Report No.: 31252050.001 Page 1 of 62

Electromagnetic Compatibility Test Report

Prepared in accordance with

CFR 47 Part 15C and RSS-210, Issue 8

Multiple Parts

On

Firefly RFID Expansion Card

WIRELESS MODULAR DEVICE

Firefly RFID Solutions 1521 Boone Trail Road Sanford, NC 27330 USA

Prepared by:

TUV Rheinland of North America, Inc.

Report No.:

31252050.001

Page 2 of 62

Manufacturer's statement / attestation

The manufacturer; Firefly RFID Solutions, as the responsible party for the equipment tested, hereby affirms:

- a) That he has reviewed and concurs that the test shown in this report are reflective of the operational characteristics of the device for which certification is sought;
- b) That the device in this test report will be representative of production units;
- c) That all changes (in hardware and software/firmware) to the subject device will be reviewed.
- d) That any changes impacting the attributes, functionality or operational characteristics documented in this report will be communicated to the body responsible for approving (certifying) the subject equipment.

Printed name of official

1521 Boone Tear DOAD

Address

019-460-1177 ext 101. Dill.d

Signature of official

Date

Dillidavidsmartidieso

Email address of official

Report No.: 31252050.001 Page 3 of 62

Client:	firefly 🎄 💦	1521 Boon	TID Solutions ne Trail Road NC 27330 USA	919	Chalmers -460-1177 x111 / chalmers@rfidresolution.com		
Identification:	WIRELESS MO	ODULAR DEVICI	E Seria	l No.:	PRODUCTION PROTOTYPE		
Test item:	Firefly RFID E	Expansion Card		tested pleted:	8 March 2013		
Testing location:	TUV Rheinland 762 Park Aven Youngsville, N U.S.A.		1		19) 554-3668 019) 554-3542		
Test specification:	FCC FCC FCC FCC FCC FCC FCC FCC FCC	Emissions: FCC Part 15, Subpart C, RSS-210 Issue 8: FCC Part 15.207(a) and RSS-GEN, 7.2.2 FCC Parts 15.205, 15.209, 15.215(c), RSS-210 FCC Part 15.247(a)(1), RSS-210 A8.1(a), and RSS-GEN 4.6.1, FCC Part 15.247 and RSS-210 Annex 8, FCC Part 15.247(a)(1)(i), RSS-210, Section A8.1 FCC Part 15.247(b)(2) and RSS-210 A8.1(b), FCC Part 15.247(b)(2) and RSS-210 A8.4(1), FCC Part 15.247(g) and RSS-210 A8.1, FCC Part 15.247(h) and RSS-210 A8.1, FCC Part 15.31(e) FCC Part 15.231(a) and RSS-210, Annex 1, FCC Part 15.231(b) and RSS-210, A1.1 FCC Part 15.231(c) and RSS-210 A1.1.3 FCC Part 2.1093 and RSS-102, Issue 4					
Test Result	The above pro	duct was found to	be Compliant	to the a	above test standard(s)		
tested by: Mark R	yan		reviewed by:	Michae	l Moranha		
13 December 2010	Signature		23 May 2013		Signature		
Other Aspects:			None				
Abbreviations: OK, Pass,	Compliant, Complies = passed	l Fail, N	ot Compliant, Does Not	Comply = f	failed N/A = not applicable		
F		Mahahaha	CREDITED		Industry Canada		
90552 and	100881	Testing Cert #	3331.05		2932H-1 and 2932H-2		

Report No.: 31252050.001

Page 4 of 62

TABLE OF CONTENTS

1	GE	NEKAL INFUKWATION	3
	1.1	SCOPE	
	1.2 1.3	PURPOSE	
	1.3 1.4	SUMMARY OF TEST RESULTS	
2		BORATORY INFORMATION	
•	2.1	ACCREDITATIONS	8
	2.2	EXPANDED MEASUREMENT UNCERTAINTY EMISSIONS	
2	2.3	SOFTWARE USED	
2	2.4	MEASUREMENT EQUIPMENT USED	11
3	PR	ODUCT INFORMATION	11
(3.1	PRODUCT DESCRIPTION	11
	3.2	EQUIPMENT MODIFICATIONS	11
•	3.3	TEST PLAN	11
4	900	MHZ TRANSMITTER EMISSION MEASUREMENTS	12
2	4.1	SPURIOUS EMISSIONS OUTSIDE THE BAND - FCC 15.247(D), RSS-210 A8.5	12
2	4.2	CONDUCTED EMISSIONS FCC 15.207(A) AND RSS-210	
2	4.3	FHSS SYSTEMS FCC 15.247(G) AND RSS-210, A8.1	
	4.4	INCORPORATION OF INTELLIGENCE WITHIN A FHSS SYSTEM FCC 15.247(H) AND RSS-210, A8.1	
	4.5	CHANNEL SEPARATION	
	4.6	PSEUDORANDOM HOPPING ALGORITHM	
	4.7	OCCUPIED BANDWIDTH	
	4.8 4.9	99% POWER BANDWIDTH	
	4.9 4.10	TRANSMITTER OUTPUT POWER FCC PART 15.247(B)(2) AND RSS-210	
	4.10 4.11	OPERATION WITH MULTIPLE ANTENNAS	
	4.12	900 MHz RF Exposure Evaluation	
5	433	MHZ TRANSMITTER EMISSION MEASUREMENTS	
4	5.1	FUNDAMENTAL FIELD STRENGTH AND HARMONIC EMISSIONS	
	5.2	BANDWIDTH	
4	5.3	99% Power Bandwidth	
4	5.4	433 MHz RF Exposure Evaluation	53
6	EM	USSIONS IN RECEIVE MODE	55
(5.1	RADIATED EMISSIONS	55
AP	PEN	DIX A	60
7	TES	ST PLAN	60

Report No.: 31252050.001 Page 5 of 62

1 General Information

1.1 Scope

This report is intended to document the status of conformance with the requirements of the CFR 47 Part 15C and RSS-210, Issue 8 based on the results of testing performed on 8 March 2013 on the Firefly RFID Expansion Card , Model No. WIRELESS MODULAR DEVICE, manufactured by Firefly RFID Solutions. This report only applies to the specific samples tested under the stated test conditions for the only. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

1.2 Purpose

Testing was performed to evaluate the EMC performance of the EUT (Equipment Under Test) in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report.

1.3 Revision History

Revision	Date	Description of Revision
	9 Apr 2013	Initial Release
A	23 May 2013	Clarifications of some descriptions

Report No.: 31252050.001 Page 6 of 62

1.4	Sum	m	ary of Test Result	s							
			TID Solutions ne Trail Road	Tel	919-460-1177 x111 Contact		Ian Chalmers				
			NC 27330 USA	Fax			e-mail	ian.chalmers@rf	idresolution.com		
Description		F	irefly RFID Expansion Card		Model Number	WIR	RELESS MO	DULAR DEVI	Œ		
Serial Number		P	RODUCTION PROTOTYP	Е	Test Voltage/Freq.	120V	AC/60Hz				
Test Date Comp	pleted:	8	March 2013		Test Engineer	Mar	k Ryan				
Standar	ds		Description		Severity Level	or Lir	nit	Results	Test Result		
FCC Part 15, Su Standard	bpart C		Radio Frequency Devic Subpart C: Intentiona Radiators		See called out basic st	andard	ls below	See Below	Complies		
RSS-210 Issue 8 Standard	;		Low-Power Licence-exe Radiocommunication De Category I Equipmen	vices	See called out basic st	andard	ls below	See Below	Complies		
FCC Parts 15.20 15.215(c), RSS-2		9,	Radiated Emissions EUT in Transmit Mod	le	Below limit of section 15.209(a) and 15.215(05,	41.14 dBμV	Complies		
FCC Part 15.207 RSS-GEN, 7.2.2			Conducted Emissions on Mains EUT in Transmit Mode		15.207(a) limits, 150kHz - 30MHz			47.19 dBμV	Complies		
FCC Part 15.247 RSS-210 Annex			Frequency Hopping Operation within the band 902-928 MHz		See called out reuqirements below				Complies		
RSS-210, Sectio	FCC Part 15.247(a)(1)(i), RSS-210, Section A8.1		Channel Seperation		Minimum 50 channels	Minimum 50 channels		0.5 MHz (50 channels)	Complies		
FCC Part 15.247 RSS-210 A8.1(b)	nd	Pseudorandom Hoppong Algorithm		≥ 50 hopping channels			500 kHz	Complies		
FCC Part 15.247 RSS-210 A8.1(a RSS-GEN 4.6.1			Occupied Bandwidth		6dB ≥ 500 kHz 20dB (ref. for channel separation) 99% BW ≤ 500 kHz			43.2 kHz 71.6 kHz 66.0 kHz	Complies		
FCC Part 15.247 RSS-210 A8.5	(d) and		Band Edge		Ensure 20dB bandwidth is Contained within the Frequency Band			>20dB BW is contained	Complies		
FCC Part 15.247 RSS-210 A8.4(1		nd	Transmitter Output Power		Shall not exceed 1.0 Watts		0.65 W	Complies			
FCC Part 15.247 RSS-210 A8.1	(g) and		Frequency Hopping Spread Spectrum (FHSS) Systems		Description of Hopping System		Firefly protocol	Complies			
FCC Part 15.247 RSS-210 A8.1	(h) and			Incorporation of Intelligence within a FHSS System Not Applicable: EUT does not incorporate hopping intelligence				NA			
FCC Part 15.31(RSS-210, 2.1					Battery Operated	Complies					
FCC Parts 15.10 RSS-210 2.2, 2.6 RSS-GEN 7.2.3.	5,A8.5,			Radiated Emissions while EUT in Receive Mode		Below limit of section 15.109(a) Class B				37.45 dBμV	Complies
FCC Part 2.1093 RSS-102, Issue			RF Exposure		SAR or MPE Require	ments		See SAR report	Complies		

Report No.: 31252050.001 Page 7 of 62

Standards	Description	Severity Level or Limit	Measured	Test Result
FCC Part 15.231 and RSS-210, Annex 1	Periodic operation in the band 40.66 - 40.70 MHz and above 70 MHz	See Basic Standards Below	See Below	Complies
FCC Parts 15.205, 15.209, 15.215(c), RSS-210	Radiated Emissions	30 MHz - 5 GHz	37.45 dBμV	Complies
FCC Part 15.207(a) and RSS-GEN, 7.2.2	Conducted Emissions on Mains EUT in Transmit Mode	15.207(a) limits, 150kHz - 30MHz	53.19 dBμV	Complies
FCC Part 15.231(a) and RSS-210, Annex 1	Deactivation of Transmitter	EUT is not Manually Operated	Not Required	Complies
FCC Part 15.231(b) and RSS-210, A1.1	Field Strength of Fundamental and Spurious Emissions	15.231(b) Table Peak Limit is 101.57 dBuV at 433.0 MHz	79.54 dBuV Peak Field Strength of Fundamental	Complies
FCC Part 15.231(c)	Bandwidth	Part 15.231(c) 1.08 MHz	519.0 kHz	Complies
RSS-210 A1.1.3	99% Occupied Bandwidth	No wider than 0.5% of the center frequency	Below Limit	Complies
FCC Part 2.1093 and RSS- 102 Issue 4	RF Exposure	MPE or SAR Requirements (Mobile)	5 mW Max	Complies

Report No.: 31252050.001 Page 8 of 62

2 Laboratory Information

2.1 Accreditations

2.1.1 US Federal Communications Commission

TUV Rheinland of North America located at 762 Park Avenue, Youngsville, NC 27596-9470 is accredited by the commission for performing testing services for the general public on a fee basis. This laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (Registration No 90552 and 100881). The laboratory scope of accreditation includes: Title 47 CFR Part 15, and 18. The accreditation is updated every 3 years.

