

element

Report on the Intermodulation Testing

For

Draeger Safety UK Ltd

on

Dräger PSS AirBoss Sentinel

Report no. TRA-051967-47-24B

2025-06-19

RF915 4.0

Report Number: TRA-051982-47-24B
Issue: B

REPORT ON THE INTERMODULATION TESTING OF A
Draeger Safety UK Ltd
Dräger PSS AirBoss Sentinel
WITH RESPECT TO SELECTED CLAUSES OF SPECIFICATION
KDB 996369 D04 v02
IN CASES OF MORE THAN ONE TRANSMITTER OPERATING AT THE SAME TIME

TEST DATE: 2025-04-22 to 2025-04-22

Tested by:

pp Michael Else
Radio Test Engineer

Written by:

Steven Garwell
Radio Test Engineer

Approved by:

Date:

2025-06-19

John Charters
Laboratory Manager

Disclaimers:

- [1] THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE
- [2] THE RESULTS CONTAINED IN THIS DOCUMENT RELATE ONLY TO THE ITEM(S) TESTED

RF915 4.0

1 Revision Record

<i>Issue Number</i>	<i>Issue Date</i>	<i>Revision History</i>
A	2025-04-24	Original
B	2025-06-19	General updates and corrections throughout document.

2 Summary

TEST REPORT NUMBER: TRA-051967-47-24B

WORKS ORDER NUMBER: TRA-051967-21

PURPOSE OF TEST: Intermodulation emissions investigation.

TEST SPECIFICATION: KDB 996369 D04 v02

EQUIPMENT UNDER TEST (EUT): Dräger PSS AirBoss Sentinel

EUT SERIAL NUMBER: ARTA 0005 01/24

CONTAINS FCC ID: RFRMS42

CONTAINS ISED ID: 4957A-MS42

MANUFACTURER/AGENT: Draeger Safety UK Ltd

ADDRESS: Ullswater Close
Blyth Riverside Business Park
Blyth
NE24 4RG
United Kingdom

CLIENT CONTACT: Eoghan Quigley
☎ 01670 352 891
✉ eoghan.quigley@draeger.com

ORDER NUMBER: 4303193234

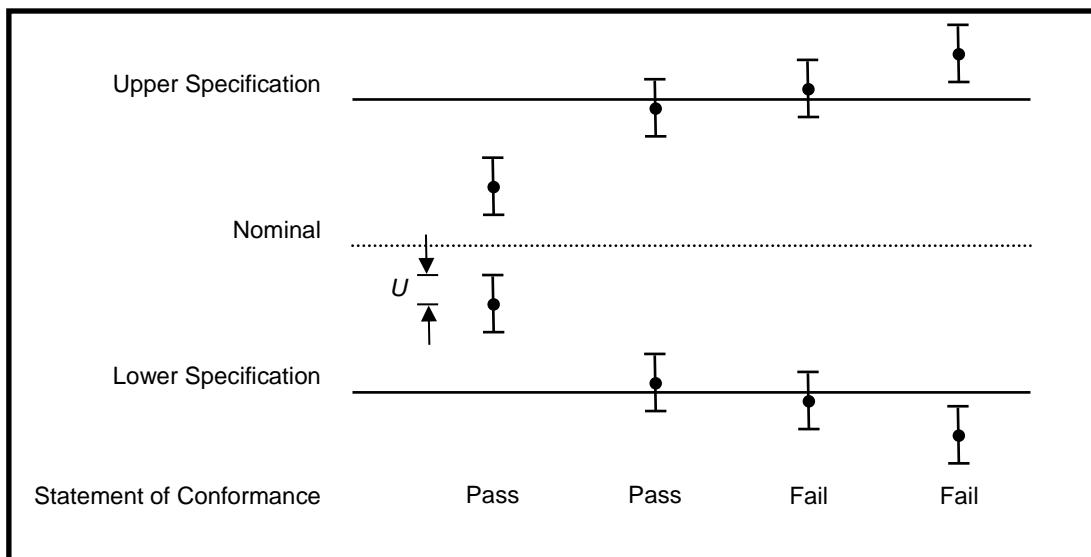
TEST DATE: 2025-04-22 to 2025-04-24

TESTED BY: Michael Else
Element

2.1 Test Summary

Test Method and Description	Requirement Clause		Applicable to this equipment	Result / Note
	RSS	47CFR		
Multi-radio Simultaneous Transmission Spurious Emissions	Gen, 8.10	Part 15	<input checked="" type="checkbox"/>	Pass

General notes:


The results contained in this report relate only to the items tested, in the condition at time of test, and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only. Any modifications made are identified in Section 8 of this report.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 5.2 of this test report (Deviations from Test Standards).

The decision rule for compliance is not inherent within this specification and compliance is based on the customer requesting a simple acceptance rule based on understanding and acceptance of Elements Measurement Uncertainty values.

Graphical Representation of a Pass / Fail Binary Statement - Simple Acceptance

3 Contents

1	Revision Record	3
2	Summary	4
2.1	Test Summary	5
3	Contents	6
4	Introduction	7
5	Test Specifications	8
5.1	Normative References	8
5.2	Deviations from Test Standards	8
6	Glossary of Terms	9
7	Equipment under Test	10
7.1	EUT Identification	10
7.2	System Equipment	10
7.3	EUT Mode of Operation	10
7.3.1	Transmission	10
7.4	EUT Description	10
8	Modifications	11
9	EUT Test Setup	12
9.1	Block Diagram	12
9.2	General Set-up Photographs	13
9.3	Measurement software	15
10	General Technical Parameters	16
10.1	Normal Conditions	16
11	Multi-radio Simultaneous Transmission Spurious Emissions below 30 MHz	17
11.1	Definitions	17
11.2	Test Parameters	17
11.3	Test Limit	18
11.4	Test Method	18
11.5	Test setup photograph	19
11.6	Test Equipment	19
11.7	Test Results	20
12	Multi-radio Simultaneous Transmission Spurious Emissions above 30 MHz	22
12.1	Definitions	22
12.2	Test Parameters	22
12.3	Test Limits	22
12.4	Test Method	23
12.5	Test Set-up Photograph	24
12.6	Test Equipment	25
12.7	Results	26
13	Measurement Uncertainty	27

4 Introduction

This report TRA-051967-47-24B presents the results of the Radio testing on a, Draeger Safety UK Ltd PSS AirBoss Sentinel.

