

Report on the Radio Testing

For

Draeger Safety UK Ltd

on

SENSOR

Report no. TRA-051967-47-18B

2025-06-19

RF915 11.0

Report Number: TRA-051967-47-18B
Issue: B

REPORT ON THE RADIO TESTING OF A
Draeger Safety UK Ltd
SENSOR
WITH RESPECT TO SELECTED PARTS OF SPECIFICATION(S)
FCC 47CFR 15.247 ISED RSS-247
TO SATISFY MODULAR INTEGRATION REQUIREMENTS OF
KDB 996369 D04 v02 & RSP-100

TEST DATE: 2024-04-12 to 2024-04-15

Tested by:

D Winstanley
Radio Senior Test Engineer

Written by:

S Garwell
Radio Test Engineer

Approved by:

Date: 2025-06-19

J Charters
Lab Manager

Disclaimers:

- [1] THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE
- [2] THE RESULTS CONTAINED IN THIS DOCUMENT RELATE ONLY TO THE ITEM(S) TESTED

RF915 11.0

1 Revision Record

<i>Issue Number</i>	<i>Issue Date</i>	<i>Revision History</i>
A	2024-05-29	Original
B	2025-06-19	General updates and corrections throughout document.

2 Summary

TEST REPORT NUMBER: TRA-051967-47-18B

WORKS ORDER NUMBER: TRA-051967-21

PURPOSE OF TEST: Modular Integration

SELECTED PARTS OF SPECIFICATION(S): 47CFR15.247, RSS-247

EQUIPMENT UNDER TEST (EUT): SENSOR

CONTAINS FCC IDENTIFIER: X6O-BT01

CONTAINS ISED IDENTIFIER: 5895F-BT01

EUT SERIAL NUMBER: ARTC-0003

MANUFACTURER/AGENT: Draeger Safety UK Ltd

ADDRESS: Ullswater Close
Blyth Riverside Business Park
Blyth
NE24 4RG
United Kingdom

CLIENT CONTACT: Eoghan Quigley
☎ 01670 352 891
✉ eoghan.quigley@draeger.com

ORDER NUMBER: 4303193234

TEST DATE: 2024-04-12 to 2024-04-15

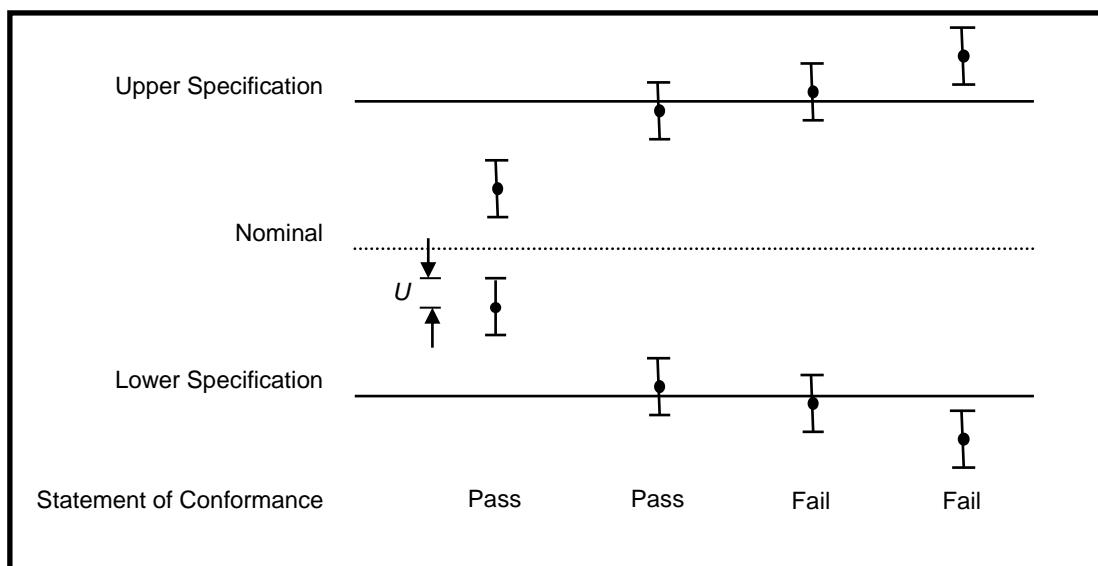
TESTED BY: D Winstanley
Element

2.1 Test Summary

Test Method and Description		Requirement Clause 47CFR15	Requirement Clause RSS	Applicable to this equipment	Result / Note
Radiated spurious emissions (restricted bands of operation and cabinet radiation)		15.247 (d)	247, 3.3	<input checked="" type="checkbox"/>	Pass
AC power line conducted emissions		15.207	Gen, 8.8	<input type="checkbox"/>	Note 1
Occupied bandwidth		15.247 (a) (2)	247, 5.2 (a)	<input type="checkbox"/>	Note 1
Conducted carrier power	Peak	15.247 (b) (3)	247, 5.4 (d)	<input checked="" type="checkbox"/>	Information Only
	Max.			<input type="checkbox"/>	
Out of band emissions		15.247 (d)	247, 5.5	<input type="checkbox"/>	Note 1
Power spectral density		15.247 (e)	247, 5.2 (b)	<input type="checkbox"/>	Note 1
Calculation of duty correction		15.35 (c)	-	<input type="checkbox"/>	Note 1

Specific note:

Note 1: Limited testing was performed to check Conducted carrier power & Radiated spurious emissions (restricted bands of operation and cabinet radiation), as requested by the client, to satisfy the modular integration requirements of KDB996369 D04 v02 & RSP-100.


General notes:

The results contained in this report relate only to the items tested, in the condition at time of test, and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only. Any modifications made are identified in Section 8 of this report.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 5.2 of this test report (Deviations from Test Standards).

The decision rule for compliance is not inherent within this specification and compliance is based on the customer requesting a simple acceptance rule based on understanding and acceptance of Elements Measurement Uncertainty values.