2.1.2 ILAC / A2LA

The laboratory has been assessed and accredited by A2LA in accordance with ISO Standard 17025:2005 (Certificate Number: 3331.05, Master Code: 134288). The scope of laboratory accreditation includes emission and immunity testing. The accreditation is updated annually.

2.1.3 Industry Canada

Registration No.: 2932H-1 The OATS has been accepted by Industry Canada to perform testing to 3 and to 10 meters, based on the test procedures described in ANSI C63.4-2009.

Registration No.: 2932H-2 The 5 meter chamber has been accepted by Industry Canada to perform testing to 3 meters, based on the test procedures described in ANSI C63.4-2009.

2.1.4 Japan – VCCI

The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) is a group that consists of Information Technology Equipment (ITE) manufacturers and EMC test laboratories. The purpose of the Council is to take voluntary control measures against electromagnetic interference from Information Technology Equipment, and thereby contribute to the development of a socially beneficial and responsible state of affairs in the realm of Information Technology Equipment in Japan. TUV Rheinland at the 762 Park Ave. Youngsville, N.C 27596 address has been assessed and approved in accordance with the Regulations for Voluntary Control Measures. (Laboratory Registration No: A-0034).

Report No.: 31252050.001 Page 9 of 62

Sample Calculation – radiated & conducted emissions

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength
$$(dB\mu V/m) = RAW - AMP + CBL + ACF$$

Where: $RAW = Measured level before correction (dB<math>\mu V$)

$$CBL = Cable Loss (dB)$$

ACF = Antenna Correction Factor (dB/m)

$$\mu V/m = 10^{\frac{\textit{dB}\mu V\,/\,\textit{m}}{20}}$$

Sample radiated emissions calculation @ 30 MHz

Measurement +Antenna Factor-Amplifier Gain+Cable loss=Radiated Emissions (dBuV/m)

$$25 dBuV/m + 17.5 dB - 20 dB + 1.0 dB = 23.5 dBuV/m$$

2.2 **Expanded Measurement Uncertainty Emissions**

Per CISPR 16-4-2:2011	$ m U_{lab}$	$ m U_{cispr}$						
Radiated Disturbance @ 3m, 10m								
30 MHz – 1,000 MHz	Horz. $3m = 4.52$, Horz. $10m = 4.51$	5.2 dB						
1.0 GHz – 6.0 GHz	3m = 4.25	5.2 dB						
6.0 GHz – 18.0 GHz	3m = 4.93	5.5 dB						
Conducted Disturbance @ M	ains Terminals							
9 kHz – 150 kHz	2.84 dB	4.0 dB						
150 kHz – 30 MHz	3.33 dB	3.6 dB						
Disturbance Power								
30 MHz – 300 MHz	4.00 dB	4.5 dB						

Report No.: 31252050.001 Page 10 of 62

Measurement Uncertainty Immunity

The estimated combined standard uncertainty for ESD immunity measurements is \pm 4.10%	Per IEC 61000-4-2
The estimated combined standard uncertainty for radiated immunity measurements is $\pm 2.05 dB$	Per IEC 61000-4-3
The estimated combined standard uncertainty for conducted immunity measurements; CDN is \pm 1.83dB.	Per IEC 61000-4-6
The estimated combined standard uncertainty for harmonic current and flicker measurements; PM6000 is \pm 2.5%.	Per CISPR 16-4-2

(Surge immunity is Per CISPR 16-4-2 methods)

The estimated combined standard uncertainty for EFT fast transient immunity measurements is ± 2.92%.

The estimated combined standard uncertainty for surge immunity measurements is $\pm 2.92\%$.

Measurement Uncertainty Immunity

The estimated combined standard uncertainty for power frequency magnetic field immunity measurements is ± 5.80 %

The estimated combined standard uncertainty for voltage variation and interruption measurements is \pm 1.74 %

Expanded measurement uncertainty numbers are shown in the tables above. Compliance criteria are not based on measurement uncertainty. The expanded uncertainty at a level of 95% confidence is obtained by multiplying the combined standard uncertainty by a coverage factor of 2.

Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Standard 17025:2005. Equipment calibration records are kept on file at the test facility.

2.3 **Software Used**

Manufacturer	Name	Version
Quantum Change/EMC Systems LLC.	Tile	3.2U
TopRudder	RadCon RF Immunity	1.1.13
TUV	Alt "R"	1
TUV	Alt "C"	1
VolTech Instruments	IEC61000-3 for PM6000	1.24.12
California Instruments	AC Source GUI 32	1.19
CTS	CTS 3.0	3.2.0.32
KeyTek ECAT	Surgeware	V5.31
KeyTek ECAT	Burstware	V5.31
Rohde & Schwarz	Click Rate Analyzer	1.7.0

Report No.: 31252050.001 Page 11 of 62

2.4 Measurement Equipment Used

Equipment	Manufacturer	Model #	Serial/Inst #	Last Cal dd/mm/yy	Next Cal dd/mm/yy				
Radiated Emissions (5 Meter Chamber) and Conducted RF Measurements									
Receiver, EMI	Rohde & Schwarz	ESIB40	100043	04-Sep-12	04-Sep-13				
Receiver, EMI	Rohde & Schwarz	ESCI 7	100917	05-Sep-12	05-Sep-13				
Spectrum Analyzer	Agilent Tec.	E7405A	US39440161	28-Sep-12	28-Sep-13				
Amplifier, preamp	Agilent Technologies	8449B	3008A01480	14-Nov-11	14-Nov-13				
Ant. BiconiLog	Chase	CBL6140A	1108	24-Aug-11	24-Aug-13				
Antenna Horn 1-18GHz	EMCO	3115	5770	26-Sep-12	26-Sep-14				
Cable, Coax	MicroCaox	MKR300C-0-0-1200-500500	002	01-Sep-12	01-Sep-13				
Cable, Coax	MicroCaox	MKR300C-0-1968-500310	005	01-Sep-12	01-Sep-13				
Cable, Coax	MicroCaox	UFB29C-1-5905-50U-50U	009	01-Sep-12	01-Sep-13				
Cable, Coax	Andrew	FSJ1-50A	045	01-Sep-12	01-Sep-13				
1.5 GHz High Pass Filter	Bonn Electronik	BHF 1500	025155	14-Nov-11	14-Nov-13				
3.0 GHz High Pass Filter	Bonn Electronik	BHF 3000	025155	14-Nov-11	14-Nov-13				
High Pass Filter	Micro-tronics	BRM50702	049	14-Nov-11	14-Nov-13				
	Conducted	Emissions (AC/DC and Sig	gnal I/O)						
Receiver, EMI	Rohde & Schwarz	ESCI 7	100917	05-Sep-12	05-Sep-13				
Cable, Coax	Pasternack	RG-223	051	01-Sep-12	01-Sep-13				
LISN 15-18 (NSLK 8126)	Schwarzbeck Mess- Electronik	NSLK 8126	003885	11-Jan-12	11-Jan-14				
Transient Limiter	Schaffner	CFL-9206	1649	01-Aug-11	01-Aug-13				
	Ge	neral Laboratory Equipmen	t						
Meter, Multi	Fluke	179	90580752	06-Sep-12	06-Sep-13				
RFI (5m) Test System	TUV Rheinland	5 Meter		CNR	CNR				
Meter, Temp/Humid/Barom	Davis	7400	PB00205A13	09-May-12	09-May-13				
Meter, Temp/Humid/Barom	Davis	7400	PB00205A05	09-May-12	09-May-13				

3 Product Information

3.1 Product Description

See Section Appendix A.

3.2 **Equipment Modifications**

No modifications were needed to bring product into compliance.

3.3 Test Plan

The EUT product information, test configuration, mode of operation, test types, test procedures, test levels, pass/failure criteria, in this report were carried out per the product test plan located in appendix A of this report

Report No.: 31252050.001 Page 12 of 62

4 900 MHz Transmitter Emission Measurements

4.1 Spurious Emissions Outside the band - FCC 15.247(d), RSS-210 A8.5

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of desired power, based on either RF conducted or radiated measurements.

4.1.1 Over View of Test

Results	Complies (as tested per this report)						4 March 2	013		
Standard	FCC Parts 15.205, 1	FCC Parts 15.205, 15.209, 15.215(c), 15.247(d), RSS-210 A8.5, and RSS-GEN 7.2.3.2								
Product Model	FIREFLY RFID EX	FIREFLY RFID EXPANSION CARD Serial# PRODUCTION PROTOTYPE						ROTOTYPE		
Test Set-up	Tested in a 5m Semi 80cm above the grou			•				nductive table		
EUT Powered By	120V 60Hz	Temp	70° F	Hı	umidity	21%	Pressure	997 mbar		
Perf. Criteria	(Below Limit)		Perf. Verification			Read	Readings Under Limit			
Mod. to EUT	None		Test Performed By			Mark	Mark Ryan			

4.1.2 Test Procedure

Testing was performed in accordance with 47 CFR Part 15, ANSI C63.10:2009, RSS-GEN Issue 2. These test methods are listed under the laboratory's A2LA Scope of Accreditation. This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices.

4.1.3 Deviations

The EUT is intended to be used with rechargeable batteries; however these tests will drain the battery in a few minute. Therefore, a charging base was used to maintain the extended transmitter on time. This will be employed in all the following tests.

4.1.4 Final Test

All final radiated spurious emissions measurements were below (in compliance) the limits.

The worst –case emissions are shown below. All other emissions are on file at TUV Rheinland.

Report No.: 31252050.001 Page 13 of 62

4.1.4.1 Emissions Outside the Frequency Band

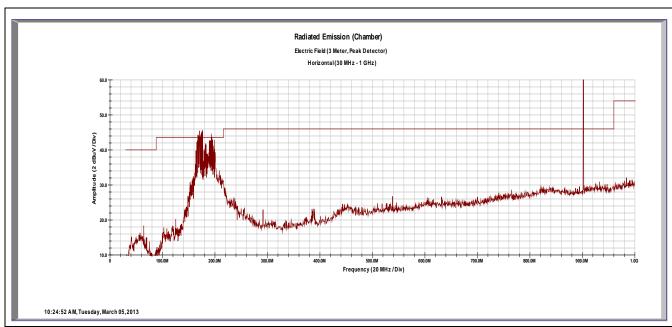
In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of desired power, based on either RF conducted or radiated measurements. Radiated antenna emission measurements are provided below to show that the EUT meets these requirements including the cabinet radiation of the EUT.