The Draeger PSS AirBoss Sentinel contains the following Radios:

Pressure module contains: BTLE 2.4 GHz Radio

Gauge contains: BTLE 2.4 GHz radio, NFC 13.56 MHz radio and a 900 MHz radio.

This report covers the testing the following radios that are co-located in the gauge housing:

BTLE 2.4 GHz radio, NFC 13.56 MHz radio and 900 MHz radio

At the customer's request the 2.4 GHz BTLE Radio in the pressure module housing was not considered as part of this assessment.

The testing was carried out for Draeger Safety UK Ltd by Element, at the address detailed below.

<input checked="" type="checkbox"/> Element Skelmersdale	<input type="checkbox"/> Element Surrey Hills
Unit 1	Unit 15 B
Pendle Place	Henley Business Park
Skelmersdale	Pirbright Road
West Lancashire	Normandy
WN8 9PN	Guildford
UK	GU3 2DX
	UK

This report details the configuration of the equipment, the test methods used and any relevant modifications where appropriate.

All test and measurement equipment under the control of the laboratory and requiring calibration is subject to an established programme and procedures to control and maintain measurement standards. The quality management system meets the principles of ISO 9001, and has quality control procedures for monitoring the validity of tests undertaken. Records and sufficient detail are retained to establish an audit trail of calibration records relating to its test results for a defined period. Under control of the established calibration programme, key quantities or values of the test & measurement instrumentation are within specification and comply with the relevant traceable internationally recognised and appropriate standard specifications, which are UKAS calibrated as such where these properties have a significant effect on results. Participation in inter-laboratory comparisons and proficiency testing ensures satisfactory correlation of results conform to Elements own procedures, as well as statistical techniques for analysis of test data providing the appropriate confidence in measurements.

Throughout this report EUT denotes equipment under test.

FCC Site Listing:

The test laboratory is accredited for the above sites under the following US-UK MRA, Designation numbers.

Element Skelmersdale UK2020

ISED Registration Number:

Element North West 3930B

The test site requirements of ANSI C63.4-2014 are met up to 1GHz.

The test site SVSWR requirements of CISPR 16-1-4:2010 are met over the frequency range 1 GHz to 18 GHz.

5 Test Specifications

5.1 Normative References

- FCC 47 CFR Ch. I – Part 15 – Radio Frequency Devices
- ANSI C63.10-2013 – American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- ANSI C63.4-2014 – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
- ISED RSS-Gen – General Requirements for Compliance of Radio Apparatus - Issue 5 April 2018.
- ISED RSS-210, Issue 11, June 2024 – Licence-Exempt Radio Apparatus: Category I Equipment.
- ISED RSS-247, Issue 3, August 2023 – Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices.
- KDB 996369 D04 Module Integration Guide v02 - Modular transmitter integration guide -Guidance for host product manufacturers.
- RSP-100 Issue 12, August 2019 - Certification of Radio Apparatus and Broadcasting Equipment.

5.2 Deviations from Test Standards

Only limited testing was performed to check the intermodulation emissions.

6 Glossary of Terms

§	denotes a section reference from the standard, not this document
AC	Alternating Current
ANSI	American National Standards Institute
BW	bandwidth
C	Celsius
CFR	Code of Federal Regulations
CW	Continuous Wave
dB	decibel
dBm	dB relative to 1 milliwatt
DC	Direct Current
DSSS	Direct Sequence Spread Spectrum
EIRP	Equivalent Isotropically Radiated Power
ERP	Effective Radiated Power
EUT	Equipment Under Test
FCC	Federal Communications Commission
FHSS	Frequency Hopping Spread Spectrum
Hz	hertz
IC	Industry Canada
ITU	International Telecommunication Union
LBT	Listen Before Talk
m	metre
max	maximum
MIMO	Multiple Input and Multiple Output
min	minimum
MRA	Mutual Recognition Agreement
N/A	Not Applicable
PCB	Printed Circuit Board
PDF	Portable Document Format
Pt-mpt	Point-to-multipoint
Pt-pt	Point-to-point
RF	Radio Frequency
RH	Relative Humidity
RMS	Root Mean Square
Rx	receiver
s	second
SVSWR	Site Voltage Standing Wave Ratio
Tx	transmitter
UKAS	United Kingdom Accreditation Service
V	volt
W	watt
Ω	ohm

7 Equipment under Test

7.1 EUT Identification

- Name: Dräeger PSS AirBoss Sentinel
- Serial Number: ARTA 0005 01/24
- Model Number: 3729300-03
- Software Revision: Not Stated
- Hardware Version: Prototype

7.2 System Equipment

Equipment listed below forms part of the overall test setup and is required for equipment functionality and/or monitoring during testing. The compliance levels achieved in this report relate only to the EUT and not items given in the following list.

1. *Not Applicable – No support/monitoring equipment required.*

7.3 EUT Mode of Operation

7.3.1 Transmission

The mode of operation for transmitter tests was as follows:

Radios were set to transmit permanently in various combinations, the spectrum was checked to determine if any intermodulation products were generated due to multiple radios operating simultaneously. The worst case emission plots are shown in this document.

EUT was operated with worst case modes of operation for each radio device.