Graphical Representation of a Pass / Fail Binary Statement - Simple Acceptance

3 Contents

1	Revision Record.....	3
2	Summary.....	4
2.1	Test Summary.....	5
3	Contents.....	7
4	Introduction	8
5	Test Specifications	9
5.1	Normative References	9
5.2	Deviations from Test Standards	9
6	Glossary of Terms.....	10
7	Equipment under Test.....	11
7.1	EUT Identification.....	11
7.2	Module Information	11
7.3	System Equipment.....	11
7.4	EUT Mode of Operation	11
7.5	EUT Radio Parameters	11
7.5.1	General	11
7.6	EUT Description	11
8	Modifications	12
9	EUT Test Setup	13
9.1	Block Diagram.....	13
9.2	General Set-up Photograph	13
9.3	Measurement software.....	14
10	General Technical Parameters.....	15
10.1	Normal Conditions.....	15
10.2	Varying Test Conditions	15
11	Radiated emissions.....	16
11.1	Definitions	16
11.2	Test Parameters.....	16
11.3	Test Limit.....	16
11.4	Test Method	17
11.5	Test Equipment.....	18
11.6	Test Results	19
12	Maximum peak conducted output power & Effective isotropic radiated power.....	24
12.1	Definition	24
12.2	Test Parameters.....	24
12.3	Test Limit.....	24
12.4	Test Method	25
12.5	Test Equipment.....	25
12.6	Test Results	26
13	Measurement Uncertainty	27

4 Introduction

This report TRA-051967-47-18B presents the results of the Radio testing on a Draeger Safety UK Ltd, SENSOR to specification 47CFR15 Radio Frequency Devices. RSS-247 - Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices.

The testing was carried out for Draeger Safety UK Ltd by Element, at the address detailed below.

<input checked="" type="checkbox"/> Element Skelmersdale	<input type="checkbox"/> Element Surrey Hills
Unit 1	Unit 15 B
Pendle Place	Henley Business Park
Skelmersdale	Pirbright Road
West Lancashire	Normandy
WN8 9PN	Guildford
UK	GU3 2DX
	UK

This report details the configuration of the equipment, the test methods used and any relevant modifications where appropriate.

All test and measurement equipment under the control of the laboratory and requiring calibration is subject to an established programme and procedures to control and maintain measurement standards. The quality management system meets the principles of ISO 9001, and has quality control procedures for monitoring the validity of tests undertaken. Records and sufficient detail are retained to establish an audit trail of calibration records relating to its test results for a defined period. Under control of the established calibration programme, key quantities or values of the test & measurement instrumentation are within specification and comply with the relevant traceable internationally recognised and appropriate standard specifications, which are UKAS calibrated as such where these properties have a significant effect on results. Participation in inter-laboratory comparisons and proficiency testing ensures satisfactory correlation of results conform to Elements own procedures, as well as statistical techniques for analysis of test data providing the appropriate confidence in measurements.

Throughout this report EUT denotes equipment under test.

FCC Site Listing:

The test laboratory is accredited for the above sites under the US-UK MRA,

Designation number:

Element Skelmersdale UK2020

IC Registration Number:

Element North West 3930B

The test site requirements of ANSI C63.4-2014 are met up to 1GHz.

The test site SVSWR requirements of CISPR 16-1-4:2010 are met over the frequency range 1 GHz to 18 GHz.

5 Test Specifications

5.1 Normative References

- FCC 47 CFR Ch. I – Part 15 – Radio Frequency Devices.
- ISED RSS-247, Issue 3, August 2023 – Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices.
- ISED RSS-Gen – General Requirements for Compliance of Radio Apparatus - Issue 5 April 2018
- ANSI C63.10-2013 – American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- ANSI C63.4-2014 – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
- 996369 D04 Module Integration Guide v02 - Modular Transmitter Integration Guide - Guidance for Host Product Manufacturers.
- RSP-100 Issue 12 August 2019 - Certification of Radio Apparatus and Broadcasting Equipment.

5.2 Deviations from Test Standards

Limited testing was performed to check Conducted carrier power & Radiated spurious emissions (restricted bands of operation and cabinet radiation), as requested by the client, to satisfy the modular integration requirements of KDB996369 D04 v02 & RSP-100.

6 Glossary of Terms

§	denotes a section reference from the standard, not this document
AC	Alternating Current
ANSI	American National Standards Institute
BW	bandwidth
C	Celsius
CFR	Code of Federal Regulations
CW	Continuous Wave
dB	decibel
dBm	dB relative to 1 milliwatt
DC	Direct Current
DSSS	Direct Sequence Spread Spectrum
EIRP	Equivalent Isotropically Radiated Power
ERP	Effective Radiated Power
EUT	Equipment under Test
FCC	Federal Communications Commission
FHSS	Frequency Hopping Spread Spectrum
Hz	hertz
IC	Industry Canada
ITU	International Telecommunication Union
LBT	Listen before Talk
m	metre
max	maximum
MIMO	Multiple Input and Multiple Output
min	minimum
MRA	Mutual Recognition Agreement
N/A	Not Applicable
PCB	Printed Circuit Board
PDF	Portable Document Format
Pt-mpt	Point-to-multipoint
Pt-pt	Point-to-point
RF	Radio Frequency
RH	Relative Humidity
RMS	Root Mean Square
Rx	receiver
s	second
SVSWR	Site Voltage Standing Wave Ratio
Tx	transmitter
UKAS	United Kingdom Accreditation Service
V	volt
W	watt
Ω	ohm

7 Equipment under Test

7.1 EUT Identification

- Name: SENSOR
- Serial Number: ARTC-0003
- Model Number: SENSOR
- Software Revision: Not Stated
- Build Level / Revision Number: Rev 02

7.2 Module Information

- Manufacturer: Drager Safety AG & Co. KGaA
- Model: Drager Bluetooth Module 9x11
- Contains FCC ID: X6O-BT01
- Contains ISED ID: 5895F-BT01

7.3 System Equipment

Equipment listed below forms part of the overall test setup and is required for equipment functionality and/or monitoring during testing. The compliance levels achieved in this report relate only to the EUT and not items given in the following list.

