

*FCC PART 15, SUBPART C
TEST REPORT*

for

RFID TAG
Model: T916ID-ULT
FCC ID: SJ5204061110011

Prepared for

ULTIMATE SECURITY SYSTEMS CORPORATION
18271 W. McDERMOTT SUITE F
IRIVINE, CA 92614

Prepared by: _____

JOEY J. MADLANGBAYAN

Approved by: _____

RUBY A. HALL

COMPATIBLE ELECTRONICS INC.
2337 TROUTDALE DRIVE
AGOURA, CALIFORNIA 91301
(818) 597-0600

DATE: NOVEMBER 4, 2004

	REPORT BODY	APPENDICES					TOTAL
		A	B	C	D	E	
PAGES	19	2	2	2	11	15	51

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

TABLE OF CONTENTS

Section / Title	PAGE
GENERAL REPORT SUMMARY	4
SUMMARY OF TEST RESULTS	4
1. PURPOSE	5
2. ADMINISTRATIVE DATA	6
2.1 Location of Testing	6
2.2 Traceability Statement	6
2.3 Cognizant Personnel	6
2.4 Date Test Sample was Received	6
2.5 Disposition of the Test Sample	6
2.6 Abbreviations and Acronyms	6
3. APPLICABLE DOCUMENTS	7
4. DESCRIPTION OF TEST CONFIGURATION	8
4.1 Description of Test Configuration - EMI	8
4.1.1 Photograph of Test Configuration – EMI	8
4.1.1 Cable Construction and Termination	9
5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT	10
5.1 EUT and Accessory List	10
5.2 EMI Test Equipment	11
6. TEST SITE DESCRIPTION	12
6.1 Test Facility Description	12
6.2 EUT Mounting, Bonding and Grounding	12
7. TEST PROCEDURES	13
7.1 RF Emissions	13
7.1.1 Conducted Emissions Test	13
7.1.2 Radiated Emissions Test	14
7.1.3 RF Emissions Test Results	15
7.1.4 Sample Calculations	17
7.1.5 Calculation of Duty Cycle	18
8. DEVIATIONS FROM THE TEST PROCEDURE	19
9. CONCLUSIONS	19

LIST OF APPENDICES

APPENDIX	TITLE
A	Laboratory Accreditations
B	Modifications to the EUT
C	Additional Models Covered Under This Report
D	Diagrams, Charts and Photos <ul style="list-style-type: none">• Test Setup Diagrams• Antenna and Preamplifier Gain Factors• Radiated Emissions Photos
E	Data Sheets

LIST OF TABLES

TABLE	TITLE
1	Radiated Emissions Test Results

LIST OF FIGURES

FIGURE	TITLE
1	Plot Map And Layout of Test Site

GENERAL REPORT SUMMARY

This electromagnetic emission report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced in any form except in full, without the written permission of Compatible Electronics.

This report must not be used to claim product endorsement by NVLAP or any other agency of the U.S. Government.

Device Tested: **RFID Tag**
Model: T916ID-ULT
P/N: 20406111011
S/N: NONE

Product Description: This is a wireless transmitter which transmits an address every 2 seconds.

Modifications: The EUT was not modified during the testing.

Manufacturer: Ultimate Security Systems Corporation
18271 W. McDermott Suite F
Irvine, CA 92614

Test Dates: October 19 & 20, 2004

Test Specifications: EMI requirements
FCC CFR Title 47, Part 15 Subpart C
Test Procedure: ANSI C63.4: 2003.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Radiated RF Emissions, 9 kHz to 9.162 GHz	Complies with the limits of FCC CFR Title 47, Part 15 Subpart C 15.205, 15.209 & 15.249, and the requirements of 15.31(e).

1. PURPOSE

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the RFID Tag Model: **T916ID-ULT**. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4: 2003. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the specification limits and requirements defined in FCC CFR Title 47, Part 15 Subpart A (15.31e), Subpart B and Subpart C [15.205, 15.209 and 15.249].

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The EMI tests described herein were performed at the test facility of Compatible Electronics, 2337 Troutdale Drive, Agoura, California 91301.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Ultimate Security Systems Corporation

Michael Lin Senior Vice President of Engineering

Compatible Electronics Inc.

Joey J. Madlangbayan Test Engineer
Reynald O Ramirez Senior Test Engineer
Ruby A. Hall Lab Manager

2.4 Date Test Sample was Received

The test sample was received on October 19, 2004.

2.5 Disposition of the Test Sample

The test sample remains at Compatible Electronics, Inc.

2.6 Abbreviations and Acronyms

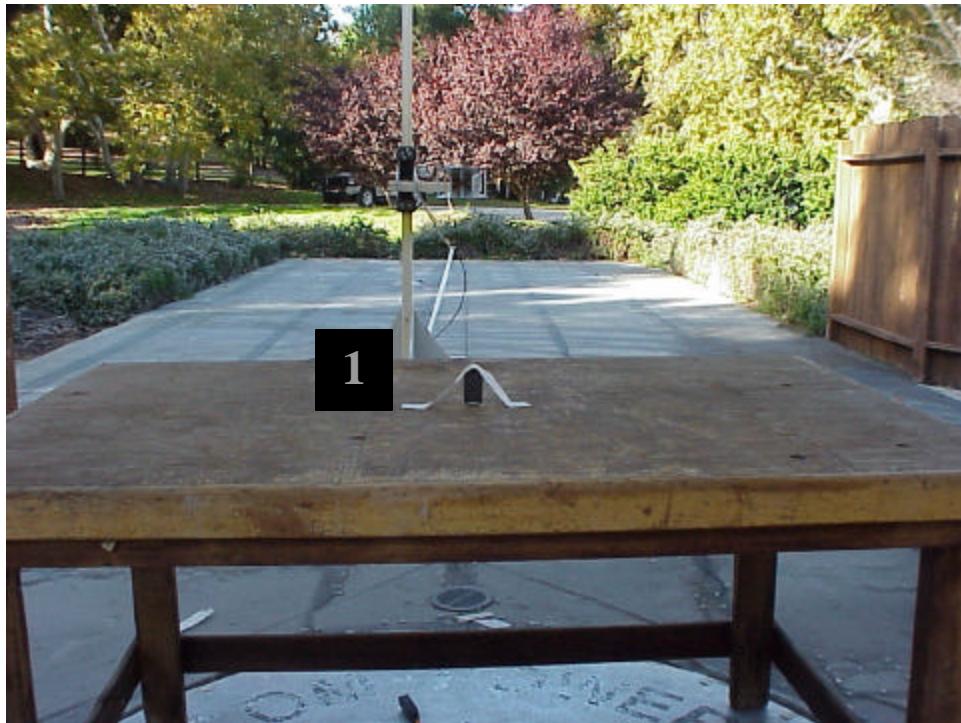
The following abbreviations and acronyms may be used in this document.

RF	Radio Frequency
EMI	Electromagnetic Interference
EUT	Equipment Under Test
P/N	Part Number
S/N	Serial Number
HP	Hewlett Packard
ITE	Information Technology Equipment
CML	Corrected Meter Limit
LISN	Line Impedance Stabilization Network

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this EMI Test Report.

SPEC	TITLE
FCC CFR Title 47, Part 15 Subpart A	FCC Rules – General
FCC CFR Title 47, Part 15 Subpart B	FCC Rules – Unintentional Radiators
FCC CFR Title 47, Part 15 Subpart C	FCC Rules – Intentional Radiators.
CISPR 16 1993	Specification for radio disturbance and immunity measuring apparatus and methods.
ANSI C63.4 2000	Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz.


4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description of Test Configuration - EMI

The EUT was set-up in a tabletop configuration in all the three Orthogonal Axes with a new battery installed. The antenna of the EUT is a fixed element incorporated in the PCB design. The EUT was continuously transmitting.

The highest emissions were found when the EUT was running in the above configuration. The final radiated data was taken in this mode of operation. All initial investigations were performed with the spectrum analyzer in manual mode scanning the frequency range continuously. The EUT was setup and tested as shown in the photographs in Appendix D.