7.4 EUT Description

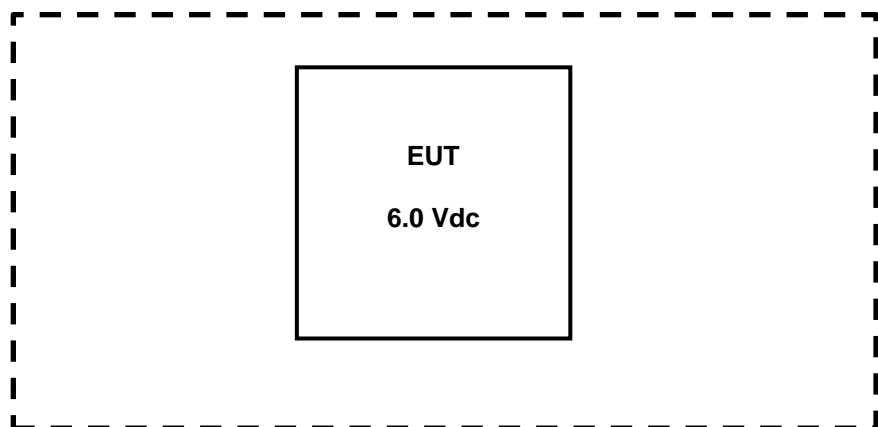
Dräeger PSS AirBoss Sentinel contains HUD BTLE 2.4 GHz Radio.

Pressure module contains: BTLE 2.4 GHz Radio

Gauge contains: BTLE 2.4 GHz radio, NFC 13.56 MHz radio and a 900 MHz radio.

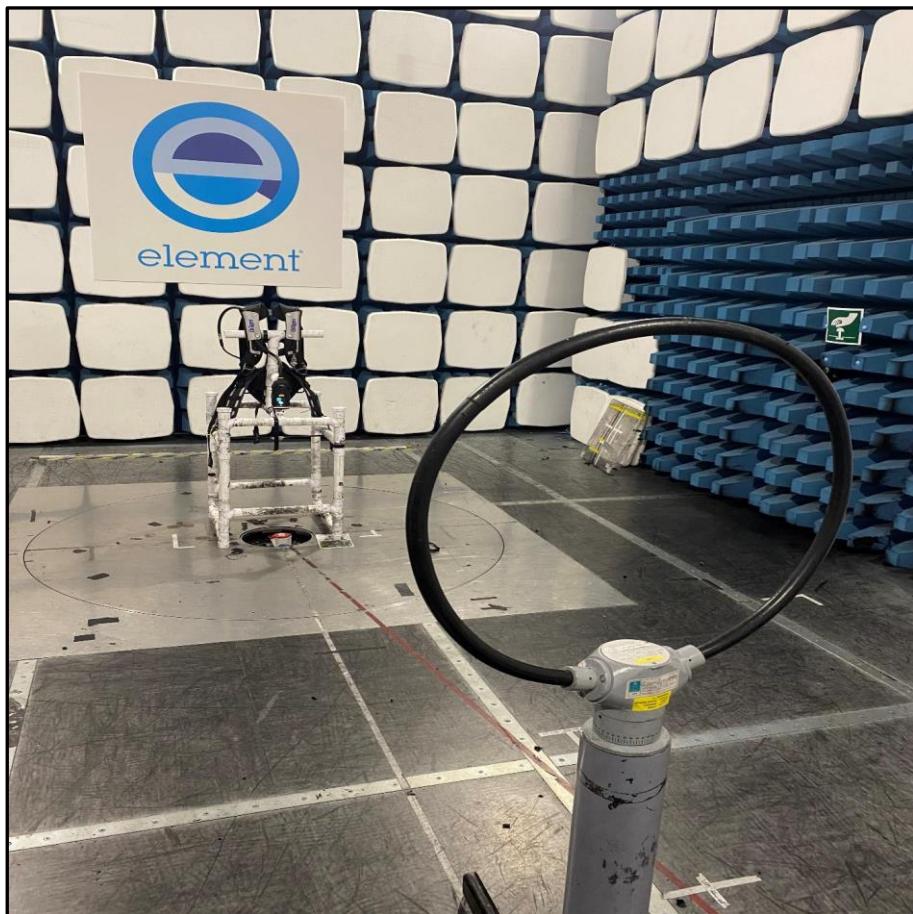
This report covers the testing the following radios that are co-located in the gauge housing:
BTLE 2.4 GHz radio, NFC 13.56 MHz radio and 900 MHz radio

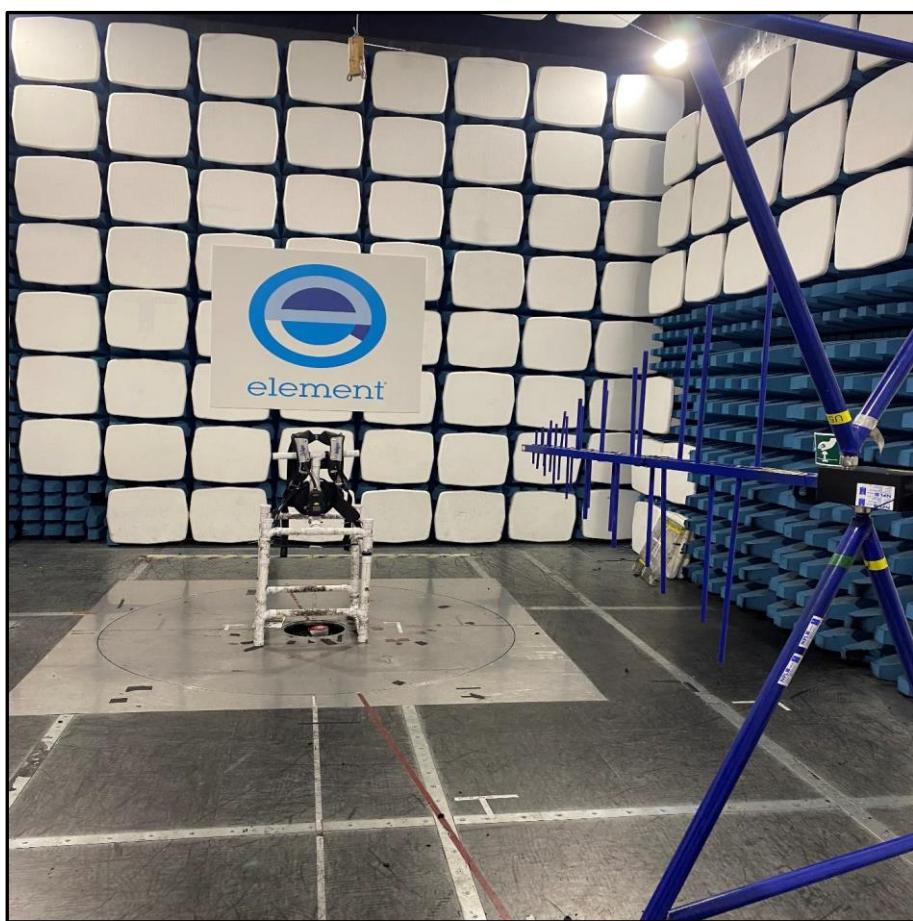
At the customer's request the 2.4 GHZ BTLE Radio in the pressure module housing and HUD was not considered as part of this assessment.