Laptop Computer – Dell Latitude E6410

7.4 EUT Mode of Operation

The EUT was transmitting on the frequencies as indicated, the frequencies were programmed using nRF connect software which was supplied on a test laptop.

7.5 EUT Radio Parameters

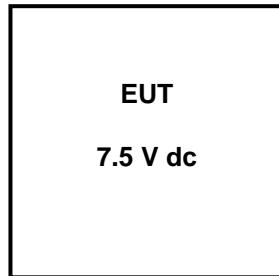
7.5.1 General

Frequencies of operation:	2402 MHz to 2480 MHz
Modulation type:	GFSK
Occupied channel bandwidth:	1 MHz
Channel spacing:	2 MHz
Declared output power:	≤ 8 dBm
Antenna Type and Gain:	Chip Antenna / -2 dBi
Nominal Supply Voltage:	7.5 Vdc from 5 x AA Alkaline batteries

7.6 EUT Description

The EUT is an Open circuit breathing apparatus with compressed air cylinder used for Fire Fighting.

This report covers the testing of the BLE radio only.


8 Modifications

No modifications were performed during this assessment.

9 EUT Test Setup

9.1 *Block Diagram*

The following diagram shows basic EUT interconnections with cable type and cable lengths identified:

9.2 *General Set-up Photograph*

The following photograph shows basic EUT set-up:

9.3 *Measurement software*

Where applicable, the following software was used to perform measurements contained within this report.

Element Emissions R5
Element Transmitter Bench Test
ETS Lindgren EMPower V1.0.4.2

10 General Technical Parameters

10.1 *Normal Conditions*

The SENSOR was tested under the normal environmental conditions of the test laboratory, except where otherwise stated. The normal power source applied was 7.5 V dc from 5 x AA Alkaline batteries.

10.2 *Varying Test Conditions*

No testing at extremes was performed during this assessment.

11 Radiated emissions

11.1 Definitions

Spurious emissions

Emissions on a frequency or frequencies, which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

Restricted bands

A frequency band in which intentional radiators are permitted to radiate only spurious emissions but not fundamental signals.

11.2 Test Parameters

Test Location:	Element Skelmersdale
Test Chamber:	Chamber 1
Test Standard and Clause:	ANSI C63.10-2013, Clause 6.5 and 6.6
EUT Frequencies Measured:	2402 MHz, 2440 MHz & 2480 MHz
Deviations from Standard:	None
Measurement BW:	30 MHz to 1 GHz: 120 kHz; Above 1 GHz: 1 MHz
Measurement Detector:	Up to 1 GHz: quasi-peak; Above 1 GHz: RMS average and Peak

Environmental Conditions (Normal Environment)

Temperature: 18 °C	+15 °C to +35 °C (as declared)
Humidity: 46 % RH	20 % RH to 75 % RH (as declared)
Supply: 7.5 Vdc	7.5 Vdc as declared

11.3 Test Limit

Unwanted emissions that fall within the restricted frequency bands shall comply with the limits specified:

General Field Strength Limits for License-Exempt Transmitters at Frequencies above 30 MHz

Frequency (MHz)	Field Strength (µV/m at 3 m)	Field Strength (dBµV/m at 3 m)
30 to 88	100	40.0
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

On frequencies below or equal to 1000 MHz, the limits shown are based on measuring equipment employing a CISPR quasi-peak detector function. On frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit.

11.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure i, the emissions from the EUT were measured on a spectrum analyzer / EMI receiver.

Radiated electromagnetic emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked, using a peak detector and where applicable worst-case determined for function, operation, orientation, etc. for both vertical and horizontal polarisations. Pre-scan plots are shown with a peak detector and 100 kHz RBW.

If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.10 are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed, (see EUT setup photographs for more detail).

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. Emissions above 1 GHz are characterized using standard gain horn antennas. Pre-amplifiers and filters are used where required. Care is taken to ensure that test receiver resolution bandwidth, video bandwidth and detector type(s) meet the regulatory requirements.

For both horizontal and vertical polarizations, the EUT is then rotated through 360 degrees in azimuth until the highest emission is detected. At the previously determined azimuth the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected, this maximum value is recorded.

Power values measured on the test receiver / analyzer are converted to field strength, FS, in dB μ V/m at the regulatory distance, using:

$$FS = PR + CL + AF - PA + DC - CF$$

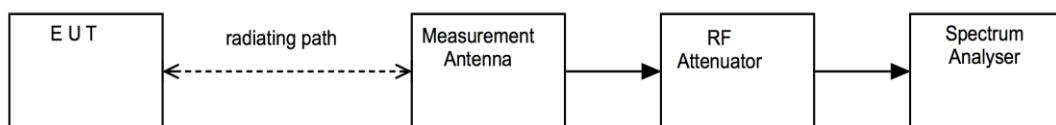
$$Factor = + CL + AF - PA$$

Where,

PR is the power recorded on the receiver / spectrum analyzer in dB μ V;

CL is the cable loss in dB;

AF is the test antenna factor in dB/m;


PA is the pre-amplifier gain in dB (where used);

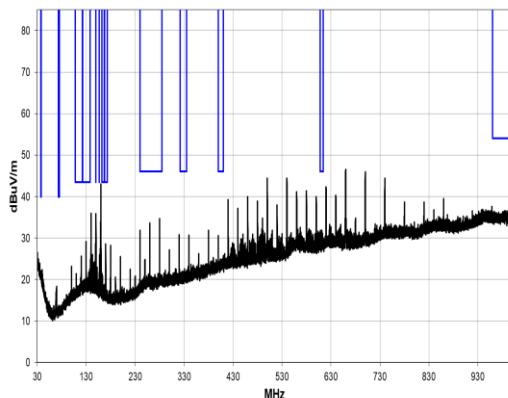
DC is the duty correction factor in dB (where used, e.g. harmonics of pulsed fundamental);

CF is the distance factor in dB (where measurement distance different to limit distance);

