

INTENTIONAL RADIATOR TEST REPORT

Report Reference Number: E11168-2001_JSF Technologies_Wireless Platform 5_Rev-1.0

Total Number of Pages: 30

Date of Issue: August 24, 2020

EMC Test Laboratory:

Address: 3980 North Fraser Way, Burnaby, BC, V5J 5K5 Canada
Phone: (604) 527-8378
Fax: (604) 527-8368

Laboratory Accreditations (per ISO/IEC 17025:2017)

American Association for Laboratory Accreditation Certificate Number: 3657.02

This report has been completed in accordance with the requirements of ISO/IEC 17025.

Test results contained in this report are within QAI Laboratories ISO/IEC 17025 accreditations.

QAI Laboratories authorizes the applicant to reproduce this report, provided it is reproduced in its entirety and for the use by the company's employees only.

Manufacturer:

JSF Technologies Inc.

Address:

6582 Bryn Rd.
Victoria BC, Canada V8M 1X6

Equipment Tested:

WP5 Wireless Platform 5

Model Number(s): WP5

FCC ID: SFIWP5

ISED ID: 5301A-WP5

REVISION HISTORY

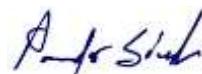
Date	Report Number	Details	Author's Initials
August 24, 2020	E11168-2001_JSF Technologies_Wireless Platform 5_Rev-1.0	Final	RS
August 19, 2020	E11168-2001_JSF Technologies_Wireless Platform 5_Rev-0.0	Draft	RS
All previous versions of this report have been superseded by the latest dated revision as listed in the above table. Please dispose of all previous electronic and paper printed revisions accordingly.			

REPORT AUTHORIZATION

The data documented in this report is for the test equipment provided by the manufacturer. The tests were conducted on the sample equipment as requested by the manufacturer for the purpose of demonstrating compliance with the standards outlined in Section I of this report as agreed upon by the Manufacturer under the quote 20SH07092R1.

The Manufacturer is responsible for the tested product configurations, continued product compliance, and for the appropriate auditing of subsequent products as required.

This report may comprise a partial list of tests that are required for FCC and ISED Declaration of Conformity can only be produced by the manufacturer. This is to certify that the following report is true and correct to the best of our knowledge.


Testing Performed by
Jack Qin
EMC Test Engineer

Report Prepared by
Ravi Sharma
EMC Technical Writer

Reviewed by
Rick Hiebert
EMC Project Manager

Approved by
Parminder Singh
Director of EMC Department

QAI FACILITIES

British Columbia

QAI Laboratories Inc.
Main Laboratory/Headquarters
3980 North Fraser Way,
Burnaby, BC V5J Canada

Ontario

QAI Laboratories Inc.
25 Royal Group Crescent #3,
Vaughan,
ON L4H 1X9 Canada

Virginia

QAI Laboratories Ltd.
1047 Zachary Taylor Hwy,
Suite A Huntly,
VA 22640 USA

China

QAI Laboratories Ltd
Room 408, No. 228, Jiangchang
3rd Road Jing'An District,
Shanghai, China 200436

California

QAI Laboratories Ltd.
8385 White Oak Avenue Rancho
Cucamonga, CA 91730 USA

Oklahoma

QAI Laboratories Ltd.
5110 North Mingo Road
Tulsa, OK 74117, USA

Miami

QAI Laboratories Ltd.
8148 NW 74th Ave,
Medley, FL 33166 USA

South Korea

QAI Laboratories Ltd
#502, 8, Sanbon-ro 324beon-gil
Guppo-si, Gyeonggi-do, 15829,
South Korea

QAI EMC ACCREDITATION

QAI EMC is your one-stop regulatory compliance partner for electromagnetic compatibility (EMC) and electromagnetic interference (EMI). Products are tested to the latest and applicable EMC/EMI requirements for domestic and international markets. QAI EMC goes above and beyond being a testing facility—we are your regulatory compliance partner. QAI EMC has the capability to perform RF Emissions and Immunity for all types of electronics manufacturing including Industrial, Scientific, Medical, Information Technology, Telecom, Wireless, Automotive, Marine and Avionics.

EMC Laboratory Location	FCC Designation (3m SAC)	IC Registration (3m SAC)	A2LA Certificate
Burnaby, BC, Canada	CA9543	21146-1	3657.02

EMC Facility Burnaby BC, Canada

TABLE OF CONTENTS

REVISION HISTORY	2
REPORT AUTHORIZATION	2
QAI FACILITIES	3
QAI EMC ACCREDITATION	3
TABLE OF CONTENTS	4
Section I: GENERAL INFORMATION	5
1.1 Product Description	5
1.2 Environmental Conditions	6
1.3 Measurement Uncertainty	6
1.4 Worst Test Case	6
1.5 Sample Calculations of Emissions Data	7
1.6 Test Equipment List	8
Section II: EXECUTIVE SUMMARY OF STANDARDS AND LIMITS	9
2.1 Purpose	9
2.2 Scope	9
2.3 Summary of Results	9
Section III: DATA & TEST RESULTS	10
3.1 Antenna Requirements	10
3.2 Intentional Radiated Emissions	11
3.3 20dB Occupied Bandwidth	15
3.4 99% Occupied Bandwidth	18
3.5 Band Edge	21
3.6 Unintentional Radiated Emissions	23
3.7 Frequency Stability	25
3.8 RF Exposure MPE	26
Appendix A: TEST SETUP PHOTOS	28
Appendix B: ABBREVIATIONS	30

Section I: GENERAL INFORMATION

1.1 Product Description

The information provided in this section is for the Equipment Under Test (EUT) and the corresponding Auxiliary Equipment needed to perform the tests as a complete system.

Equipment Under Test (EUT)

EUT	WP5 Wireless Platform 5
FCC ID	SFIWP5
IC Number	5301A-WP5
Manufacturer	JSF Technologies Inc.
Model No.	WP5
FVIN	1.29.3
Frequency Range	902MHz – 928 MHz

1.2 Environmental Conditions

The equipment under test was operated and tested under the following environmental conditions:

Parameter	Conditions
Location	Indoors
Temperature	21°C
Relative Humidity	47.9 %
Atmospheric Pressure	101 a

1.3 Measurement Uncertainty

Parameter	Uncertainty
Radiated Emissions, 30MHz-1GHz	± 2.40 dB
Radiated Emissions, 1GHz-40GHz	± 2.48 dB
Conducted Emissions, 0.15MHz-30MHz	± 2.82 dB
Radio Frequency	±1.5 x 10-5 MHz
Total RF Power Conducted	±1.36 dB
Spurious Emissions, Conducted	±1.36 dB
RF Power Density, Conducted	±1.36 dB
Temperature	±1°C
Humidity	±5 %
DC and low frequency voltages	±3 %

1.4 Worst Test Case

Worst-case orientation was determined during the preliminary testing.