Three orientations of the EUT investigated for highest emissions:

Inree orientations of the EU1 investigated for nignest emissions								
Emission	ANT	QP FIM	Amp	Cable	ANT	E-Field		
Freq	Polar	Value	Gain	Loss	Factor	Value		
(MHz)	(H/V)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)		
Orientation .		11	1	1		1		
915.25	Н	92.99	0.00	3.60	22.61	119.20		
915.25	V	102.96	0.00	3.60	22.61	129.17		
915.25	Н	99.24	0.00	3.60	22.61	125.45		
915.25	V	89.13	0.00	3.60	22.61	115.34		
915.25	Н	99.44	0.00	3.60	22.61	125.65		
915.25	V	94.71	0.00	3.60	22.61	120.92		
915.25	Н	93.21	0.00	3.60	22.61	119.42		
915.25	٧	87.56	0.00	3.60	22.61	113.77		
902.75	Н	93.68	0.00	3.56	22.50	119.74		
902.75	V	103.25	0.00	3.56	22.50	129.31		
927.25	Н	94.72	0.00	3.62	22.80	121.14		
927.25	V	101.42	0.00	3.62	22.80	127.84		
Orientation	B:							
915.25	Н	102.57	0.00	3.60	22.61	128.78		
915.25	V	96.52	0.00	3.60	22.61	122.73		
915.25	Н	92.54	0.00	3.60	22.61	118.75		
915.25	V	98.90	0.00	3.60	22.61	125.11		
915.25	Н	96.19	0.00	3.60	22.61	122.40		
915.25	V	97.94	0.00	3.60	22.61	124.15		
Orientation	C:		'	'				
915.25	Н	100.62	0.00	3.60	22.61	126.83		
915.25	V	102.38	0.00	3.60	22.61	128.59		
915.25	Н	94.50	0.00	3.60	22.61	120.71		
915.25	V	97.34	0.00	3.60	22.61	123.55		
915.25	Н	93.02	0.00	3.60	22.61	119.23		
915.25	V	97.51	0.00	3.60	22.61	123.72		

NOTE: Orientation A, on the low frequency produced the highest emission (see highlighted).

Red = Antenna 1, Blue = Antenna 2, Green = Antenna 3, Black = Antenna 4


Channel that produces the highest emissions:

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

TUV Rheinland of North America, Inc., 762 Park Avenue, Youngsville, NC 27596-9470, Tel: 919-554-3668, Fax: 919-554-3542

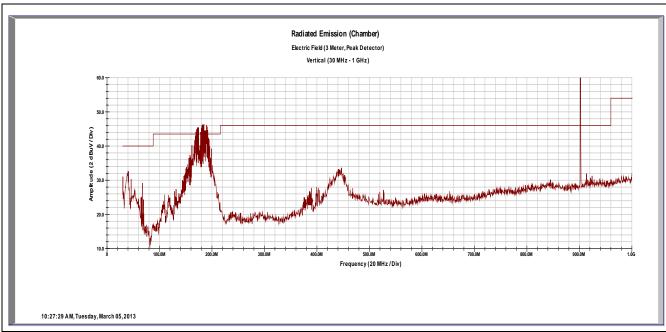
Report No.: 31252050.001 Page 14 of 62

Radiated Emissions - 30MHz to 1000 MHz Horizontal

Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
172.96	Н	1.5	107	23.70	0.00	1.51	8.78	33.99	43.50	-9.51
192.00	Н	1.1	113	22.89	0.00	1.61	10.28	34.78	43.50	-8.72

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty Combined Standard Uncertainty $u_c(y) = \pm 2.29$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes: Worst Case emissions shown are in Orientation A on the low channel.


The emission at 902 MHz is the fundamental frequency.

A notch filter tuned to the fundamental was used.

Report No.: 31252050.001 Page 15 of 62

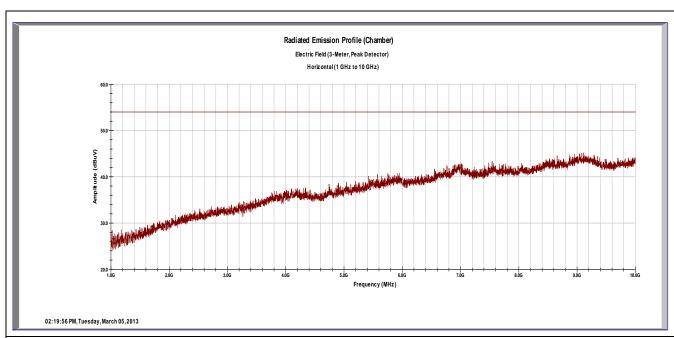
Radiated Emissions - 30MHz to 1000 MHz

Vertical

Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
36.76	V	1	337	20.54	0.00	0.69	8.06	29.29	40.00	-10.71
67.00	V	1	355	7.20	0.00	0.93	9.66	17.79	40.00	-22.21
177.96	V	1	311	25.72	0.00	1.54	9.20	36.45	43.50	-7.05
189.44	V	1	309	29.39	0.00	1.60	10.16	41.14	43.50	-2.36
445.96	V	1	328	10.96	0.00	2.46	16.32	29.74	46.00	-16.26

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor ± Uncertainty

Combined Standard Uncertainty $u_c(y) = \pm 2.29$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence


Notes: Worst Case emissions shown are in Orientation A on the low channel.

The emission at 902 MHz is the fundamental frequency.

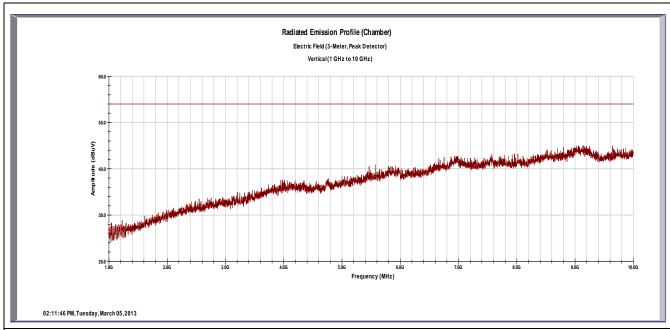
A notch filter tuned to the fundamental was used.

Report No.: 31252050.001 Page 16 of 62

Radiated Emissions - 30MHz to 1000 MHz **Horizontal**

Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor ± Uncertainty Combined Standard Uncertainty $u_c(y) = \pm 2.29$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence


Notes: No detectable emissions

Report No.: 31252050.001 Page 17 of 62

Radiated Emissions – 1 GHz to 10 GHz

Vertical

Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty Combined Standard Uncertainty $U_c(y) = \pm 2.29$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes: No detectable emissions

Report No.: 31252050.001 Page 18 of 62

4.2 Conducted Emissions FCC 15.207(a) and RSS-210

This test measures the electromagnet levels of spurious signals generated by the EUT on the AC power line that may affect the performance of other nearby electronic equipment.

4.2.1 Over View of Test

Results	Complies (as teste	d per this	s report)			Date	8 March	2013	
Standard	FCC Part 15.207(a)	FCC Part 15.207(a) and RSS-GEN, 7.2.2							
Product Model	FIREFLY RFID EX	FIREFLY RFID EXPANSION CARD Serial# PRODUCTION PROTOTYPE							
Configuration	See test plan for deta	ee test plan for details							
Test Set-up	Tested in shielded ro	Tested in shielded room. EUT placed on table, see test plans for details							
EUT Powered By	120VAC	Temp	72° F	Hum	idity	20%	Pressure	1007 mbar	
Frequency Range	150kHz - 30MHz								
Perf. Criteria	15.207(a) limits	15.207(a) limits Perf. Verification Readings Under Limit for L1 & Neutral							
Mod. to EUT	None	Test 1	Test Performed By Mark Ryan						

4.2.2 Test Procedure

Conducted and FCC emissions tests were performed using the procedures of ANSI C63.4 including methods for signal maximizations and EUT configuration. The photos included with the report show the EUT in its maximized configuration.

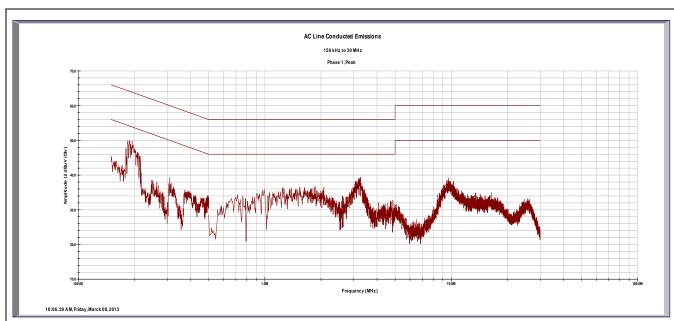
The frequency range from 150kHz - 30MHz was investigated for conducted emissions.

Conducted Emissions measurements were performed in the shielded room using procedures specified in the test plan and standard.

4.2.3 Deviations

There were no deviations from the test methodology listed in the test plan for the conducted emission test.

4.2.4 Final Test


All final conducted emissions measurements were below (in compliance) the limits.

Report No.: 31252050.001 Page 19 of 62

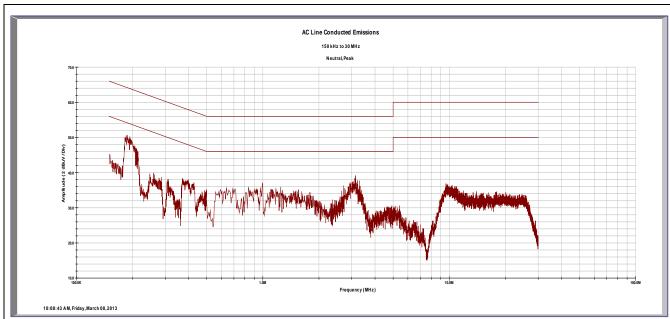
4.2.5 Final Graphs and Tabulated Data

Conducted Emissions @ 120V/60Hz

Line 1

Freq	ID	Quasi	Ave	Loss	T Limiter	Limit	Limit	Margin	Margin
(MHz)	(1,2,3,N)	(dBuV)	(dBuV)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)	(dB)
0.20	1	34.72	21.25	0.03	9.96	63.69	53.69	-18.99	-22.46
1.86	1	22.03	11.09	0.09	10.06	56.00	46.00	-23.83	-24.77
3.26	1	22.38	14.95	0.12	10.13	56.00	46.00	-23.38	-20.81
5.30	1	13.39	4.06	0.15	10.20	60.00	50.00	-36.26	-35.59
9.57	1	22.29	16.39	0.22	10.37	60.00	50.00	-27.12	-23.02
25.96	1	16.85	11.31	0.37	10.24	60.00	50.00	-32.54	-28.08

Quasi Spec Margin = Quasi FIM + Cable Loss + LISN CF - Quasi Limit \pm Uncertainty


Ave Spec Margin = Ave FIM + Cable Loss + LISN CF - Ave Limit \pm Uncertainty

Combined Standard Uncertainty $u_c(y) = \pm 1.66$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes: 915MHz transmitter on

Report No.: 31252050.001 Page 20 of 62

Conducted Emissions @ 120V/60Hz Neutral

Freq	ID	Quasi	Ave	Loss	T Limiter	Limit	Limit	Margin	Margin
(MHz)	(1,2,3,N)	(dBuV)	(dBuV)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)	(dB)
0.19	N	37.19	21.81	0.03	9.97	64.21	54.21	-17.03	-22.41
1.18	N	20.58	8.69	0.07	10.01	56.00	46.00	-25.34	-27.23
3.12	N	22.12	13.69	0.11	10.11	56.00	46.00	-23.65	-22.08
4.90	N	13.98	4.12	0.15	10.20	56.00	46.00	-31.68	-31.54
9.77	N	21.05	14.93	0.22	10.42	60.00	50.00	-28.31	-24.43
21.52	N	18.08	12.56	0.33	10.54	60.00	50.00	-31.05	-26.57

Quasi Spec Margin = Quasi FIM + Cable Loss + LISN CF - Quasi Limit ± Uncertainty

Ave Spec Margin = Ave FIM + Cable Loss + LISN CF - Ave Limit ± Uncertainty

Combined Standard Uncertainty $u_c(y) = \pm 1.66$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes: 915MHz transmitter on

Report No.: 31252050.001 Page 21 of 62

4.3 FHSS Systems FCC 15.247(g) and RSS-210, A8.1

Frequency Hopping Spread Spectrum (FHSS) systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The FIREFLY RFID EXPANSION CARD utilizes proprietary protocols and pseudo-random hopping table.

