

7.4.1.2 Measurement Results

The adjacent channel separation was measured to be 500 kHz for FSK modulation and 200kHz for OOK modulation. Results are shown below in Figures 7.4.1.2-1 to 7.4.1.2-3.

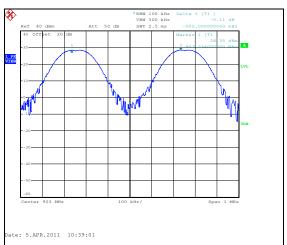


Figure 7.4.1.2-1: FSK Modulation 19.2kbps

Figure 7.4.1.2-2: FSK Modulation 152.3kbps

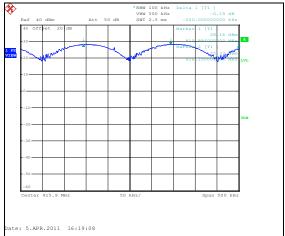
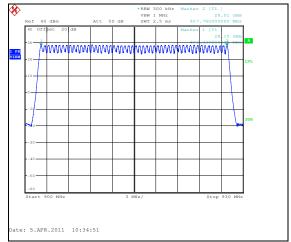



Figure 7.4.1.2-3: OOK Modulation

7.4.2 Number of Hopping Channels – FCC: Section 15.247(a)(1)(i) IC: RSS-210 A8.1(c)

The 20dB bandwidth of the device is less than 250 kHz. The device employs >= 50 hopping channels as required. Results are shown below in Figures 7.4.2-1 to 7.4.2-3.

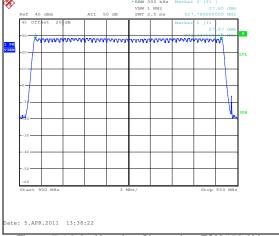
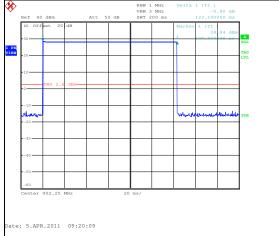


Figure 7.4.2-1: Hopping Channels - FSK 19.2kbps

Figure 7.4.2-2: Hopping Channels – FSK 152.3kbps

Figure 7.4.2-3: Hopping Channels - OOK Modulation

7.4.3 Channel Dwell Time – FCC: Section 15.247(a)(1)(i) IC: RSS-210 A8.1(c)


7.4.3.1 Measurement Procedure

The RF output port of the EUT was directly connected to the input of the spectrum analyzer. The hopping channel is centered on the analyzer and the span set to 0 Hz. The RBW was set to 1 MHz and the VBW to 3 MHz. Sweep time was adjusted to capture the burst duration of the emission. The marker –delta function of the analyzer was employed to measure the burst duration.

7.4.3.2 Measurement Results

The duration of the RF transmission was measured as 123.1 ms for FSK modulation using 19.2kbps data rate. The duration of the RF transmission was measured as 84.4 ms for FSK modulation using 152.3 kbps data rate. The duration of the RF transmission was measured as 5.88 ms for OOK modulation. In a period of 20 seconds, each channel could be repeated a maximum of three times. Within a 20 second period, the total time for transmission on the same channel is 123.1*3=369.3.

A single transmission for each modulation is shown in figures 7.4.3.2-1 to 7.4.3.2-3 below.

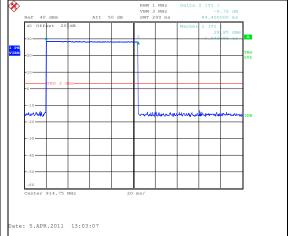


Figure 7.4.3.2-1: Dwell Time - FSK 19.2kbps

Figure 7.4.3.2-2: Dwell Time - FSK 152.3kbps

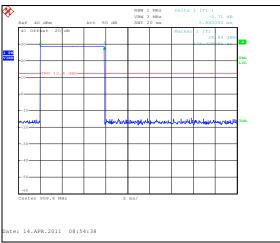
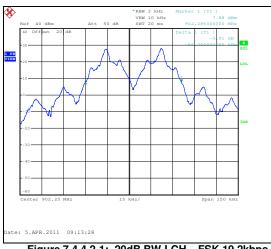