The final radiated emissions were performed in the worst-case orientation.

1.5 Sample Calculations of Emissions Data

Radiated and conducted emissions were performed using EMC32 software developed by Rohdes & Schwarz. Transducer factors like Antenna factors, Cable Losses and Amplifier gains were stored in the test templates which are used to perform the emissions measurements. After test is finished, data is generated from the EMC32 consisting of product details, emission plots and final data tables as shown below.

Frequency (MHz)	Q-Peak (dB μ V/m)	Meas. Time (ms)	Bandwidth (kHz)	Ant. Ht. (cm)	Pol	Turntable Position (deg)	Corr. (dB)	Margin (dB)	Limit (dB μ V/m)
42.663900	33.0	1000.000	120.000	100.0	H	70.0	13.2	7.5	40.5

Quasi-Peak reading shown in the table above is already corrected by the software using correction factor shown in column “Corr.” The correction factor listed under “Corr.” table calculated as:

$$\text{Corr.(dB)} = \text{Antenna factor} + \text{Cable loss}$$

Or

$$\text{Corr.(dB)} = \text{Antenna factor} + \text{Cable Loss} - \text{Amp gain (if pre-amplifier was used)}$$

The final Quasi peak reading shown in the data is calculated by the software using following equation:

$$\text{Corrected Quasi-Peak (dB μ V/m)} = \text{Raw Quasi-Peak Reading} + \text{Antenna factor} + \text{Cable loss}$$

To obtain the final Quasi-Peak or Average reading during power line conducted emissions, transducer factors are included in the final measurement as shown below.

Frequency (MHz)	Q-Peak (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	PE	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.150	44.3	1000.000	9.000	GND	0.6	21.7	66.0

Frequency (MHz)	Average (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	PE	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.150	27.2	1000.000	9.000	GND	0.6	28.8	56.0

Quasi Peak or Average reading shown in above table is already corrected by the software using the correction factor shown in column “Corr.” The correction factor listed under “Corr.” table calculated as:

$$\text{Corr.(dB)} = \text{Antenna factor} + \text{Cable loss}$$

The final Quasi-peak or Average reading shown in the data is calculated by the software using following equation:

$$\text{Corr. Quasi-Peak/Average Reading (dB μ V)} = \text{Raw Quasi-Peak/Average Reading} + \text{Antenna factor} + \text{Cable loss}$$

The allowable margin from the limits, as per the standards, were calculated for both radiated and conducted emissions:

$$\text{Margin(dB)} = \text{Limit} - \text{Quasi-Peak or Average reading}$$

1.6 Test Equipment List

The tables below contain all the equipment used by QAI Laboratories in conducting all tests on the Equipment Under Test (EUT) as per Section 1.

Emissions Test Equipment

SL. No.	Manufacturer	Model	Description	Serial No.	S/W Version	Calibration Due Date
1	AH Systems	PAM118	Amplifier (10KHz-18GHz)	189	N/A	Conditional Use
2	California Instruments	PACS-1	Harmonics and flicker analyzer	52117	CTS3.0 v3.2.0.35	2021-May-23
3	EMCO	3825/2	LISN (150kHz-30MHz)	9002-1601	N/A	2020-Aug-25
4	ETS Lindgren	3117	Horn Antenna, 1.0-18 GHz	75944	N/A	2020 Aug 29
5	ETS Lindgren	2165	Turntable	00043677	N/A	N/A
6	ETS Lindgren	2125	Mast	00077487	N/A	N/A
7	ETS Lindgren	S201	5-meter Semi-Anechoic Chamber	1030	N/A	N/A
8	Hewlett Packard	8449B	Preamplifier (1-26 GHz)	2933A00198	N/A	2022-Jan-22
9	Rohde & Schwarz	ESU40	EMI Receiver	100011	EMC32 v10.35.10 / FV 4.73 SP4	2021-Sept-20
10	Sunol Sciences	SM46C	Turntable	051204-2	N/A	N/A
11	Sunol Sciences	TWR95	Mast	TREML0001	N/A	N/A
12	Sunol Sciences	JB3	Biconilog Antenna 30MHz – 2GHz	A120106	N/A	2022 May 10
13	Sunol Sciences	JB3	Biconilog Antenna 30MHz – 2GHz	02052019A	N/A	2022 May 10
14	Sunol Sciences	JB1	Biconilog Antenna 30MHz – 2GHz	A070209	N/A	2020 Aug 17
15	Sunol Sciences	DRH-118	Horn Antenna 1GHz-18GHz	A050905	N/A	2020 Aug 17

Note: Equipment listed above have 1 years calibration interval.

Measurement Software List

Sl. No.	Manufacturer	Model	Version	Description
1	Rhode & Schwarz	EMC 32	6.20.0	Emissions Test Software
2	VI Automation	Via EMC Immunity Executive	1.0.308	Radiated and Conducted Immunity Test Program
3	TESEQ	WIN 3000	1.2.0	Surge, EFT & Voltage Dips Immunity Test Program
4	Thurlby Thandar Instruments	HA-PC Link Version	2.02	Harmonics and Flicker Test Program

Section II: EXECUTIVE SUMMARY OF STANDARDS AND LIMITS

2.1 Purpose

The purpose of this report is to demonstrate and document the compliance of “WP5 Wireless Platform 5” as per Sections 1.2 & 1.3 of this report.

2.2 Scope

The information documented in this report is based on the test methods and levels as per Quote 20SH07221.

CFR Title 47 FCC Part 15 – Radio Frequency Devices, Subpart C – Intentional Radiators

- 15.249: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz.
- 15.212 Modular Transmitters

CFR Title 47 FCC Part 15 - Radio Frequency Devices, Subpart B – Unintentional Radiators

RSS-210 Issue 10 – Licence-Exempt Radio Apparatus: Category I Equipment

- B.10 Bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz and 24-24.25 GHz

ICES-003 Issue 6 – Information Technology Equipment (Including Digital Apparatus)

– Limits and Methods of Measurement

RSS-Gen Issue 5 – General Requirements for Compliance of Radio Apparatus

RSP-100 Issue 12 – Certification of Radio Apparatus and Broadcasting Equipment

- 8.2 Modular approval and limited modular approval requirements.

2.3 Summary of Results

The following tests demonstrate the testimony to “FCC and ISED” Mark Electromagnetic compatibility testing for “WP5 Wireless Platform 5” manufactured by JSF Technologies Inc.