4.1.1 Photograph of Test Configuration – EMI

4.1.1 Cable Construction and Termination

The EUT does not have any external cables.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT**5.1 EUT and Accessory List**

EQUIPMENT TYPE	MANUFACTURER	MODEL	SERIAL NUMBER
RFID TAG (EUT)	ULTIMATE SECURITY SYSTEMS CORPORATION	T916ID-ULT	SN: NONE P/N: 204061110011 FCC ID: SJ5204061110011

5.2 EMI Test Equipment

EQUIPMENT TYPE	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. DATE	CAL. DUE DATE
Spectrum Analyzer	Hewlett Packard	8566B	2729A04566	Jan. 16, 2004	Jan. 16, 2005
Quasi-Peak Adapter	Hewlett Packard	85650A	2521A00682	Jan. 16, 2004	Jan. 16, 2005
Preamplifier	Com Power	CPPA-102	01018	Jul. 12, 2004	Jul. 12, 2005
Active Loop Antenna	Com Power	AL-130	17067	Mar. 24, 2004	Mar. 24, 2005
Biconical Antenna	Com Power	AB-100	01535	Mar. 05, 2004	Mar. 05, 2005
Log Periodic Antenna	Com Power	AL-100	01116	Jan. 23, 2004	Jan. 23, 2005
Horn Antenna	A. R. A.	DRG 118/A	1015	Jul. 15, 2004	Jul. 15, 2006
Microwave Amplifier	Com Power	PA-122	181915	Feb. 25, 2003	Feb. 25, 2005
Antenna Mast	Com Power	AM-400	N/A	N/A	N/A
Turntable	Com Power	TTW-595	N/A	N/A	N/A
Computer	Hewlett Packard	Pavilion 4530	US91912022	N/A	N/A
Printer	Hewlett Packard	C6427B	MY066160TW	N/A	N/A
(Software) Radiated Emissions Transmitter Data Program	Compatible Electronics	DOC No: EMI_PART15T X-B-0-50	Rev. A	N/A	N/A
Radiated Emissions Test Software	Compatible Electronics	Vcap1A	2.3	N/A	N/A

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1.2 of this report for EMI test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was not grounded.

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 RF Emissions

7.1.1 Conducted Emissions Test

The Spectrum Analyzer was used as a measuring meter along with the quasi-peak adapter. The data was collected with the Spectrum Analyzer in the peak detect mode with the "Max Hold" feature activated. The quasi-peak was used only where indicated in the data sheets. A 10 dB attenuation pad was used for the protection of the Spectrum Analyzer input stage, and the Spectrum Analyzer offset was adjusted accordingly to read the actual data measured. The LISN output was read by the Spectrum Analyzer. The output of the second LISN was terminated by a 50 ohm termination. The effective measurement bandwidth used for the conducted emissions test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4: 2003. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The initial test data was taken in manual mode while scanning the frequency ranges of 0.15 MHz to 1.6 MHz, 1.6 MHz to 5 MHz and 5 MHz to 30 MHz. The conducted emissions from the EUT were maximized for operating mode as well as cable placement. Once a predominant frequency (within 12 dB of the limit) was found, it was more closely examined with the spectrum analyzer span adjusted to 1 MHz.

The EUT is a battery-powered unit; therefore this test was not performed.

7.1.2

Radiated Emissions Test

The spectrum analyzer was used as a measuring meter along with a quasi-peak adapter. A Preamplifier was used to increase the sensitivity of the instrument. The Spectrum Analyzer was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the spectrum analyzer records the highest measured reading over all the sweeps. This final reading is then recorded into the a Computer data recording program, which takes into account the cable loss, amplifier gain and antenna factors, so that a true reading is compared to the true limit. The quasi-peak measurement was used only for those readings, which are marked accordingly on the data sheets. The effective measurement bandwidth used for the radiated emissions test was according to the frequency measured (200 Hz for 9kHz-150kHz, 9 kHz for 0.150kHz-30MHz, 120 kHz for 30-1000MHz and 1 MHz for 1000 MHz and above).

Broadband loop, biconical, log periodic and horn antennas were used as transducers during the measurement. The loop antenna was used from 9 kHz to 30 MHz, the biconical antenna was used from 30 MHz to 300 MHz, the log periodic antenna was used from 300 MHz to 1 GHz and the horn antenna was used from 1 GHz to 9.165 GHz. The frequency spans were wide (9 kHz to 30 MHz, 30 MHz to 88 MHz, 88 MHz to 216 MHz, 216 to 300 MHz, 300 MHz to 1 GHz and 1 GHz to 9.165 GHz) during preliminary investigations. The final data was taken with a frequency span of 1 MHz. Furthermore, the frequency span was reduced during the preliminary investigations as deemed necessary.

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4: 2003. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is RFID Tagled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength).

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a test distance of 3 meters to obtain final test data. The test data is located in Appendix E.

Preliminary Testing and Monitoring:

Preliminary testing was done at a distance of 1 meter instead of 3 meters to determine the predominant harmonics and spurious emission frequencies. An open field test site was used for the preliminary investigations. Broadband antennas were used to scan large frequency bands while manipulating the X, Y and Z azimuth of the unit. If and when any frequency was found to be above 30 microvolts/meter level (at a 1 meter distance), this frequency was recorded as a significant frequency. All significant frequencies were further examined carefully at a frequency span on the spectrum analyzer while changing the antenna height and EUT orientation. The EUT was tested again at a test distance of 3 meters to obtain the final test data. The bandwidth of the spectrum analyzer was varied to ensure that pulse desensitization did not occur.

7.1.3 RF Emissions Test Results

The fundamental and up to the 10th harmonic emissions are within the specifications.

ULTIMATE SECURITY SYSTEMS CORPORATION
RFID TAG

RADIATED EMISSIONS – SPURIOUS

Table 1.0

The following bands were specifically scanned.

Frequency Band 9 kHz – 9.162 GHz

No spurious emissions were found.

RF Energy From Transmitter in MHz at 3 meters (μV/m)

0.090-0.110	<50	37.5-38.25	<100
0.495-0.505	<50	73-74.6	<100
2.1735-2.1905	<50	74.8-75.2	<100
4.125-1.128	<50	108-121.94	<100
4.17725-4.17775	<50	123-138	<150
4.20725-4.20775	<50	149.9-150.05	<150
6.215-6.218	<50	156.52-156.52	<150
6.26775-6.26825	<50	162.01-167.17	<150
6.31175-6.31225	<50	167.72-173.2	<150
8.291-8.294	<50	240-285	<200
8.362-8.366	<50	322-335.4	<200
8.37625-8.38675	<50	399.9-410	<200
8.41425-8.41475	<50	608-614	<200
12.29-12.293	<50	960-1240	<500
12.51975-12.52025	<50	1300-1427	<500
12.57675-12.57725	<50	1435-1626.5	<500
13.36-13.41	<50	1645.5-1646.5	<500
16.42-16.423	<50	1660-1710	<500
16.69475-16.69525	<50	1718.8-1722.2	<500
16.80425-16.80475	<50		
25.5-25.67	<50		

7.1.3.1 RF Emissions Test Results (Continued)

RF Energy From Transmitter in MHz at 3 meters (μ V/m)

2200-2300	<500	4500-5150	<500
2310-2390	<500	5350-5460	<500
2483.5-2500	<500	7250-7750	<500
2655-2900	<500	8025-8500	<500
3260-3267	<500	9000-9200	<500
3332-3339	<500		
3345.8-3358	<500		
3600-4400	<500		

7.1.4 Sample Calculations

A correction factor for the antenna, cable and a distance factor (if any) must be applied to the meter reading before a true field strength reading can be obtained. For greater efficiency and convenience, instead of using these correction factors for each meter reading, the specification limit was modified to reflect these correction factors at each frequency, so that the meter readings can be compared directly to the modified specification limit, referred to henceforth as the corrected meter reading limit (CML).

The equation can be derived in the following manner:

$$\text{Specification limit } (\mu\text{V/m}) \log x 20 = \text{Specification Limit in dBuV}$$

$$(\text{Specification distance} / \text{test distance}) \log x 40 = \text{distance factor}$$

$$(\text{Specification Limit dBuV} + \text{distance factor}) + \text{Antenna factor} - \text{effective gain} = \text{Corrected Meter Limit}$$

Note: When using an Active Antenna, the Antenna factor shall be subtracted due to the combination of the internal amplification and antenna loss. At lower frequencies the cable loss is negligible.

OR

$$\text{Corrected Meter Reading} = \text{meter reading} + F - A + C$$

where:
F = antenna factor
A = amplifier gain
C = cable loss

Therefore, the equation for determining the corrected meter reading is:

$$\text{CMR} = \text{spec. limit} - F - A + C$$

A table of corrected meter reading limits was used to permit immediate comparison of the meter reading and determine if the emission level exceeded the specification limit at that frequency. The correction factors for the antenna and the amplifier gain are attached in Appendix D of this report. The data sheets are attached in Appendix E.

The distance factor D is 0 when the test is performed at the required specification distance.