4.4 Incorporation of Intelligence within a FHSS System FCC 15.247(h) and RSS-210, A8.1

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hop sets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

The EUT does not incorporate intelligence relating to the hopping pattern as described above. Rather, the EUT always distributes its transmissions across the same 50 channels. A channel is not re-used until a transmission has occurred on each of the other channels.

Report No.: 31252050.001 Page 22 of 62

4.5 Channel Separation

4.5.1 Test Over View

Results	Complies (as tested	Complies (as tested per this report)						Marc	ch 2013
Standard	FCC Part 15.247(a)(FCC Part 15.247(a)(1)(i), RSS 210 A8.1							
Product Model	FIREFLY RFID EX	FIREFLY RFID EXPANSION CARD Serial# PRODUCTION PROTOTYPE							
Test Set-up	Radiated emissions	Radiated emissions at 3m							
EUT Powered By	120VAC/60Hz	Temp	74° F	H	umidity	32%	Pressu	ıre	1010mbar
Perf. Criteria	(Below Limit)		Perf. Verification Readings Under Limit						mit
Mod. to EUT	None		Test Pe	rfoi	rmed By	Mark Ryan			

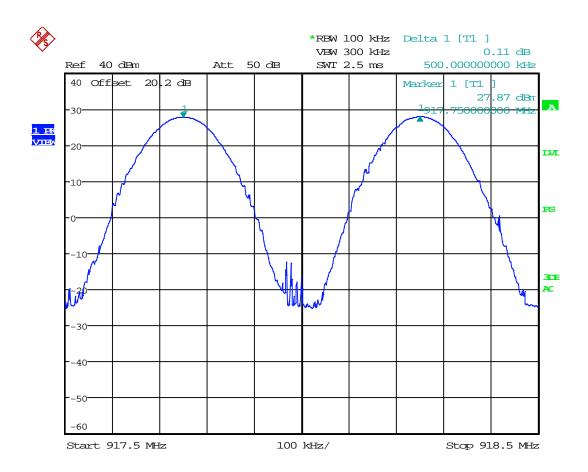
4.5.2 Test Procedure

Frequency hopping Systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Maximum allowed 20dB Bandwidth = 250 kHz

Min. Channel Separation = 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater The channel separation is greater than the measured maximum 20 dB bandwidth. Therefore the EUT is compliant with this section.

4.5.3 Deviations


The test samples received were not modified with a direct measurement port. Therefore 3m radiated emissions were made for this measurement.

4.5.4 Final Test

The EUT met the performance criteria requirement as specified in the test plan of this report and in the standards.

Report No.: 31252050.001 Page 23 of 62

4.5.5 Final Data

Date: 1.MAR.2013 09:39:32

Figure 1: Channel Separation = 500 kHz

Spectrum Analyzer Parameters:

RBW=100kHz

Span=1 MHz

VBW = 30kHz

LOG dB/div.= 10dB

Sweep = Auto

Detector = peak detector, max hold

Report No.: 31252050.001 Page 24 of 62

4.6 Pseudorandom Hopping Algorithm

Frequency hopping systems in the 902 to 928 MHz band shall use at least 50 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20 second period.

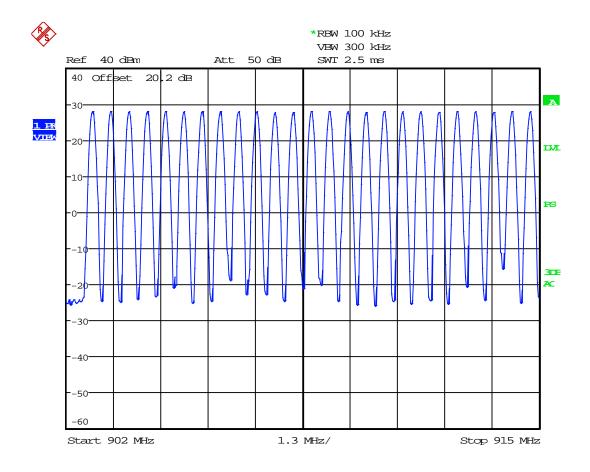
4.6.1 Test Over View

Results	Complies (as tested	Complies (as tested per this report)						Marc	ch 2013
Standard	FCC Part 15.247(b)	FCC Part 15.247(b)(1) and RSS-210, A8.1(b)							
Product Model	FIREFLY RFID EX	FIREFLY RFID EXPANSION CARD Serial# PRODUCTION PROTOTYPE							ROTOTYPE
Test Set-up	Radiated Measureme	Radiated Measurement from 3m							
EUT Powered By	120VAC/60Hz	Temp	77° F	H	umidity	35%	Pressur	re	1004 mbar
Perf. Criteria	(Below Limit)		Perf. Verification Readings Under Limit					mit	
Mod. to EUT	None		Test Pe	Test Performed By			Mark Ryan		

4.6.2 Test Procedure

The FIREFLY RFID EXPANSION CARD Transmitter would send a packet every 50 ms with a delay of 1 second between packets. Each packet is sent on the next channel as determined by the pseudo-random hop protocol.

4.6.3 Deviations

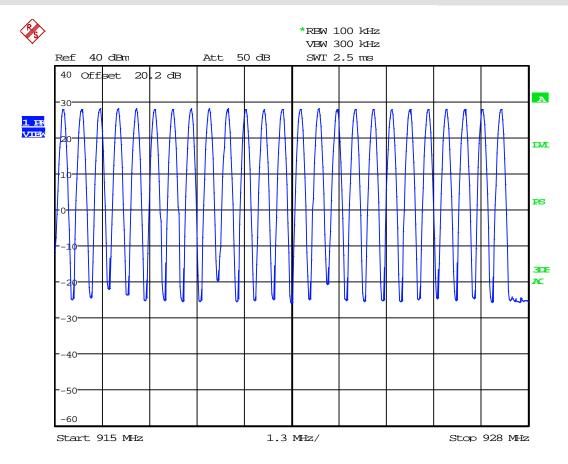

Tested on antenna port #3.

4.6.4 Final Test

The EUT met the performance criteria requirement as specified in the test plan of this report and in the standards.

Report No.: 31252050.001 Page 25 of 62

4.6.5 Final Data



Date: 1.MAR.2013 09:25:38

Figure 2: Plot of hopping Channels - 902 MHz to mid-band

Report No.: 31252050.001 Page 26 of 62

Date: 1.MAR.2013 09:28:28

Figure 3: Plot of hopping Channels from Mid-band to 928 MHz (50 hopping channels total)

Spectrum Analyzer Parameters:

RBW=100kHz

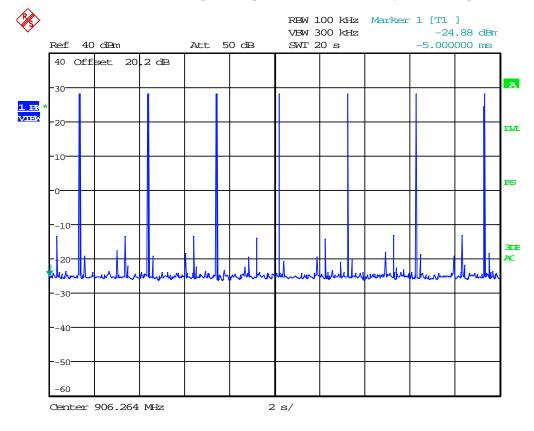
Span=14MHz

VBW = 100kHz

LOG dB/div.= 10dB

Sweep = Auto

Detector = peak detector, max hold

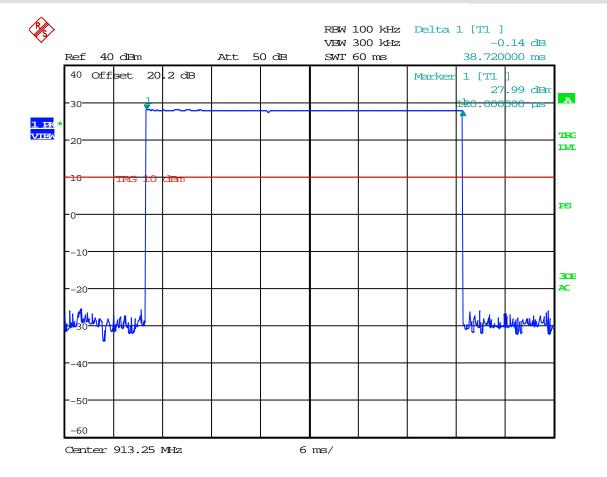

Report No.: 31252050.001 Page 27 of 62

Time of Occupancy FCC Part 15.247(a)(1)(iii)

Frequency Band (MHz)	Bandwidth		Average Time of Occupancy
902 to 928	<=250 kHz	50	$\leq 0.4 \text{ sec. In } (0.4 * 50) \text{ sec.}$

There were 7 hops at 38.7 milliseconds per hop for any 20 second period. Time of occupancy equals number of hops multiplied by the duration of one hop.

Time of Occupancy limit = 0.40 seconds in any (0.4*50) = 20 second period. Calculated Time of Occupancy = 38.7 ms / hop x 7 hops = 0.28 seconds in any 20 second period



Date: 1.MAR.2013 13:13:46

Figure 4: 20 second sweep of 906.25 MHz shows 7 hops

Note: The on-channel traces are the 7 highest peaks.

Report No.: 31252050.001 Page 28 of 62

Date: 1.MAR.2013 09:59:38

Figure 5: Measurement of 1 hop at 913913.25 MHz Time on Frequency = 38.7 ms

Spectrum Analyzer Parameters: RBW=100kHz Span=zero VBW = 300kHzLOG dB/div.= 10dB Sweep = 60 msDetector = peak detector, max hold

QF09B040

Report No.: 31252050.001 Page 29 of 62

4.7 Occupied Bandwidth

The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

4.7.1 Test Over View

Results	Complies (as tested per this report)					Date		1 Mar	ch 2013
Standard	FCC Part 15.247(a)(FCC Part 15.247(a)(1)(i) and RSS-210, A8.1(a)							
Product Model	FIREFLY RFID EXPANSION CARD Serial# PRODUCTION PROTOTYPE								
Test Set-up	Direct Measurement from antenna port								
EUT Powered By	120VAC/60Hz	Temp	74° F	H	umidity	32%	Press	sure	1010mbar
Perf. Criteria	(Below Limit)		Perf. Verification Readings Under Limit					mit	
Mod. to EUT	None		Test Pe	Test Performed By			Mark Ryan		

4.7.2 Test Procedure

Frequency hopping Systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

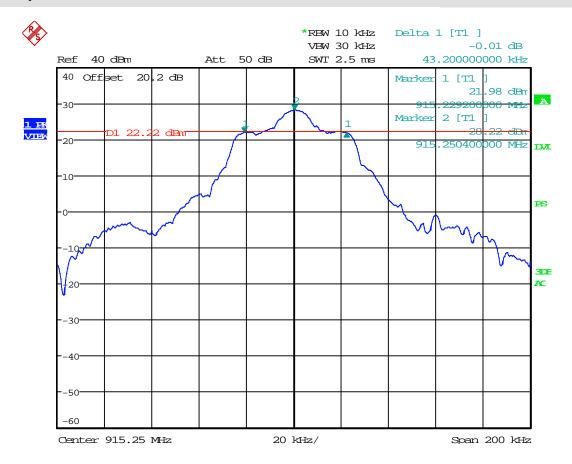
Maximum allowed 20dB Bandwidth = 500 kHz

Channel Separation = 25 kHz Min. or the 20 dB bandwidth of the hopping channel, whichever is greater

The channel separation is greater than the measured maximum 20 dB bandwidth. Therefore the EUT is compliant with this section.