Test or Measurement	Applicable FCC and IC Standard	Performance Criteria
Antenna Requirement	FCC CFR 47 Part 15.203	Complies
	RSS-Gen Issue 5	
Intentional Radiated Emissions	FCC CFR 47 Part 15.249	Complies
	FCC CFR 47 Part 15.209	
Band Edge	FCC CFR 47 Part 15.205	Complies
	RSS-210 Issue 10	
20dB Occupied Bandwidth	RSS-Gen Issue 5	Complies
	RSS-Gen Issue 5	Complies
99% Occupied Bandwidth	FCC CFR 47 Part 15.249	Complies
	RSS-210 Issue 10	
Unintentional Radiated Emissions	FCC CFR 47 Part 15.209 (a)	Complies
	ICES-003 Issue 6	
	RSS-Gen Issue 5	
Frequency Stability	FCC CFR 47 Part 15.215(c)	Complies
	RSS-Gen Issue 5	
RF Exposure MPE	FCC 47 CFR §1.1310:	Complies
	RSS-102 Section 2.5.2:	

Section III: DATA & TEST RESULTS

3.1 Antenna Requirements

Date Performed: July 24, 2020

Test Standard: FCC CFR 47 Part 15.203
RSS-Gen Issue 5

Applicable Regulations:

The purpose of this requirement is to make certain that no other antenna, except for that provided by the responsible party, shall be used with the Equipment-Under-Test (EUT) as defined in FCC CFR 47 Part 15.203 & RSS-Gen Issue 5:

“An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. “The installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.”

Modifications: No modification was required to comply for this test

Final Result:

This device will only be used by JSF Technologies as an OEM device that will be professionally installed. Therefore, this radio meets the requirements of FCC CFR 47 Part 15.203 & RSS-Gen Issue 5 as a professionally installed device.

3.2 Intentional Radiated Emissions

Date Performed: July 24, 2020

Test Standard: FCC CFR 47 Part 15.249
FCC CFR 47 Part 15.209
FCC CFR 47 Part 15.205
RSS-210 Issue 9
RSS-Gen Issue 5

Test Method: ANSI C63.10:2013

Test Requirement:

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Frequency (MHz)	Field Strength of Fundamental		Field Strength of Harmonics	
	mV/m	dB μ V/m	μ V/m	dB μ V/m
902-928	50	94	500	54
2400-2483.5	50	94	500	54
5725-5875	50	94	500	54
24.0-24.25	250	108	2500	68

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general field strength limits listed in RSS-Gen Issue 4, whichever is less stringent.

In measuring unwanted emissions, the spectrum shall be investigated from 30 MHz or the lowest radio frequency signal generated in the equipment, whichever is lower, without going below 9 kHz, up to at least the frequency if the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

Unwanted emissions falling into restricted bands of shall comply with the limits specified below

Frequency (MHz)	Field Strength	
	uV/m @ 3-m	Calculated dB μ V/m at 3m
30 – 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

FCC PART 15.205-RESTRICTED BANDS OF OPERATION

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110		16.42-16.423	399.9-410
1.0495-0.505		16.69475-16.69525	608-614
2.1735-2.1905		16.80425-16.80475	960-1240
4.125-4.128		25.5-25.67	1300-1427
4.17725-4.17775		37.5-38.25	1435-1626.5
4.20725-4.20775		73-74.6	1645.5-1646.5
6.215-6.218		74.8-75.2	1660-1710
6.26775-6.26825		108-121.94	1718.8-1722.2
6.31175-6.31225		123-138	2200-2300
8.291-8.294		149.9-150.05	2310-2390
8.362-8.366		156.52475-156.52525	2483.5-2500
8.37625-8.38675		156.7-156.9	2690-2900
8.41425-8.41475		162.0125-167.17	3260-3267
12.29-12.293		167.72-173.2	3332-3339
12.51975-12.52025		240-285	3345.8-3358
12.57675-12.57725		322-335.4	3600-4400
13.36-13.41			(²)

(b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35 apply to these measurements.

(c)

RESTRICTED FREQUENCY BANDS (RSS-GEN ISSUE 4)

MHz	MHz	GHz
0.090-0.110		
2.1735-2.1905		
3.020-3.026		
4.125-4.128		
4.17725-4.17775		
4.20725-4.20775		
5.677-5.683		
6.215-6.218		
6.26775-6.26825		
6.31175-6.31225		
8.291-8.294		
8.362-8.366		
8.37625-8.38675		
8.41425-8.41475		
12.29-12.293		
12.51975-12.52025		
12.57675-12.57725		
13.36-13.41		
16.42-16.423		
16.69475-16.69525		
16.80425-16.80475		
25.5-25.67		
37.5-38.25		
73-74.6		
74.8-75.2		
108-138		
156.52475-156.52525		
156.7-156.9		

Note: Certain frequency bands listed in Table 3 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to the devices are set out in the 200- and 300- series RSSs, such as RSS-210 and RSS-310, which contain the requirements that apply to licence-exempt radio apparatus.

Test Setup:

The EUT was tested in our 3 m SAC and was positioned on the center of the turntable. The transmitter was set for continuous transmission. The RF radiated emissions were measured in the frequency range of 150kHz to 18 GHz. The EUT was pre-scanned in 3 different orthogonal orientations and was found to radiate highest when placed flat on the tabletop as indicated in the test photos.

Measurement Method:

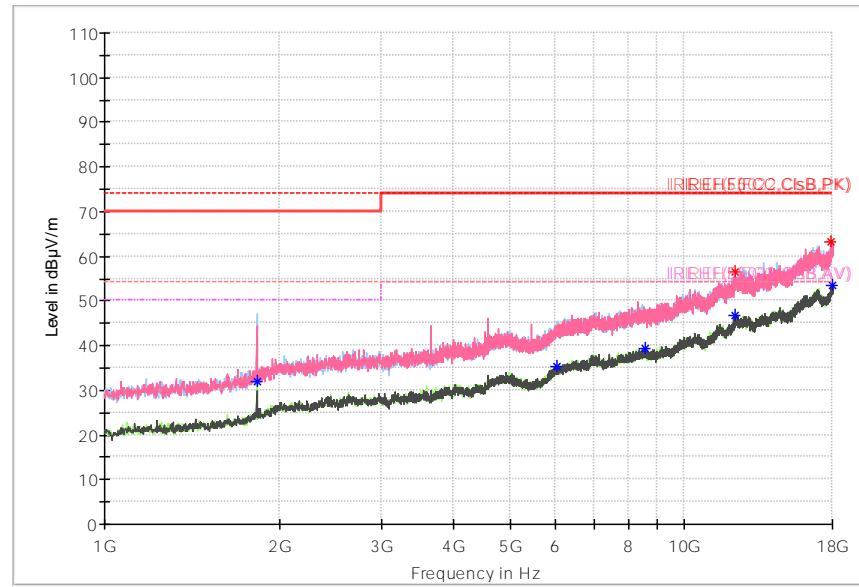
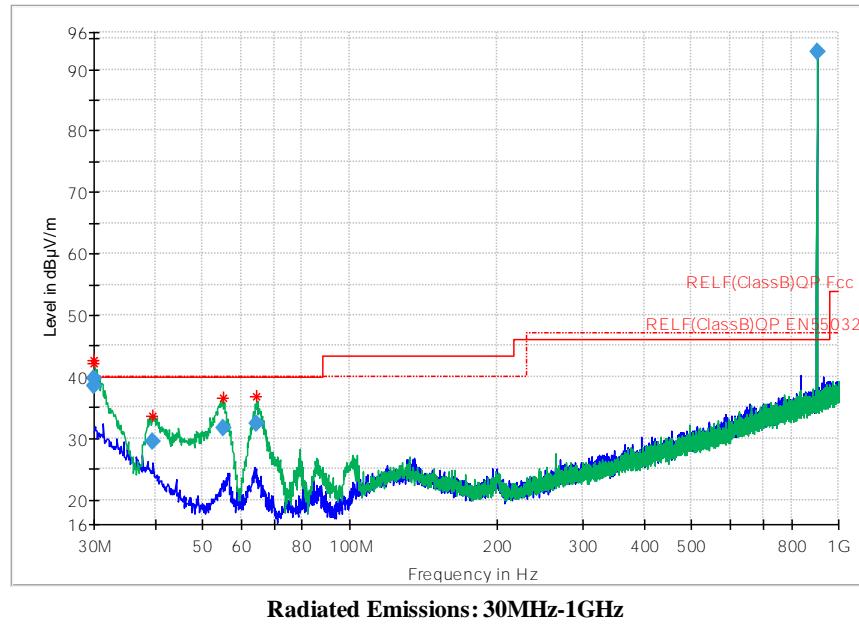
ANSI C63.10:2013 radiated emissions procedure was followed to demonstrate the compliance of Bluetooth low energy.

Modifications: No modification was required to comply for this test.

Final Result: The EUT complies with the applicable standard.

Measurement Data and Plot:

Data of Field Strength of Fundamental Frequency



Frequency	Raw Quasi-Peak	RBW	Corr.	Quasi-Peak	limit
MHz	dBuV/m	kHz	dB	dBuV/m	dBuV/m
902.5	61	120	32	93	94
914.5	60.5	120	32	92.5	94
927	60.8	120	32	92.8	94

Data of Field Strength of Harmonica Frequency

Frequency	Raw Average	Raw Max peak	Antenna factor	sys gain	Average	Average Limit	Max peak	Max peak limit
MHz	dBuV	dBuV	dB/m	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m
1805	51	54	30	32	49	54	52	74
2707.5	44	49	32	30	46	54	51	74
3610	43	48	33	29	47	54	52	74
4512.5	44	49	34	28	50	54	55	74
5415	44	50	35	27	52	54	58	74
6317.5	42	49	36	26	52	54	59	74
7220	BG Noise	BG Noise	36	23		54		74
8122.5	BG Noise	BG Noise	36	23		54		74

Data of Radiated Emissions: 30MHz-1GHz

Frequency (MHz)	Quasi Peak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.0721	39.6	40.0	0.4	1000	120.000	106.0	V	205	26.1
30.0860	38.4	40.0	1.6	1000	120.000	99.0	V	202	26.0
39.6182	29.3	40.0	10.7	1000	120.000	100.0	V	187	19.4
55.0110	31.8	40.0	8.2	1000	120.000	111.0	V	248	13.1
64.6117	32.3	40.0	7.7	1000	120.000	104.0	V	140	13.6
902.5181	92.9	46.0	-46.9	1000	120.000	99.0	H	299	32.7

Note: The data was 20dB or greater below the limit line and were not included in this report.

3.3 20dB Occupied Bandwidth

Date Performed: July 28, 2020

Test Standard: RSS-Gen Issue 5

Test Method: ANSI C63.10-2013

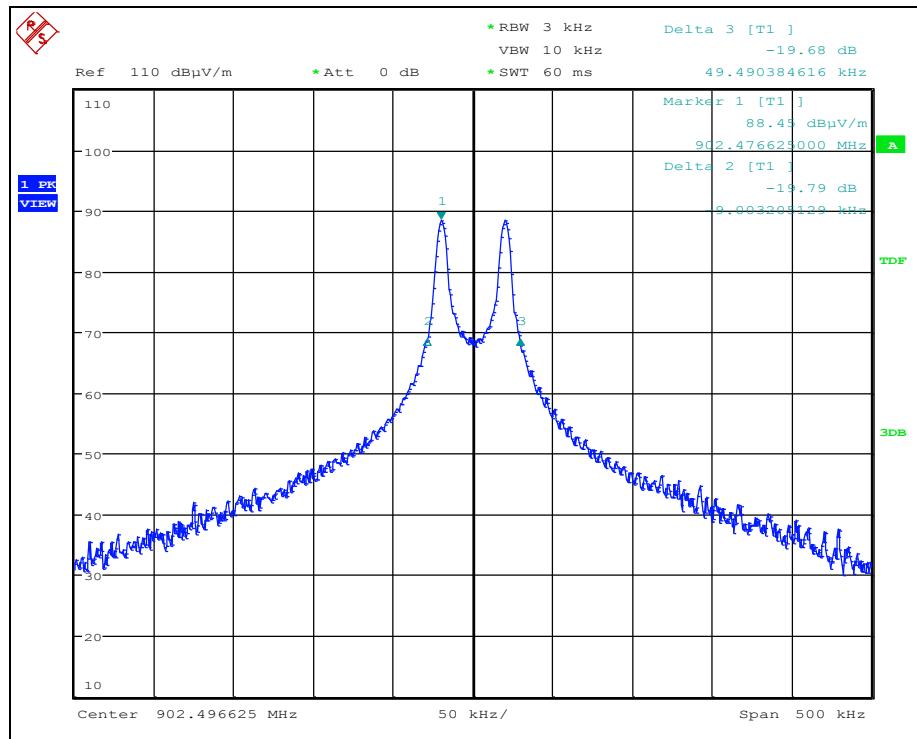
Test Requirement:

The emission bandwidth (20dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 20dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth in the range of 1% to 5% of the anticipated emission bandwidth, and a video bandwidth at least 3× the resolution bandwidth.

