

Königswinkel 10 32825 Blomberg Germany

Phone: +49 (0) 52 35 95 00-0 Fax: +49 (0) 52 35 95 00-10

Test Report

Report Number: F130412E1

Applicant:

Hatox GmbH

Manufacturer:

Hatox GmbH

Equipment under Test (EUT):

Transceiver module H129V2

Laboratory (CAB) accreditedby
Deutsche Gesellschaft für Akkreditierung mbH
in compliance with DIN EN ISO/IEC 17025
under the Reg. No. DGA-PL-105/99-22,
FCC Test site registration number 90877 and
Industry Canada Test site registration IC3469A-1

REFERENCES

- [1] ANSI C63.4-2009 American National Standard for Methods of Measuring of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
- [2] FCC CFR 47 Part 15 (April 2013) Radio Frequency Devices
- [3] FCC Public Notice DA 00-705 (March 2000)
- [4] RSS-210 Issue 8 (December 2010) Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment
- [5] RSS-Gen Issue 3 (December 2010) General Requirements and Information for the Certification of Radio Apparatus

TEST RESULT

The requirements of the tests performed as shown in the overview (clause 4) were fulfilled by the equipment under test.

The complete test results are presented in the following.

Test engineer:	Manuel BASTERT	1. Past	10 April 2013
_	Name	Signature	Date
Authorized reviewer:	Thomas KÜHN	1. C	10 April 2013
	Name	Signature	Date

RESERVATION

This test report is only valid in its original form.

Any reproduction of its contents in extracts without written permission of the accredited test laboratory PHOENIX TESTLAB GmbH is prohibited.

The test results herein refer only to the tested sample. PHOENIX TESTLAB GmbH is not responsible for any generalisations or conclusions drawn from these test results concerning further samples. Any modification of the tested samples is prohibited and leads to the invalidity of this test report. Each page necessarily contains the PHOENIX TESTLAB Logo and the TEST REPORT NUMBER.

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 2 of 42

C	ontents	Page
1	IDENTIFICATION	4
	1.1 Applicant	4
	1.2 Manufacturer	4
	1.3 Test laboratory	4
	1.4 EUT (Equipment Under Test)	5
	1.5 Technical data of equipment	5
	1.6 Dates	5
3	ADDITIONAL INFORMATIONOVERVIEW	
•	TEST RESULTS	
	5.1 20 dB bandwidth	8
	5.1.1 Method of measurement	8
	5.1.2 Test results	9
	5.2 Carrier frequency separation	11
	5.2.1 Method of measurement	11
	5.2.2 Test results	12
	5.3 Number of hopping frequencies	14
	5.3.1 Method of measurement	14
	5.3.2 Test results	14
	5.4 Dwell time	16
	5.4.1 Method of measurement	16
	5.4.2 Test results	17
	5.5 Maximum peak output power	18
	5.5.1 Method of measurement	18
	5.5.2 Test results	19
	5.6 Radiated emissions	21
	5.6.1 Method of measurement	21
	5.6.2 Test results	26
	5.7 Conducted emissions on power supply lines (150 kHz to 30 MHz)	39
	5.7.1 Method of measurement	39
	5.7.2 Test results	40
	TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS	
	REPORT HISTORY	42 42

1 IDENTIFICATION

1.1 Applicant

Name:	Hatox GmbH	
Address:	Kreuzstr. 70	
	75214 Birkenfeld	
Country:	Germany	
Name for contact purposes:	Mr. Thomas HAUG	
Phone:	+49 7231 2980680	
Fax:	+49 7231 2980688	
eMail Address:	thomas.haug@hatox.com	
Applicant represented during the test by the following person:	Mr. Thomas HAUG	

1.2 Manufacturer

Name:	Hatox GmbH
Address:	Kreuzstr. 70
	75214 Birkenfeld
Country:	Germany
Name for contact purposes:	Mr. Thomas HAUG
Phone:	+49 7231 2980680
Fax:	+49 7231 2980688
eMail Address:	thomas.haug@hatox.com
Manufacturer represented during the test by the following person:	Mr. Thomas HAUG

1.3 Test laboratory

The tests were carried out at: PHOENIX TESTLAB GmbH

Königswinkel 10 32825 Blomberg Germany

Accredited by DGA Deutsche Gesellschaft für Akkreditierung mbH in compliance with DIN EN ISO/IEC 17025 under Reg. No. DGA-PL-105/99-22, FCC Test site registration number 90877 and Industry Canada Test site registration IC3469A-1.

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 4 of 42

1.4 EUT (Equipment Under Test)

Test object: *	Transceiver module
Model name: *	H129V2
FCC ID: *	FCC-ID: SCAH129V2
IC: *	IC: 10949A-H129V2
PCB identifier: *	H129V2
Serial number: *	1001
Hardware version: *	2.0.0
Software version: *	1.0.0
Lowest / highest internal clock frequency: *	10 MHz / 14.7456 MHz

1.5 Technical data of equipment

Channel 1	RX:	902.500 MHz	TX:	902.500 MHz
Channel 500	RX:	914.975 MHz	TX:	914.975 MHz
Channel 1000	RX:	927.475 MHz	TX:	927.475 MHz

Rated RF output power: *	< 10 dBm					
Antenna type: *	1/4 SMA / R	SMA antenn	а			
Antenna gain: *	0 dBi					
Adaptive frequency agility: *	No					
Modulation: *	FHSS (FSK)				
Supply Voltage: *	U _{nom} =	12.0 V _{DC}	U _{min} =	$6.0~V_{DC}$	U _{max} =	36.0 V _{DC}
Temperature range: *	-20 °C to + 75 °C					
Ancillary used for test:	H153V2					

^{*} declared by the applicant.

1.6 Dates

Date of receipt of test sample:	25 February 2013
Start of test:	25 February 2013
End of test:	27 February 2013

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 5 of 42

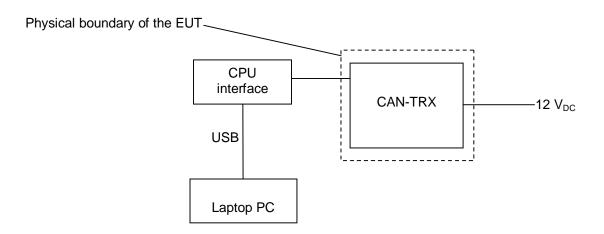
2 OPERATIONAL STATES

All tests were carried out with a modified sample with temporary antenna connector.

During all tests the EUT was powered by an external power supply with 12 V_{DC} .

The operation mode could be chosen with the help of a temporary connected laptop PC.

The conducted measurements were carried out at a temporary antenna connector equipped EUT with mounted monopole antenna (radiated measurements) or directly connected (conducted measurements).


For all measurements the output power of the EUT was set to its maximum value.

During the tests the EUT was not labelled with a label, which fulfils the FCC /IC requirements.

The tests were carried out in standard position of EUT (standing upright).