7.1.5 Calculation of Duty Cycle

TOTAL PULSE TIME / PULSE TRAIN X 100 = DUTY CYCLE

9 small pulse total time = 2.88ms

4 medium pulses total time = 1.92ms

2 large pulses total time = 1.44ms

total pulse time = 6.24ms

pulse train = 100ms

6.24ms/100ms X 100 = 6.24% duty cycle

8. DEVIATIONS FROM THE TEST PROCEDURE

There were no deviations from the test procedure.

9. CONCLUSIONS

The RFID Tag Model: **T916ID-ULT** meets all of the requirements of the FCC CFR, Title 47, Part 15, Subpart A, B and C [15.13(E), 15.205, 15.209 and 15.249].

APPENDIX A***LABORATORY ACCREDITATIONS***

LABORATORY ACCREDITATIONS AND RECOGNITIONS

For US, Canada, Australia/New Zealand, Taiwan and the European Union, Compatible Electronics is currently accredited by NVLAP to ISO/IEC 17025 an ISO 9002 equivalent. Please follow the link to the NIST site for each of our facilities NVLAP certificate and scope of accreditation.

Silverado/Lake Forest Division: <http://ts.nist.gov/ts/htdocs/210/214/scopes/2005270.htm>

Brea Division: <http://ts.nist.gov/ts/htdocs/210/214/scopes/2005280.htm>

Agoura Division: <http://ts.nist.gov/ts/htdocs/210/214/scopes/2000630.htm>

Compatible Electronics has been accredited by ANSI and appointed by the FCC to serve as a Telecommunications Certification Body (TCB). Compatible Electronics ANSI TCB listing can be found at: http://www.ansi.org/public/ca/ansi_cp.html

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for EMC under the US/EU Mutual Recognition Agreement (MRA). Compatible Electronics NIST US/EU CAB listing can be found at: <http://ts.nist.gov/ts/htdocs/210/gsig/emc-cabs-mar02.pdf>

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for Taiwan/BSMI under the US/APEC (Asia-Pacific Economic Cooperation) Mutual Recognition Agreement (MRA). Compatible Electronics NIST US/APEC CAB listing can be found at: <http://ts.nist.gov/ts/htdocs/210/gsig/apec/bsmi-cabs-may02.pdf>

Compatible Electronics has been validated by NEMKO against ISO/IEC 17025 under the NEMKO EMC Laboratory Authorization (ELA) program to all EN standards required by the European Union (EU) EMC Directive 89/336/EEC. Please follow the link to the Compatible Electronics' web site for each of our facilities NEMKO ELA certificate and scope of accreditation. <http://www.celelectronics.com/certs.htm>

We are also certified/listed for IT products by the following country/agency:

Compatible Electronics VCCI listing can be found at:
http://www.vcci.or.jp/vcci_e/member/tekigo/setsubi_index_id.html

Just type "Compatible Electronics" into the Keyword search box.

Compatible Electronics FCC listing can be found at:
https://gullfoss2.fcc.gov/prod/oet/index_ie.html

Just type "Compatible Electronics" into the Test Firms search box.

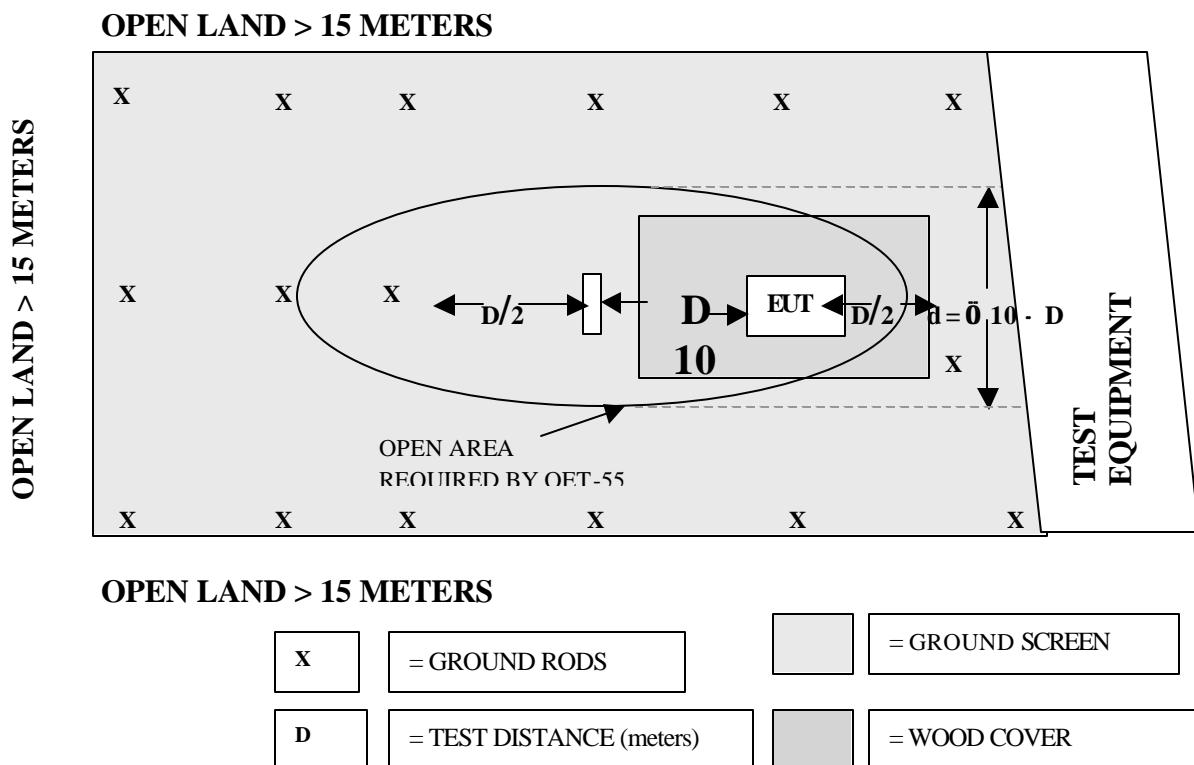
Compatible Electronics IC listing can be found at:
http://spectrum.ic.gc.ca/~cert/labs/oats_lab_c_e.html

APPENDIX B***MODIFICATIONS TO THE EUT***

MODIFICATIONS TO THE EUT

There were no modifications made to the EUT during the test.

APPENDIX C***ADDITIONAL MODELS COVERED
UNDER THIS REPORT***


ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST

RFID TAG
Model: T916ID-ULT

There were no additional models covered under this report.

APPENDIX D***DIAGRAMS, CHARTS AND PHOTOS***

FIGURE 1: PLOT MAP AND LAYOUT OF RADIATED SITE

COM-POWER AL-130**ACTIVE LOOP ANTENNA****S/N: 17067****CALIBRATION DATE: MARCH 24,2004**

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
0.009	12.0	1	10.7
0.01	11.2	2	11.3
0.02	10.5	3	11.0
0.03	12.2	4	11.0
0.04	11.8	5	11.6
0.05	10.2	6	11.7
0.06	11.5	7	11.2
0.07	10.5	8	11.1
0.08	10.1	9	11.4
0.09	10.1	10	8.8
0.1	10.0	12	10.8
0.2	7.8	14	11.0
0.3	10.2	15	11.1
0.4	10.3	16	11.2
0.5	10.3	18	9.0
0.6	10.6	20	9.0
0.7	10.5	25	9.0
0.8	10.4	30	7.7
0.9	10.7		

COM-POWER AB-100

BICONICAL ANTENNA

S/N: 1535

CALIBRATION DATE: MARCH 5, 2004

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	14.2	120	10.1
35	13.7	125	11.5
40	12.2	140	11.5
45	12.7	150	12.0
50	12.1	160	13.3
55	11.4	175	13.5
60	10.4	180	14.5
65	10.6	200	15.4
70	9.0	225	15.1
80	8.5	250	16.8
90	8.5	275	16.7
100	8.9	300	18.6

COM-POWER AL-100

LOG PERIODIC ANTENNA

S/N: 01116

CALIBRATION DATE: JAN. 23, 2004

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
300	13.5	650	20.1
330	17.1	700	21.3
340	15.5	725	21.1
350	16.2	750	22.2
360	15.3	800	23.0
370	14.7	850	23.0
400	16.8	900	23.2
425	17.0	925	22.9
450	16.0	950	23.7
500	16.8	975	25.0
550	18.9	1000	26.6
600	19.0		

COM-POWER PA-102**PREAMPLIFIER****S/N: 1018****CALIBRATION DATE: JULY 12, 2004**

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	35.7	300	34.5
40	36.7	350	34.6
50	35.7	400	34.5
60	35.6	450	34.2
70	35.6	500	34.4
80	35.5	550	34.4
90	35.1	600	33.9
100	35.5	650	34.0
125	35.4	700	34.0
150	35.2	750	34.2
175	35.0	800	33.8
200	35.1	850	33.4
225	35.0	900	33.4
250	34.9	950	33.4
275	34.7	1000	32.5