8 Modifications

No modifications were performed during this assessment.

9 EUT Test Setup


9.1 *Block Diagram*


The following diagram shows basic EUT interconnections with cable type and cable lengths identified:

9.2 General Set-up Photographs

The following photographs shows basic EUT set-up:

9.3 Measurement software

Where applicable, the following software was used to perform measurements contained within this report.

Element Emissions R5 (See Note)
Element Transmitter Bench Test (See Note)
ETS Lindgren EMPower V1.0.4.2

Note:

The version of the Element software used is recorded in the results sheets contained within this report.

10 General Technical Parameters

10.1 Normal Conditions

The Gauge was tested under the normal environmental conditions of the test laboratory, except where otherwise stated. The normal power source applied was 6.0 V dc from Rechargeable battery Pack.

<i>Modes of operation:</i>	NFC	UHF	BTLE
<i>Frequencies of operation:</i>	13.56 MHz	902.25 MHz	2430 MHz
<i>Antenna type(s):</i>	INDUCTIVE LOOP	PCB TRACE	CHIP
<i>Modulation type(s)</i>	ASK	4-GFSK	GFSK
<i>Nominal Supply Voltage:</i>	6.0 Vdc		

11 Multi-radio Simultaneous Transmission Spurious Emissions below 30 MHz

11.1 Definitions

Out-of-band emissions

Emissions on a frequency or frequencies immediately outside the necessary bandwidth which result from the modulation process, but exclude spurious emissions.

Spurious emissions

Emissions on a frequency or frequencies which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

Restricted bands

A frequency band in which intentional radiators are permitted to radiate only spurious emissions but not fundamental signals.

11.2 Test Parameters

Test Location:	Element Skelmersdale
Test Chamber:	Radio chamber U387
Test Standard and Clause:	ANSI C63.10-2013, Clause 6.4
Frequencies Measured:	2430 MHz (BTLE) 13.56 MHz (NFC) 902.25 MHz (UHF)
Deviations From Standard:	None
Measurement Distance and Site	3 m
EUT Height:	1 m
Measurement Antenna and Height:	60 cm shielded loop; 1 m
Measurement BW:	9 kHz to 150 kHz: 200 Hz; 150 kHz to 30 MHz: 9 kHz
Measurement Detector:	9 kHz to 90 kHz and 110 kHz to 490 kHz: Average, RMS Other frequencies below 30 MHz: Quasi-peak.

Environmental Conditions (Normal Environment)

Temperature: + 20.4 °C	+15 °C to +35 °C (as declared)
Humidity: 43.4 % RH	20 % RH to 75 % RH (as declared)
Supply: 6.0 V dc	6.0 V dc (as declared)

11.3 Test Limit

Emissions from license-exempt transmitters shall comply with the field strength limits shown in the table below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

General Field Strength Limits for License-Exempt Transmitters at Frequencies below 30 MHz

Frequency, f (kHz)	Field Strength	Measurement Distance (m)
9 to 490	2,400 / 377. f (μ A/m) 2,400 / f (μ V/m)	300
490 to 1,750	24,000 / 377. f (μ A/m) 24,000 / f (μ V/m)	30
1,750 to 30,000	30 (μ V/m)	30

n.b. Devices operated pursuant to §15.225 / RSS-210 B.6 are exempt from complying with the restricted band requirements for the 13.36–13.41 MHz band only.

11.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure I, the EUT fundamental frequency was maximised by rotating the EUT through 360°, in three orthogonal planes, and adjusting the measurement antenna azimuth.

Radiated electromagnetic emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked, using a peak detector and where applicable worst-case determined for function, operation, orientation, etc. for both vertical and horizontal polarisations. Pre-scan plots are shown with a peak detector and 9 kHz RBW.

If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.10 are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed, (see EUT setup photographs for more detail).

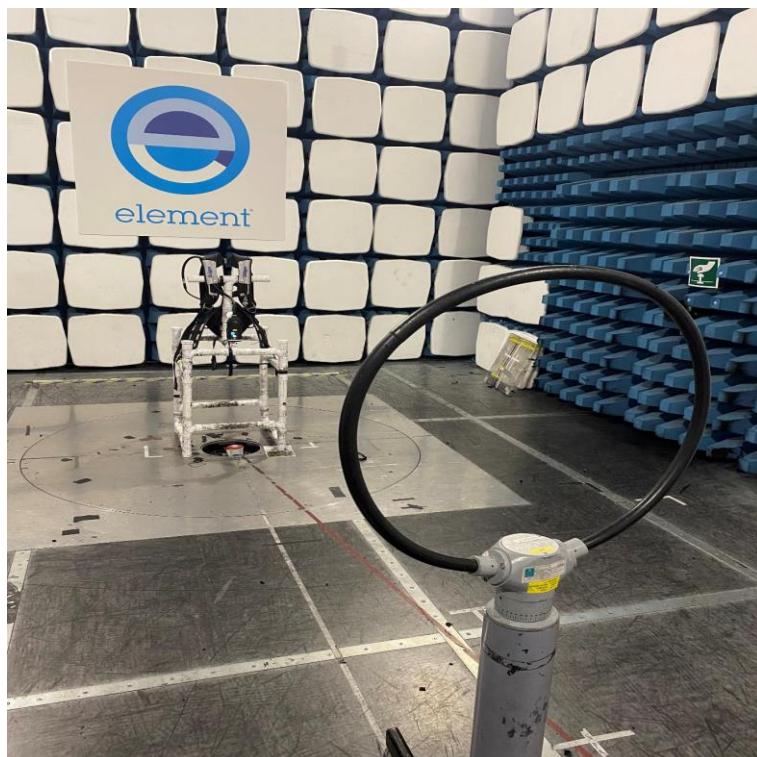
Emissions between 9 kHz and 30 MHz are measured using a calibrated 60cm active loop antenna. Pre-amplifiers and filters are used where required. Care is taken to ensure that test receiver resolution bandwidth, video bandwidth and detector type(s) meet the regulatory requirements.