The following operation modes were used during the tests:

Operation mode	Description of the operation mode
1	Transmit on 902.500 MHz (channel 1)
2	Transmit on 914.975 MHz (channel 500)
3	Transmit on 927.475 MHz (channel 1000)
4	Transmit on all channels (hopping enabled)

3 ADDITIONAL INFORMATION

None.

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 6 of 42

4 **OVERVIEW**

Application	Frequency range [MHz]	FCC 47 CFR Part 15 section [2]	RSS 210, Issue 8 [4] or RSS-Gen, Issue 3 [5]	Status	Refer page
20 dB bandwidth	General	15.247 (a) (1) (i)	A8.1 (c) [4]	Passed	8 et seq.
Carrier frequency separation	General	15.247 (a) (1) (i)	-	Passed	11 et seq.
Number of hopping channels	902.0 – 928.0	15.247 (a) (1) (i)	A8.1 (c) [4]	Passed	14 et seq.
Dwell time	902.0 - 928.0	15.247 (a) (1) (i)	A8.1 (c) [4]	Passed	16 et seq.
Maximum peak output power	902.0 – 928.0	15.247 (b) (2)	A8.4 (1) [4]	Passed	18 et seq.
Radiated emissions (transmitter)	0.009 - 10,000	15.247 (d) 15.205 (a) 15.209 (a)	A8.5 [4] 2.5 [4] 7.2.2 [5]	Passed	21 et seq.
Conducted emissions on supply line	0.15 - 30	15.207 (a)	7.2.4 [5]	Passed	39 et seq.

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 7 of 42

5 TEST RESULTS

5.1 20 dB bandwidth

5.1.1 Method of measurement

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be disenabled, the transmitter shall work with its maximum data rate.

The following spectrum analyser settings shall be used:

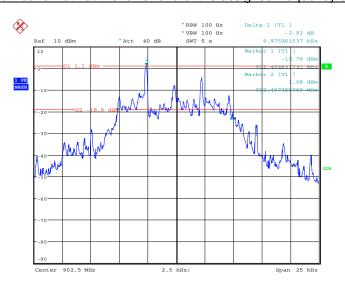
- Span: App. 2 to 3 times the 20 dB bandwidth, centred on the actual hopping channel.
- Resolution bandwidth: ≥ 1 % of the 20 dB bandwidth.
- Video bandwidth: ≥ the resolution bandwidth.
- Sweep: Auto.
- Detector function: peak.Trace mode: Max hold.

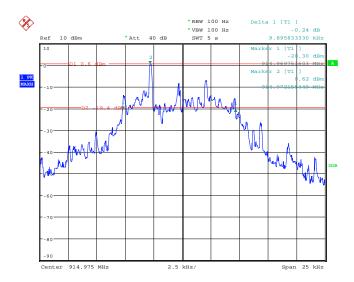
After trace stabilisation the marker shall be set on the signal peak. The first display line has to be set on this value. The second display line has to be set 20 dB below the first line (or the peak marker). The frequency lines shall be set on the intersection points between the second display line and the measured curve.

The measurement will be performed at the upper, the lower end and the middle of the assigned frequency band.

Test setup:

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

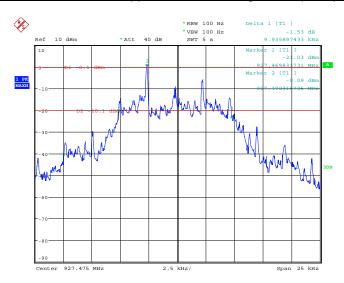

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 8 of 42


5.1.2 Test results

Ambient temperature	21 °C	Relative humidity	27 %
---------------------	-------	-------------------	------

130412_10.wmf: 20 dB bandwidth at the lower end of the assigned frequency band:

130412_11.wmf: 20 dB bandwidth at the middle of the assigned frequency band:



 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 9 of 42

130412_12.wmf: 20 dB bandwidth at the upper end of the assigned frequency band:

Channel number	Channel frequency [MHz]	20 dB bandwidth [kHz]	
1	902.500	9.975961 kHz	
500	914.975	9.895833 kHz	
1000	927.475 9.935897 kHz		
Measuremen	+0.66 dB / -0.72 dB		

TEST EQUIPMENT USED FOR THE TEST:	TEST EQ	JIPMENT	USED FOR	THE TEST
-----------------------------------	---------	---------	----------	----------

30

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 10 of 42

5.2 Carrier frequency separation

5.2.1 Method of measurement

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be enabled.

The following spectrum analyser settings shall be used:

- Span: Wide enough to capture the peaks of two adjacent channels.
- Resolution bandwidth: ≥ 1 % of the span.
- Video bandwidth: ≥ the resolution bandwidth.
- Sweep: Auto.
- Detector function: peak.
 Trace mode: Max hold.

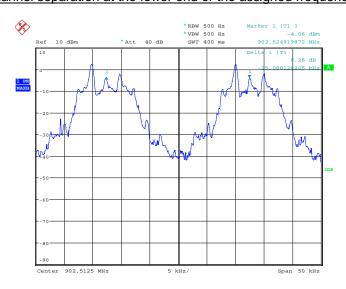
After trace stabilisation the marker and the delta marker function will be used to determine the separation between the peaks of two adjacent channel signals.

The measurement will be performed at the upper, the lower end and the middle of the assigned frequency band.

Test setup:

EUT	Spectrum analyser

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1


 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 11 of 42


5.2.2 Test results

Ambient temperature	21 °C	Relative humidity	27 %
---------------------	-------	-------------------	------

130412_15.wmf: Channel separation at the lower end of the assigned frequency band:

130412 14.wmf: Channel separation at the middle of the assigned frequency band:

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 12 of 42

130412_13.wmf: Channel separation at the upper end of the assigned frequency band:

Channel number	Channel frequency [MHz]	Channel separation [kHz]	Minimum limit [kHz]
1	902.500	25.080 kHz	9.975961 kHz (the 20 dB bandwidth)
500	914.975	24.760 kHz	9.895833 kHz (the 20 dB bandwidth)
1000	927.475	24.760 kHz	9.935897 kHz (the 20 dB bandwidth)
Measurement uncertainty			<10 ⁻⁷

Test result: Passed.

TEST EQUIPMENT	USED FOR	THE TEST:
----------------	-----------------	-----------

30

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 13 of 42

5.3 Number of hopping frequencies

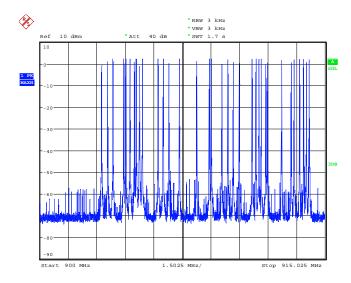
5.3.1 Method of measurement


The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be enabled.

The following spectrum analyser settings shall be used:

- Span: Equal to the assigned frequency band.
- Resolution bandwidth: ≥ 1 % of the span.
- Video bandwidth: ≥ the resolution bandwidth.
- Sweep: Auto.
- Detector function: Peak.Trace mode: Max hold.