4.7.3 Deviations

Tested on antenna port #3.


4.7.4 Final Test

The EUT met the performance criteria requirement as specified in the test plan of this report and in the standards.

4.7.5 Final Data

Frequency (MHz)	6 dB Band Width	20 dB Band width
$902.75, f_{\rm L}$	42.4 kHz	70.4 kHz
$915.25, f_{\rm m}$	43.2 kHz	69.6 kHz
$927.25, f_{\rm h}$	41.6 kHz	71.6 kHz

Report No.: 31252050.001 Page 30 of 62

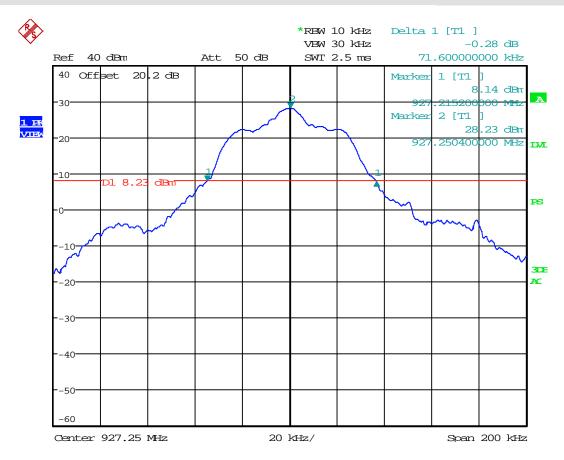

Date: 1.MAR.2013 11:27:17

Figure 6: 6 dB Occupied Bandwidth

Note: highest 6dB bandwidth shown. Plots for low and high band are on file at TUV Rheinland.

*BW = 43.2 KHZ

Report No.: 31252050.001 Page 31 of 62

Date: 1.MAR.2013 12:59:21

Figure 7: 20 dB Occupied Bandwidth

Note: highest 20dB bandwidth shown. Plots for low and mid band are on file at TUV Rheinland..

*BW = 71.6 KHZ

Report No.: 31252050.001 Page 32 of 62

4.8 99% Power Bandwidth

For the purpose of Section A1.1, the 99% bandwidth shall be no wider than .25% of the center frequency for devices operating between 70-900MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency.

4.8.1 Test Over View

Results	Complies (as tested per this report) Date 1 March 2013							ch 2013	
Standard	RSS-210, A8.1(a) ar	RSS-210, A8.1(a) and RSS-GEN.4.6.1							
Product Model	FIREFLY RFID EX	FIREFLY RFID EXPANSION CARD Serial# PRODUCTION PROTOTYPE							
Test Set-up	Direct Measurement	Direct Measurement from antenna port							
EUT Powered By	120VAC/60Hz	Temp	74° F	Hı	umidity	32%	Pres	ssure	1010mbar
Perf. Criteria	(Below Limit)	Perf. Verification Readings Under Limit						imit	
Mod. to EUT	None		Test Pe	rfor	med By	Mark Ryan			

4.8.2 **Test Procedure**

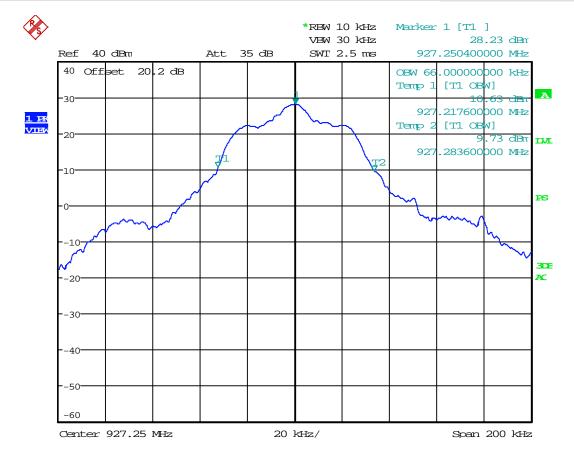
Using the procedures of RSS-GEN section 4.6.1, the 10 kHz resolution bandwidth is 1% of the 1 MHz span. The Video bandwidth is 3 times that of the resolution bandwidth.

The limit of the bandwidth would be 0.5% of 916 MHz is 4.58 MHz. The measured 99% bandwidth is 326.7 kHz.

4.8.3 Deviations

Tested on antenna port #3.

4.8.4 Final Test


The EUT met the performance criteria requirement as specified in the test plan of this report and in the standards.

4.8.5 Final Data

Frequency	99% Power			
(MHz)	Band Width			
$902.75, f_{\rm L}$	64.4 kHz			
$915.25, f_{\rm m}$	64.0 kHz			
927.25, f _h	66.0 kHz			

Report No.: 31252050.001 Page 33 of 62

Date: 1.MAR.2013 13:01:41

Figure 8 – Worst case 99% Power Bandwidth = 66 kHz

Spectrum Analyzer Parameters:

RBW=10kHz

Span= 2 MHz

VBW = 30kHz

LOG dB/div.= 10dB

Sweep = Auto

Detector = peak detector, max hold

The EUT is compliant to the requirements of RSS-210 A1.1.3

Report No.: 31252050.001 Page 34 of 62

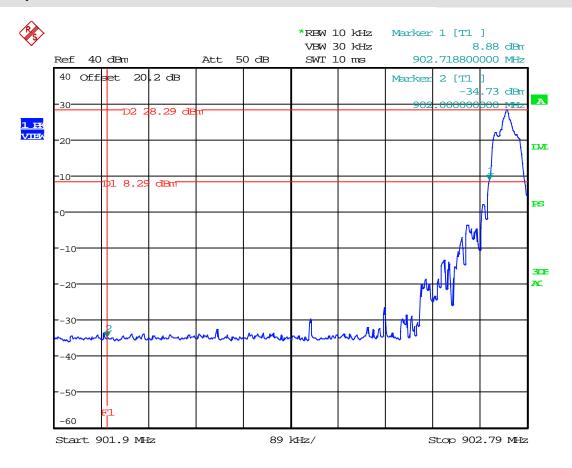
4.9 Band Edge

4.9.1 Test Over View

Results	Complies (as tested per this report)				Date		1 March 2013		
Standard	FCC Part 15.247(d), RSS 210 A8.5								
Product Model	FIREFLY RFID EXPANSION CARD Serial#				PRO	PRODUCTION PROTOTYPE			
Test Set-up	Direct Measurement from antenna port								
EUT Powered By	120VAC/60Hz	Temp	74° F	H	umidity	32%	Press	ure	1010mbar
Perf. Criteria	(Below Limit) Perf. Ver		erif	ication	Readings Under Limit				
Mod. to EUT	None		Test Perfor		med By	Mark Ryan			

4.9.2 Test Procedure

Intentional radiators operating under the alternative provisions to the general emission limits must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.


4.9.3 Deviations

The test samples received were not modified with a direct measurement port. Therefore 3m radiated emissions were made for this measurement.

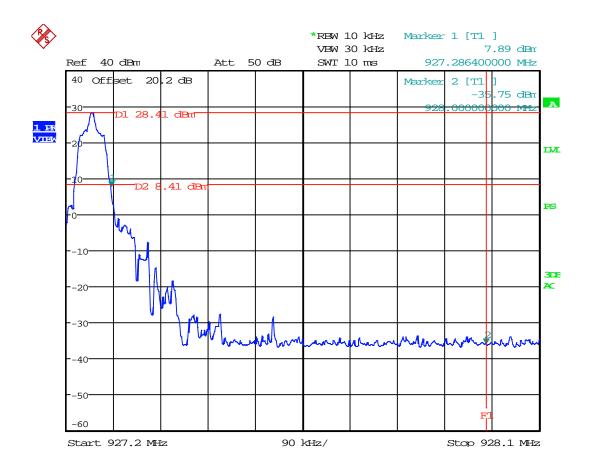
4.9.4 Final Test

The EUT met the performance criteria requirement as specified in the test plan of this report and in the standards.

Report No.: 31252050.001 Page 35 of 62

Date: 1.MAR.2013 13:56:24

Figure 9: Lower Band Edge Measurement


Note: Band Edge is at 902 MHz

Channel Frequency is 902.75 MHz,

The frequency at the -20dBc point is 902.72 MHz

The level at the 902 MHz band edge is -34.7 dBm (Noise floor of receiver) which is -63dBc

Report No.: 31252050.001 Page 36 of 62

Date: 1.MAR.2013 14:40:29


Figure 10: Upper Band Edge Measurement Note: Band edge is at 928 MHz

Channel Frequency is 928.25 MHz,

The frequency at the -20dBc point is 927.29 MHz

The level at the 902 MHz band edge is -35.7 dBm (Noise floor of receiver) which is -64 dBc

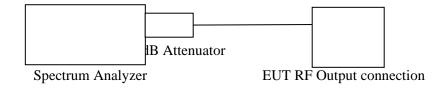
The EUT is compliant with the rules.

Report No.: 31252050.001 Page 37 of 62

4.10 Transmitter Output Power FCC part 15.247(b)(2) and RSS-210

For frequency hopping systems operating in the 902 to 928 MHz band employing at least 50 hopping channels: 1 watt.

4.10.1 Test Over View


Results	Complies (as tested	Complies (as tested per this report)							ch 2013	
Standard	FCC Part 15.247(b)	FCC Part 15.247(b)(2) and RSS-210 A8.4(2)								
Product Model	FIREFLY RFID EX	FIREFLY RFID EXPANSION CARD Serial# PRODUCTION PROTOTYPE								
Test Set-up	Direct Measurement	Direct Measurement from antenna port								
EUT Powered By	120VAC/60Hz	Temp	74° F	H	umidity	32%	Pres	sure	1010mbar	
Perf. Criteria	(Below Limit)									
Mod. to EUT	None									

4.10.2 Test Procedure

The peak output power was measured at the low, mid and high band frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The cable loss and the attenuator was measured and added in the reference level offset in the spectrum analyzer. The spectrum analyzer's resolution bandwidth was greater than the 20dB bandwidth of the modulated carrier and the video bandwidth was equal to the resolution bandwidth.

The EUT was set with the modulation turned off for this measurement.

4.10.3 Test Setup:

4.10.4 Deviations

The test samples received were not modified with a direct measurement port. Therefore 3m radiated emissions were made for this measurement.

4.10.5 Final Test

The EUT met the performance criteria requirement as specified in the test plan of this report and in the standards.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

Report No.: 31252050.001

Page 38 of 62

4.10.6 Peak Power Output

Peak Output Calculated Power Measurements at TUV

Emission Freq (MHz)	Power Out (dBm)	Spec Limit (dBm)	Spec Margin (dB)
$902.75, f_{\rm L}$	28.1	30	-1.9
$915.25, f_{\rm m}$	28.0	30	-2.0
$927.25, f_{\rm h}$	28.0	30	-2.0

Note: The spec limit Per FCC 15.247(b)(2) is 1.0 Watt (30 dBm)

The transmitter is rated at 1Watt Maximum output power.

1 Watt (0.988W) is represented in the SAR Report.

The transmitter submitted for testing produced an output of 65 mW (28.1 dBm).

Date: 1.MAR.2013 14:18:37

Figure 11 – Highest Peak Radiated Power Output shown. Graphs of the other frequencies are on file at the manufacturer and at TUV.

4.10.7 Antenna Gain

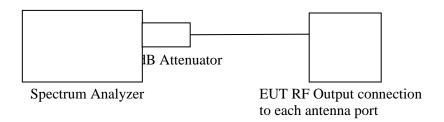
The antenna gain data was supplied by the manufacturer with the following results provided:

Results: Internal Antenna(s)

l	Freq. (MHz)	Max. Peak Gain (dBi)	Max. Gain (Numeric)
	902.0 - 928.0	3.0	2.0

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA

Report No.: 31252050.001 Page 39 of 62


4.11 Operation with multiple antennas

The EUT employs the use of 4 antennas however, only one antenna at a time will be selected for transmission. This test verifies that the other antenna ports will produce similar results.