COM-POWER PA-122**PREAMPLIFIER****S/N: 181915****CALIBRATION DATE: FEBRUARY 25, 2004**

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
1000	33.4	7000	33.3
1100	33.0	7500	33.3
1200	33.0	8000	33.0
1300	32.9	8500	32.4
1400	33.3	9000	30.3
1500	33.0	9500	31.1
1600	32.9	10000	32.6
1700	32.9	11000	33.6
1800	32.9	12000	32.8
1900	33.1	13000	32.8
2000	33.0	14000	32.9
2500	32.9	15000	32.4
3000	32.8	16000	32.6
3500	33.1	17000	31.2
4000	33.2	18000	30.2
4500	33.2		
5000	33.0		
5500	32.3		
6000	32.8		
6500	33.6		

A.R.A DRG-118/A

HORN ANTENNA

S/N: 1015

CALIBRATION DATE: JULY 15, 2004

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
1000	24.8	10000	39.0
1500	25.2	10500	39.8
2000	28.2	11000	39.3
2500	28.5	11500	40.1
3000	30.0	12000	41.0
3500	30.5	12500	40.6
4000	30.8	13000	39.9
4500	31.5	13500	40.5
5000	33.1	14000	41.3
5500	33.4	14500	42.7
6000	34.0	15000	41.6
6500	34.9	15500	39.2
7000	36.7	16000	39.0
7500	37.8	16500	38.8
8000	39.9	17000	41.1
8500	38.2	17500	43.8
9000	38.2	18000	45.4
9500	38.8		

X-AXIS

ULTIMATE SECURITY SYSTEMS CORPORATION

RFID TAG

Model: T916ID-ULT

FCC PART 15 SUBPART C - RADIATED EMISSIONS – 10-19-04

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

Y-AXIS

ULTIMATE SECURITY SYSTEMS CORPORATION
RFID TAG

Model: T916ID-ULT

FCC PART 15 SUBPART C - RADIATED EMISSIONS – 10-19-04

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

Z-AXIS

ULTIMATE SECURITY SYSTEMS CORPORATION
RFID TAG

Model: T916ID-ULT

FCC PART 15 SUBPART C - RADIATED EMISSIONS – 10-19-04

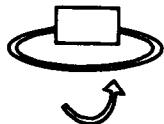
**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

APPENDIX E***DATA SHEETS***

RADIATED EMISSIONS

COMPANY NAME: Ultimate Security Sys. **DATE:** 10/20/04

EUT: RFID Tag EUT S/N:


EUT MODEL: T916FD - ULT LOCATION: BREA SILVERADO MAGOURA

SPECIFICATION: FCC CLASS: B TEST DISTANCE: 3m LAB: F

ANTENNA: LOOP BICONICAL LOG HORN POLARIZATION: VERT HORIZ

QUALIFICATION ENGINEERING MFG. AUDIT ENGINEER: R. Bawarz

NOTES.

Pol. A

Pol. B

* DELTA = METER READING - CORRECTED LIMIT

Test Location : Compatible Electronics **Page** : 1/1
Customer : Michael Lin **Date** : 10/20/2004
Manufacturer : Ultimate Security Systems Corp. **Time** : 09:37:43 AM
Eut name : RFID Tag **Lab** : F
Model : T916ID-ULT **Test Distance** : 3.00 Meters
Serial # : 204061110011
Specification : FCC Pt. 15- Class B
Distance correction factor (20 * log(test/spec)) : 0.00
Test Mode : Qualification
temp: 60F humid: 100%
Spurious Emissions 30-1000MHz.
Sr. Test Engineer: R. Ramirez

Pol	Freq	Reading	Cable	Antenna	Amplifier	Corr'd	Limit	Delta
	MHz	dBuV	loss	factor	gain	rdg = R	= L	R-L
1V	42.428	40.10	1.61	12.45	35.70	18.46	40.00	-21.54
2V	158.295	37.40	3.23	13.08	35.13	18.59	43.50	-24.91
3V	240.995	35.50	3.86	16.21	34.93	20.63	46.00	-25.37
4H	42.402	36.80	1.60	12.45	35.70	15.15	40.00	-24.85
5H	158.297	37.10	3.23	13.08	35.13	18.29	43.50	-25.21
6H	241.002	35.20	3.86	16.21	34.93	20.33	46.00	-25.67
7H	913.970	43.70	6.64	23.03	33.40	39.97	46.00	-6.03
8H	918.764	48.10	6.69	22.97	33.40	44.36	46.00	-1.64
9H	918.737Qp	32.08	6.69	22.97	33.40	28.34	46.00	-17.66

RADIATED EMISSIONS (FCC SECTION 15.249)

COMPANY	Ultimate Security Systems Corp.	DATE	10/19/04
EUT	RFID Tag	DUTY CYCLE	6.24 %
MODEL	T916ID-ULT	PEAK TO AVG	-24.0963082 dB
S/N	204061110011	TEST DIST.	3 Meters
TEST ENGINEER	Rey Ramirez	LAB	F

Frequency MHz	Peak Reading (dBuV)	Average (A) or Quasi- Peak (QP)	Antenna Polar. (V or H)	Antenna Height (meters)	EUT Azimuth (degrees)	EUT Axis (X,Y,Z)	EUT Tx Channel	Antenna Factor (dB)	Cable Loss (dB)	Amplifier Gain (dB)	Distance Factor (dB)	Mixer Factor (dB)	*Corrected Reading (dBuV/m)	Delta ** (dB)	Spec Limit (dBuV/m)	Comments
											0.0					
916.0000	58.7	QP	H	1.0	90	X	MED.	23.4	6.7	0.0	0.0	0.0	88.7	-5.3	94.0	
916.0000	48.2	QP	H	1.0	0	Y	MED.	23.4	6.7	0.0	0.0	0.0	78.2	-15.8	94.0	
916.0000	56.1	QP	H	1.0	270	Z	MED.	23.4	6.7	0.0	0.0	0.0	86.1	-7.9	94.0	
916.0000	44.8	QP	V	3.0	0	X	MED.	23.4	6.7	0.0	0.0	0.0	74.8	-19.2	94.0	
916.0000	53.6	QP	V	1.0	90	Y	MED.	23.4	6.7	0.0	0.0	0.0	83.6	-10.4	94.0	
916.0000	53.1	QP	V	1.0	0	Z	MED.	23.4	6.7	0.0	0.0	0.0	83.1	-10.9	94.0	
		QP	H													
		QP	H													
		QP	H													
		QP	V													
		QP	V													
		QP	V													

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 1 of PAGE 10

RADIATED EMISSIONS (FCC SECTION 15.249)

COMPANY	Ultimate Security Systems Corp.	DATE	10/19/04
EUT	RFID Tag	DUTY CYCLE	6.24 %
MODEL	T916ID-ULT	PEAK TO AVG	-24.0963082 dB
S/N	204061110011	TEST DIST.	3 Meters
TEST ENGINEER	Rey Ramirez	LAB	F

Frequency MHz	Peak Reading (dBuV)	Average (A) or Quasi- Peak (QP)	Antenna Polar. (V or H)	Antenna Height (meters)	EUT Azimuth (degrees)	EUT Axis (X,Y,Z)	EUT Tx Channel	Antenna Factor (dB)	Cable Loss (dB)	Amplifier Gain (dB)	Distance Factor (dB)	Mixer Factor (dB)	*Corrected Reading (dBuV/m)	Delta ** (dB)	Spec Limit (dBuV/m)	Comments
1832.0000	48.1	A	H	3.0	0	X	MED.	27.2	3.7	33.0	0.0	0.0	46.0	-8.0	54.0	
1832.0000	49.8	A	H	3.0	0	Y	MED.	27.2	3.7	33.0	0.0	0.0	47.7	-6.3	54.0	
1832.0000	49.0	A	H	1.0	0	Z	MED.	27.2	3.7	33.0	0.0	0.0	46.9	-7.1	54.0	
1832.0000	54.3	30.2	A	V	1.0	270	X	MED.	27.2	3.7	33.0	0.0	0.0	28.1	-25.9	54.0
1832.0000	51.3	A	V	1.0	90	Y	MED.	27.2	3.7	33.0	0.0	0.0	49.2	-4.8	54.0	
1832.0000	48.0	A	V			Z	MED.	27.2	3.7	33.0	0.0	0.0	45.9	-8.1	54.0	
		A	H													
		A	H													
		A	H													
		A	V													
		A	V													
		A	V													

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 2 of PAGE 10

RADIATED EMISSIONS (FCC SECTION 15.249)