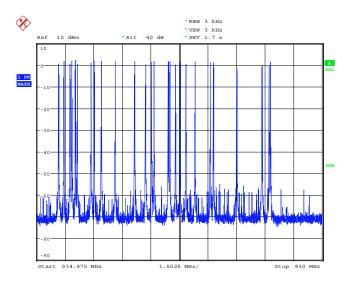
After trace stabilisation the number of hopping channels could be counted. It might be possible to divide the span into some sub ranges in order to clearly show all hopping frequencies.


Test setup:

5.3.2 Test results

Ambient temperature	21 °C	Relative humidity	30 %

130412_9.wmf: Number of hopping channels (part 1):



Test engineer: Manuel BASTERT Report Number: F130412E1

Date of issue: 10 April 2013 Order Number: 13-110412 page 14 of 42

130412 8.wmf: Number of hopping channels (part 2):

Remark: Because of the small channel separation (25 kHz) the RBW was set to a smaller value than required in order to count the number of hopping channels.

Number of hopping channels	Limit		
Operation mode 4			
60	At least 50		

Test result: Passed.

TEST EQUIPMENT USED FOR THE TEST:	
30	

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 15 of 42

5.4 Dwell time

5.4.1 Method of measurement

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be enabled.

The following spectrum analyser settings shall be used:

- Span: Zero, centred on a hopping channel.
- Resolution bandwidth: 1 MHz.
- Video bandwidth: ≥ the resolution bandwidth.
- Sweep: As necessary to capture the entire dwell time per hopping channel.
- Detector function: peak.
 Trace mode: Max hold.

The marker and delta marker function of the spectrum analyser will be used to determine the dwell time.

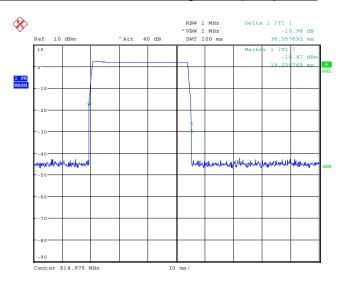
The measurement will be performed at the middle of the assigned frequency band.

If the EUT is possible to operate with different mode of operation (data rates, modulation formats etc.) the test will be repeated with every different operation mode of the EUT.

Test setup:

EUT	Spectrum analyser

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1


 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 16 of 42

5.4.2 Test results

Ambient temperature	°C		Relative humidity	%
---------------------	----	--	-------------------	---

130412_16.wmf: Dwell time at the middle of the assigned frequency band:

The dwell time is calculated with the following formula:

Dwell time = $t_{pulse} x n_{hops} / number of hopping channels x 20 s$

Where:

 t_{pulse} is the measured pulse time (pls. refer the plots of the spectrum analyser above) [s], n_{hops} is the number of hops per second in the actual operating mode of the transmitter [1/s].

The hopping rate of the system is 8.8 hops per second and the system uses 60 channels.

number	frequency [MHz]	[ms]	[ms]	[ms]
500	914.975	36.058	105.770	400
Measurement uncertainty			<10 ⁻	7

Test result: Passed.

TEST EQUIPMENT USED FOR THE TEST:	
30	

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 17 of 42

5.5 Maximum peak output power

5.5.1 Method of measurement

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be disenabled.

The following spectrum analyser settings shall be used:

- Span: Approx. 5 times the 20 dB bandwidth, centred on a hopping channel.
- Resolution bandwidth: > the 20 dB bandwidth of the emission being measured.
- Video bandwidth: ≥ the resolution bandwidth.
- Sweep: Auto.
- Detector function: peak.
- Trace mode: Max hold.

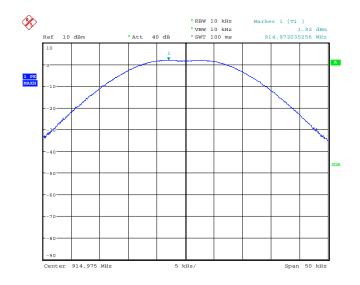
After trace stabilisation the marker shall be set on the signal peak. The indicated level is the peak output power, which has to be corrected with the value of the cable loss and an external attenuation (if necessary).

The measurement will be performed at the upper and lower end and the middle of the assigned frequency band.

Test setup:		
	EUT	Spectrum analyser

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

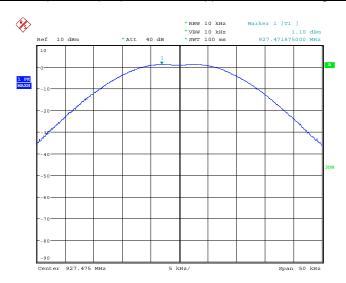
 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 18 of 42


5.5.2 Test results

Ambient temperature 21 °C	Relative humidity	27 %
---------------------------	-------------------	------

130412_19. wmf: Maximum peak output power at the lower end of the assigned frequency band:

130412_17.wmf: Maximum peak output power at the middle of the assigned frequency band:



 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 19 of 42

130412_18.wmf: Maximum peak output power at the upper end of the assigned frequency band:

Operation mode	Channel number	Channel frequency [MHz]	Maximum peak output power [dBm]	Antenna gain [dBi]	Peak power limit [dBm]
1	1	902.500	2.3	0.0	30.0
2	500	914.975	1.9	0.0	30.0
3	1000	927.475	1.1	0.0	30.0
Measurement uncertainty			+0.66 d	B / -0.72 dB	

Test result: Passed.

TEST EQUIPMENT USED FOR THE TE	
--------------------------------	--

30

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 20 of 42

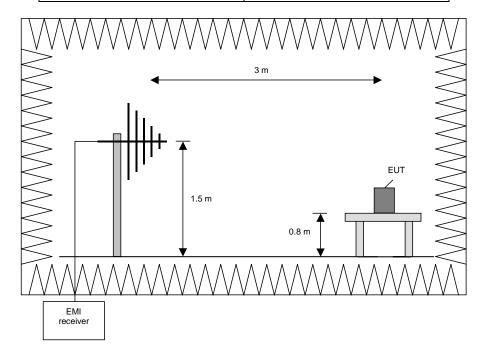
5.6 Radiated emissions

5.6.1 Method of measurement

The radiated emission measurement is subdivided into four stages.

- A preliminary measurement carried out in a fully anechoic chamber with a fixed antenna height in the frequency range 30 MHz to 1 GHz.
- A final measurement carried out on an open area test side with reflecting ground plane and various antenna height in the frequency range 30 MHz to 1 GHz.
- A preliminary measurement carried out in a fully anechoic chamber with a variable antenna distance and height in the frequency range 1 GHz to 110 GHz.
- A final measurement carried out in a fully anechoic chamber with a fixed antenna height in the frequency range 1 GHz to 110 GHz.

All measurements will be carried out with the EUT working on the middle of the assigned frequency band.


Preliminary measurement (30 MHz to 1 GHz)

In the first stage a preliminary measurement will be performed in a fully anechoic chamber with a measuring distance of 3 meter. Tabletop devices will set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices will be placed directly on the turntable/ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2009 [1].