4.11.1 Test Procedure

The peak output power was measured at the mid band frequency at all four antenna ports. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The cable loss and the attenuator was measured and added in the reference level offset in the spectrum analyzer. The spectrum analyzer's resolution bandwidth was greater than the 20dB bandwidth of the modulated carrier and the video bandwidth was equal to the resolution bandwidth.

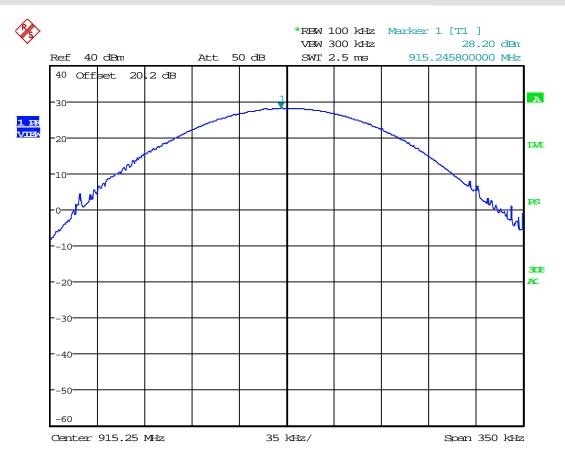
Test Setup:

4.11.2 Final Test

The EUT performed with very similar results on each of the antenna ports.

4.11.3 Peak Power Output

Peak Output Calculated Power Measurements


Antenna Freq (MHz)	Power Out (dBm)
1	28.03
2	28.20
3	28.07
4	28.06

Note: The antenna ports were within 0.20 dB of each other.

Plot on antenna 3 can be seen on page

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

Report No.: 31252050.001 Page 40 of 62

Date: 1.MAR.2013 15:14:26

Figure 12 – Highest Peak Radiated Power Output shown on antenna port 2. Graphs of the other antenna ports are on file at the manufacturer and at TUV.

Report No.: 31252050.001 Page 41 of 62

4.12 900 MHz RF Exposure Evaluation

4.12.1 Exposure Requirements – FCC Part 2.1093 and RSS-102 Issue 4

FCC Part 15.247(d) states that SAR evaluation in not required if "Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See §1.1307(b)(1) of CFR 47."

RSS-102 section 2.5.1 states that a device is exempt from SAR evaluation if the frequency is "above 2.2 GHz and up to 3 GHz inclusively, and with output power (i.e. the higher of the conducted or radiated (e.i.r.p.) source-based, time-averaged output power) that is less than or equal to 20 mW for general public use...".

4.12.2 Test Procedure

If the antenna is located > 20cm from the user, then an MPE calculation is acceptable.

If the antenna is located < 20cm (portable / mobile / hand-held device) from the user, then SAR evaluation is required.

4.12.3 Evaluation

The EUT is indented to be a hand held device. Therefore the transmitter antennas are located in close proximity (< 20cm) to humans. A SAR evaluation is required for the 900MHz portion of this device.

4.12.4 SAR Testing

SAR testing was performed at RF Exposure Lab, in San Marcos, CA. See the SAR Report in exhibits list. The SAR levels are compliant with both the FCC and Industry Canada rules

Report No.: 31252050.001 Page 42 of 62

4.12.5 Evaluation for Industry Canada

RSS-102, Issue 4, section 1.1 states that a RF Exposure evaluation is the method used to evaluate the RF field strength levels generated by a device. RF exposure evaluation is required if the separation distance between the user and the device is greater than 20 cm.

RSS-102, Issue 4, section 1.1 states that a SAR evaluation is the method used to evaluate the SAR levels from a device by physical measurement or computational modeling techniques. SAR evaluation is required if the separation distance between the user or bystanders and the device is less than or equal to 20 cm.

4.12.6 Test Procedure

If the antenna is located > 20cm from the user, then an MPE calculation is acceptable.

If the antenna is located < 20cm (portable / mobile / hand-held device) from the user, then SAR evaluation is required.

4.12.7 Evaluation

The EUT is indented to be a hand held device. Therefore the transmitter antennas are located in close proximity (< 20cm) to humans. A SAR evaluation is required for the 900MHz portion of this device.

4.12.8 SAR Testing

SAR testing was performed at RF Exposure Lab, in San Marcos, CA. See the SAR Report in exhibits list. The SAR levels are compliant with both the FCC and Industry Canada rules.

Report No.: 31252050.001 Page 43 of 62

5 433 MHz transmitter Emission Measurements

5.1 Fundamental Field Strength and Harmonic Emissions

This test evaluates the field strength of the fundamental and field strength of the spurious emissions.

5.1.1 Test Over View

Results	Complies (as teste	ed per this	Da	te	4 Ma	arch 2013					
Standard	FCC Part 15.247 aı	FCC Part 15.247 and RSS-210 Annex 8and RSS-210, A1.1									
Product Model	FIREFLY RFID EX	FIREFLY RFID EXPANSION CARD Serial# PRODUCTUION PROTOTYPE									
Configuration	See test plan for de	See test plan for details									
Test Set-up	Tested in anechoic	chamber	EUT pl	lacec	l on table	See t	test plai	n for o	details		
EUT Powered By	120VAC/60Hz	Temp	72° F	Hı	ımidity	13%	Press	ure	1000 mbar		
Perf. Criteria	15.231(b) Table (Below Perf. Verification Readings under Limit							nit			
Mod to EUT	None		Test Pe	rfor	med By	Mark F	Ryan				

5.1.2 Test Procedure

The EUT was placed on a table 3 meters from the antenna and all 3 orthogonal positions were investigated for highest field strength and highest spurious emissions. The fundamental frequency of the EUT is 433.0 MHz, therefore in addition to the requirements of 15.205 the EUT was tested to meet the following requirements in 15.231(b)

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70 70-130	•	225 125
130-174	\1\ 1,250 to 3,750	\1\ 125 to 375
174-260 260-470	$1\ 3,750 to$	375 \1\ 375 to 1,250
Above 470	12,500. 12,500	1,250

5.1.3 Deviations

There were no deviations from the test methodology listed in the test plan for the harmonic current emissions test.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA.

Report No.: 31252050.001 Page 44 of 62

5.1.4 Final Data

5.1.4.1 Three orientations of the EUT investigated for highest emissions:

433 MHz Orientation Data:

Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
Orientation A										
433.00	Н	1.9	189	51.74	0.00	2.42	16.20	70.36	100.79	-30.43
433.00	V	1	111	56.29	0.00	2.42	16.20	74.91	100.79	-25.88
433.00	Н	1.9	189	45.85	0.00	2.42	16.20	64.47	80.79	-16.32
433.00	V	1	111	50.97	0.00	2.42	16.20	69.59	80.79	-11.20
433.00	Н	1.9	189	17.71	0.00	2.42	16.20	36.33	80.79	-44.46
433.00	V	1	111	21.44	0.00	2.42	16.20	40.06	80.79	-40.73
Orientation B										
433.00	Н	2.3	185	56.01	0.00	2.42	16.20	74.63	100.79	-26.16
433.00	V	1	104	54.83	0.00	2.42	16.20	73.45	100.79	-27.34
433.00	Н	2.3	185	50.33	0.00	2.42	16.20	68.95	80.79	-11.84
433.00	V	1	104	49.35	0.00	2.42	16.20	67.97	80.79	-12.82
433.00	Н	2.3	185	20.93	0.00	2.42	16.20	39.55	80.79	-41.24
433.00	V	1	104	20.17	0.00	2.42	16.20	38.79	80.79	-42.00
Orientation C										
433.00	Н	1.9	339	65.56	0.00	2.42	16.20	84.18	100.79	-16.61
433.00	V	1	239	56.10	0.00	2.42	16.20	74.72	100.79	-26.07
433.00	Н	1.9	339	60.92	0.00	2.42	16.20	79.54	80.79	-1.25
433.00	V	1	239	51.49	0.00	2.42	16.20	70.11	80.79	-10.68
433.00	Н	1.9	339	28.03	0.00	2.42	16.20	46.65	80.79	-34.14
433.00	V	1	239	20.28	0.00	2.42	16.20	38.90	80.79	-41.89

Red = Pk, Blue = QP, Green = Ave

NOTE: Orientation "C" produced the highest emission (see highlighted).

The limit at 433MHz is $10958 \mu V/m$ at 3m which is equivalent to $80.8 dB\mu V/m$ at 3m


The worst-case emission employs the quasi-peak detector. Also note that this device passes without using a duty cycle correction factor.

Note: Maximum conducted measurement peak output of the 433 MHz transmitter is 3.89 dBm = 2.5mW

Report No.: 31252050.001 Page 45 of 62

5.1.5 Final Graphs

Radiated Emissions – 30MHz to 1000 MHz Horizontal

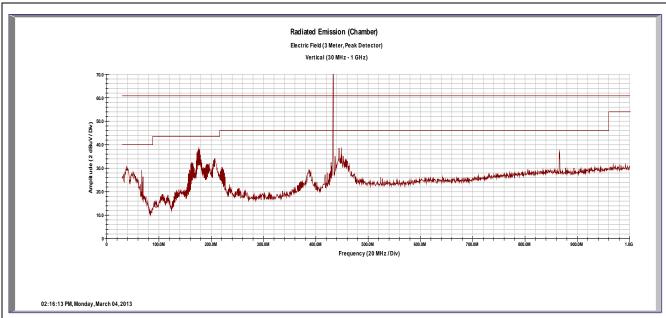
Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
163.00	Н	1.3	355	28.38	0.00	1.47	8.46	38.31	43.50	-5.19
173.68	Н	1.9	5	31.71	0.00	1.51	8.82	42.04	43.50	-1.46
381.00	Н	1	343	9.55	0.00	2.25	14.80	26.61	46.00	-19.39
447.00	Н	2.2	351	17.91	0.00	2.46	16.34	36.71	46.00	-9.29
866.00	Н	1	128	18.66	0.00	3.49	22.10	44.25	46.00	-1.75

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor ± Uncertainty

Combined Standard Uncertainty $u_c(y) = \pm 2.29$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes: Worst Case emissions shown are in Orientation C.

The emission at 433 MHz is the fundamental frequency.


The harmonic limits is 1096 μV/m at 3m which is equivalent to 60.8 dBμV/m at 3m (top limit line)

All emissions (including harmonics) are below the restricted-band limits (bottom limit line).

Report No.: 31252050.001 Page 46 of 62

Radiated Emissions – 30MHz to 1000 MHz

Vertical

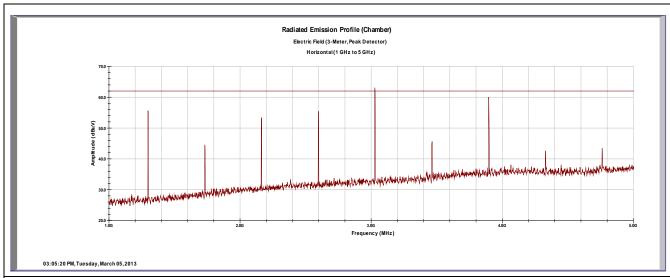
Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
32.04	V	1	4	19.43	0.00	0.65	5.78	25.86	40.00	-14.14
175.12	V	1.8	237	26.87	0.00	1.52	8.91	37.30	43.50	-6.20
206.08	V	2.3	250	18.95	0.00	1.65	10.42	31.03	43.50	-12.47
386.00	V	1.3	205	9.55	0.00	2.28	14.82	26.65	46.00	-19.35
448.44	V	1.1	243	0.00	0.00	2.47	16.37	18.83	46.00	-27.17
866.00	V	1.1	36	16.71	0.00	3.49	22.10	42.30	46.00	-3.70
					·	·				

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty

Combined Standard Uncertainty $u_c(y) = \pm 2.29$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes: Worst Case emissions shown are in Orientation C.