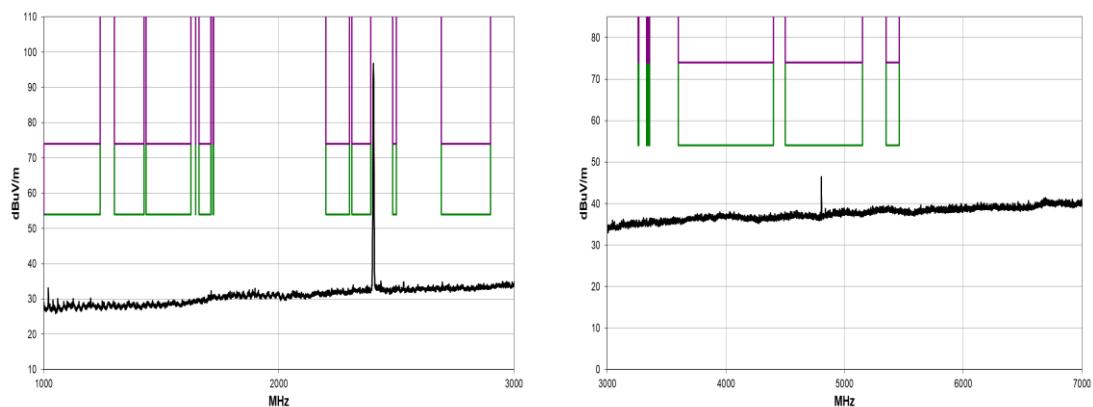
This field strength value is then compared with the regulatory limit.

Figure i Test Setup

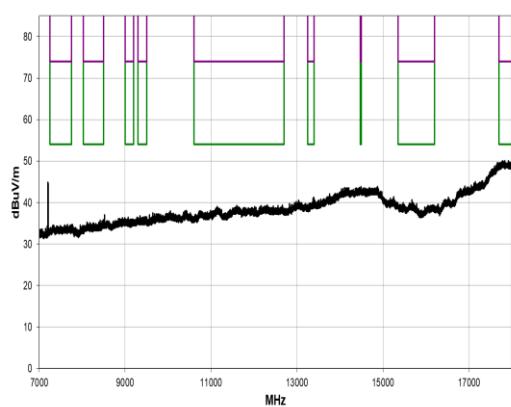
11.5 Test Equipment

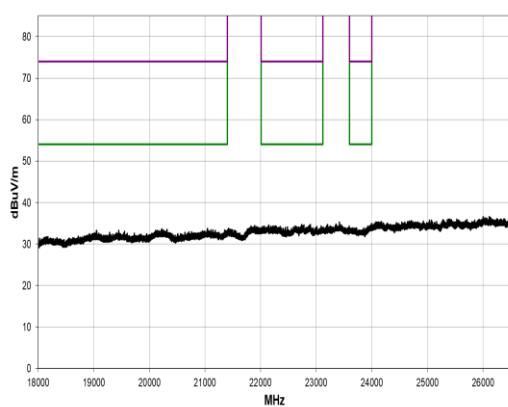

<i>Equipment Description</i>	<i>Manufacturer</i>	<i>Equipment Type</i>	<i>Element No</i>	<i>Due For Calibration</i>
Spectrum Analyser	R&S	FSU46	REF910	2025-01-30
Bilog	Chase	CBL611/B	U573	2024-10-14
Pre Amp	AMETEK	LNA6901	U711	2025-04-11
1-18GHz Horn	EMCO	3115	L139	2024-07-01
Horn 18-26GHz (&U330)	Flann	20240-20	L300	2024-06-30
Pre Amp	Agilent	8449B	L572	2024-10-30
2.4G Band Stop Filter	BSC	SN 4478	U543	2025-02-15
High Pass Filter	Atlantic Microwave	AFH-07000	U558	2025-02-15
Chamber 1	Rainford EMC	ATS	U387	2026-01-24
Radiated Test Software	Element	Emissions R5	REF9000	Cal Not Required

11.6 Test Results


Common Emissions

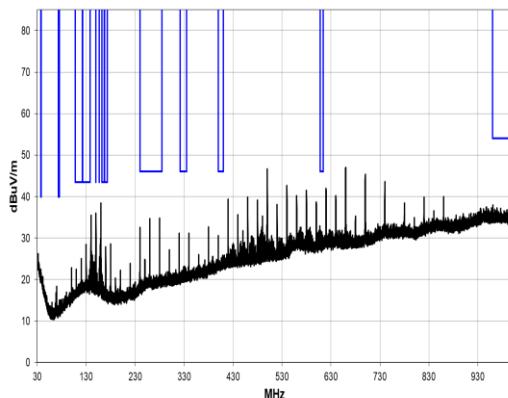
Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
150.039	15.9	18.5	1.06	243.9	3.0	0.0	Vert	QP	0.0	34.4	43.5	-9.1
280.040	13.0	20.4	1.04	198.2	3.0	0.0	Horz	QP	0.0	33.4	46.0	-12.6
240.036	14.7	18.5	3.26	21.9	3.0	0.0	Horz	QP	0.0	33.2	46.0	-12.8
260.034	12.1	20.3	1.09	227.1	3.0	0.0	Horz	QP	0.0	32.4	46.0	-13.6
611.305	-0.1	28.6	1.5	236.9	3.0	0.0	Vert	QP	0.0	28.5	46.0	-17.5
240.035	9.3	18.5	1.61	265.9	3.0	0.0	Vert	QP	0.0	27.8	46.0	-18.2
130.029	5.0	19.3	1.5	28.9	3.0	0.0	Vert	QP	0.0	24.3	43.5	-19.2