COMPANY	Ultimate Security Systems Corp.	DATE	10/19/04
EUT	RFID Tag	DUTY CYCLE	6.24 %
MODEL	T916ID-ULT	PEAK TO AVG	-24.0963082 dB
S/N	204061110011	TEST DIST.	3 Meters
TEST ENGINEER	Rey Ramirez	LAB	F

Frequency MHz	Peak Reading (dBuV)	Average (A) or Quasi- Peak (QP)	Antenna Polar. (V or H)	Antenna Height (meters)	EUT Azimuth (degrees)	EUT Axis (X,Y,Z)	EUT Tx Channel	Antenna Factor (dB)	Cable Loss (dB)	Amplifier Gain (dB)	Distance Factor (dB)	Mixer Factor (dB)	*Corrected Reading (dBuV/m)	Delta ** (dB)	Spec Limit (dBuV/m)	Comments
											0.0					
2748.0000	51.0	26.9	A	H	3.0	0	X	MED.	29.2	4.7	32.9	0.0	0.0	28.0	-26.0	54.0
2748.0000	54.7	30.6	A	H	2.0	180	Y	MED.	29.2	4.7	32.9	0.0	0.0	31.7	-22.3	54.0
2748.0000	54.4	30.3	A	H	3.0	270	Z	MED.	29.2	4.7	32.9	0.0	0.0	31.4	-22.6	54.0
2748.0000	51.0	26.9	A	V	2.0	270	X	MED.	29.2	4.7	32.9	0.0	0.0	28.0	-26.0	54.0
2748.0000	57.2	33.1	A	V	2.0	0	Y	MED.	29.2	4.7	32.9	0.0	0.0	34.2	-19.8	54.0
2748.0000	50.7	26.6	A	V	2.0	0	Z	MED.	29.2	4.7	32.9	0.0	0.0	27.7	-26.3	54.0
			A	H												
			A	H												
			A	H												
			A	V												
			A	V												
			A	V												

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 3 of PAGE 10

RADIATED EMISSIONS (FCC SECTION 15.249)

COMPANY	Ultimate Security Systems Corp.	DATE	10/19/04
EUT	RFID Tag	DUTY CYCLE	6.24 %
MODEL	T916ID-ULT	PEAK TO AVG	-24.0963082 dB
S/N	204061110011	TEST DIST.	3 Meters
TEST ENGINEER	Rey Ramirez	LAB	F

Frequency MHz	Peak Reading (dBuV)	Average (A) or Quasi- Peak (QP)	Antenna Polar. (V or H)	Antenna Height (meters)	EUT Azimuth (degrees)	EUT Axis (X,Y,Z)	EUT Tx Channel	Antenna Factor (dB)	Cable Loss (dB)	Amplifier Gain (dB)	Distance Factor (dB)	Mixer Factor (dB)	*Corrected Reading (dBuV/m)	Delta ** (dB)	Spec Limit (dBuV/m)	Comments
											0.0					
3664.0000	55.5	31.4	A	H	3.0	0	X	MED.	30.6	5.7	33.1	0.0	0.0	34.6	-19.4	54.0
3664.0000	50.8	26.7	A	H	3.0	90	Y	MED.	30.6	5.7	33.1	0.0	0.0	29.9	-24.1	54.0
3664.0000	66.4	42.3	A	H	3.0	90	Z	MED.	30.6	5.7	33.1	0.0	0.0	45.5	-8.5	54.0
3664.0000	49.8	25.7	A	V	2.0	270	X	MED.	30.6	5.7	33.1	0.0	0.0	28.9	-25.1	54.0
3664.0000	51.1	27.0	A	V	2.0	180	Y	MED.	30.6	5.7	33.1	0.0	0.0	30.2	-23.8	54.0
3664.0000	48.9	24.8	A	V	2.0	270	Z	MED.	30.6	5.7	33.1	0.0	0.0	28.0	-26.0	54.0
			A	H												
			A	H												
			A	H												
			A	V												
			A	V												
			A	V												

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 4 of PAGE 10

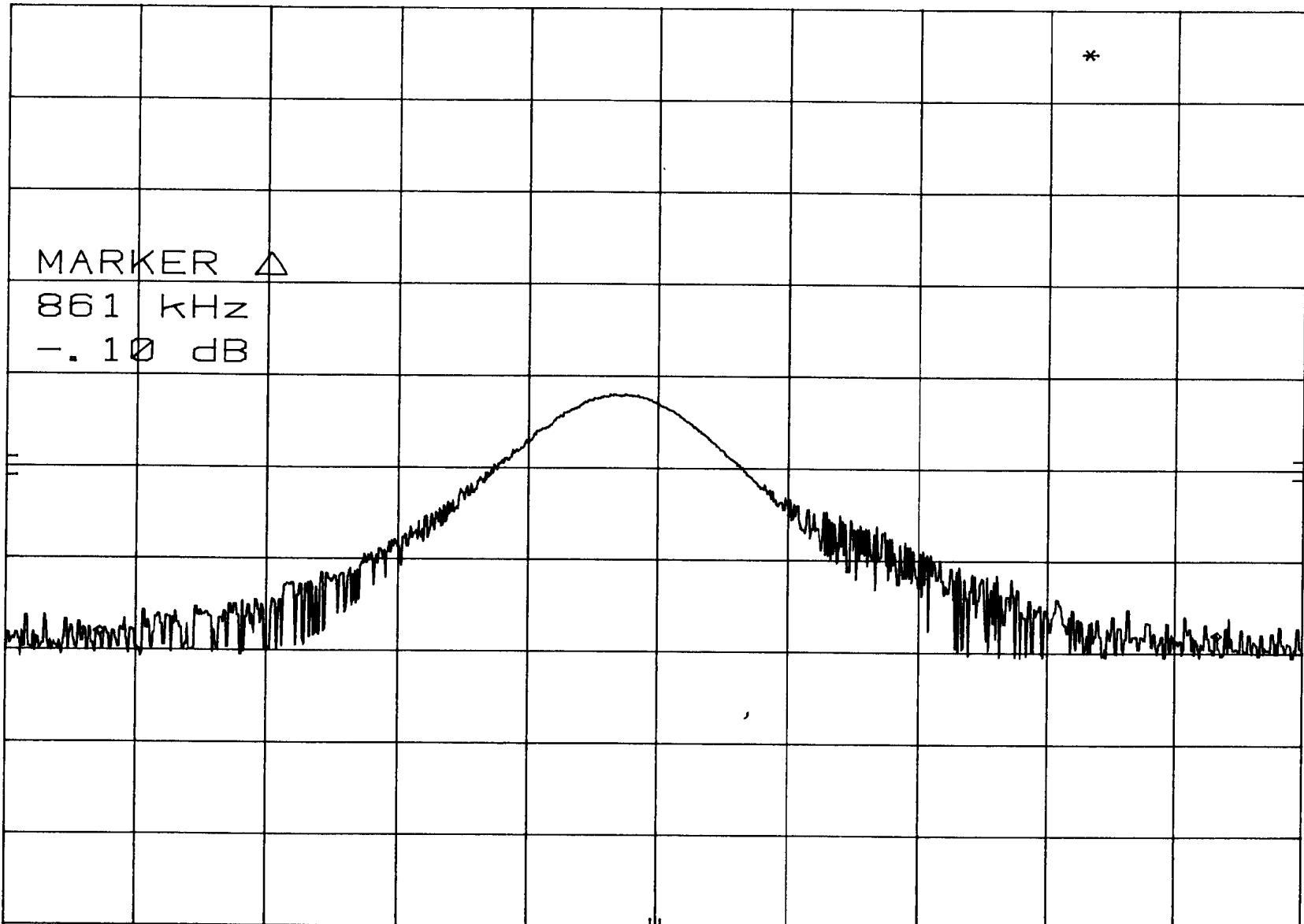
RADIATED EMISSIONS (FCC SECTION 15.249)

COMPANY	Ultimate Security Systems Corp.												DATE	10/19/04
EUT	RFID Tag												DUTY CYCLE	6.24 %
MODEL	T916ID-ULT												PEAK TO AVG	-24.0963082 dB
S/N	204061110011												TEST DIST.	3 Meters
TEST ENGINEER	Rey Ramirez												LAB	F