Figure 7.4.3.2-3: Dwell Time - OOK 16.4kbps

7.4.4 20dB / 99% Bandwidth - FCC: Section 15.247(a)(1)(i) IC: RSS-210 A8.1(c)

7.4.4.1 Measurement Procedure

The RF output port of the EUT was directly connected to the input of the spectrum analyzer. The spectrum analyzer span was set to 2 to 3 times the estimated bandwidth of the emission. The RBW was to \geq 1% of the estimated emission bandwidth. The trace was set to max hold with a peak detector active. The Delta function of the analyzer was utilized to determine the 20 dB bandwidth of the emission.


The 99% occupied bandwidth was measured with the spectrum analyzer span set to fully display the emission. The RBW was close to 1% of the span without going below 1%. The trace was set to max hold with a sample detector active. The occupied bandwidth measurement function of the analyzer was used for the 99% bandwidth.

7.4.4.2 Measurement Results

Results are shown below in Table 7.4.4.2-1 and Figures 7.4.4.2-1 through 7.4.4.2-18.

Table 7.4.4.2-1: 20dB / 99% Bandwidth

Frequency [MHz]	20dB Bandwidth [kHz]	99% Bandwidth [kHz]	Modulation							
902.25	66.00	65.10	FSK (19.2 kbps)							
914.75	65.70	65.40	FSK (19.2 kbps)							
927.75	65.70	66.00	FSK (19.2 kbps)							
902.25	356.00	350.00	FSK (152.3 kbps)							
914.75	358.00	350.00	FSK (152.3 kbps)							
927.75	354.00	348.00	FSK (152.3 kbps)							
909.6	115.2	193.2	OOK (16.4 kbps)							
916.0	114.0	165.0	OOK (16.4 kbps)							
921.8	100.8	163.8	OOK (16.4 kbps)							

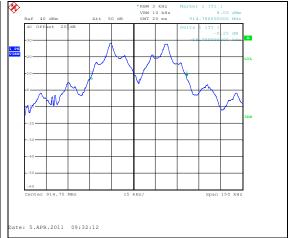


Figure 7.4.4.2-1: 20dB BW LCH - FSK 19.2kbps

Figure 7.4.4.2-2: 20dB BW MCH - FSK 19.2kbps

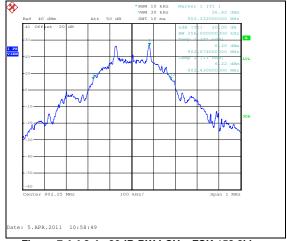


Figure 7.4.4.2-3: 20dB BW HCH - FSK 19.2kbps

Figure 7.4.4.2-4: 20dB BW LCH – FSK 152.3kbps

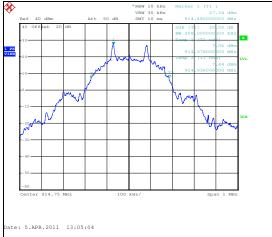
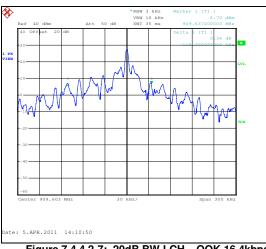



Figure 7.4.4.2-5: 20dB BW MCH - FSK 152.3kbps

Figure 7.4.4.2-6: 20dB BW HCH - FSK 152.3kbps

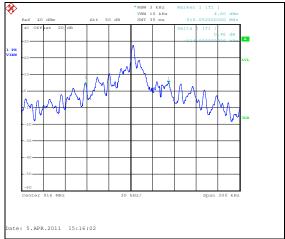
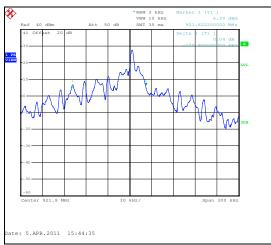