BTLE TX 2402 MHz Power setting 8 dBm

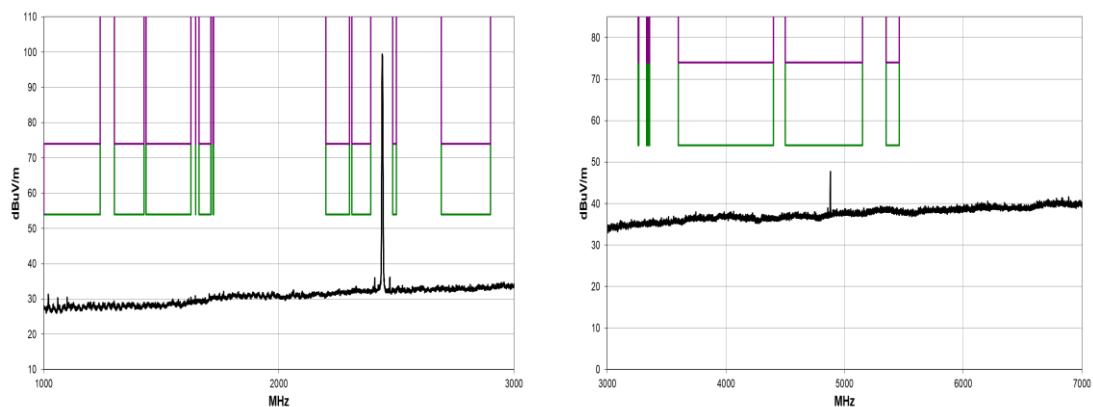

30 MHz to 1 GHz

1 GHz to 3 GHz

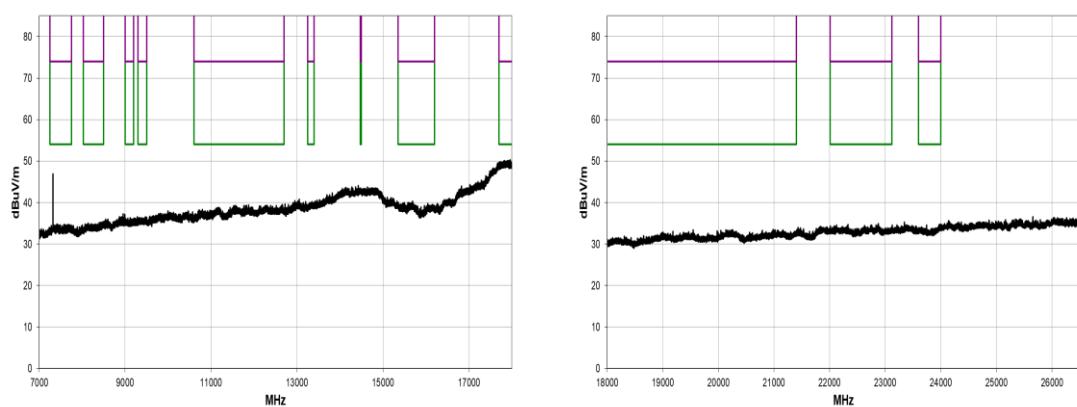
3 GHz to 7 GHz



7 GHz to 18 GHz

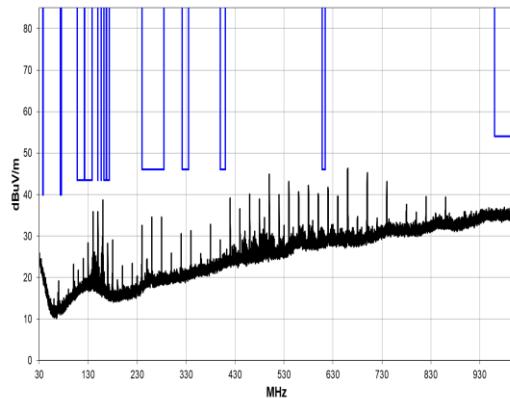

18 GHz to 26.5 GHz

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
4804.450	38.2	1.5	1.7	54.8	3.0	0.0	Vert	AV	0.0	39.7	54.0	-14.3
4804.642	34.7	1.5	1.7	211.0	3.0	0.0	Horz	AV	0.0	36.2	54.0	-17.8
4803.592	50.6	1.5	1.7	54.8	3.0	0.0	Vert	PK	0.0	52.1	74.0	-21.9
4803.475	49.4	1.5	1.7	211.0	3.0	0.0	Horz	PK	0.0	50.9	74.0	-23.1