Power values measured on the test receiver / analyzer are converted to field strength, FS, in μ V/m at the regulatory distance, using:

$$FS = 10 (PR - CF) / 20$$


Where,

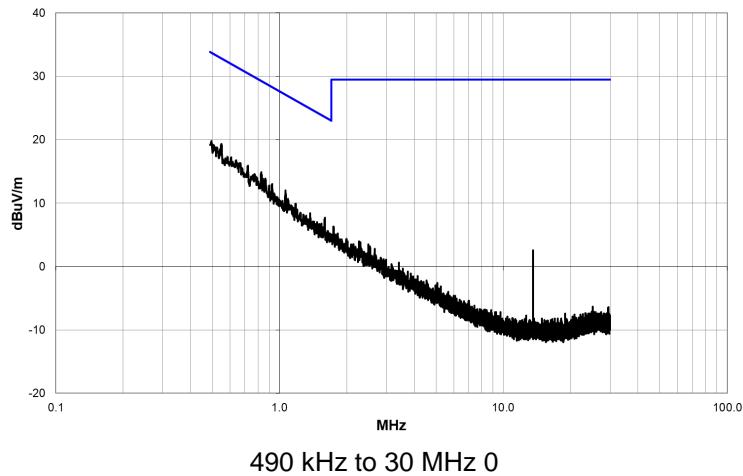
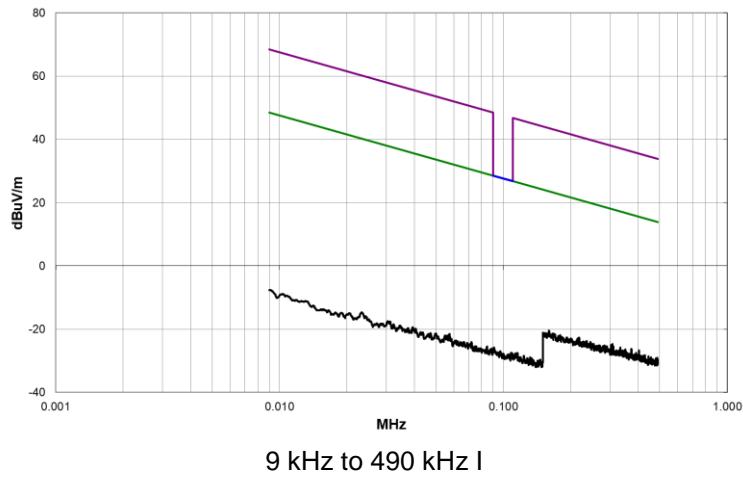
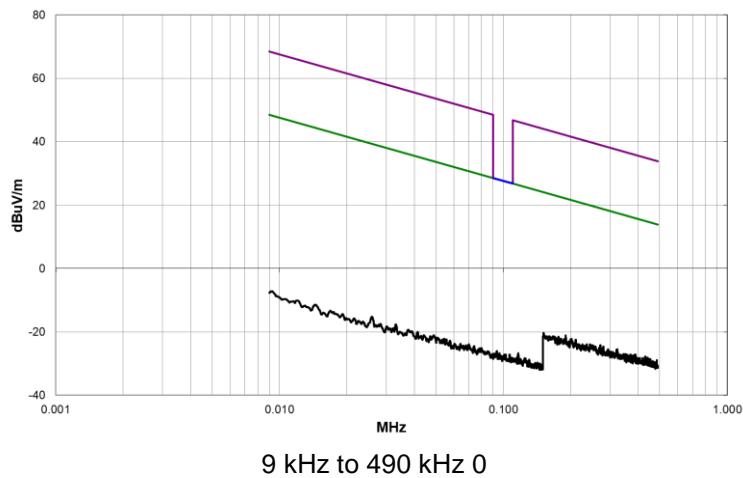
PR is the power recorded on the receiver / spectrum analyzer in $\text{dB}\mu\text{V}$ and includes any cable loss, antenna factor and pre-amplifier gain;
CF is the distance extrapolation factor in dB (where measurement distance different to limit distance);


Per FCC 47CFR15.31(f)(2) / RSS-Gen 6.4, an extrapolation factor of 40 dB per decade was used for extrapolation from 3 m to 30 m and from 3 m to 300 m.

This field strength value is then compared with the regulatory limit.

Figure I Test Setup

11.5 Test setup photograph

11.6 Test Equipment

Equipment Description	Manufacturer	Equipment Type	Element No	Due For Calibration
Radiated Test Software	Element	Emissions R5	REF9000	Cal Not Required
Chamber 1	Rainford EMC	ATS	U387	2026-01-24
Spectrum Analyser	R&S	ESR 7	U727	2025-05-17
Loop Antenna	EMCO	6502	R0079	2026-01-13

11.7 Test Results

BTLE; Frequency: 2430 MHz; NFC; Frequency: 13.56 MHz; 900 MHz; Frequency: 902.25 MHz

490 kHz to 30 MHz I

No Significant intermodulation products were detected within 20 dB of the Limit.