Figure 7.4.4.2-7: 20dB BW LCH - OOK 16.4kbps

Figure 7.4.4.2-8: 20dB BW MCH - OOK 16.4kbps

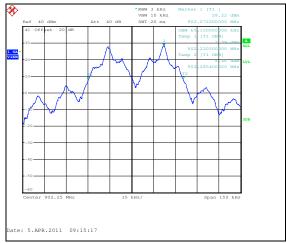


Figure 7.4.4.2-9: 20dB BW HCH - OOK 16.4kbps

Figure 7.4.4.2-10: 99% BW LCH – FSK 19.2kbps

Figure 7.4.4.2-11: 99% BW MCH - FSK 19.2kbps

Figure 7.4.4.2-12: 99% BW HCH - FSK 19.2kbps



Figure 7.4.4.2-13: 99% BW LCH - FSK 152.3kbps

Figure 7.4.4.2-14: 99% BW MCH - FSK 152.3kbps

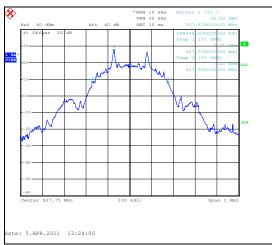


Figure 7.4.4.2-15: 99% BW HCH - FSK 152.3kbps

Figure 7.4.4.2-16: 99% BW LCH - OOK 16.4kbps

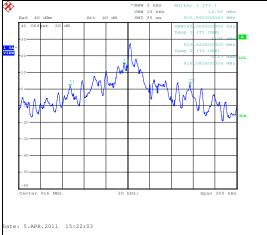


Figure 7.4.4.2-17: 99% BW MCH – OOK 16.4kbps Figure 7.4.4.2-18: 99% BW HCH – OOK 16.4kbps

7.5 Band-Edge Compliance and Spurious Emissions-FCC 15.247(d) IC:RSS-210 2.2, A8.5

7.5.1 Band-Edge Compliance of RF Conducted Emissions

7.5.1.1 Measurement Procedure

The RF output port of the EUT was directly connected to the input of the spectrum analyzer. The EUT was investigated at the lowest and highest channel available to determine band-edge compliance. For each measurement the spectrum analyzer's RBW was set to \geq 1% of the span, and the VBW was set to \geq 3 times RBW.

Band-edge was evaluated for all combinations of modulations and data rates.

7.5.1.2 Measurement Results

Results are shown in the figures 7.5.1.2-1 to 7.5.1.2.12 below.

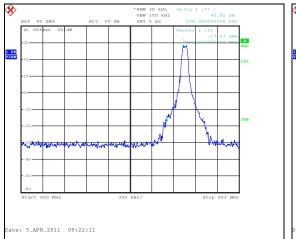
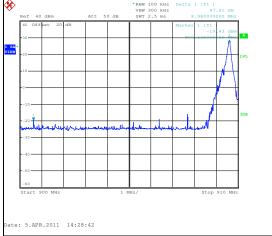



Figure 7.5.1.2-1: Lower Band-edge - FSK 19.2 kbps

Figure 7.5.1.2-2: Lower Band-edge - FSK 152.3 kbps

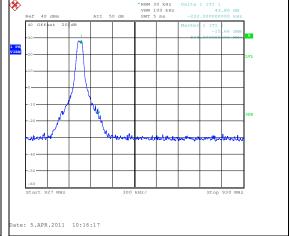


Figure 7.5.1.2-4: Upper Band-edge - FSK 19.2 kbps

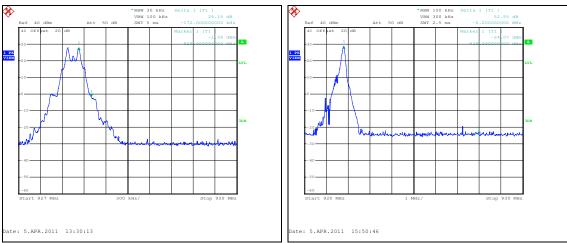


Figure 7.5.1.2-5: Upper Band-edge - FSK 152.3 kbps Figure 7.5.1.2-6: Upper Band-edge - OOK 16.4 kbps