The emission at 433 MHz is the fundamental frequency.


The harmonic limits is 1096 µV/m at 3m which is equivalent to 60.8 dBµV/m at 3m (top limit line)

All emissions (including harmonics) are below the restricted-band limits (bottom limit line).

Report No.: 31252050.001 Page 47 of 62

Radiated Emissions – 1 GHz to 5 GHz

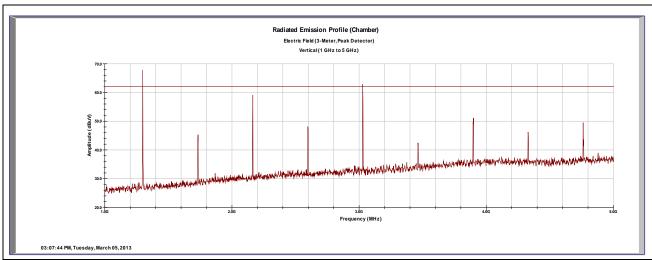
Horizontal

Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
1299.00	Н	1.2	209	55.75	34.81	5.72	25.49	52.15	84.00	-31.85
1299.00	Н	1.2	209	29.06	34.81	5.72	25.49	25.46	64.00	-38.54
2165.00	Н	1.2	105	61.58	34.29	7.44	27.86	62.59	84.00	-21.41
2165.00	Н	1.2	105	30.34	34.29	7.44	27.86	31.35	64.00	-32.65
2598.00	Н	1	198	54.73	34.15	8.15	29.03	57.76	84.00	-26.24
2598.00	Н	1	198	26.50	34.15	8.15	29.03	29.53	64.00	-34.47
3031.00	Н	1	50	64.16	34.19	8.83	30.50	69.30	84.00	-14.70
3031.00	Н	1	50	29.76	34.19	8.83	30.50	34.90	64.00	-29.10
3897.00	Н	1.1	43	51.96	-33.28	10.10	32.82	61.60	84.00	-22.40
3897.00	Н	1.1	43	24.97	-33.28	10.10	32.82	34.61	64.00	-29.39
										İ

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor ± Uncertainty

Combined Standard Uncertainty $U_c(y) = \pm 2.29$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes: All Radiated Spurs and Harmonics are below the restricted-band limits


The Emissions shown in BLUE are using the Peak Detector and the

Emissions shown in **GREEN** are using the Average Detector.

Report No.: 31252050.001 Page 48 of 62

Radiated Emissions – 1 GHz to 5 GHz

Vertical

Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
1299.00	V	1.2	344	63.44	34.81	5.72	25.49	59.84	84.00	-24.16
1299.00	V	1.2	344	32.70	34.81	5.72	25.49	29.10	64.00	-34.90
1732.00	V	1	217	55.53	34.38	6.67	26.87	54.69	84.00	-29.31
1732.00	V	1	217	30.33	34.38	6.67	26.87	29.49	64.00	-34.51
2165.00	V	1	225	62.64	34.29	7.44	27.86	63.65	84.00	-20.35
2165.00	V	1	225	32.63	34.29	7.44	27.86	33.64	64.00	-30.36
2598.00	V	1	239	52.72	34.15	8.15	29.03	55.75	84.00	-28.25
2598.00	V	1	239	27.39	34.15	8.15	29.03	30.42	64.00	-33.58
3031.00	V	1.2	170	63.71	34.19	8.83	30.50	68.85	84.00	-15.15
3031.00	V	1.2	170	29.96	34.19	8.83	30.50	35.10	64.00	-28.90
3897.00	V	1	70	51.81	33.28	10.10	32.82	61.45	84.00	-22.55
3897.00	V	1	70	26.76	33.28	10.10	32.82	36.40	64.00	-27.60
4330.00	V	1.1	158	41.55	33.59	10.76	32.16	50.88	84.00	-33.12
4330.00	V	1.1	158	23.40	33.59	10.76	32.16	32.73	64.00	-31.27

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor ± Uncertainty

Combined Standard Uncertainty $u_c(y) = \pm 2.29$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes: All Radiated Spurs and Harmonics are below the restricted-band limits

The Emissions shown in **BLUE** are using the Peak Detector and the

Emissions shown in **GREEN** are using the Average Detector.

Report No.: 31252050.001 Page 49 of 62

Bandwidth 5.2

This test measures the Bandwidth of the fundamental emission.

Test Over View 5.2.1

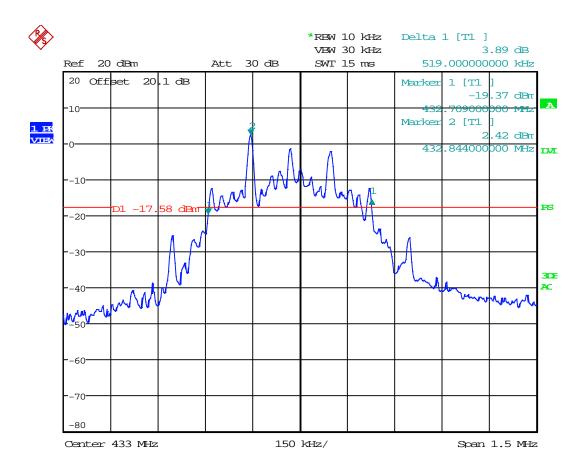
Results	Complies (as teste	ed per this	report)		Da	ite	4 Mar	ch 2013			
Standard	FCC Part 15.247(a)	FCC Part 15.247(a)(1)(i), RSS-210, Section A8.1									
Product Model	FIREFLY RFID EX	XPANSIC	ON CARD	Serial#	PRODU	ICTUIO	N PRO	ОТОТҮРЕ			
Configuration	See test plan for de	tails									
Test Set-up	Tested in an anecho	oic chamb	er EUT	placed on ta	ıble Se	e test pl	lan for	details			
EUT Powered By	120VAC/60Hz	Temp	72° F	Humidity	13%	Pressu	ure	1000 mbar			
Perf. Criteria	Part 15.231(c) (Bel										
Mod to EUT	None		Test Per	formed By	Mark F	Ryan					

5.2.2 Test Procedure

Bandwidth measurements were made according to FCC part 15.31 and FCC part 15.231(c).

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

The Fundamental Frequency is 433.0 MHz therefore 0.25% of 433.0 MHz is 1.08 MHz


5.2.3 Deviations

There were no deviations from the test methodology.

5.2.4 Final Test

All final measurements were within (in compliance) the limits.

Report No.: 31252050.001 Page 50 of 62

Date: 4.MAR.2013 09:00:18

Figure 13 – 20 dB Bandwidth is 519.0 kHz

Report No.: 31252050.001 Page 51 of 62

5.3 99% Power Bandwidth

For the purpose of Section A1.1, the 99% bandwidth shall be no wider than .25% of the center frequency for devices operating between 70-900MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency.

5.3.1 **Test Over View**

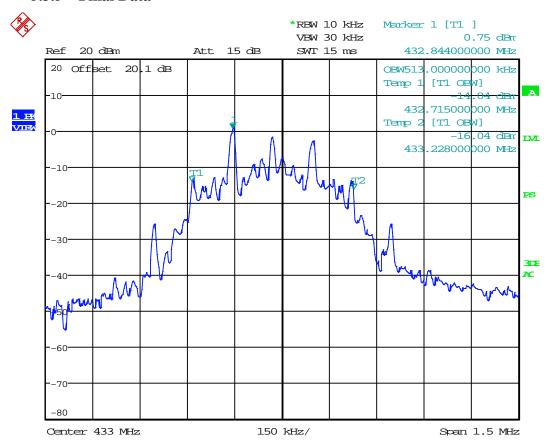
Results	Complies (as tested per this report)					Date	4 N	Iarch 2013	
Standard	RSS-210 Section Al	1.1.3							
Product Model	BTA-1	BTA-1 Serial#				TS-1			
Test Set-up	Direct Measurement	Direct Measurement from antenna port							
EUT Powered By	Battery	Temp	72° F	H	umidity	13%	Pressure	e 1000 mbar	
Perf. Criteria	(Below Limit)		Perf. Verification			Read	Readings Under Limit		
Mod. to EUT	None		Test Performed By			Marl	Mark Ryan		

5.3.2 Test Procedure

Using the procedures of RSS-GEN section 4.6.1, the 1 kHz resolution bandwidth is 1% of the 1 MHz span. The Video bandwidth is 3 times that of the resolution bandwidth.

The limit of the bandwidth would be 0.5% of 433.0 MHz is 1.08 MHz. The measured 99% bandwidth is 513.0 kHz.

5.3.3 Deviations


There were no deviations from the test methodology listed in the test plan for the 99% Power bandwidth test.

5.3.4 Final Test

The EUT met the performance criteria requirement as specified in the test plan of this report and in the standards.

Report No.: 31252050.001 Page 52 of 62

5.3.5 Final Data

Date: 4.MAR.2013 09:02:00

Figure 14: 99% Bandwidth = 513.0 kHz

Report No.: 31252050.001 Page 53 of 62

5.4 433 MHz RF Exposure Evaluation

5.4.1 Exposure Requirements – FCC Part 2.1093 and RSS-102, Issue 4

FCC Part 15.247(d) states that SAR evaluation in not required if "Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. *See* §1.1307(b)(1) of CFR 47."

RSS-102 section 2.5.1 states that a device is exempt from SAR evaluation if the frequency is "above 2.2 GHz and up to 3 GHz inclusively, and with output power (i.e. the higher of the conducted or radiated (e.i.r.p.) source-based, time-averaged output power) that is less than or equal to 20 mW for general public use...".

5.4.2 Test Procedure

If the antenna is located > 20cm from the user, then an MPE calculation is acceptable.

If the antenna is located < 20cm (portable / mobile / hand-held device) from the user, then SAR evaluation is required.

5.4.3 Evaluation

The EUT is indented to be a hand held device. Therefore the transmitter antennas are located in close proximity (< 20cm) to humans. A SAR evaluation is required.

5.4.4 Evaluation for FCC to Part 2.1093

Refer to the SAR exhibit

FCC 447498 D01 Mobile Portable RF Exposure v05, Appendix A, provides a table for SAR Test Exclusion Thresholds for 100 MHz to 6 GHz and \leq 50 mm.

The exclusion threshold for SAR testing at 450 MHz, 5 mm is 22mW.

The maximum power output of the 433MHz Transmitter plus maximum antenna gain

= 3.89 dBm + 0 dBi = 3.89 dBm, or 2.5 mW EIRP. (at 100% duty cycle)

5.4.5 Conclusion

EiRP output of 5 mW is well below the 22 mW threshold.

The EUT is compliant, even without the duty cycle factor.

The 433MHz transmitter is excluded for SAR Testing.

Report No.: 31252050.001 Page 54 of 62

5.4.6 Evaluation for Industry Canada to RSS-102, Issue 4

RSS-102, Issue 4, section 1.1 states that a RF Exposure evaluation is the method used to evaluate the RF field strength levels generated by a device. RF exposure evaluation is required if the separation distance between the user and the device is greater than 20 cm.

