# SmartLabs, Inc.

**TEST REPORT FOR** 

Insteon Motion Sensor II
Model: 2844-222

**Tested To The Following Standards:** 

FCC Part 15 Subpart C Section(s)

15.207 & 15.249

Report No.: 96897-9

Date of issue: February 18, 2016



This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 46 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.



## **TABLE OF CONTENTS**

| 3  |
|----|
| 3  |
| 3  |
| 2  |
| 2  |
| 2  |
| 5  |
| 5  |
| 5  |
| 5  |
| 6  |
| 7  |
|    |
| 10 |
| 18 |
| 37 |
| 45 |
| 45 |
| 45 |
|    |



# **ADMINISTRATIVE INFORMATION**

# **Test Report Information**

REPORT PREPARED FOR: REPORT PREPARED BY:

SmartLabs, Inc. Terri Rayle
16542 Millikan Ave. CKC Laboratories, Inc.
Irvine, CA 92606 5046 Sierra Pines Drive
Mariposa, CA 95338

REPRESENTATIVE: John Lockyer Project Number: 96897

Customer Reference Number: 16-3JL00116-01

**DATE OF EQUIPMENT RECEIPT:** February 1, 2016 **DATE(S) OF TESTING:** February 1-3, 2016

## **Report Authorization**

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Steve 2 Be



# **Test Facility Information**



Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 1120 Fulton Place Fremont, CA 94539

## **Software Versions**

| CKC Laboratories Proprietary Software | Version |
|---------------------------------------|---------|
| EMITest Emissions                     | 5.03.00 |

# **Site Registration & Accreditation Information**

| Location | CB#    | TAIWAN         | CANADA  | FCC    | JAPAN  |
|----------|--------|----------------|---------|--------|--------|
| Fremont  | US0082 | SL2-IN-E-1148R | 3082B-1 | 958979 | A-0149 |



## **SUMMARY OF RESULTS**

Standard / Specification: FCC Part 15 Subpart C - 15.249

| Test Procedure | Description                          | Modifications | Results |
|----------------|--------------------------------------|---------------|---------|
| 15.215(c)      | Occupied Bandwidth                   | NA            | Pass    |
| 15.249(a)      | Field Strength of Fundamental        | NA            | Pass    |
| 15.249(a)      | Field Strength of Spurious Emissions | NA            | Pass    |
| 15.207         | AC Conducted Emissions               | NA            | Pass    |

NA = Not Applicable

## **Modifications During Testing**

This list is a summary of the modifications made to the equipment during testing.

| Summary of Conditions                      |
|--------------------------------------------|
| No modifications were made during testing. |
|                                            |

Modifications listed above must be incorporated into all production units.

## **Conditions During Testing**

This list is a summary of the conditions noted to the equipment during testing.

| Summary of Conditions |
|-----------------------|
| None                  |
|                       |

# **EQUIPMENT UNDER TEST (EUT)**

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

### **Configuration 1**

**Equipment Tested:** 

| Device                   | Manufacturer    | Model #  | S/N      |  |
|--------------------------|-----------------|----------|----------|--|
| Insteon Motion Sensor II | SmartLabs, Inc. | 2844-222 | Sample 9 |  |
| Support Equipment:       |                 |          |          |  |

| Support Equipment.  |              |         |              |  |  |
|---------------------|--------------|---------|--------------|--|--|
| Device              | Manufacturer | Model # | S/N          |  |  |
| AC/DC power adapter | Apple        | A1265   | 1X9423JG98QZ |  |  |

Page 5 of 46 Report No.: 96897-9



# **General Product Information:**

| Product Information                | Manufacturer-Provided Details                               |
|------------------------------------|-------------------------------------------------------------|
| Equipment Type:                    | Stand-Alone Equipment                                       |
| Modulation Type(s):                | FSK 8kbps                                                   |
| Maximum Duty Cycle:                | Greater than 98%                                            |
| Antenna Type(s) and Gain:          | -0.5dBi                                                     |
| Antenna Connection Type:           | Integral                                                    |
| Nominal Input Voltage:             | 3.3 VDC from battery or from USB Cable from a power adapter |
| Firmware / Software used for Test: | TxAlways p41.HEX for 915MHz                                 |

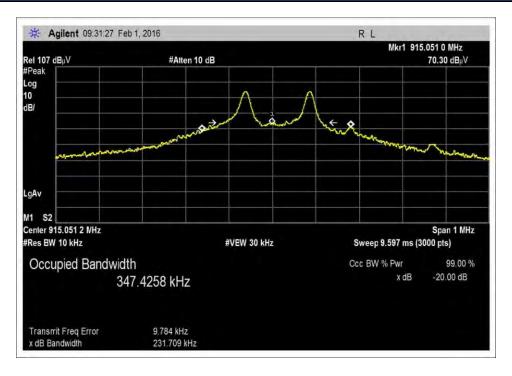


# FCC Part 15 Subpart C

# 15.215(c) Occupied Bandwidth (20dB BW)

| Test Setup/Conditions                                             |                    |               |          |  |  |
|-------------------------------------------------------------------|--------------------|---------------|----------|--|--|
| Test Location: Fremont Lab C3 Test Engineer: Hieu Song Nguyenpham |                    |               |          |  |  |
| Test Method:                                                      | ANSI C63.10 (2013) | Test Date(s): | 2/1/2016 |  |  |
| Configuration:                                                    | 1                  |               |          |  |  |