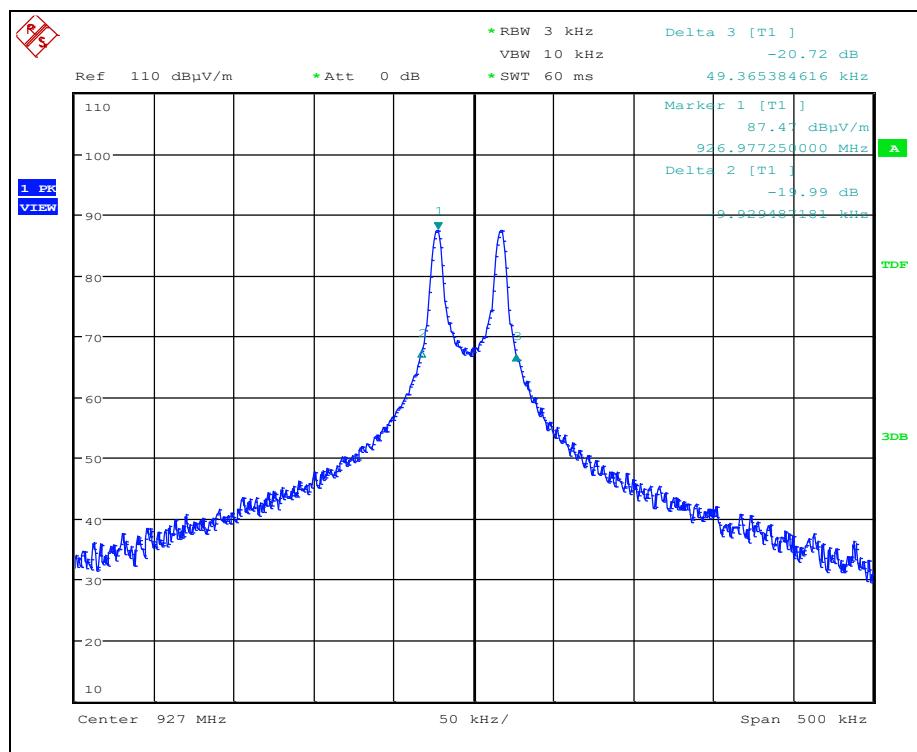
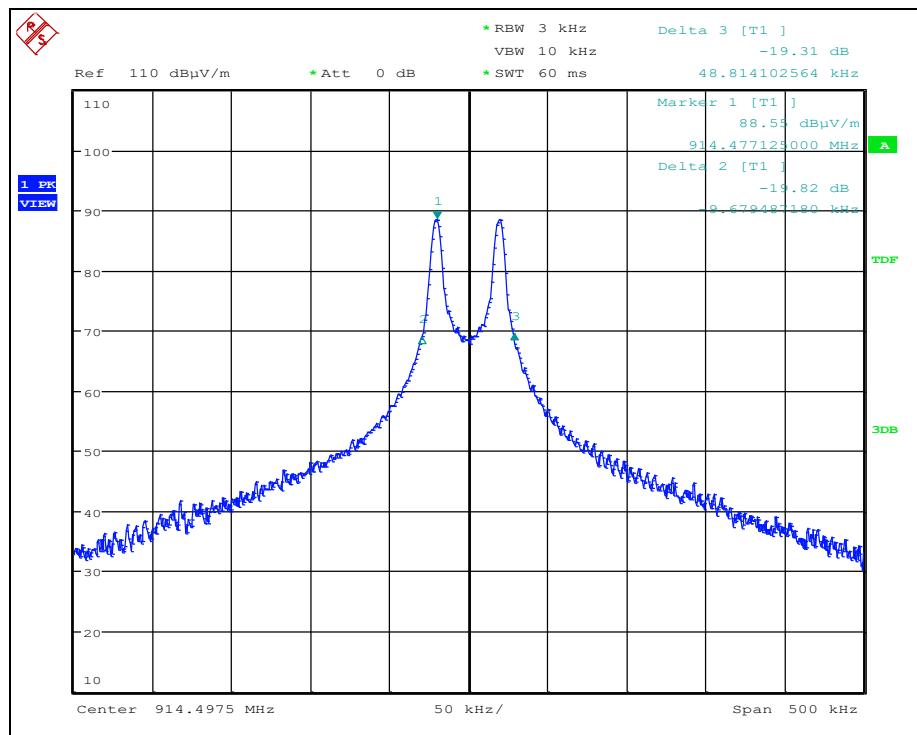
Test Setup:

The EUT was tested in our 3 m SAC and was positioned on the center of the turntable. The transmitter was set for continuous transmission.

Measurement Method: As called in ANSI C63.10-2013.


Modifications: No modification was required to comply for this test.

Final Result: The EUT complies with the applicable standard.



Measurement Data and Plot:

Data: 20dB Occupied Bandwidth

Channel	Frequency (MHz)	20dB Bandwidth (kHz)
Low	902.5	58.5
Middle	914.5	58.9
High	927	59.4

Plot: 20dB Occupied Bandwidth of Low Channel

3.4 99% Occupied Bandwidth

Date Performed: July 28, 2020

Test Standard: RSS-Gen Issue 5

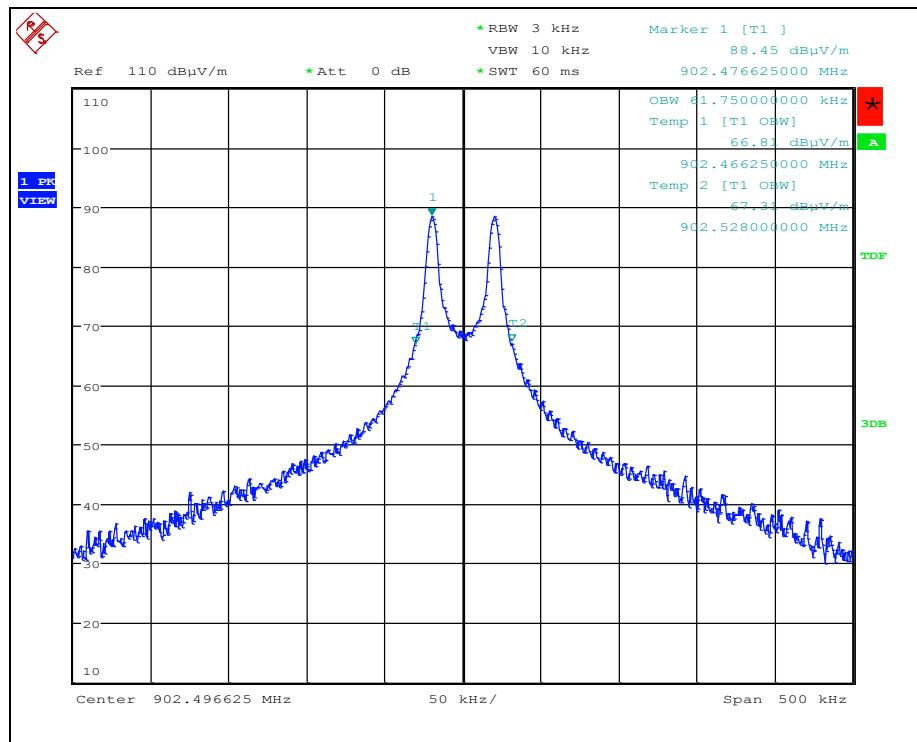
Test Method: ANSI C63.10-2013

Test Setup:

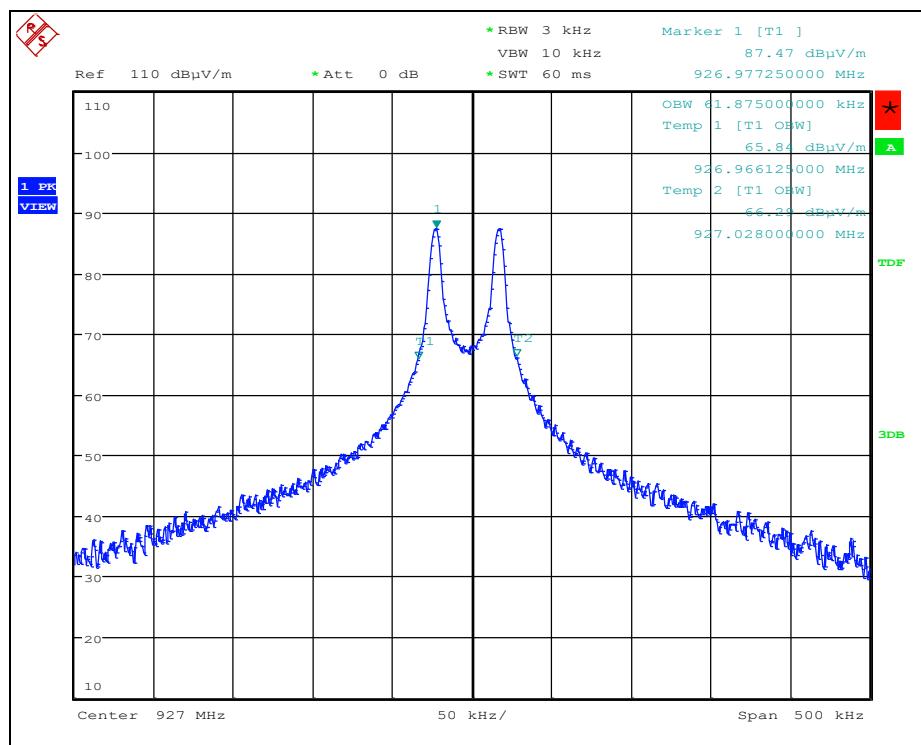
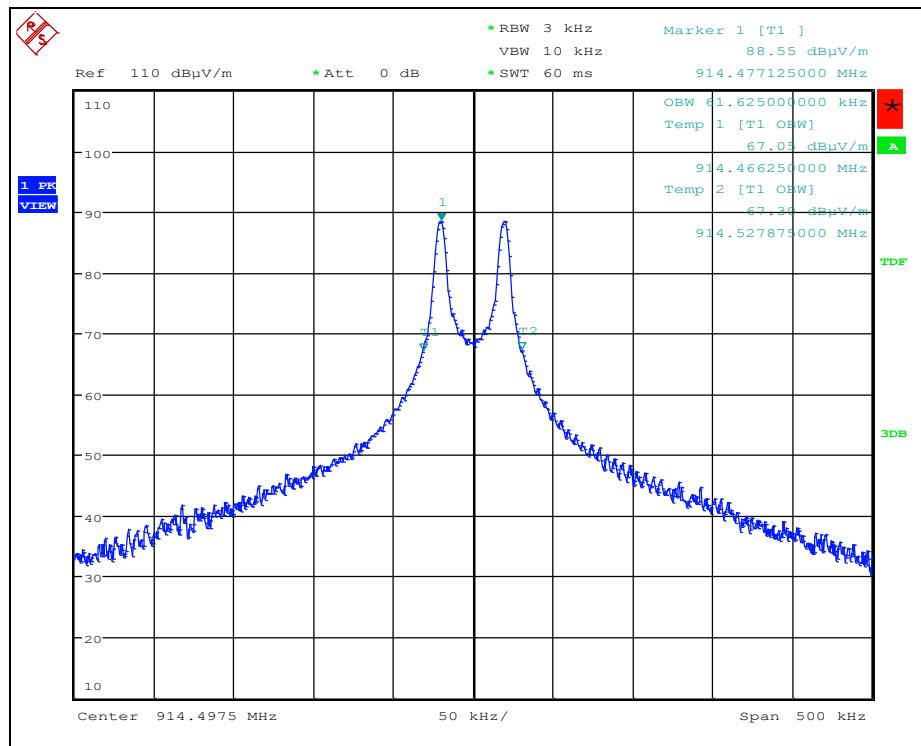
RSS-Gen Issue 4: Section 6.6 – A peak, or peak hold, may be used in place of the sampling detector as this may produce a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold may be necessary to determine the occupied bandwidth if the device is not transmitting continuously.

The trace data points are recovered and are directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded.

Measurement Method: As called in ANSI C63.10-2013.


Modifications: No modification was required to comply for this test.

Final Result: The EUT complies with the applicable standard.



Measurement Data and Plot:

Data: 99% Occupied Bandwidth

Channel	Frequency (MHz)	99% Bandwidth (kHz)
Low	902.5	61.8
Middle	914.5	61.6
High	927	61.9