The frequency range 30 MHz to 1 GHz will be measured with an EMI Receiver set to MAX Hold mode and a resolution bandwidth of 100 kHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 ° to 360 °.

The resolution bandwidth of the EMI Receiver will be set to the following values:

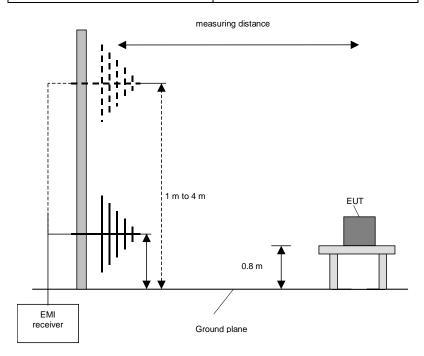
Frequency range	Resolution bandwidth
30 MHz to 200 MHz	100 kHz
200 MHz to 1 GHz	100 kHz

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 21 of 42

Procedure preliminary measurement:

Prescans were performed in the frequency range 30 MHz to 200 MHz and 200 MHz to 1 GHz. The following procedure will be used:


- 1. Monitor the frequency range at horizontal polarisation and a EUT azimuth of 0°.
- 2. Manipulate the system cables within the range to produce the maximum level of emission.
- 3. Rotate the EUT by 360 ° to maximize the detected signals.
- 4. Make a hardcopy of the spectrum.
- 5. Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 6. Repeat 1) to 4) with the other orthogonal axes of the EUT (because of EUT is a module and might be used in a handheld equipment application).
- 7. Repeat 1) to 5) with the vertical polarisation of the measuring antenna.

Final measurement (30 MHz to 1 GHz)

A final measurement on an open area test site will be performed on selected frequencies found in the preliminary measurement. During this test the EUT will be rotated in the range of 0 ° to 360 °, the measuring antenna will be set to horizontal and vertical polarisation and raised and lowered in the range from 1 m to 4 m to find the maximum level of emissions.

The resolution bandwidth of the EMI Receiver will be set to the following values:

Frequency range	Resolution bandwidth
30 MHz to 1 GHz	120 kHz

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 22 of 42

Procedure final measurement:

The following procedure will be used:

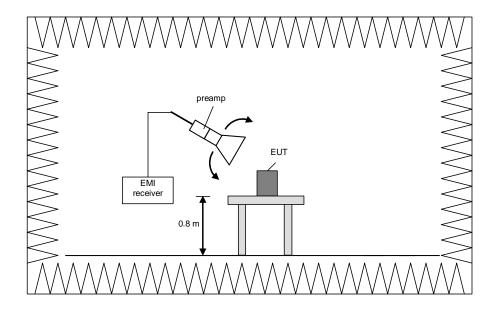
- 1) Measure on the selected frequencies at an antenna height of 1 m and a EUT azimuth of 23 °.
- 2) Move the antenna from 1 m to 4 m and note the maximum value at each frequency.
- 3) Rotate the EUT by 45° and repeat 2) until an azimuth of 337° is reached.
- 4) Repeat 1) to 3) for the other orthogonal antenna polarization.
- 5) Move the antenna and the turntable to the position where the maximum value is detected.
- 6) Measure while moving the antenna slowly +/- 1 m.
- 7) Set the antenna to the position where the maximum value is found.
- 8) Measure while moving the turntable +/- 45 °.
- 9) Set the turntable to the azimuth where the maximum value is found.
- 10) Measure with Final detector (QP and AV) and note the value.
- 11) Repeat 5) to 10) for each frequency.
- 12) Repeat 1) to 11) for each orthogonal axes of the EUT (because of EUT is a module and might be used in a handheld equipment application).

Preliminary and final measurement (1 GHz to 110 GHz)

This measurement will be performed in a fully anechoic chamber. Tabletop devices will set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices will be placed directly on the turntable/ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2009 [1].

Preliminary measurement (1 GHz to 110 GHz)

The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The spectrum analyser set to MAX Hold mode and a resolution bandwidth of 100 kHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna, the antenna close to the EUT and while moving the antenna over all sides of the EUT. With the spectrum analyser in CLEAR / WRITE mode the cone of the emission should be found and than the measuring distance will be set to 3 m with the receiving antenna moving in this cone of emission. At this position the final measurement will be carried out.


The resolution bandwidth of the EMI Receiver will be set to the following values:

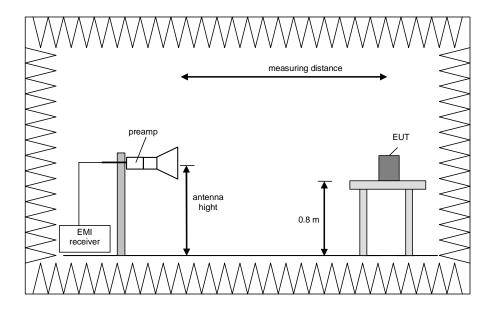
Frequency range	Resolution bandwidth
1 GHz to 4 GHz	100 kHz
4 GHz to 12 GHz	100 kHz
12 GHz to 18 GHz	100 kHz
18 GHz to 26.5 GHz	100 kHz
26.5 GHz to 40 GHz	100 kHz
40 GHz to 60 GHz	100 kHz
50 GHz to 75 GHz	100 kHz
75 GHz to 110 GHz	100 kHz

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 23 of 42

Final measurement (1 GHz to 110 GHz)

The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1 MHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 ° to 360 ° in order to have the antenna inside the cone of radiation.


The resolution bandwidth of the EMI Receiver will be set to the following values:

Frequency range	Resolution bandwidth
1 GHz to 4 GHz	1 MHz
4 GHz to 12 GHz	1 MHz
12 GHz to 18 GHz	1 MHz
18 GHz to 26.5 GHz	1 MHz
26.5 GHz to 40 GHz	1 MHz
40 GHz to 60 GHz	1 MHz
50 GHz to 75 GHz	1 MHz
75 GHz to 110 GHz	1 MHz

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 24 of 42

Procedure of measurement:

The measurements were performed in the frequency range 1 GHz to 4 GHz, 4 GHz to 12 GHz, 12 GHz to 18 GHz, 18 GHz to 26.5 GHz, 26.5 GHz to 40 GHz, 40 GHz to 60 GHz, 60 GHz to 75 GHz and 75 GHz to 110 GHz.

The following procedure will be used:

- 1) Monitor the frequency range at horizontal polarisation and move the antenna over all sides of the EUT (if necessary move the EUT to another orthogonal axis).
- 2) Change the antenna polarisation and repeat 1) with vertical polarisation.
- 3) Make a hardcopy of the spectrum.
- 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 5) Change the analyser mode to Clear / Write and found the cone of emission.
- 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3 m and the antenna will be still inside the cone of emission.
- 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarisation and azimuth and the peak and average detector, which causes the maximum emission.
- 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.

Step 1) to 6) are defined as preliminary measurement.