Frequency MHz	Peak Reading (dBuV)	Average (A) or Quasi- Peak (QP)	Antenna Polar. (V or H)	Antenna Height (meters)	EUT Azimuth (degrees)	EUT Axis (X,Y,Z)	EUT Tx Channel	Antenna Factor (dB)	Cable Loss (dB)	Amplifier Gain (dB)	Distance Factor (dB)	Mixer Factor (dB)	*Corrected Reading (dBuV/m)	Delta ** (dB)	Spec Limit (dBuV/m)	Comments	
											0.0						
4580.0000	60.0	35.9	A	H	3.0	0	X	MED.	31.8	6.3	33.2	0.0	0.0	40.8	-13.2	54.0	No readings found from
4580.0000	61.0	36.9	A	H	3.0	180	Y	MED.	31.8	6.3	33.2	0.0	0.0	41.8	-12.2	54.0	the 6th-10th harmonic
4580.0000	67.5	43.4	A	H	3.0	90	Z	MED.	31.8	6.3	33.2	0.0	0.0	48.3	-5.7	54.0	
4580.0000	59.1	35.0	A	V	2.0	180	X	MED.	31.8	6.3	33.2	0.0	0.0	39.9	-14.1	54.0	
4580.0000	68.2	44.1	A	V	2.0	180	Y	MED.	31.8	6.3	33.2	0.0	0.0	49.0	-5.0	54.0	
4580.0000	58.6	34.5	A	V	2.0	90	Z	MED.	31.8	6.3	33.2	0.0	0.0	39.4	-14.6	54.0	
			A	H													
			A	H													
			A	H													
			A	V													
			A	V													
			A	V													