Plot: 99% Occupied Bandwidth of Low Channel

3.5 Band Edge

Date Performed: July 28, 2020

Test Standard: FCC CFR 47 Part 15.249
RSS-210 Issue 9

Test Method: ANSI C63.10-2013

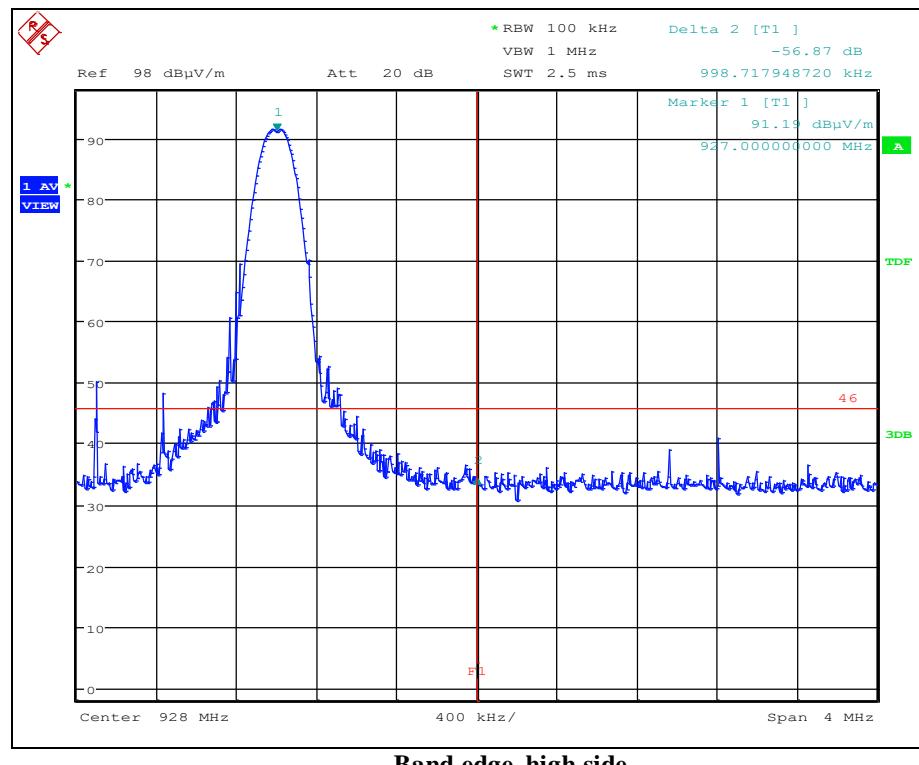
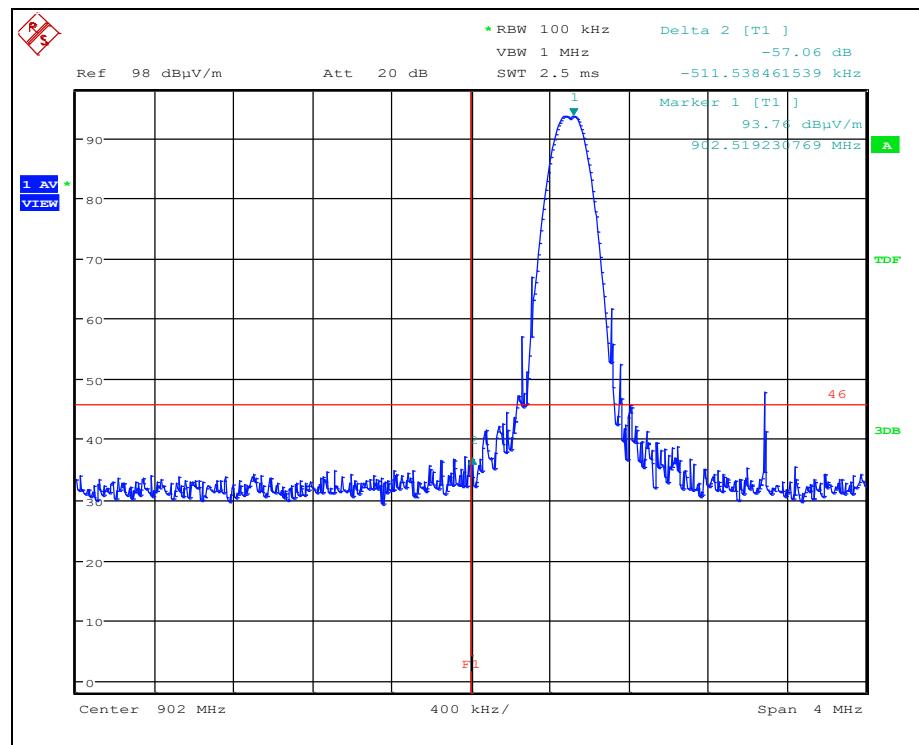
Test Requirement:

As per §15.249(d):

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

As per RSS-210 F.1(e):

Emissions radiated outside of the specified frequency bands, except for harmonic emissions, shall be attenuated by at least 50 dB below the level of the fundamental emissions or to the general field strength limits specified in RSS-Gen, whichever is less stringent.



Measurement Method:

The measurement method used was Section 6.10.6.2 Marker-delta Method of ANSI C63.10-2013 standard.

Modifications: No modification was required to comply for this test.

Final Result: The EUT complies with the applicable standard.

Measurement Data and Plot:

3.6 Unintentional Radiated Emissions

Date Performed: July 24, 2020

Test Standard: FCC CFR 47 Part 15.209
CFR Title 47 FCC Part 15 - Radio Frequency Devices, Subpart B
ICES-003
Issue 6RSS-Gen Issue 4

Test Method: ANSI C63.4-2014

Test Requirement:

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20 dB below the level of the fundamental or to the general field strength limits listed in Rss-Gen Issue 4, whichever is less stringent.

In measuring unwanted emissions, the spectrum shall be investigated from 30 MHz or the lowest radio frequency signal generated in the equipment, whichever is lower, without going below 9 kHz, up to at least the frequency if the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

Unwanted emissions falling into restricted bands of shall comply with the limits specified below

Frequency (MHz)	Field Strength	
	uV/m @ 3-m	Calculated dB μ V/m at 3m
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
960 - 1000	500	54.0

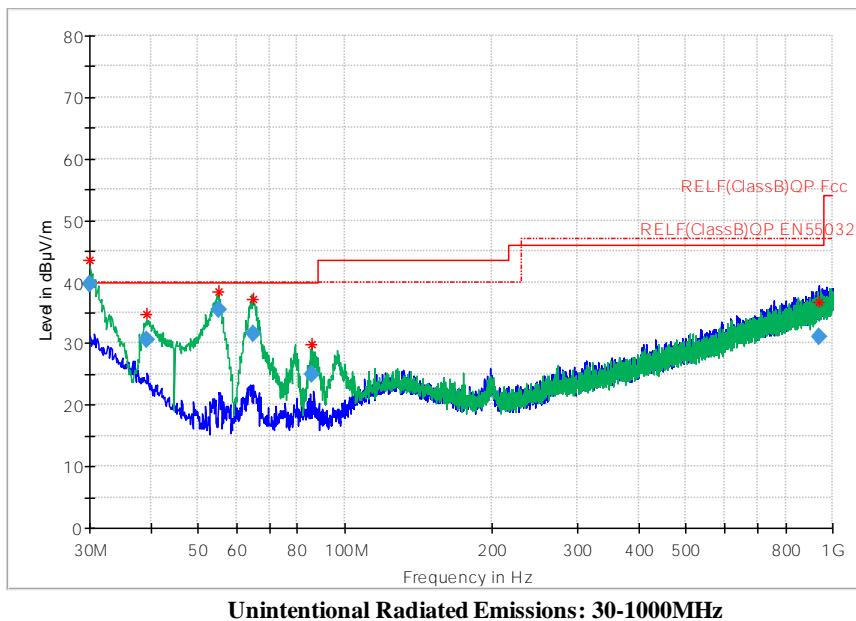
Test Setup:

The EUT was tested in our 3 m SAC and was positioned on the center of the turntable. The transmitter was set for continuous transmission. The lowest, middle and highest channels in the 2400-2483.5 MHz band were measured for all radiated emissions 10kHz to 18 GHz. The EUT was pre-scanned in 3 different orthogonal orientations and was found to radiate highest when placed flat on the tabletop as indicated in the test photos.