RSS-102, Issue 4, section 1.1 states that a SAR evaluation is the method used to evaluate the SAR levels from a device by physical measurement or computational modeling techniques. SAR evaluation is required if the separation distance between the user or bystanders and the device is less than or equal to 20 cm.

5.4.7 Test Procedure

If the antenna is located > 20cm from the user, then an MPE calculation is acceptable.

If the antenna is located < 20cm (portable / mobile / hand-held device) from the user, then SAR evaluation is required.

5.4.8 Evaluation

2.5 mW output with a 0dBi Max. gain (numeric gain of 1) antenna. = a maximum EiRP output of 2.5 mW.

5.4.9 Conclusion

EiRP output of 2.5 mW is well below the 200 mW limit of RSS-102 section 2.5.1, for 3 kHz to 1 GHz.

The EUT is compliant, even without the duty cycle factor.

The 433MHz transmitter is exempted from SAR Testing.

Report No.: 31252050.001 Page 55 of 62

6 Emissions in Receive Mode.

6.1 Radiated Emissions

This test measures the electromagnetic levels of spurious signals generated by the EUT that radiated from the EUT and may affect the performance of other nearby electronic equipment.

6.1.1 Over View of Test

Results	Complies (as tested per this report) Date 8 March 20						ch 2013		
Standard	FCC Parts 15.109(a)	and RSS	S-210 2.2	, 2.6,A8.5,	RSS	-GEN	7.2.3.2		
Product Model	FIREFLY RFID EX	KPANSIC	ON CARI	Serial	#	PRO	DUCTIO	ON PR	ОТОТУРЕ
Configuration	See test plan for deta	ails							
Test Set-up	Tested in a 5m Semi	Tested in a 5m Semi Anechoic chamber, placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane on a turn-table. See test plans for details							
EUT Powered By	100VAC 60Hz	Temp	75 °F	Humidit	tv 33%		Pressu	ıre	1001 mbar
Frequency Range	30 MHz to 5 GHz @	30 MHz to 5 GHz @ 3m							
Perf. Criteria	(Below Limit)		Perf. Verification		Readings Under Limit				
Mod. to EUT	None		Test Performed By			Mark Ryan			

6.1.2 Test Procedure

Radiated and FCC emissions tests were performed using the procedures of ANSI C63.4:2009 including methods for signal maximizations and EUT configuration. The photos included with the report show the EUT in its maximized configuration.

The frequency range from 30 MHz to 5 GHz was investigated for radiated emissions.

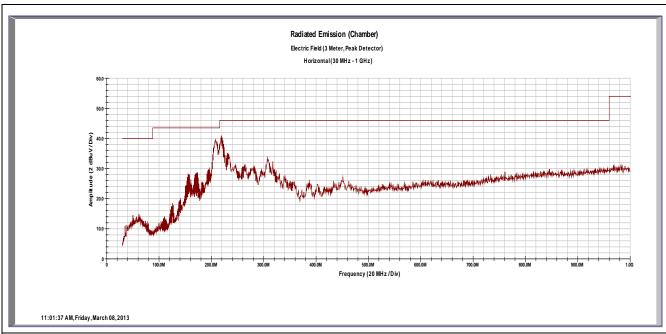
Radiated emission testing was performed at a distance of 3 meters in a 5 meter semi-anechoic chamber.

Both the 900 MHz Frequency hopper and the 433 MHz were set to receive mode.

6.1.3 Deviations

There were no deviations from the test methodology listed in the test plan for the radiated emission test.

6.1.4 Final Test


All final radiated emissions measurements were below (in compliance) the limits.

Report No.: 31252050.001 Page 56 of 62

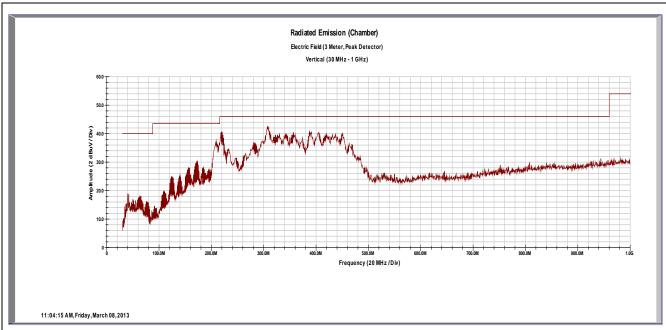
6.1.5 Final Graphs and Tabulated Data

Radiated Emissions - 30MHz to 1000 MHz

Horizontal

Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
156.00	Н	1.7	80	15.66	0.00	1.43	8.30	25.39	43.50	-18.11
208.00	Н	1	77	25.33	0.00	1.66	10.46	37.45	43.50	-6.05
306.00	Н	1	81	15.83	0.00	2.02	12.96	30.81	46.00	-15.19
						·				

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor ± Uncertainty


Combined Standard Uncertainty $U_c(y) = \pm 2.29$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

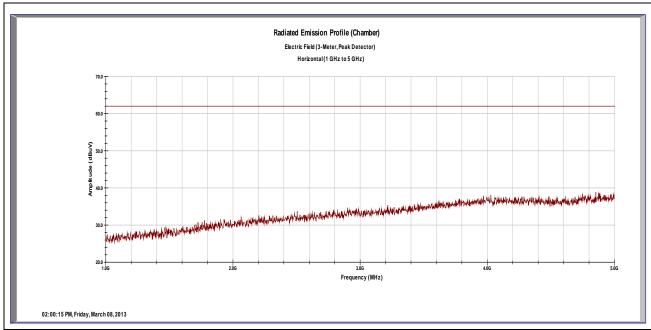
Notes: Frequency Hopper and 433MHz in Receive mode

Report No.: 31252050.001 Page 57 of 62

Radiated Emissions - 30MHz to 1000 MHz

Vertical

Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
172.00	V	1	0	17.73	0.00	1.50	8.72	27.95	43.50	-15.55
220.00	V	2	5	27.51	0.00	1.72	10.60	39.83	46.00	-6.17
307.00	V	1.4	94	24.79	0.00	2.02	12.92	39.73	46.00	-6.27
391.00	V	1	157	18.90	0.00	2.30	14.96	36.16	46.00	-9.84
450.00	V	1	136	16.41	0.00	2.47	16.40	35.28	46.00	-10.72


Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor ± Uncertainty Combined Standard Uncertainty $u_c(y) = \pm 2.29$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes: Frequency Hopper and 433MHz in Receive mode

Report No.: 31252050.001 Page 58 of 62

Radiated Emissions – 1 GHz to 5 GHz

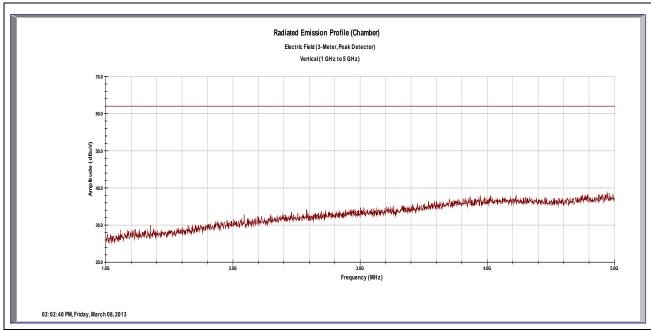
Horizontal

Emission Freq (MHz)	ANT Polar (H/V)	ANT Pos (m)	Table Pos (deg)	FIM Value (dBuV)	Amp Gain (dB)	Cable Loss (dB)	ANT Factor (dB/m)	E-Field Value (dBuV/m)	Spec Limit (dBuV/m)	Spec Margin (dB)

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor ± Uncertainty

Combined Standard Uncertainty $U_c(y) = \pm 2.29$ dB Expanded Uncertainty $U = kU_c(y)$ k = 2 for 95% confidence

Notes: Frequency Hopper and 433MHz in Receive mode


No emissions detected

Report No.: 31252050.001 Page 59 of 62

Radiated Emissions – 1 GHz to 5 GHz

Vertical

Emission Freq	ANT Polar	ANT Pos	Table Pos	FIM Value	Amp Gain	Cable Loss	ANT Factor	E-Field Value	Spec Limit	Spec Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty Combined Standard Uncertainty $u_c(y) = \pm 2.29$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes: Frequency Hopper and 433MHz in Receive mode

No emissions detected

QF09B040

Report No.: 31252050.001 Page 60 of 62

Appendix A

7 Test Plan

This test report is intended to follow this test plan outlined here in unless otherwise stated in this here report. The following test plan will give details on product information, standards to be used, test set ups and refer to TUV test procedures. The test procedures will give the steps to be taken when performing the stated test. The product information below came via client, product manual, product itself and or the internet.

7.2 General Information

Client	Firefly RFID Solutions
Address 1	1521 Boone Trail Road
Address 2	Sanford, NC 27330 USA
Contact Person	Ian Chalmers
Telephone	919-460-1177 x111
e-mail	ian.chalmers@rfidresolution.com

7.2 Model(s) Name

Firefly RFID Expansion Card

7.3 Type of Product

WIRELESS MODULAR DEVICE

7.4 Equipment Under Test (EUT) Description

This module is a full one watt conducted power passive RFID reader that can operate from a very low power source such as a battery operated device or power harvesting based devices such as remote solar or wind powered applications. The module uses power buffering to accumulate enough power to run the passive RFID radio at the full one watt conducted power on a duty cycle basis commensurate with the power available. The module also has a low power telemetry transceiver operating at 433 MHz to accommodate portable remote applications.

The device is initially to be used as an expansion card for the Psion Workabout Pro handheld terminal. This means it must physically fit inside and connect to the expansion card connector for that device. It must operate off the device's 3.8V battery source and limit the peak power draw to one amp or below so as not to reset the device. The expansion card interface supplies battery power, ttl serial line communications and an enable control line to the reader module.

Report No.: 31252050.001 Page 61 of 62

7.5 Modifications

No modifications were necessary to meet the requirements.

/.0 Pro	auct Environment	
	Residential	Hospital

	110510-0110101	2200 61002
\boxtimes	Light Industrial	Small Clinic
	Industrial	Doctor's office
	Other	

7.7 Countries

\boxtimes	USA
\boxtimes	Canada

QF09B040

7.8 Applicable Documents

Standards	Description
FCC Part 15.231 and RSS-210, Annex 1	Low-Power Licence-exempt Radiocommunication Devices Category I Equipment
FCC Part 15.247 and RSS-210 Annex 8	Frequency Hopping Operation within the band 902-928 MHz
FCC Parts 15.205, 15.209, 15.215(c), RSS-210	Radiated Emissions EUT in Transmit Modes

^{*}Check all that apply

^{*}Check all that apply

Report No.: 31252050.001 Page 62 of 62

7.9 EUT Modes of Operation

The Transmitter device is a module intended to be integrated with low-power and battery-powered devices to add RFID reading and programming capability to the host device. A typical application is for addition to a hand held battery powered terminal, such as the Psion Workabout-Pro as described in this document. The transmitting device must provide a sufficiently strong carrier to power up passive RFID devices, arbitrate with these passive RFID devices to form a communication link with one of the devices and then read back the ID from the passive RFID device which is done by the passive tag modulating our transmitting device's carrier in a backscatter scheme.

The Transmitter device only transmits on request from the host device. Usually a manual trigger which requests reading the ID's of all passive RFID devices in the field of view. This reading could also be triggered by an external sensor such as a light trip or motion sensor. The ISO-18000-6C protocol is used which takes roughly 1-2 mS per passive RFID device to arbitrate and read the ID. In no case will the internal firmware allow the Transmitter device to transmit packets more often than 0.4 seconds per channel in a 20 second period, per FCC Part 15.247(a)(1)(i).