

National Technical Systems – Silicon Valley TCB

April 27, 2016

RE: FCC ID: SK6-XR520H

Attention: Gregory Czumak

Please find our responses to your comments on this application below:

1. The DFS report states, on p.7 under “Deviations From The Standard”, that only the In- Service Monitoring testing was performed for this c2pc report, and that the BW Detection, Channel Close/Move, CAC and Non- Occupancy results were provided in a previously submitted DFS report. However, the report appears to include BW Detection data, but not Channel Close/Move or Non- Occupancy data, while KDB905462)D02)7.8.3) lists both Channel Close/Move and Non- Occupancy as In- Service Monitoring tests. Please clarify precisely which tests from KDB905462)D02) were performed in this c2pc report, which tests were performed in the previous report, and why.

Response: This device was previously tested and approved against KDB 905462 D01. There were three significant changes made in the test procedure from D01 to D02:

1. Channel loading used during in-service monitoring
2. Bandwidth detection requirement changed from 80% to 100% of the OBW
3. Addition of Bin 1A and 1B radar types

Due to these changes, we felt that only the bandwidth detection and in-service monitoring tests needed to be performed. Based on our experience, the loading in the channel does not affect the channel close/move and non-occupancy. The CAC requirement was unchanged. When we reviewed the MiCom report, we saw that the device met the new bandwidth detection criteria.

The DFS report has been updated to clarify the testing performed by NTS.

2. The DFS report (and original application) indicates that one of the EUT's authorized antennas (Eahison Communications Yagi) has a peak gain of 15 dBi, however, the Attestation Letter lists the maximum antenna gain as 8.8 dBi – please reconcile. This will directly affect which Note Code is listed on the grant (N.C. 48 or 49), and, hence, the cut-off date for manufacturing/importing/marketing the EUT.

Response: The value in the attestation is a corrected value representing the antenna gain and the cable loss. The DFS report has been updated for consistency with the stated values in the attestation and the previous RF reports. In our opinion, Note Code 49 would be appropriate.

Regards,

Mark Hill
Staff Engineer

Uploaded Exhibits:
DFS Test report