HOPPING MODE:

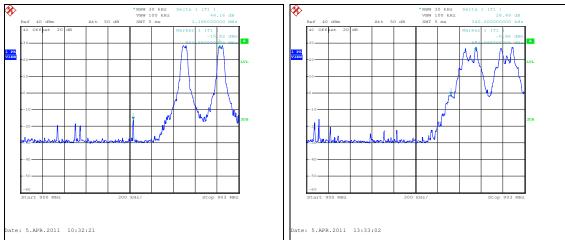


Figure 7.5.1.2-7: Lower Band-edge – FSK 19.2 kbps

Figure 7.5.1.2-8: Lower Band-edge – FSK 152.3 kbps

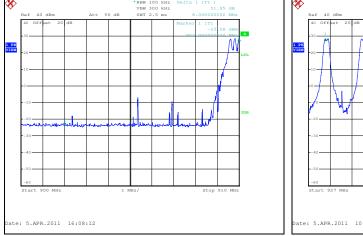


Figure 7.5.1.2-9: Lower Band-edge - OOK 16.4 kbps

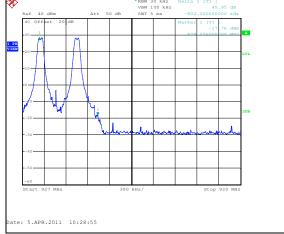
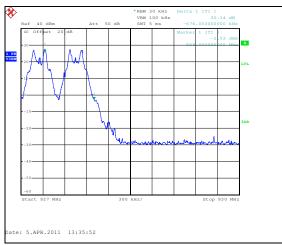



Figure 7.5.1.2-10: Upper Band-edge - FSK 19.2 kbps

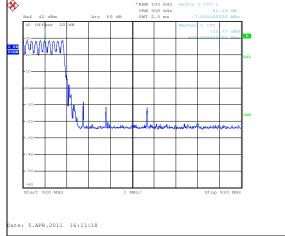
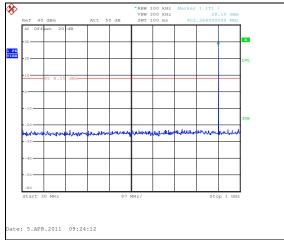


Figure 7.5.1.2-11: Upper Band-edge - FSK 152.3 kbps Figure 7.5.1.2-12: Upper Band-edge - OOK 16.4 kbps

7.5.2 RF Conducted Spurious Emissions


7.5.2.1 Measurement Procedure

The RF output port of the EUT was directly connected to the input of the spectrum analyzer. The EUT was investigated for conducted spurious emissions from 30MHz to 10GHz, 10 times the highest fundamental frequency. Measurements were made at the low, center and high channels of the EUT. For each measurement, the spectrum analyzer's RBW was set to 100kHz. A peak detector function was used with the trace set to max hold.

RF conducted spurious emissions were evaluated for all combinations of modulations and data rates.

7.5.2.2 Measurement Results

Results are shown below in Figures 7.5.2.2-1 to 7.5.2.2-18:

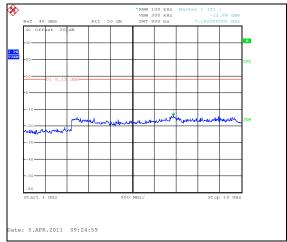
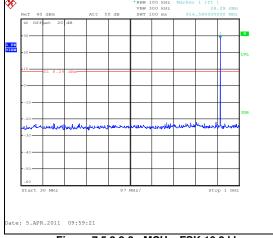