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING


PAGE 5 of PAGE 10

hp

REF 100.0 dB μ V ATTEN 10 dB

MKR Δ 861 kHz
-.10 dB

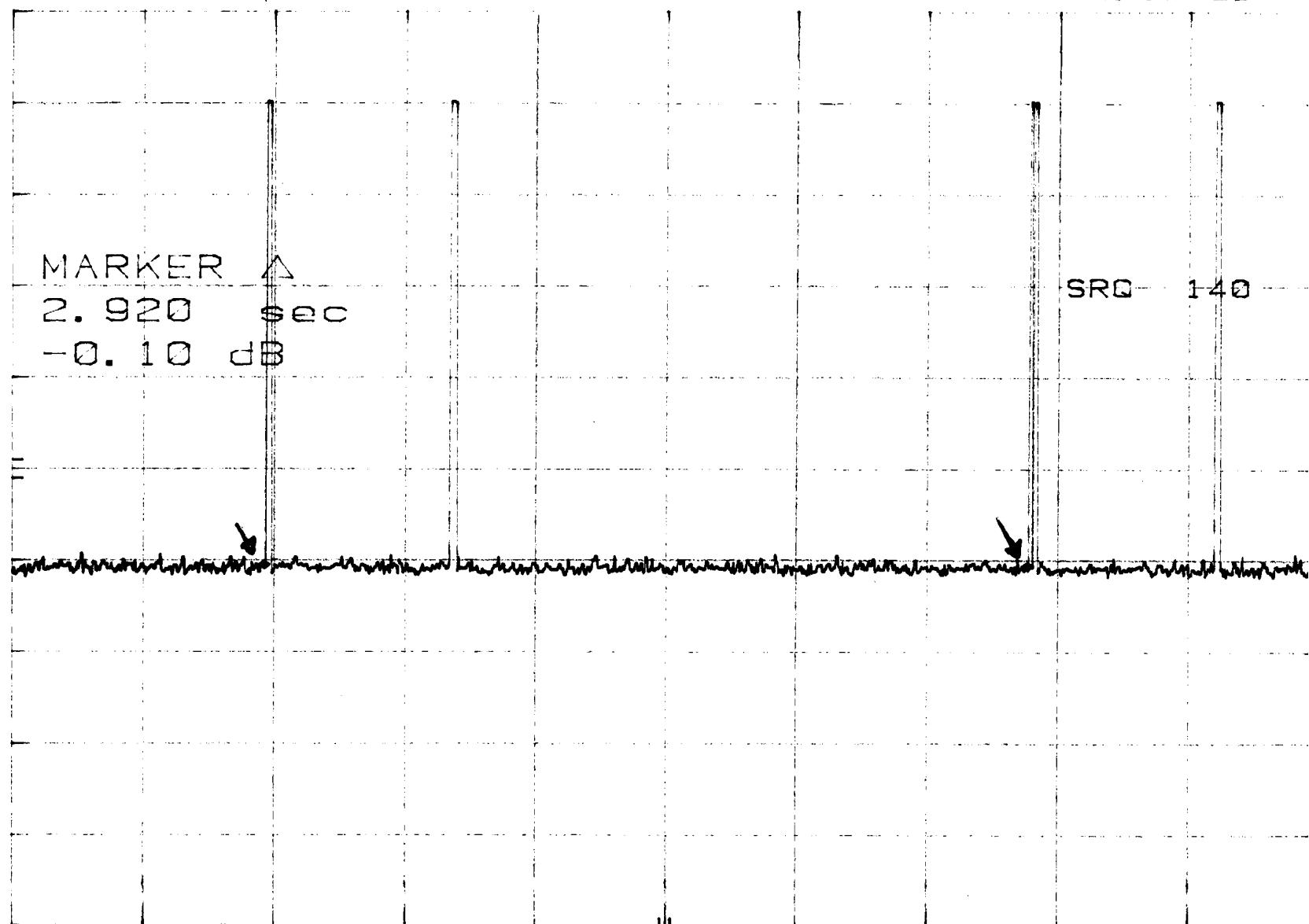
10 dB/

CENTER 916.400 MHz

RES BW 100 kHz

VBW 100 kHz

SPAN 1.000 MHz


SWP 20 msec

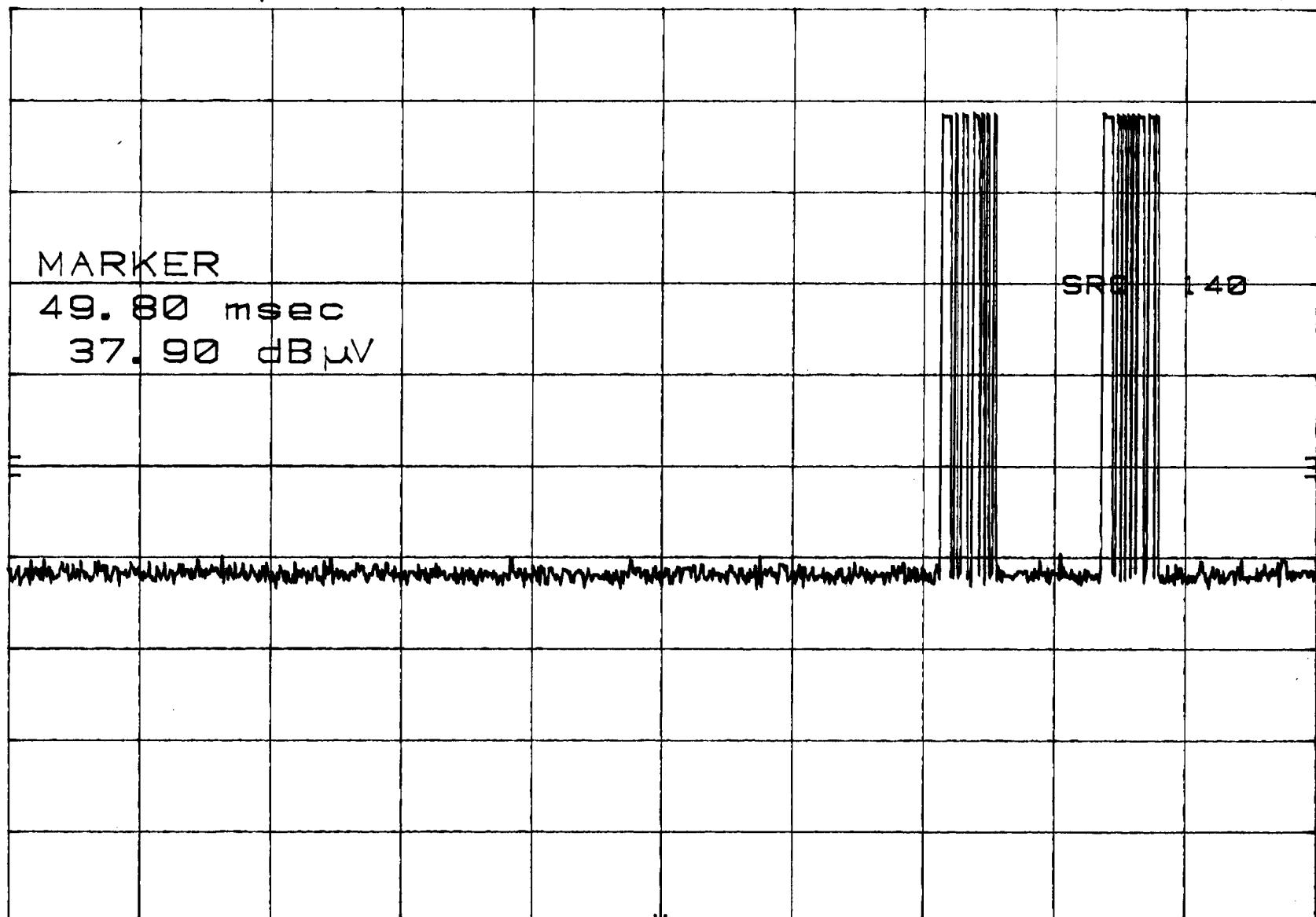
/P REF 100.0 μ V ATTEN 10 dB

MKR Δ 2.920 sec
0.10 dB

10 dB/

CORR'D

CENTER 916.000 000 MHz
RES BW 1 MHz

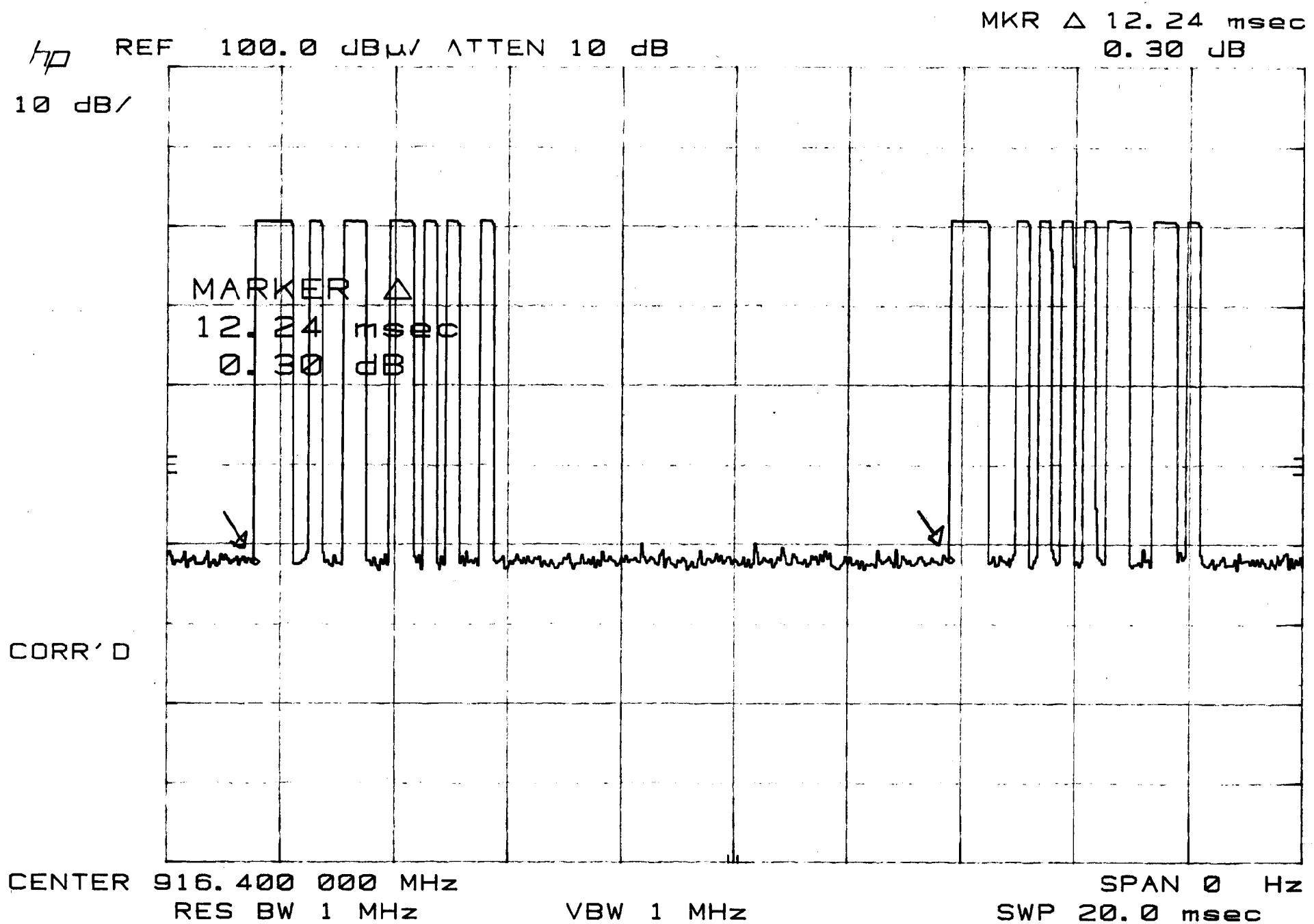

VBW 1 MHz

SPAN 0 Hz
SWP 5.00 sec

HP REF 100.0 dB μ V ATTEN 10 dB

MKR 49.80 msec
37.90 dB μ /