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 25 of 42

5.6.2 Test results

5.6.2.1 Preliminary radiated emission measurement

Ambient temperature	21 °C		Relative humidity	27 %
---------------------	-------	--	-------------------	------

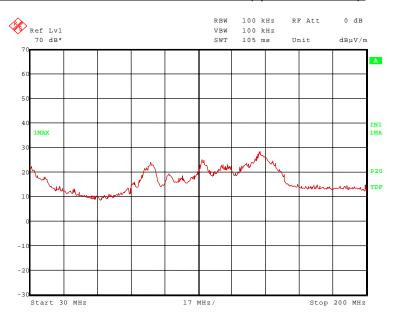
Position of EUT: The EUT was setup on a non-conducting table of a height of 0.8 m. The

distance between EUT and antenna was 3 m.

Test record: All results of the three positions are shown in the following.

Supply voltage: During all measurements the EUT was supplied with 12.0 V_{DC} by an external

power supply.

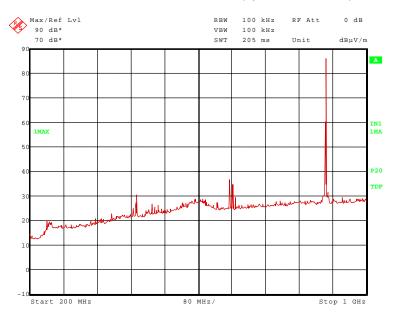

Remark: As pre-tests have shown, the emissions in the frequency range 10 MHz to

30 MHz are not depending on the transmitter operation mode. Therefore the emissions in this frequency range were measured only with the transmitter

operates in operation mode 2.

Transmitter operates at 902.5 MHz (operation mode 1)

130412 2.wmf: Spurious emissions from 30 MHz to 200 MHz (operation mode 1):

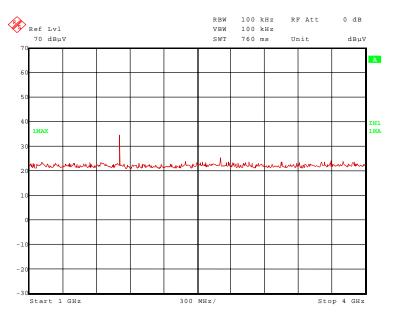


 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

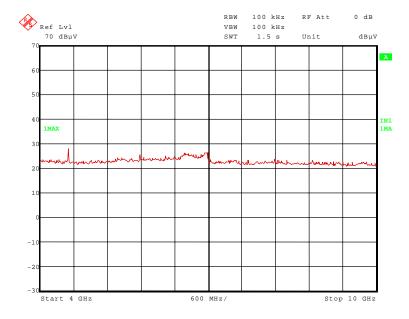
 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 26 of 42

130412_1.wmf: Spurious emissions from 200 MHz to 1 GHz (operation mode 1):

Frequencies found	Frequency in MHz
Outside restricted bands	30.341, 90.982, 100.180, 145.832, 452.850, 592.850, 674.681, 688,697, 902.500.
Inside restricted bands	117.896, 129.820, 247.910


These frequencies have to be measured on the open area test site. The result is presented in the following.

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1


 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 27 of 42

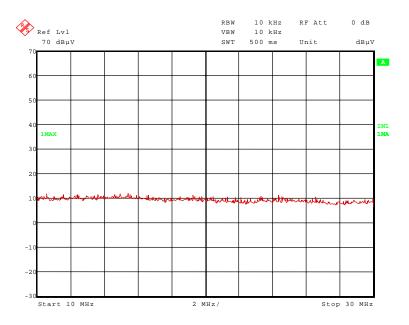
130412 20.wmf: Spurious emissions from 1 GHz to 4 GHz (operation mode 1):

130412_21.wmf: Spurious emissions from 4 GHz to 10 GHz (operation mode 1):

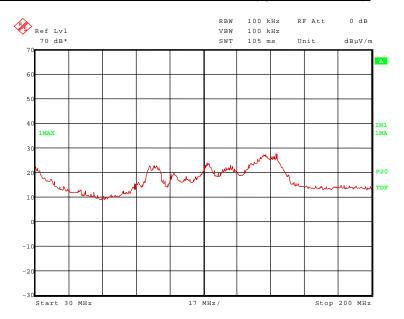
Frequencies found	Frequency in MHz
Outside restricted bands	1805.000
Inside restricted bands	4512.500

These frequencies have to be measured in a final measurement. The results were presented in the following.

TEST EQUIPMENT USED FOR THE TEST:	
29, 31 - 36, 43, 44, 45, 49, 55, 73, 75, 83	


 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

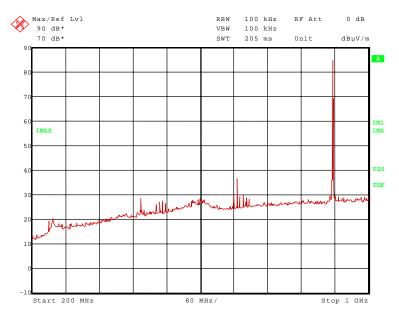
 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 28 of 42


Transmitter operates at 914.975 MHz (operation mode 2)

130412 7.wmf: Spurious emissions from 10 MHz to 30 MHz (operation mode 2):

No significant frequencies above the noise floor of the system were found during the preliminary radiated emission test, so no measurements were carried out on the outdoor test site.

130412_6.wmf: Spurious emissions from 30 MHz to 200 MHz (operation mode 2):

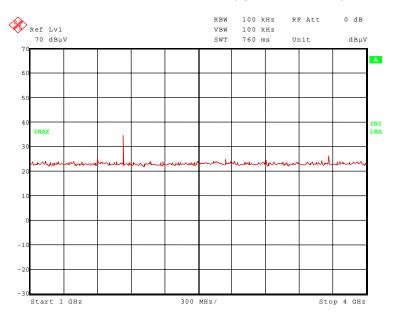


 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

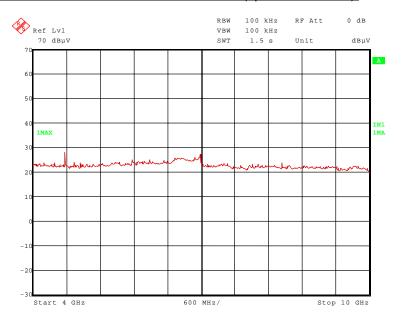
 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 29 of 42

130412_5.wmf: Spurious emissions from 200 MHz to 1 GHz (operation mode 2):

Frequencies found	Frequency in MHz
Outside restricted bands	89.820, 152.224, 457.845, 686.423, 914.975
Inside restricted bands	None


These frequencies have to be measured on the open area test site. The result is presented in the following.