Figure 7.5.2.2-1: LCH - FSK 19.2 kbps

Figure 7.5.2.2-2: LCH - FSK 19.2 kbps

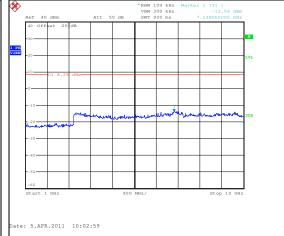
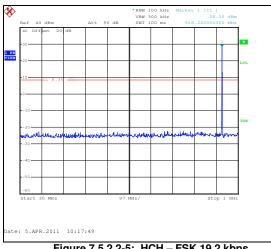



Figure 7.5.2.2-4: MCH - FSK 19.2 kbps

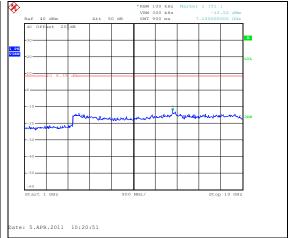
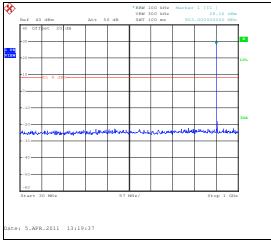



Figure 7.5.2.2-5: HCH - FSK 19.2 kbps

Figure 7.5.2.2-6: HCH - FSK 19.2 kbps

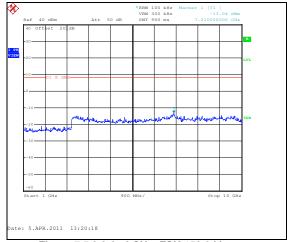
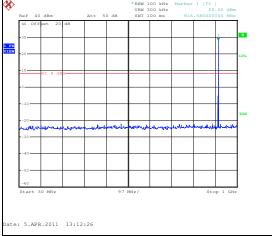



Figure 7.5.2.2-7: LCH - FSK 152.3 kbps

Figure 7.5.2.2-8: LCH - FSK 152.3 kbps

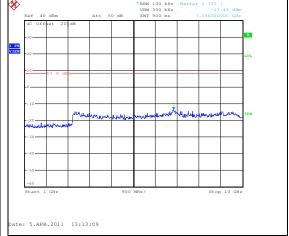
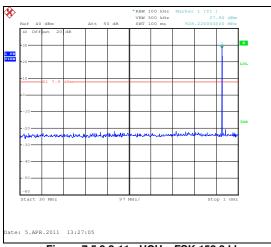



Figure 7.5.2.2-10: MCH - FSK 152.3 kbps

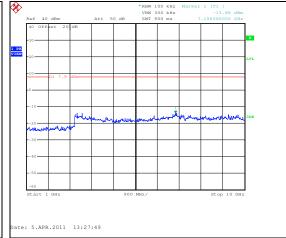
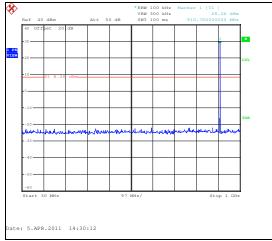



Figure 7.5.2.2-11: HCH - FSK 152.3 kbps

Figure 7.5.2.2-12: HCH - FSK 152.3 kbps

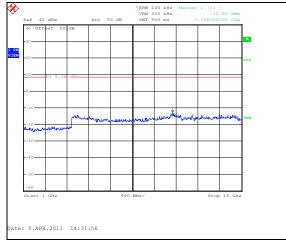
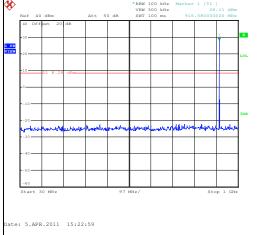