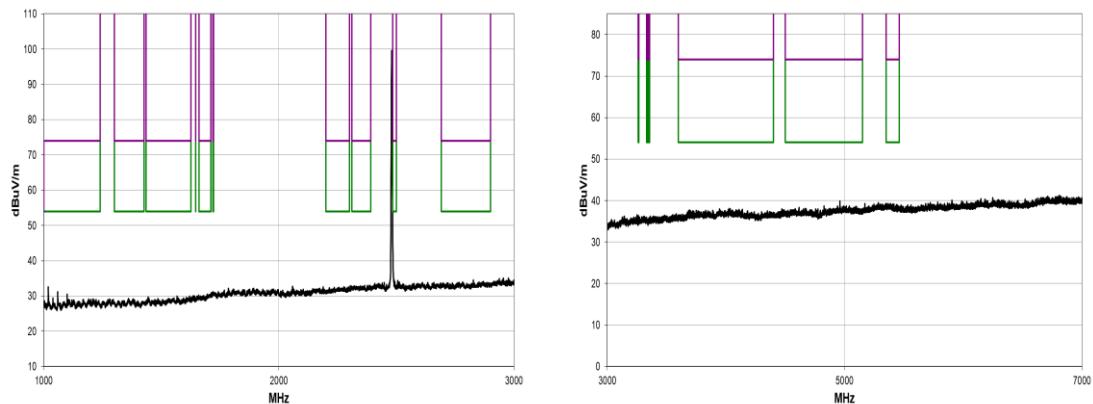

BTLE TX 2440 MHz Power setting 8 dBm

30 MHz to 1 GHz

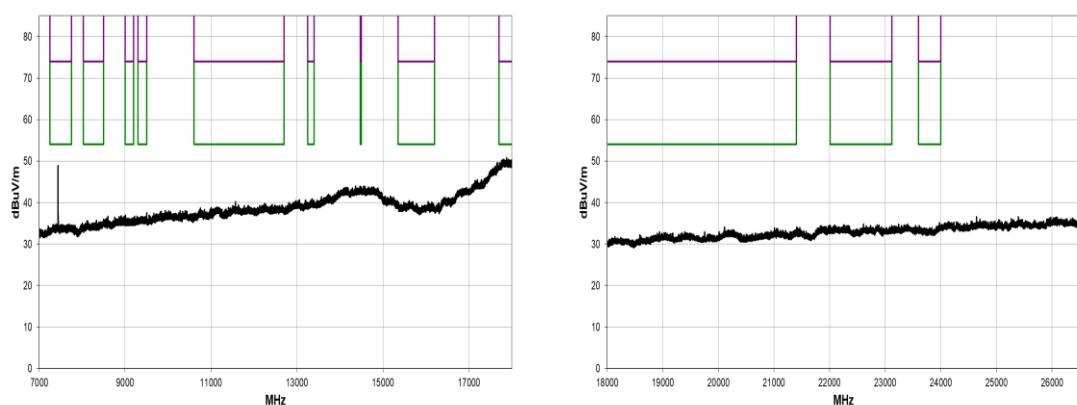
1 GHz to 3 GHz



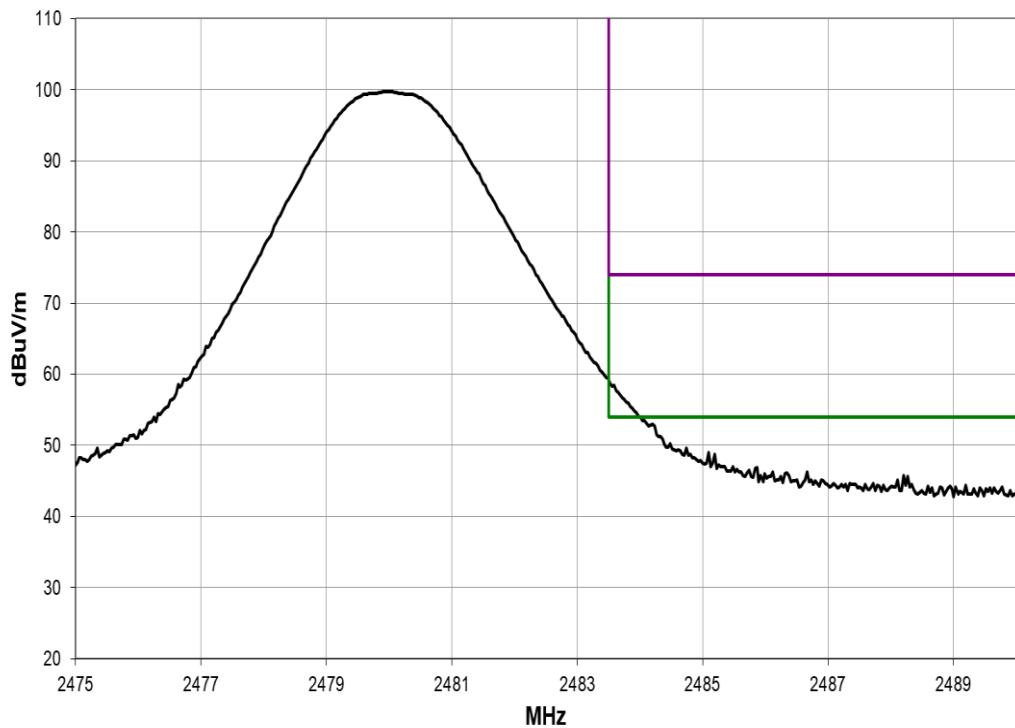
7 GHz to 18 GHz

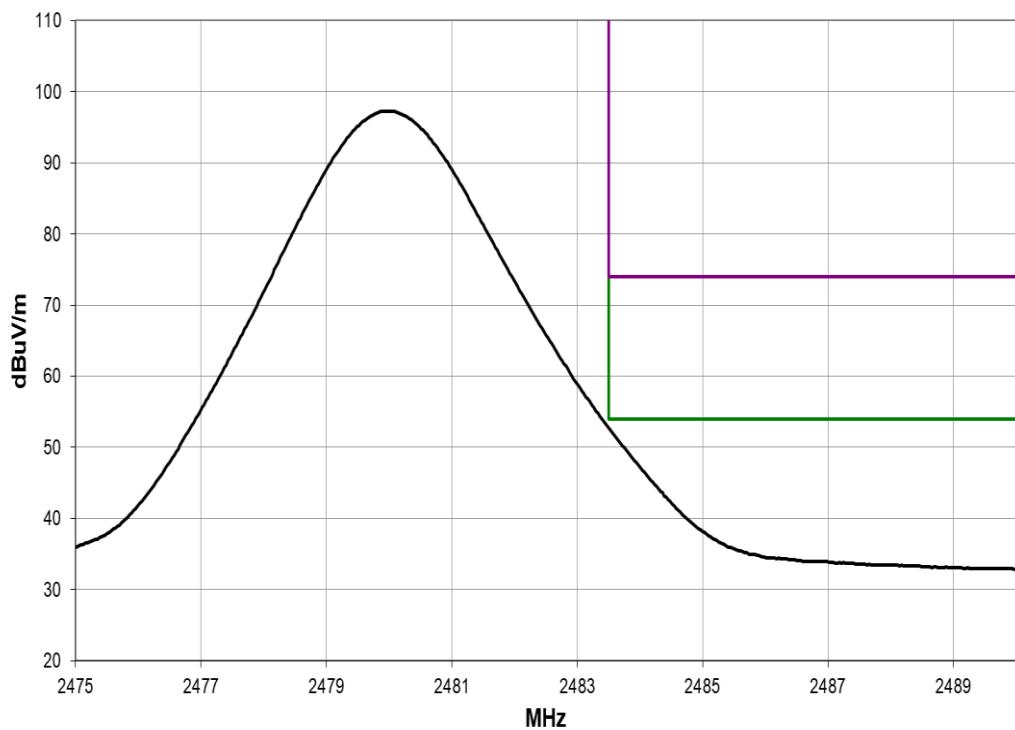

18 GHz to 26.5 GHz

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
4879.583	39.7	1.9	1.7	43.0	3.0	0.0	Vert	AV	0.0	41.6	54.0	-12.4
4879.500	37.1	1.9	2.14	77.9	3.0	0.0	Horz	AV	0.0	39.0	54.0	-15.0
4879.642	51.5	1.9	1.7	43.0	3.0	0.0	Vert	PK	0.0	53.4	74.0	-20.6
4879.600	49.7	1.9	2.14	77.9	3.0	0.0	Horz	PK	0.0	51.6	74.0	-22.4
7320.792	41.3	7.7	1.61	64.0	1.0	0.0	Horz	AV	-9.5	39.5	54.0	-14.5
7320.525	38.4	7.7	1.7	342.1	1.0	0.0	Vert	AV	-9.5	36.6	54.0	-17.4
7319.592	53.9	7.7	1.61	64.0	1.0	0.0	Horz	PK	-9.5	52.1	74.0	-21.9
7320.133	51.7	7.7	1.7	342.1	1.0	0.0	Vert	PK	-9.5	49.9	74.0	-24.1