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

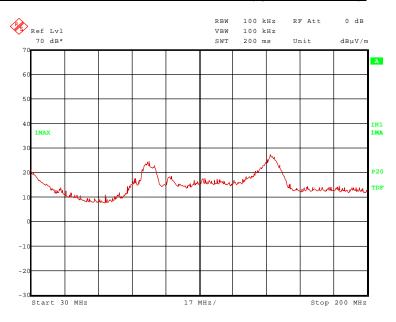

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 30 of 42

130412 22.wmf: Spurious emissions from 1 GHz to 4 GHz (operation mode 2):

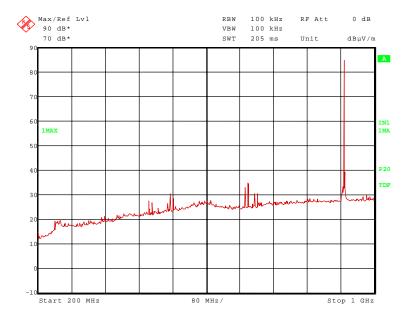
130412 23.wmf: Spurious emissions from 4 GHz to 10 GHz (operation mode 2):

Frequencies found	Frequency in MHz
Outside restricted bands	1829.950
Inside restricted bands	3659.900, 4574.875

These frequencies have to be measured in a final measurement. The results were presented in the following.


 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 31 of 42

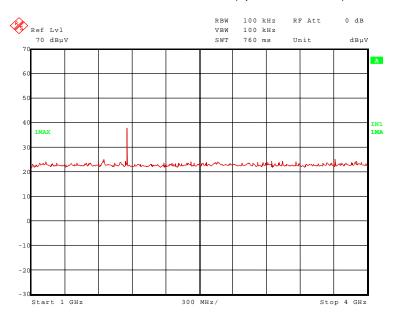


Transmitter operates at 927.475 MHz (operation mode 3)

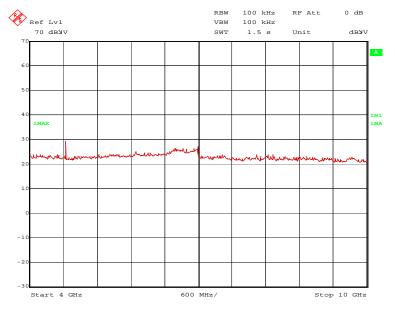
130412_4.wmf: Spurious emissions from 30 MHz to 200 MHz (operation mode 3):

130412_3.wmf: Spurious emissions from 200 MHz to 1 GHz (operation mode 3):

Frequencies found	Frequency in MHz
Outside restricted bands	89.820, 152.224, 462.990, 470.362, 507.224, 514.597, 520.670, 691.547, 698.914, 713.665, 721.036, 927.475
Inside restricted bands	None


These frequencies have to be measured on the open area test site. The result is presented in the following.

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1


 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 32 of 42

130412 24.wmf: Spurious emissions from 1 GHz to 4 GHz (operation mode 3):

130412 25.wmf: Spurious emissions from 4 GHz to 10 GHz (operation mode 3):

Frequencies found	Frequency in MHz
Outside restricted bands	1854.950
Inside restricted bands	4637.375

These frequencies have to be measured in a final measurement. The results were presented in the following.

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 33 of 42

5.6.2.2 Final radiated emission measurement (30 MHz to 1 GHz) with internal antenna

Ambient temperature °C Relative humidity %

Position of EUT: The EUT was setup on a non-conducting table of a height of 0.8 m. The

distance between EUT and antenna was 3 m.

Test record: All results are shown in the following.

Supply voltage: During all measurements the EUT was supplied with 12 V_{DC} by an external

power supply.

Test results: The test results were calculated with the following formula:

Result $[dB\mu V/m]$ = reading $[dB\mu V]$ + cable loss [dB] + antenna factor [dB/m]

The measured points and the limit line in the following diagrams refer to the standard measurement of the emitted interference in compliance with the above-mentioned standard. The measured points marked with an x are the measured results of the standard final measurement on the open area test site.

The results of the standard subsequent measurement on the open area test site are indicated in the table below. The limits as well as the measured results (levels) refer to the above mentioned standard while taking account of the specified requirements for a 3 m measuring distance.

The measurement time with the quasi-peak measuring detector is 1 second.

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 34 of 42

Transmitter operates at 902.5 MHz

Result measured with the quasi-peak detector:

	Tran	smitter oper	ates on the	lower end of the	ne assigned freque	ency band (ope	eration mode	1)				
	Spurious emissions outside restricted bands											
Frequency	Result	Limit	Margin	Readings	Antenna factor	Cable loss	Height	Azimuth				
MHz	dBµV/m	dBµV/m	dB	dΒμV	dB/m	dB	cm	deg	Pol.			
902.500	85.0	-	-	59.1	22.5	3.4	227	148	Vert.			
30.341	38.0	65.0	27.0	17.9	19.5	0.6	395	196	Hor.			
90.982	40.8	65.0	24.2	29.7	10.0	1.1	331	315	Hor.			
100.180	41.6	65.0	23.4	29.7	10.8	1.1	325	225	Hor.			
145.832	24.4	65.0	40.6	11.3	11.8	1.3	100	90	Hor.			
452.850	25.0	65.0	40.0	5.9	16.7	2.4	114	232	Vert.			
592.850	26.6	65.0	38.4	4.7	19.1	2.8	101	244	Vert.			
674.000	35.4	65.0	29.6	12.7	19.8	2.9	156	270	Vert.			
681.300	38.6	65.0	26.4	15.9	19.8	2.9	148	289	Vert.			
688.697	32.5	65.0	32.5	9.6	19.9	3.0	140	290	Vert.			
			Spur	ious emissions	s inside restricted	bands						
Frequency	Result	Limit	Margin	Readings	Antenna factor	Cable loss	Height	Azimuth				
MHz	dBµV/m	dBµV/m	dB	dΒμV	dB/m	dB	cm	deg	Pol.			
117.896	30.9	43.5	12.6	17.4	12.3	1.2	318	271	Hor.			
129.820	35.9	43.5	7.6	22.4	12.2	1.3	109	180	Vert.			
247.910	12.2	46.0	33.8	-1.5	12.0	1.7	100	286	Hor.			
			Meas	urement unce	rtainty: +2.2 dB / -	3.6 dB						

Transmitter operates at 914.975 MHz

Result measured with the quasi-peak detector:

	Tra	ansmitter op	erates on the	e middle of the	e assigned frequer	ncy band (oper	ation mode 2	()	
			Spuri	ous emissions	outside restricted	bands			
Frequency	Result	Limit	Margin	Readings	Antenna factor	Cable loss	Height	Azimuth	
MHz	dBµV/m	dBµV/m	dB	dΒμV	dB/m	dB	cm	deg	Pol.
914.975	84.6	-	-	58.4	22.8	3.4	202	64	Hor.
89.820	37.6	64.6	27.0	26.7	9.8	1.1	375	289	Hor.
152.224	27.9	64.6	36.7	14.9	11.7	1.3	237	124	Hor.
457.845	32.7	64.6	31.9	13.6	16.7	2.4	114	225	Hor.
686.423	40.3	64.6	24.3	17.4	19.9	3.0	144	289	Hor.
			Spur	ious emissions	s inside restricted	bands			
Frequency	Result	Limit	Margin	Readings	Antenna factor	Cable loss	Height	Azimuth	
MHz	dBµV/m	dBµV/m	dB	dΒμV	dB/m	dB	cm	deg	Pol.
-	-	-	-	-	-	-	-	-	-
			Meas	urement unce	rtainty: +2.2 dB / -	3.6 dB	•		