Figure 7.5.2.2-13: LCH - OOK 16.4 kbps

Figure 7.5.2.2-14: LCH - OOK 16.4 kbps

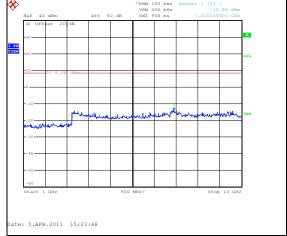


Figure 7.5.2.2-16: MCH - OOK 16.4 kbps

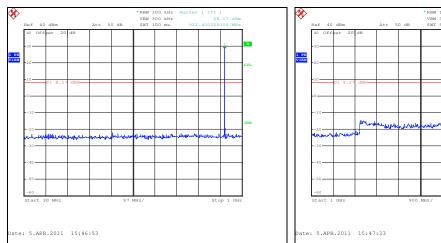


Figure 7.5.2.2-17: HCH - OOK 16.4 kbps

Figure 7.5.2.2-18: HCH - OOK 16.4 kbps

7.5.3 Radiated Spurious Emissions - FCC Section 15.205 IC: RSS-210 2.2

7.5.3.1 Measurement Procedure

Radiated emissions tests were made over the frequency range of 30MHz to 10GHz, 10 times the highest fundamental frequency.

The EUT was rotated through 360° and the receive antenna height was varied from 1m to 4m so that the maximum radiated emissions level would be detected. For frequencies below 1000MHz, quasi-peak measurements were made using a resolution bandwidth RBW of 120 kHz and a video bandwidth VBW of 300 kHz. For frequencies above 1000MHz, peak and average measurements were made with RBW and VBW of 1 MHz and 3 MHz respectively.

The EUT was caused to generate a continuous carrier signal on the hopping channel.

Radiated spurious emissions were evaluated for all combinations of modulations and data rates with worst case data provided. Worst case for FSK modulation was for 19.2 kbps data rate.

7.5.3.2 Measurement Results

Radiated spurious emissions found in the band of 30MHz to 10GHz are reported in the Tables 7.5.3.2-1 to 7.5.3.2-2 below.

Table 7.5.3.2-1: Radiated Spurious Emissions – FSK Modulation (19.2kbps)

			Hadiatoa opanioao Eniliodiono 1					Ort modulation (TolERspo)					
Frequency (MHz)		∟evel IBuV)	Antenna Polarity	Antenna Height	Turntable Position	Correction Factors		ted Level suV/m)		imit uV/m)		largin (dB)	
(111112)	pk	Qpk/Avg	(H/V)	(cm)	(o)	(dB)	pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg	
						Low Channel							
2706.75	55.52	53.21	Н	127	314	-4.27	51.25	48.94	74.0	54.0	22.8	5.1	
2706.75	53.72	50.27	V	123	316	-4.27	49.45	46.00	74.0	54.0	24.6	8.0	
3609	51.79	46.94	Н	132	47	-1.48	50.31	45.46	74.0	54.0	23.7	8.5	
3609	51.21	47.07	V	131	285	-1.48	49.73	45.59	74.0	54.0	24.3	8.4	
4511.25	54.69	51.10	Н	110	54	0.47	55.16	51.57	74.0	54.0	18.8	2.4	
4511.25	51.71	46.41	V	251	101	0.47	52.18	46.88	74.0	54.0	21.8	7.1	
	Middle Channel												
2744.25	59.05	55.39	Н	157	108	-3.90	55.15	51.49	74.0	54.0	18.9	2.5	
2744.25	58.01	54.79	V	130	294	-3.90	54.11	50.89	74.0	54.0	19.9	3.1	
3659	53.08	47.91	Н	110	52	-0.99	52.09	46.92	74.0	54.0	21.9	7.1	
3659	51.94	46.05	V	129	301	-0.99	50.95	45.06	74.0	54.0	23.0	8.9	
4573.75	53.36	48.92	Н	113	249	1.04	54.40	49.96	74.0	54.0	19.6	4.0	
4573.75	50.47	43.74	V	235	339	1.04	51.51	44.78	74.0	54.0	22.5	9.2	
						High Channel							
2783.25	52.93	49.07	Н	129	18	-4.06	48.87	45.01	74.0	54.0	25.1	9.0	
2783.25	49.07	43.33	V	100	318	-4.06	45.01	39.27	74.0	54.0	29.0	14.7	
3711	49.86	43.06	Н	110	58	-1.06	48.80	42.00	74.0	54.0	25.2	12.0	
3711	49.66	42.19	V	110	289	-1.06	48.60	41.13	74.0	54.0	25.4	12.9	
4638.75	49.68	44.43	Н	112	310	0.87	50.55	45.30	74.0	54.0	23.5	8.7	
4638.75	48.13	39.75	V	167	83	0.87	49.00	40.62	74.0	54.0	25.0	13.4	