Measurement Method:

Measurements were made using spectrum analyser and receiver, 200Hz RBW average detector for the frequency range 9-150KHz; 9kHz RBW average detector for the Frequency range 150kHz to 30MHz; 120kHz RBW quasi-peak detector using the appropriate antennas, amplifiers and filters.

The measurement results are obtained as described below:


$$E [dB\mu V/m] = \text{Un-Corrected Value} + ATOT$$

Where ATOT is total correction factor including cable loss, antenna factor and preamplifier gain (ATOT = LCABLES + AF - AMP).

Modifications: No modification was required to comply for this test.

Final Result: The EUT complies with the applicable standard.

Measurement Data and Plot:

Frequency (MHz)	Quasi Peak (dB\muV/m)	Limit (dB\muV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.0666	39.7	40.0	0.3	1000	120.000	126.0	V	190	26.1
39.1817	30.6	40.0	9.4	1000	120.000	104.0	V	176	19.7
55.0634	35.4	40.0	4.6	1000	120.000	105.0	V	209	13.1
64.9265	31.5	40.0	8.5	1000	120.000	106.0	V	172	13.7
85.3570	25.0	40.0	15.0	1000	120.000	130.0	V	344	14.4
939.9709	31.1	46.0	14.9	1000	120.000	192.0	H	345	33.5

Note: Quasi-peaks were 20dB or greater below the limit line and were not included in this report.

3.7 Frequency Stability

Date Performed: July 27, 2020

Test Standard: FCC CFR 47 Part 15.215RSS-Gen Issue 5

Test Method: ANSI C63.10-2013

Test Setup:

FCC (15.215(c)): The 20dB bandwidth must remain within the designated frequency band over the expected variations in temperature and voltage range.

Rss-Gen Issue 5 (8.8): Transmitter frequency stability for license-exempt radio apparatus shall be measured in accordance with Section 6.11. For license-exempt radio apparatus, the frequency stability shall be measured at temperatures of -20°C (-4°F), +20°C (+68°F) and +50°C (+122°F) instead of at the temperatures specified in Section 6.11. If the frequency stability of the license-exempt radio apparatus is not specified in the applicable standard (RSS), measurement of the frequency stability is not required provided that the occupied bandwidth of the license-exempt radio apparatus lies entirely outside the restricted bands and the prohibited TV bands of 54-72 MHz, 76-88 MHz, 174-216 MHz, 470-608 MHz and 614-806 MHz.

Modifications: No modification was required to comply for this test.

Performance: Complies with the applicable standard.

Measurement Data and Plot:

Temperature °C	Frequency MHz
75	902.49575
50	902.49725
20	902.49825
0	902.49925
-40	902.50850

3.8 RF Exposure MPE

Date Performed: July 27, 2020

Test Standard: FCC 47 CFR §1.1310:
RSS-102 Section 2.5.2:

MPE Requirement:

CC CFR 47 §1.1310:

“Radiofrequency radiation exposure limits for General Population/Uncontrolled Exposure at Frequency range 1500 - 100000 MHz: 1.0 mW/cm²”

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)
(A) Limits of Occupational/Controlled Exposures				
0.3---3.0	614	1.63	*(100)	6
3.0---30	1842/f	4.89/f	*(900/f ²)	6
30---300	61.4	0.163	1.0	6
300---1500	---	---	f/300	6
1500---100,000	---	---	5	6
(B) Limits of Occupational/Controlled Exposures				
0.3---1.34	614	1.63	*(100)	30
1.34---30	824/f	2.19/f	*(180/f ²)	30
30---300	27.5	0.073	0.2	30
300---1500	---	---	f/1500	30
1500---100,000	---	---	1.0	30

f = frequency in MHz

* = Plane-wave equivalent Power Density

Note: 1 To Table 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for Occupational/controlled exposure also apply in situations when an individual is transient through a location where Occupational/controlled limits apply provided he or she is made aware of the potential of exposure.

Note: To Table 2: General population/uncontrolled exposure apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

RSS-102 Section 2.5.2:

“RF exposure evaluation is required if the separation distance between the user and/or bystander and the device’s radiating element is greater than 20 cm, except when the device operates as follows:

-at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $1.31 \times 10^{-2} f^0.6834$ W (adjusted for tune-up tolerance), where f is in MHz

In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the e.i.r.p. was derived.”

MPE Evaluation for FCC:

Power Density: $EIRP/[4\pi d^2]$, mW/cm²;

- 1) The Maximum field strength measured at 3m is 93 dBuV/m, so it's EIRP is 0.6 mW;
- 2) As an example, the distance from the antenna is set at 3 cm;

- 3) Power Density: $P_d = 0.005 \text{ mW/cm}^2$, which is less than the limit 1.0 mW/cm².

When installing the antenna, the above relationship should be used to ensure the RF Maximum Permissible Exposure (MPE) Exhibit Requirements

RF exposure evaluation exemption for IC:

The Maximum field strength measured at 3m is 93 dBuV/m, so it's EIRP is 0.6 mW;

Limit: $1.31 \times 10^{-2} f^{0.6834} \text{ W} = 1.4 \text{ W}$, ($f = 928 \text{ MHz}$)

Therefore, RF exposure is not required.

Appendix A: TEST SETUP PHOTOS

Figure 1: Radiated Emissions Below 30MHz

Figure 2: Radiated Emissions 30MHz – 1GHz

Figure 3: Radiated Emissions above 1GHz

Appendix B: ABBREVIATIONS

Abbreviation	Definition
AC	Alternating Current
AM	Amplitude Modulation
CE	European Conformity
CISPR	Comité International Spécial des Perturbations Radioélectriques (International Special Committee on Radio Interference)
DC	Direct Current
EFT	Electrical Fast Transient
EMC	Electro Magnetic Compatibility
EMI	Electro Magnetic Interference
ESD	Electrostatic Discharge
EUT	Equipment Under Test
FCC	Federal Communications Commission
IC	Industry Canada
ICES	Interference Causing Equipment Standard
IEC	International Electrotechnical Commission
LISN	Line Impedance Stabilizing Network
OATS	Open Area Test Site
RF	Radio Frequency
RMS	Root-Mean-Square
SAC	Semi-Anechoic Chamber

END OF REPORT