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 35 of 42

page 36 of 42

Transmitter operates at 927.475 MHz (operation mode 3)

Result measured with the quasi-peak detector:

	Tr	ansmitter o	perates on	the upper end	of the assigned from	equency band	(operation m	ode 3)	
			S	purious emiss	ions outside restric	cted bands			
Frequency	Result	Limit	Margin	Readings	Antenna factor	Cable loss	Height	Azimuth	D.I
MHz	dΒμV/ m	dBµV/m	dB	dΒμV	dB/m	dB	cm	deg	Pol.
927.475	86.2	-	-	59.4	23.4	3.4	109	71	Vert.
89.820	38.7	66.2	27.5	27.8	9.8	1.1	392	359	Hor.
152.224	27.9	66.2	38.3	14.9	11.7	1.3	241	119	Hor.
462.990	31.5	66.2	34.7	12.4	16.7	2.4	111	235	Vert.
470.362	29.5	66.2	36.7	10.4	16.7	2.4	119	235	Vert.
507.224	30.1	66.2	36.1	10.1	17.5	2.5	100	164	Vert.
514.597	30.7	66.2	35.5	10.5	17.6	2.6	146	135	Vert.
520.670	27.0	66.2	39.2	6.7	17.7	2.6	100	134	Hor.
691.547	37.8	66.2	28.4	14.9	19.9	3.0	100	135	Vert.
698.914	37.7	66.2	28.5	14.7	20.0	3.0	162	22	Vert.
713.665	34.6	66.2	31.6	10.9	20.7	3.0	115	113	Hor.
			5	Spurious emiss	sions inside restric	ted bands			
Frequency	Result	Limit	Margin	Readings	Antenna factor	Cable loss	Height	Azimuth	D.I
MHz	dΒμV/ m	dBµV/m	dB	dΒμV	dB/m	dB	cm	deg	Pol.
-	-	-	-	-	-	-	-	-	-
			N	leasurement u	ncertainty: +2.2 dl	3 / -3.6 dB			

Test result: Passed.

TEST EQUIPMENT USED FOR THE TEST:

14 - 20

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412

5.6.2.3 Final radiated emission measurement (1 GHz to 10 GHz) with internal antenna

Ambient temperature 21 °C Relative humidity 32 %

Position of EUT: The EUT was setup on a non-conducting table of a height of 0.8 m. The

distance between EUT and antenna was 3 m.

Test record: All results are shown in the following.

Supply voltage: During all measurements the EUT was supplied with 12 V_{DC} by an external

power supply.

Resolution bandwidth: For all measurements a resolution bandwidth of 1 MHz was used.

Transmitter operates at 902.5 MHz (operation mode 1)

Result measured with the peak detector:

Frequency	Corr. Value	Limit dBuV/m	Margin dB	Readings dBuV	Antenna factor 1/m	Preamp dB	Cable loss dB	Height cm	Pol.	Restr. Band
902.500	85.0	- αΒμ <i>ν/</i> ΠΙ	- -	61.9	20.6	0.0	2.5	150	Vert.	_
1805.000	40.0	74.0	34.0	37.0	26.5	26.5	3.0	150	Vert.	No
4512.500	45.0	74.0	29.0	33.4	32.3	25.8	5.1	150	Vert.	Yes
		Measure		+2.2 dB	/ -3.6 dB					

Result measured with the average detector:

Frequency	Corr. Value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	cm		
902.500	85.0	-	-	61.9	20.6	0.0	2.5	150	Vert.	-
1805.000	27.5	65.0	37.5	24.5	26.5	26.5	3.0	150	Vert.	No
4512.500	32.7	54.0	21.3	21.1	32.3	25.8	5.1	150	Vert.	Yes
		Measure		+2.2 dB	/ -3.6 dB					

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 37 of 42

Transmitter operates at 914.975 MHz (operation mode 2)

Result measured with the peak detector:

Frequency GHz	Corr. Value	Limit dBµV/m	Margin dB	Readings dB _µ V	Antenna factor 1/m	Preamp dB	Cable loss dB	Height cm	Pol.	Restr. Band
914.975	88.3	-	-	65.0	20.7	0.0	2.6	150	Vert.	-
1829.950	38.0	74.0	36.0	34.5	26.7	26.5	3.3	150	Vert.	No
3659.900	42.2	74.0	31.8	32.4	31.5	26.2	4.5	150	Vert.	Yes
4574.875	45.0	74.0	29.0	33.3	32.4	25.8	5.1	150	Vert.	Yes
		Measure	+2.2 dB / -3.6 dB							

Result measured with the average detector:

Frequency GHz	Corr. Value	Limit dBµV/m	Margin dB	Readings dB _µ V	Antenna factor 1/m	Preamp dB	Cable loss dB	Height cm	Pol.	Restr. Band
914.975	88.3	-	-	65.0	20.7	0.0	2.6	150	Vert.	-
1829.950	24.7	68.3	43.6	21.2	26.7	26.5	3.3	150	Vert.	No
3659.900	29.2	54.0	24.8	19.4	31.5	26.2	4.5	150	Vert.	Yes
4574.875	32.5	54.0	21.5	20.8	32.4	25.8	5.1	150	Vert.	Yes
		Measure		+2.2 dB	/ -3.6 dB					

Transmitter operates at 927.475 MHz (operation mode 3)

Result measured with the peak detector:

Frequency	Corr. Value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr.
GHz	dBμV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	cm		Band
927.475	88.6	-	-	65.0	20.9	0.0	2.7	150	Vert.	-
1854.950	39.3	74.0	34.7	35.2	27.0	26.5	3.6	150	Vert.	No
4637.375	46.5	74.0	27.5	34.7	32.4	25.8	5.2	150	Vert.	Yes
		Measure		+2.2 dB	/ -3.6 dB					

Result measured with the average detector:

Frequency	Corr. Value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr.
GHz	dBμV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	cm		Band
927.475	88.6	-	-	65.0	20.9	0.0	2.7	150	Vert.	-
1854.950	26.2	68.6	42.4	22.1	27.0	26.5	3.6	150	Vert.	No
4637.375	33.8	54.0	20.2	22.0	32.4	25.8	5.2	150	Vert.	Yes
	Measurement uncertainty				•	+2.2 dB	/ -3.6 dB	•		

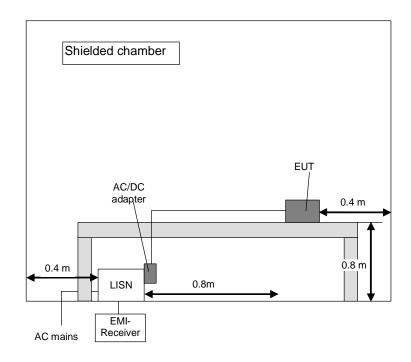
Test result: Passed.