Table 7.6.3.2-2: Radiated Spurious Emissions – OOK Modulation

Table 7.0.3.2-2. Hadiated Spurious Linissions – OOK Modulation												
Frequency (MHz)		Level IBuV)	Antenna Polarity	Antenna Height	Turntable Position	Correction Factors		ted Level suV/m)		.imit BuV/m)		largin (dB)
(111112)	pk	Qpk/Avg	(H/V)	(cm)	(o)	(dB)	pk	Qpk/Avg	pk	Qpk/Avg	pk	Qpk/Avg
	Low Channel											
2728.8	56.10	50.19	Н	157	6	-4.21	51.89	45.98	74.0	54.0	22.1	8.0
2728.8	54.18	48.11	V	158	301	-4.21	49.97	43.90	74.0	54.0	24.0	10.1
3638.4	52.91	45.29	Н	110	53	-1.36	51.55	43.93	74.0	54.0	22.4	10.1
3638.4	51.54	43.66	V	126	293	-1.36	50.18	42.30	74.0	54.0	23.8	11.7
4548	55.02	49.15	Н	116	280	0.59	55.61	49.74	74.0	54.0	18.4	4.3
4548	52.04	44.86	V	158	100	0.59	52.63	45.45	74.0	54.0	21.4	8.6
	Middle Channel											
2748	56.72	50.04	Н	110	353	-3.89	52.83	46.15	74.0	54.0	21.2	7.8
2748	57.76	51.38	V	105	91	-3.89	53.87	47.49	74.0	54.0	20.1	6.5
3664	52.84	45.85	Н	123	60	-0.96	51.88	44.89	74.0	54.0	22.1	9.1
3664	51.67	44.30	V	105	317	-0.96	50.71	43.34	74.0	54.0	23.3	10.7
4580	55.91	50.22	Н	110	278	1.06	56.97	51.28	74.0	54.0	17.0	2.7
4580	51.69	44.28	V	151	118	1.06	52.75	45.34	74.0	54.0	21.2	8.7
						High Channel						
2765.4	56.08	50.09	Н	127	20	-4.11	51.97	45.98	74.0	54.0	22.0	8.0
2765.4	52.37	45.44	V	131	292	-4.11	48.26	41.33	74.0	54.0	25.7	12.7
3687.2	51.09	42.50	Н	110	64	-1.16	49.93	41.34	74.0	54.0	24.1	12.7
3687.2	46.24	34.78	V	108	290	-1.16	45.08	33.62	74.0	54.0	28.9	20.4
4609	54.15	48.18	Н	113	277	0.78	54.93	48.96	74.0	54.0	19.1	5.0
4609	51.09	43.92	V	154	97	0.78	51.87	44.70	74.0	54.0	22.1	9.3

7.5.3.3 Sample Calculation:

 $R_C = R_U + CF_T$

Where:

CF_T = Total Correction Factor (AF+CA+AG)-DC (Average Measurements Only)

R_U = Uncorrected Reading
R_C = Corrected Level
AF = Antenna Factor
CA = Cable Attenuation
AG = Amplifier Gain

DC = Duty Cycle Correction Factor

Example Calculation: Peak

Corrected Level: 55.52 - 4.27 = 51.25dBuV/m Margin: 74dBuV/m - 51.25dBuV/m = 22.8dB

Example Calculation: Average

Corrected Level: 53.21 - 4.27 - 0 = 48.94dBuV

Margin: 54dBuV - 48.94dBuV = 5.1dB

8 CONCLUSION

In the opinion of ACS, Inc. the AMI7, manufactured by Itron Electricity Metering, Inc. meets the requirements of FCC Part 15 subpart C and Industry Canada's Radio Standards Specification RSS-210

END REPORT