BTLE TX 2480 MHz Power setting 8 dBm

30 MHz to 1 GHz


1 GHz to 3 GHz


7 GHz to 18 GHz

18 GHz to 26.5 GHz

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
4959.692	33.4	2.2	1.7	62.9	3.0	0.0	Vert	AV	0.0	35.6	54.0	-18.4
4959.542	32.4	2.2	1.7	300.2	3.0	0.0	Horz	AV	0.0	34.6	54.0	-19.4
4960.475	47.1	2.2	1.7	62.9	3.0	0.0	Vert	PK	0.0	49.3	74.0	-24.7
4960.242	46.6	2.2	1.7	300.2	3.0	0.0	Horz	PK	0.0	48.8	74.0	-25.2
7439.975	43.8	7.5	1.7	359.1	1.0	0.0	Horz	AV	-9.5	41.8	54.0	-12.2
7439.300	43.7	7.5	1.7	118.9	1.0	0.0	Vert	AV	-9.5	41.7	54.0	-12.3
7440.792	56.6	7.5	1.7	359.1	1.0	0.0	Horz	PK	-9.5	54.6	74.0	-19.4
7439.117	55.3	7.5	1.7	118.9	1.0	0.0	Vert	PK	-9.5	53.3	74.0	-20.7

Upper radiated band Edge - Peak

Upper radiated band edge - RMS

12 Maximum peak conducted output power & Effective isotropic radiated power

12.1 Definition

The maximum peak conducted output power is defined as the maximum power level measured with a peak detector using a filter with width and shape of which is sufficient to accept the signal bandwidth.

The effective isotropic radiated power (EIRP) is defined as the product of the power supplied to the antenna and the antenna gain in a given direction relative to an isotropic antenna.

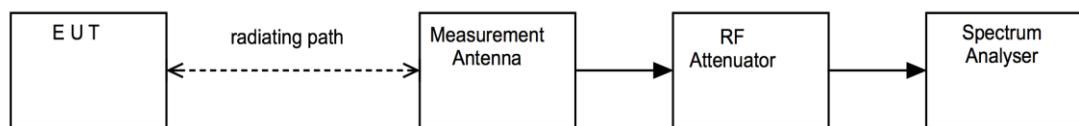
12.2 Test Parameters

Test Location:	Element Skelmersdale
Test Chamber:	Chamber 1
Test Standard and Clause:	ANSI C63.10-2013, Clause 11.9.1
EUT Frequencies Measured:	2402 MHz, 2440 MHz & 2480 MHz
EUT Channel Bandwidths:	1 MHz
Deviations From Standard:	None
Measurement BW:	2 MHz
Spectrum Analyzer Video BW: (requirement at least 3x RBW)	10 MHz
Measurement Detector:	Peak

Environmental Conditions (Normal Environment)

Temperature: 18 °C	+15 °C to +35 °C (as declared)
Humidity: 46 % RH	20 % RH to 75 % RH (as declared)

12.3 Test Limit


No Limits applied – information only.

12.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure iv, the resolution bandwidth of the spectrum analyser was increased above the EUT occupied bandwidth and the peak emission data noted.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

Figure iv Test Setup

12.5 Test Equipment

Equipment Description	Manufacturer	Equipment Type	Element No	Due For Calibration
Spectrum Analyser	R&S	FSU46	REF910	2025-01-30
1-18GHz Horn	EMCO	3115	L139	2024-07-01
Pre Amp	Agilent	8449B	L572	2024-10-30
Chamber 1	Rainford EMC	ATS	U387	2026-01-24
Radiated Test Software	Element	Emissions R5	REF9000	Cal Not Required

12.6 Test Results

The following formula was used to convert field strength (E) in volts/metre to conducted output power in watts:

$$\text{Conducted Output Power} = (E \times d)^2 / (30 \times G)$$

Where,

E is the electric field strength in V/m

d is the measurement distance in meters (m)

G is the antenna numerical gain referenced to isotropic gain

Modulation: GFSK; Data rate: 1 Mbps; Power setting: 0						
Frequency (MHz)	Peak Field Strength (dB μ V/m)	Peak Field Strength (V/m)	Distance (m)	Numeric Gain	Maximum peak conducted output power (W)	Result
2402	98.6	0.08511	3	1.00	0.00217	Information Only
2440	100.9	0.11092	3	1.00	0.00369	
2480	101.1	0.11350	3	1.00	0.00386	

The following formula was used to convert field strength (E) in volts/metre to EIRP in watts:

$$\text{EIRP} = (E \times d)^2 / 30$$

Where,

E is the electric field strength in V/m

d is the measurement distance in meters (m)

Modulation: GFSK; Data rate: 1 Mbps; Power setting: 0					
Frequency (MHz)	Peak Field Strength (dB μ V/m)	Peak Field Strength (V/m)	Distance (m)	EIRP (W)	Result
2402	98.6	0.08511	3	0.00217	Information Only
2440	100.9	0.11092	3	0.00369	
2480	101.1	0.11350	3	0.00386	

13 Measurement Uncertainty

Radio Testing – General Uncertainty Schedule

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95 % confidence where no required test level exists.

