

Excellence in Compliance Testing

Certification Exhibit

FCC ID: SK9ACT1

FCC Rule Part: 47 CFR Part 2.1091

Project Number: 72124754

Manufacturer: Itron, Inc.
Model: ACT1

RF Exposure

General Information:

Applicant: Itron, Inc.
Device Category: Mobile
Environment: General Population/Uncontrolled Exposure

The 900MHz LAN radio is collocated and transmits simultaneously with the 2.4GHz WiFi radio.

Technical Information:**Table 1: Technical Information**

	900MHz LAN Radio	2.4GHz WiFi Radio
Frequency Band(s) (MHz)	902.4 - 927.6	2412 - 2462
Antenna Type(s)	Whip Antenna	1/4 Wave Embedded Slot Antenna
Antenna Gain (dBi)	3.0	2.5
Conducted Power (dBm)	23.39*	18.54
Conducted Power (mW)	218.27	71.45
Maximum Peak EIRP (mW)	435.51	127.06
Maximum Peak ERP (mW)	265.46	77.45

* Includes insertion loss of the coupling patch and associated cable.

MPE Calculation:

The Power Density (mW/cm²) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Table 2: MPE Calculation (Including Collocated Devices)

Transmit Frequency (MHz)	Radio Power (dBm)	Power Density Limit (mW/Cm ²)	Radio Power (mW)	Antenna Gain (dBi)	Antenna Gain (mW eq.)	Distance (cm)	Power Density (mW/cm ²)	Radio
915.2	23.39*	0.61	218.27	3	1.995	20	0.087	A
2437	18.54	1.00	71.45	2.5	1.778	20	0.025	B

* Includes insertion loss of the coupling patch and associated cable.

Summation of MPE ratios – Simultaneous Transmissions

This device contains multiple transmitters which can operate simultaneously; therefore the maximum RF exposure is determined by the summation of MPE ratios. The limit is such that the summation of MPE ratios is ≤ 1.0 .

Table 3: Summation of MPE Ratios

Scenario 1	
Radio A	x
Radio B	x
Radio A MPE Ratio	0.142005574
Radio B MPE Ratio	0.025277269
MPE Ratio Summation:	0.167282843