12 Multi-radio Simultaneous Transmission Spurious Emissions above 30 MHz

12.1 Definitions

Spurious emissions

Emissions on a frequency or frequencies, which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

Intermodulation products

Emissions of two or more electromagnetic waves transmitted simultaneously through a nonlinear electronic system.

12.2 Test Parameters

Test Location:	Element Skelmersdale
Test Chamber:	Radio chamber U387
Test Standard and Clause:	ANSI C63.10-2013, Clause 6.5 and 6.6
Frequencies Tested:	2430 MHz (BTLE) 13.56 MHz (NFC) 902.25 MHz (UHF)
Deviations From Standard:	None
Measurement BW:	9 kHz to 150 kHz: 1 kHz 150 kHz to 30 MHz: 10 kHz 30 MHz to 1 GHz: 120 kHz Above 1 GHz: 1 MHz
Measurement Detector:	Up to 1 GHz: quasi-peak Above 1 GHz: RMS average and Peak

Environmental Conditions (Normal Environment)

Temperature: +20.4 °C	+15 °C to +35 °C (as declared)
Humidity: 43.4% RH	20 % RH to 75 % RH (as declared)
Supply: 6.0 Vdc	6.0 Vdc (as declared)

12.3 Test Limits

Unwanted emissions that fall within the restricted frequency bands shall comply with the limits specified:

General Field Strength Limits for License-Exempt Transmitters at Frequencies above 30 MHz

Frequency (MHz)	Field Strength (µV/m at 3 m)
30 to 88	100
88 to 216	150
216 to 960	200
Above 960	500

General Field Strength Limits for License-Exempt Transmitters at Frequencies below 30 MHz

Frequency, f (kHz)	Field Strength	Measurement Distance (m)
9 to 490	2,400 / $377.f$ (μ A/m) 2,400 / f (μ V/m)	300
490 to 1,750	24,000 / $377.f$ (μ A/m) 24,000 / f (μ V/m)	30
1,750 to 30,000	30 (μ V/m)	30

Least stringent limit applied to any intermodulation products.

12.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure i, the emissions from the EUT were measured on a spectrum analyzer / EMI receiver.

Radiated electromagnetic emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked, using a peak detector and where applicable worst-case determined for function, operation, orientation, etc. for both vertical and horizontal polarisations. Pre-scan plots are shown with a peak detector and 100 kHz RBW.

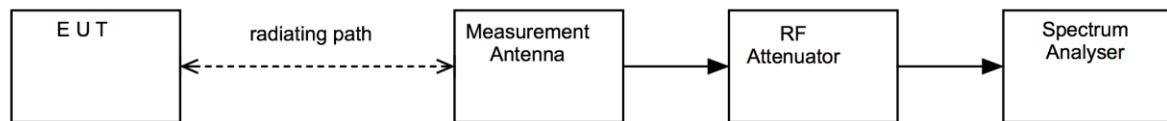
If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.10 are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed, (see EUT setup photographs for more detail).

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. Emissions above 1 GHz are characterized using standard gain horn antennas. Pre-amplifiers and filters are used where required. Care is taken to ensure that test receiver resolution bandwidth, video bandwidth and detector type(s) meet the regulatory requirements.

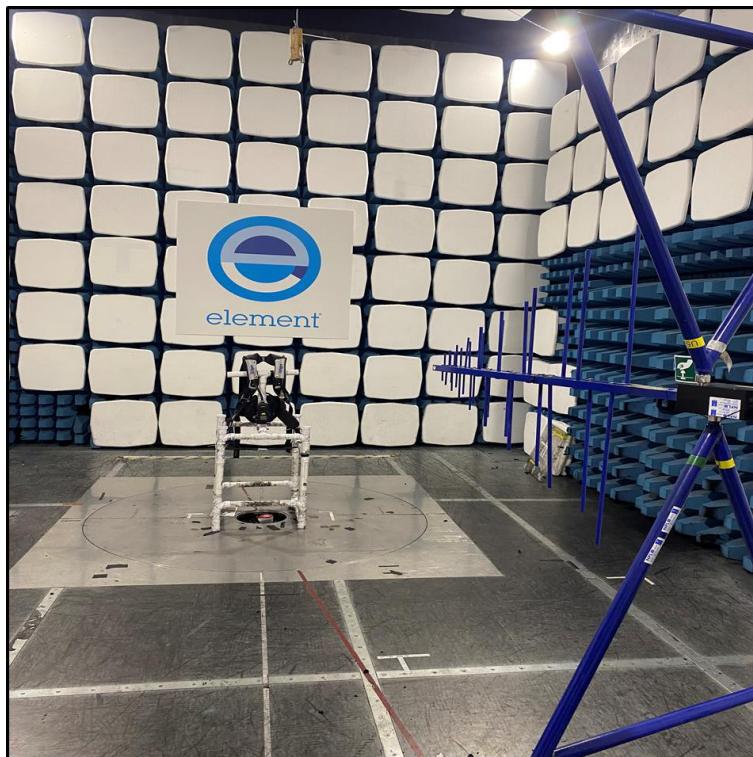
For both horizontal and vertical polarizations, the EUT is then rotated through 360 degrees in azimuth until the highest emission is detected. At the previously determined azimuth the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected, this maximum value is recorded.