Test/Measurement	Budget Number	MU
Conducted RF Power, Power Spectral Density, Adjacent Channel Power and Spurious emissions		
Absolute RF power (via antenna connector) Sampling Power Meter to 8 GHz	MU4001	0.9 dB
Carrier Power and PSD - Spectrum Analysers	MU4004	1.7 dB
Adjacent Channel Power	MU4002	1.9 dB
Transmitter conducted spurious emissions (Including emissions due to intermodulation)	MU4041	0.9 dB
Conducted power and spurious emissions 40 GHz to 50 GHz	MU4042	2.4 dB
Conducted power and spurious emissions 50 GHz to 75 GHz	MU4043	2.5 dB
Conducted power and spurious emissions 75 GHz to 110 GHz	MU4044	2.4 dB
Radiated RF Power and Spurious emissions ERP and EIRP		
Effective Radiated Power Reverb Chamber	MU4020	3.7 dB
Effective Radiated Power	MU4021	4.7 dB
TRP Emissions 30 MHz to 1 GHz using CBL6111 or CBL6112 Bilog Antenna	MU4046	5.3 dB
TRP Emissions 1 GHz to 18 GHz using HL050 Log Periodic Antenna	MU4047	5.1 dB
TRP Emissions 18 GHz to 26.5 GHz using Standard Gain Horn	MU4048	2.7 dB
TRP Emissions 26.5 GHz to 40 GHz using Standard Gain Horn	MU4049	2.7 dB
In-band (3450-3650 MHz) TRP using CATR_ASH_B2	MU4051	4.1 dB
Cellular Radiated Spurious Emissions in a SAC 30 MHz to 180 MHz	MU4052	6.3 dB
Cellular Radiated Spurious Emissions in a SAC 180 MHz to 18 GHz	MU4052	3.6 dB
Cellular Radiated Spurious Emissions in a FAR 30 MHz to 180 MHz	MU4052	5.4 dB
Cellular Radiated Spurious Emissions in a FAR 180 MHz to 18 GHz	MU4052	3.0 dB
Spurious Emissions Electric and Magnetic Field		
Radiated Spurious Emissions 30 MHz to 1 GHz (Including emissions due to intermodulation)	MU4037	4.8 dB
Radiated Spurious Emissions 1-18 GHz (Including emissions due to intermodulation)	MU4032	4.5 dB
E Field Emissions 18 GHz to 26 GHz	MU4024	3.2 dB
E Field Emissions 26 GHz to 40 GHz	MU4025	3.3 dB
E Field Emissions 40 GHz to 50 GHz	MU4026	3.5 dB
E Field Emissions 50 GHz to 75 GHz	MU4027	3.6 dB
E Field Emissions 75 GHz to 110 GHz	MU4028	3.6 dB
Radiated Magnetic Field Emissions	MU4031	2.3 dB

Test/Measurement	Budget Number	MU
Frequency Measurements		
Frequency Deviation	MU4022	3.7 kHz
Frequency error using CMTA test set	MU4023	113.441 Hz
Frequency error using GPS locked frequency source	MU4045	0.0413 ppm
Bandwidth/Spectral Mask Measurements		
Channel Bandwidth	MU4005	3.87%
Transmitter Mask Amplitude	MU4039	1.3 dB
Transmitter Mask Frequency	MU4040	2.59%
Time Domain Measurements		
Transmission Time	MU4038	4.40%
Dynamic Frequency Selection (DFS) Parameters		
DFS Analyser - Measurement Time	MU4006	678.984 μs
DFS Generator - Frequency Error	MU4007	91.650 Hz
DFS Threshold Conducted	MU4008	1.3 dB
DFS Threshold Radiated	MU4009	3.2 dB
Receiver Parameters		
EN 300 328 Receiver Blocking	MU4010	1.1 dB
EN 301 893 Receiver Blocking	MU4011	1.1 dB
EN 303 340 Adjacent Channel Selectivity	MU4012	1.1 dB
EN 303 340 Overloading	MU4013	1.1 dB
EN 303 340 Receiver Blocking	MU4014	1.1 dB
EN 303 340 Receiver Sensitivity	MU4015	0.9 dB
EN 303 372-1 Image Rejection	MU4016	1.4 dB
EN 303 372-1 Receiver Blocking	MU4017	1.1 dB
EN 303 372-2 Adjacent Channel Selectivity	MU4018	1.1 dB
EN 303 372-2 Dynamic Range	MU4019	0.9 dB
Receiver Blocking Talk Mode Conducted	MU4033	1.2 dB
Receiver Blocking Talk Mode- radiated	MU4034	3.4 dB
Rx Blocking, listen mode, blocking level	MU4035	3.2 dB
Rx Blocking, listen mode, radiated Threshold Measurement	MU4036	3.4 dB
Adjacent Sub Band Selectivity	MU4003	4.2 dB

Test/Measurement	Budget Number	MU
Rohde & Schwarz TS8997		
Carrier frequency	MU4050	5.2 ppm
RF Output Power	MU4050	1.0 dB
Peak Power	MU4050	0.8 dB
Power Spectral Density	MU4050	1.0 dB
Occupied Channel Bandwidth	MU4050	2.08 %
Transmitter unwanted emissions in-band	MU4050	0.9 dB
Transmitter unwanted emissions in the spurious domain 30 MHz to 1 GHz	MU4050	0.6 dB
Transmitter unwanted emissions in the spurious domain 1 GHz to 12.75 GHz	MU4050	1.8 dB
Receiver Spurious emission 30 MHz to 1 GHz	MU4050	0.6 dB
Receiver Spurious emission 1 GHz to 12.75 GHz	MU4050	1.8 dB
Duty Cycle	MU4050	0.02 %
Tx Sequence	MU4050	0.02 %
Tx Gap	MU4050	0.02 %
Medium Utilisation	MU4050	0.1 %
Accumulated Transmit Time	MU4050	0.01 %
Minimum Frequency Occupation Time	MU4050	0.01 %
Hopping Frequency Separation	MU4050	0.6 %
Receiver blocking (for bit streams)	MU4050	3.0 dB
Channel Access Mechanism / Adaptivity / DFS / Contention Based Protocol	MU4050	1.8 dB