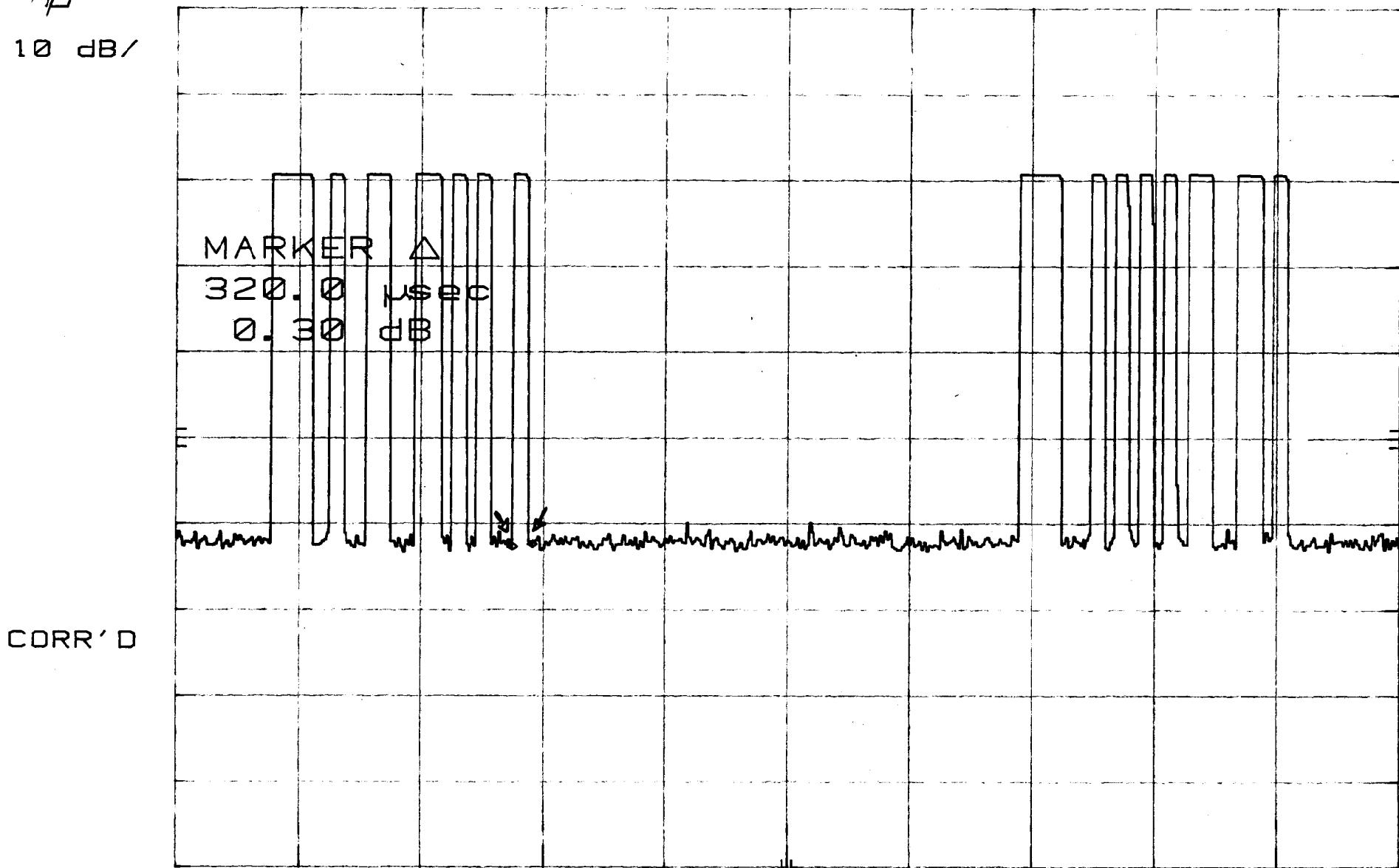
10 dB/



CENTER 916.000 000 MHz
RES BW 1 MHz

SPAN 0 Hz
VBW 1 MHz

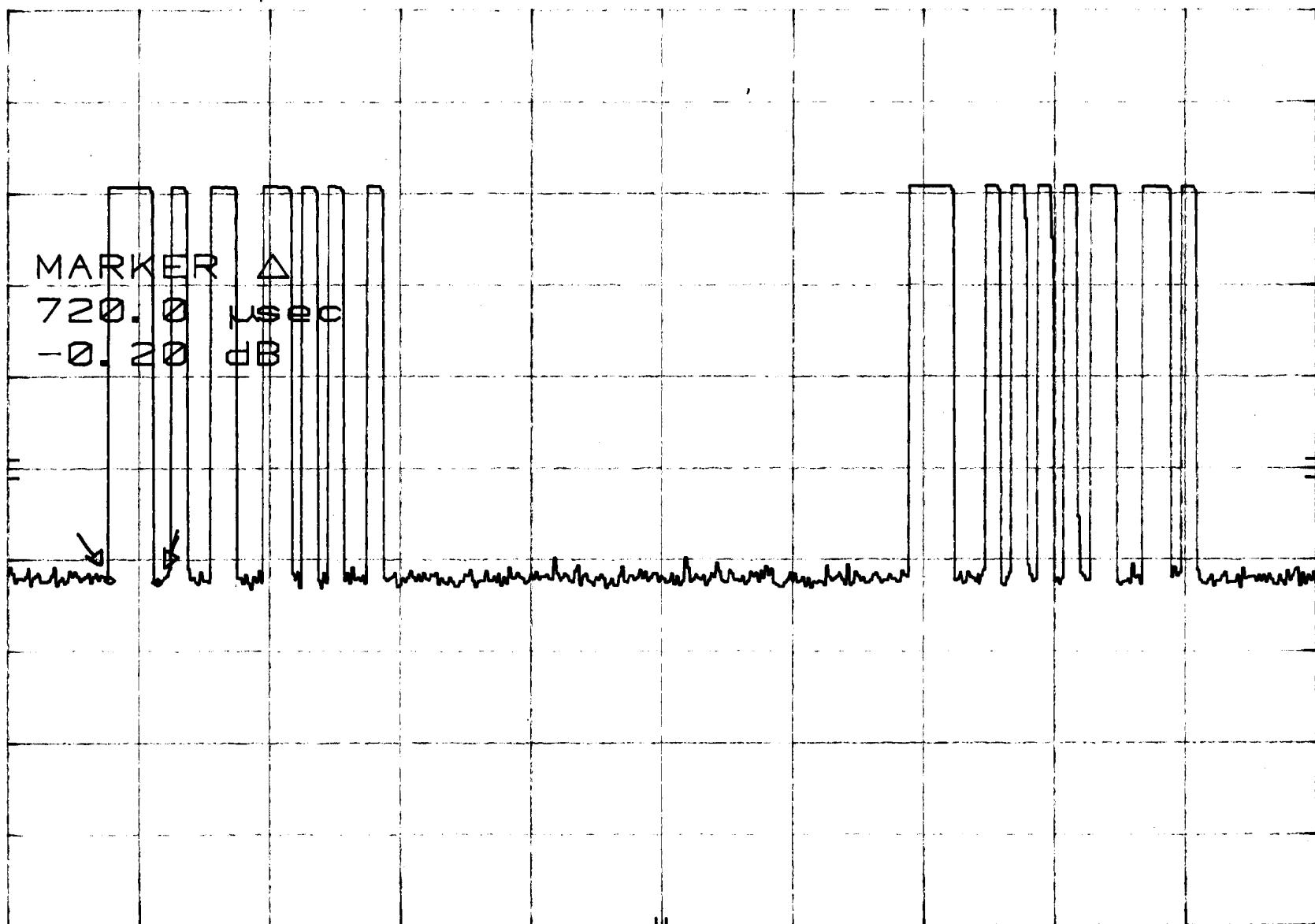
SWP 100 msec


F

F

hp REF 100.0 dB μ V ATTEN 10 dBMKR Δ 320.0 μ sec
0.30 dB

10 dB/

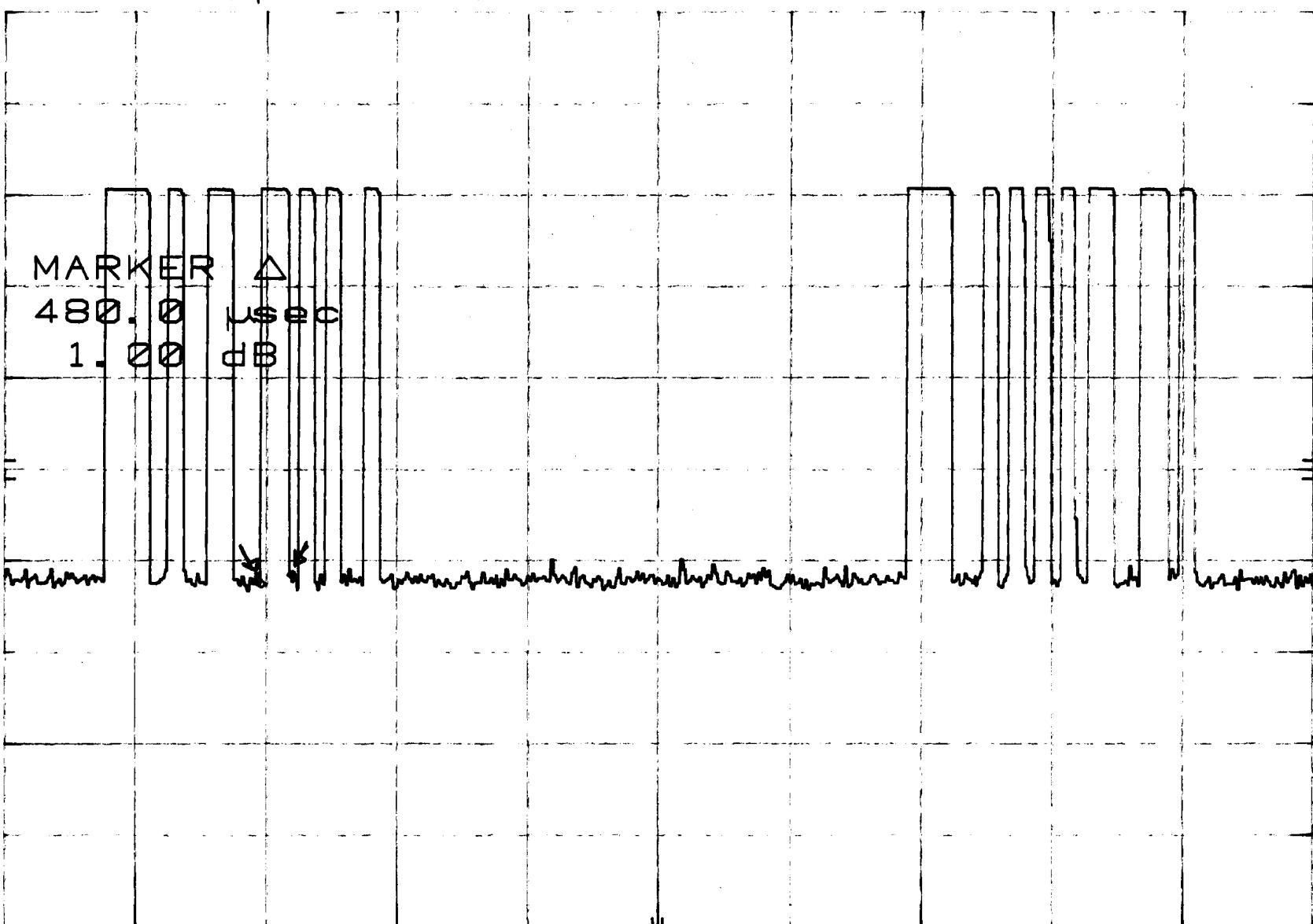

VBW 1 MHz

HP REF 100.0 dB μ V ATTEN 10 dB

10 dB/

MKR Δ 720.0 μ sec
-0.20 dB

CENTER 916.400 000 MHz
RES BW 1 MHz


VBW 1 MHz

SPAN 0 Hz
SWP 20.0 msec

F

hp REF 100.0 dB μ V ATTEN 10 dB

10 dB/

MKR Δ 480.0 μ sec
1.00 dBCENTER 916.400 000 MHz
RES BW 1 MHz

VBW 1 MHz

SPAN 0 Hz
SWP 20.0 msec