TEST EQUIPMENT USED FOR THE TEST:

29, 31 - 34, 36, 44, 45, 49, 73, 75

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 38 of 42


5.7 Conducted emissions on power supply lines (150 kHz to 30 MHz)

5.7.1 Method of measurement

This test will be carried out in a shielded chamber. Tabletop devices will set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm above the ground plane. Floor-standing devices will be placed directly on the ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2009 [1].

The frequency range 150 kHz to 30 MHz will be measured with an EMI Receiver set to MAX Hold mode with peak and average detector and a resolution bandwidth of 9 kHz. A scan will be carried out on the phase (or plus pole in case of DC powered devices) of the AC mains network. If levels detected 10 dB below the appropriable limit, this emission will be measured with the average and quasi-peak detector on all lines.

Frequency range	Resolution bandwidth
150 kHz to 30 MHz	9 kHz

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

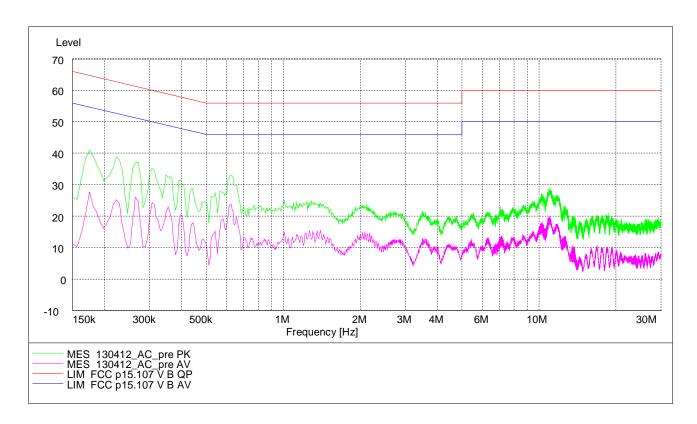
 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 39 of 42

5.7.2 Test results

Ambient temperature	20 °C		Relative humidity	35 %
---------------------	-------	--	-------------------	------

Position of EUT: The EUT was setup on a non-conducting table of a height of 0.8 m.

Cable guide: The cables of the EUT were fixed on the non-conducting table. For further


information of the cable guide refer to the pictures in annex A of this test report.

Test record: All results are shown in the following. This test was carried out during an

established communication with an ancillary transceiver module H153V2.

Supply voltage: During all measurements the EUT was supplied with 12 V_{DC} by an AC / DC

adaptor type enercell FW3288, which was supplied by 120 V_{AC} / 60 Hz.

Test result: Passed.

TEST EQUIPMENT USED FOR THE TEST:	
1 - 4, 20	

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 40 of 42

6 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

No.	Test equipment	Туре	Manufacturer	Serial No.	PM. No.	Cal. Date	Cal. due
1	Shielded chamber M47	-	Albatross Projects	B83117-C6439-T262	480662	Weekly ve (system	
2	EMI Receiver	ESIB 26	Rohde & Schwarz	1088.7490	481182	03/09/2012	03/2014
3	LISN	NSLK8128	Schwarzbeck	8128161	480138	12/21/2012	12/2013
4	High pass filter	HR 0.13- 5ENN	FSY Microwave Inc.	DC 0109 SN 002	480340	Weekly ve (system	
14	Open area test site	-	Phoenix Test-Lab	-	480085	Weekly ve (system	
15	Measuring receiver	ESIB7	Rohde & Schwarz	100304	480521	02/15/2012	02/2014
16	Controller	HD100	Deisel	100/670	480139	-	-
17	Turntable	DS420HE	Deisel	420/620/80	480087	-	-
18	Antenna support	AS615P	Deisel	615/310	480086	-	-
19	Antenna	CBL6111 D	Chase	25761	480894		
20	EMI Software	ES-K1	Rohde & Schwarz	-	480111	-	-
29	Fully anechoic chamber M20	-	Albatross Projects	B83107-E2439-T232	480303	Weekly verification (system cal.)	
30	Spectrum analyser	FSU	Rohde & Schwarz	200125	480956	02/15/2012	02/2014
31	Measuring receiver	ESI 40	Rohde & Schwarz	100064	480355	02/13/2012	02/2014
32	Controller	MCU	Maturo	MCU/043/971107	480832	-	-
33	Turntable	DS420HE	Deisel	420/620/80	480315	-	-
34	Antenna support	AS615P	Deisel	615/310	480187	-	-
35	Antenna	CBL6112 B	Chase	2688	480328	04/21/2011	04/2014
36	Antenna	3115 B	EMCO	9609-4922	480184	09/28/2011	09/2014
43	RF-cable No. 36	Sucoflex 106B	Suhner	0522/6B	480571	Weekly ve (system	
44	RF-cable No. 3	Sucoflex 106B	Suhner	0563/6B	480670	Weekly verification (system cal.)	
45	RF-cable No. 40	Sucoflex 106B	Suhner	0708/6B	481330	Weekly verification (system cal.)	
49	Preamplifier	JS3- 00101200- 23-5A	Miteq	681851	480337	Six month verification (system cal.)	
55	Loop antenna	HFH2-Z2	Rohde & Schwarz	832609/014	480059	02/16/2012	02/2014
73	High Pass Filter	WHJS1000C 11/60EF	Wainwright Instruments GmbH	1	480413	Weekly verification (system cal.)	
75	High Pass Filter	WHKX4.0/18 G-8SS	Wainwright Instruments GmbH	1	480587	Weekly verification (system cal.)	
83	Tuneable Notch Filter	WRCA800/90 0-0.2/40- 6EEK	Wainwright Instruments GmbH	15	480414	Weekly ve (system	

 Test engineer:
 Manuel BASTERT
 Report Number:
 F130412E1

 Date of issue:
 10 April 2013
 Order Number:
 13-110412
 page 41 of 42

7 REPORT HISTORY

Report Number	Date	Comment
F130412E1	10 April 2013	Document created

8 LIST OF ANNEXES

130412_10.jpg

ANNEX A TEST SET		UP PHOTOS	5 pages
130412_ 130412_ 130412_ 130412_ 130412_	2.jpg 3.jpg 4.jpg	Test setup fully anechoic chamber Test setup fully anechoic chamber Test setup fully anechoic chamber Test setup shielded chamber Test setup open area test site	
ANNEX B	INTERNAL	PHOTOS	5 pages
130412_ 130412_ 130412_ 130412_	7.jpg 8.jpg	H129V2, top view with mounted antenna H129V2, PCB, top view H129V2, PCB, bottom and type plate view H129V2 connected to programmer	

H129V2, shielding removed

Test engineer: Manuel BASTERT Date of issue: 10 April 2013 Report Number: Order Number: F130412E1 13-110412 page 42 of 42