Power values measured on the test receiver / analyzer are converted to field strength, FS, in $\text{dB}\mu\text{V/m}$ at the regulatory distance, using:

$$\text{FS} = \text{PR} + \text{CL} + \text{AF} - \text{PA} + \text{DC} - \text{CF}$$


$$\text{Factor} = \text{CL} + \text{AF} - \text{PA}$$

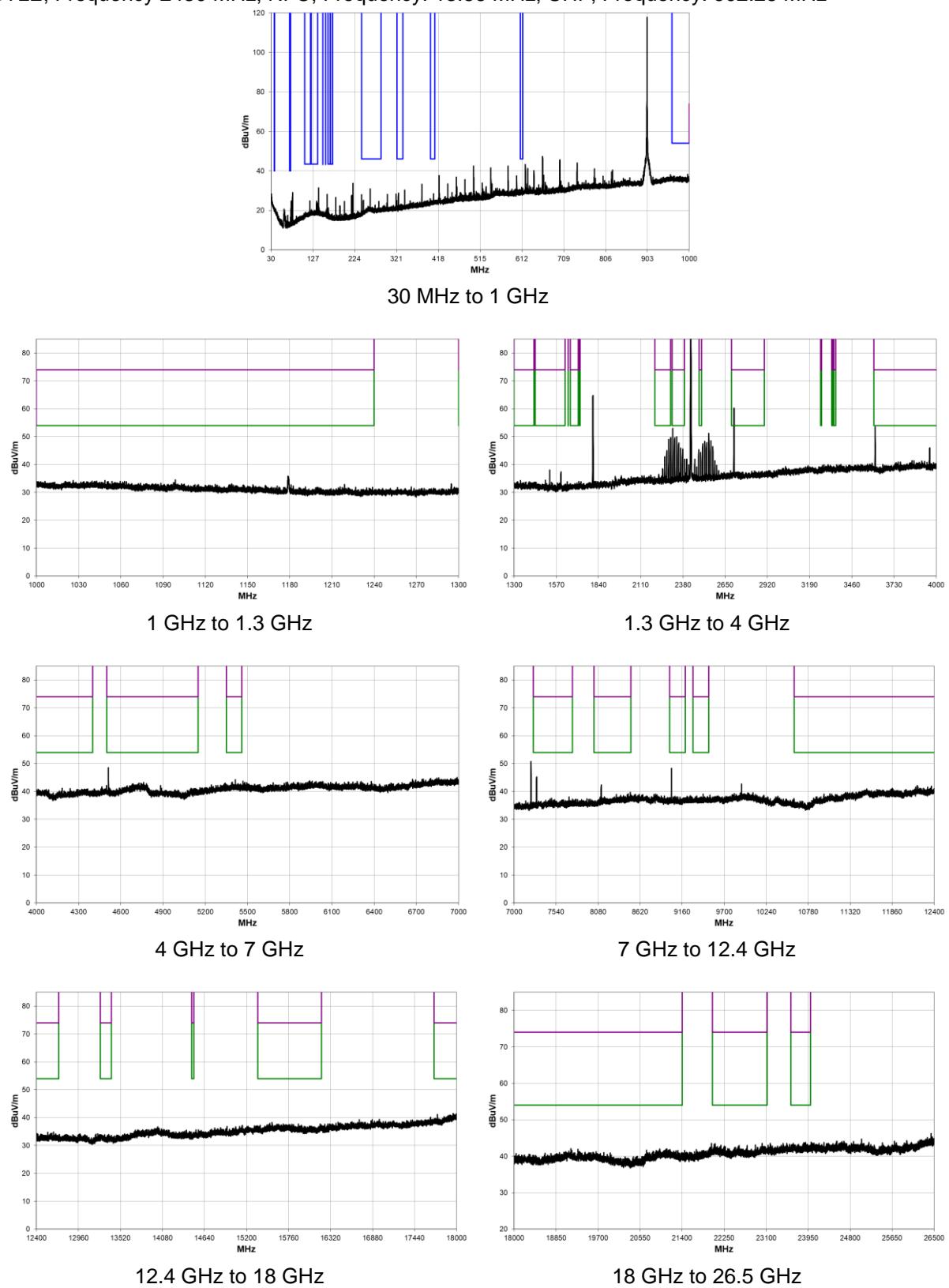
Where,


- PR is the power recorded on the receiver / spectrum analyzer in $\text{dB}\mu\text{V}$;
- CL is the cable loss in dB;
- AF is the test antenna factor in dB/m;
- PA is the pre-amplifier gain in dB (where used);
- DC is the duty correction factor in dB (where used, e.g. harmonics of pulsed fundamental);
- CF is the distance factor in dB (where measurement distance different to limit distance);

This field strength value is then compared with the regulatory limit.

Figure i Test Setup

12.5 Test Set-up Photograph



12.6 Test Equipment

Equipment Description	Manufacturer	Equipment Type	Element No	Due For Calibration
Radiated Test Software	Element	Emissions R5	REF9000	Cal Not Required
Chamber 1	Rainford EMC	ATS	U387	2026-01-24
Spectrum Analyser	R&S	ESR 7	U727	2025-05-17
Bilog	Chase	CBL611/B	U573	2026-11-04
B13-400-460-5-5M	Mlcable	RF Cable	U1014	2026-04-03
Spectrum Analyser	R&S	FSU46	REF910	2026-02-27
1-18GHz Horn	EMCO	3115	L139	2026-08-21
Pre Amp	Agilent	8449B	L572	2025-11-13
High Pass Filter	Atlantic Microwave	AFH-07000	U558	2026-02-17
High Pass Filter	BSC	SH4141	REF977	2026-02-18
High Pass Filter 1.1-4 GHz	Atlantic Microwave	F-HPC5-730008-S5S5	U719	2026-02-19
Horn Antenna	A Info Inc	LB-62-25-C-SF	REF2244	2026-09-17
Horn Antenna	A Info Inc	LB-180400-25-C-KF	REF2246	2026-10-08
Pre-Amp (18 - 40 GHz)	Com-Power	PAM-840A	REF2390	2025-10-17

12.7 Results

BTLE; Frequency 2430 MHz; NFC; Frequency: 13.56 MHz; UHF; Frequency: 902.25 MHz

No Significant intermodulation products were detected within 20 dB of the Limit.
 Emissions on graphs are related to either the BTLE 2430 MHz, NFC 13.56 MHz or Telemetry 902.25 MHz operation and are not intermodulation products.

13 Measurement Uncertainty

Radio Testing – General Uncertainty Schedule

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95 % confidence where no required test level exists.

Test/Measurement	Budget Number	MU
Conducted RF Power, Power Spectral Density, Adjacent Channel Power and Spurious emissions		
Absolute RF power (via antenna connector) Sampling Power Meter to 8 GHz	MU4001	0.9 dB
Carrier Power and PSD - Spectrum Analysers	MU4004	1.7 dB
Adjacent Channel Power	MU4002	1.9 dB
Transmitter conducted spurious emissions (Including emissions due to intermodulation)	MU4041	0.9 dB
Conducted power and spurious emissions 40 GHz to 50 GHz	MU4042	2.4 dB
Conducted power and spurious emissions 50 GHz to 75 GHz	MU4043	2.5 dB
Conducted power and spurious emissions 75 GHz to 110 GHz	MU4044	2.4 dB
Radiated RF Power and Spurious emissions ERP and EIRP		
Effective Radiated Power Reverb Chamber	MU4020	3.7 dB
Effective Radiated Power	MU4021	4.7 dB
TRP Emissions 30 MHz to 1 GHz using CBL6111 or CBL6112 Bilog Antenna	MU4046	5.3 dB
TRP Emissions 1 GHz to 18 GHz using HL050 Log Periodic Antenna	MU4047	5.1 dB
TRP Emissions 18 GHz to 26.5 GHz using Standard Gain Horn	MU4048	2.7 dB
TRP Emissions 26.5 GHz to 40 GHz using Standard Gain Horn	MU4049	2.7 dB
In-band (3450-3980 MHz) TRP using CATR_ASH_B2	MU4051	4.1 dB
Cellular Radiated Spurious Emissions in a SAC 30 MHz to 180 MHz	MU4052	6.3 dB
Cellular Radiated Spurious Emissions in a SAC 180 MHz to 18 GHz	MU4052	3.6 dB
Cellular Radiated Spurious Emissions in a FAR 30 MHz to 180 MHz	MU4052	5.4 dB
Cellular Radiated Spurious Emissions in a FAR 180 MHz to 18 GHz	MU4052	3.0 dB
Spurious Emissions Electric and Magnetic Field		
Radiated Spurious Emissions 30 MHz to 1 GHz (Including emissions due to intermodulation)	MU4037	4.7 dB
Radiated Spurious Emissions 1-18 GHz (Including emissions due to intermodulation)	MU4032	4.5 dB
E Field Emissions 18 GHz to 26 GHz	MU4024	3.2 dB
E Field Emissions 26 GHz to 40 GHz	MU4025	3.3 dB
E Field Emissions 40 GHz to 50 GHz	MU4026	3.5 dB
E Field Emissions 50 GHz to 75 GHz	MU4027	3.6 dB
E Field Emissions 75 GHz to 110 GHz	MU4028	3.6 dB
Radiated Magnetic Field Emissions	MU4031	2.3 dB

Test/Measurement	Budget Number	MU
Frequency Measurements		
Frequency Deviation	MU4022	3.7 kHz
Frequency error using CMTA test set	MU4023	113.441 Hz
Frequency error using GPS locked frequency source	MU4045	0.0413 ppm
Bandwidth/Spectral Mask Measurements		
Channel Bandwidth	MU4005	3.87%
Transmitter Mask Amplitude	MU4039	1.3 dB
Transmitter Mask Frequency	MU4040	2.59%
Time Domain Measurements		
Transmission Time	MU4038	4.40%
Dynamic Frequency Selection (DFS) Parameters		
DFS Analyser - Measurement Time	MU4006	678.984 µs
DFS Generator - Frequency Error	MU4007	91.650 Hz
DFS Threshold Conducted	MU4008	1.3 dB
DFS Threshold Radiated	MU4009	3.2 dB
Receiver Parameters		
EN 300 328 Receiver Blocking	MU4010	1.1 dB
EN 301 893 Receiver Blocking	MU4011	1.1 dB
EN 303 340 Adjacent Channel Selectivity	MU4012	1.1 dB
EN 303 340 Overloading	MU4013	1.1 dB
EN 303 340 Receiver Blocking	MU4014	1.1 dB
EN 303 340 Receiver Sensitivity	MU4015	0.9 dB
EN 303 372-1 Image Rejection	MU4016	1.4 dB
EN 303 372-1 Receiver Blocking	MU4017	1.1 dB
EN 303 372-2 Adjacent Channel Selectivity	MU4018	1.1 dB
EN 303 372-2 Dynamic Range	MU4019	0.9 dB
Receiver Blocking Talk Mode Conducted	MU4033	1.2 dB
Receiver Blocking Talk Mode- radiated	MU4034	3.4 dB
Rx Blocking, listen mode, blocking level	MU4035	3.2 dB
Rx Blocking, listen mode, radiated Threshold Measurement	MU4036	3.4 dB
Adjacent Sub Band Selectivity	MU4003	4.2 dB

Test/Measurement	Budget Number	MU
Rohde & Schwarz TS8997		
Carrier frequency	MU4050	5.2 ppm
RF Output Power	MU4050	1.0 dB
Peak Power	MU4050	0.8 dB
Power Spectral Density	MU4050	1.0 dB
Occupied Channel Bandwidth	MU4050	2.08 %
Transmitter unwanted emissions in-band	MU4050	0.9 dB
Transmitter unwanted emissions in the spurious domain 30 MHz to 1 GHz	MU4050	0.6 dB
Transmitter unwanted emissions in the spurious domain 1 GHz to 12.75 GHz	MU4050	1.8 dB
Receiver Spurious emission 30 MHz to 1 GHz	MU4050	0.6 dB
Receiver Spurious emission 1 GHz to 12.75 GHz	MU4050	1.8 dB
Duty Cycle	MU4050	0.02 %
Tx Sequence	MU4050	0.02 %
Tx Gap	MU4050	0.02 %
Medium Utilisation	MU4050	0.1 %
Accumulated Transmit Time	MU4050	0.01 %
Minimum Frequency Occupation Time	MU4050	0.01 %
Hopping Frequency Separation	MU4050	0.6 %
Receiver blocking (for bit streams)	MU4050	3.0 dB
Channel Access Mechanism / Adaptivity / DFS / Contention Based Protocol	MU4050	1.8 dB