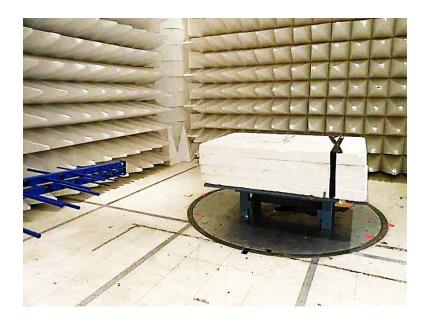
| Environmental Conditions |      |                        |    |  |
|--------------------------|------|------------------------|----|--|
| Temperature (ºC)         | 19.9 | Relative Humidity (%): | 43 |  |


| Test Equipment |                   |              |            |            |            |  |  |
|----------------|-------------------|--------------|------------|------------|------------|--|--|
| Asset#         | Description       | Manufacturer | Model      | Cal Date   | Cal Due    |  |  |
| 00852          | Biconilog Antenna | Schaffner    | CBL 6111C  | 11/24/2014 | 11/24/2016 |  |  |
| P00880         | Cable             | Pasternack   | RG214U     | 6/13/2014  | 6/13/2016  |  |  |
| P01187         | Cable             | Andrews      | CNT-195    | 12/30/2014 | 12/30/2016 |  |  |
| P06691         | Cable             | Pasternack   | PE3062-180 | 8/8/2014   | 8/8/2016   |  |  |
| 00567          | Preamp            | НР           | 8447D      | 1/2/2015   | 1/2/2017   |  |  |
| 03471          | Spectrum Analyzer | Agilent      | E4440A     | 1/4/2016   | 1/4/2018   |  |  |

|                    | Test Data Summary |            |                   |                |         |  |  |  |  |
|--------------------|-------------------|------------|-------------------|----------------|---------|--|--|--|--|
| Frequency<br>(MHz) | Antenna<br>Port   | Modulation | Measured<br>(kHz) | Limit<br>(MHz) | Results |  |  |  |  |
| 915                | 1                 | FSK 8kbps  | 231.709           | 26             | PASS    |  |  |  |  |

Page 7 of 46 Report No.: 96897-9




### **Plot**



X Axis



# **Test Setup Photos**







# 15.249(a) Field Strength of Fundamental

See data sheets for test setup and test equipment.

|                    | Test Data Summary - Voltage Variations               |                                  |                                  |                                  |                                              |  |  |  |  |
|--------------------|------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------------------|--|--|--|--|
| Frequency<br>(MHz) | Modulation / Ant Port                                | V <sub>Minimum</sub><br>(dBuV/m) | V <sub>Nominal</sub><br>(dBuV/m) | V <sub>Maximum</sub><br>(dBuV/m) | Max Deviation from V <sub>Nominal</sub> (dB) |  |  |  |  |
| 915                | FSK with 200kHz bandwidth at 8kbps/ Integral antenna | 91.4                             | 91.5                             | 91.8                             | 0.3                                          |  |  |  |  |

Test performed using operational mode with the highest output power, representing worst case.

## **Parameter Definitions:**

Measurements performed at input voltage Vnominal ± 15%.

| Parameter              | Value   |
|------------------------|---------|
| V <sub>Nominal</sub> : | 5VDC    |
| V <sub>Minimum</sub> : | 4.25VDC |
| V <sub>Maximum</sub> : | 5.75VDC |

|                             | Test Data Summary – Radiated Field Strength Measurement |           |                           |                        |         |  |  |  |  |  |
|-----------------------------|---------------------------------------------------------|-----------|---------------------------|------------------------|---------|--|--|--|--|--|
| Frequency (MHz)             | Modulation                                              | Ant. Type | Measured<br>(dBuV/m @ 3m) | Limit<br>(dBuV/m @ 3m) | Results |  |  |  |  |  |
| 915 at Horizontal<br>X axis | FSK 8kbps                                               | Integral  | 91.5                      | ≤94                    | Pass    |  |  |  |  |  |
| 915 at Vertical<br>X axis   | FSK 8kbps                                               | Integral  | 90.4                      | ≤94                    | Pass    |  |  |  |  |  |
| 915 at Horizontal<br>Y axis | FSK 8kbps                                               | Integral  | 91.0                      | ≤94                    | Pass    |  |  |  |  |  |
| 915 at Vertical<br>X axis   | FSK 8kbps                                               | Integral  | 86.6                      | ≤94                    | Pass    |  |  |  |  |  |

Page 10 of 46 Report No.: 96897-9



## **Test Setup / Conditions / Data**

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: SmartLabs, Inc.

Specification:15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)Work Order #:96897Date: 2/1/2016Test Type:Radiated ScanTime: 16:40:04

Tested By: Hieu Song Nguyenpham Sequence#: 2

Software: EMITest 5.03.00

**Equipment Tested:** 

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

#### Test Conditions / Notes:

Fundamental

Firmware Used: TxAlways p41.HEX for 915MHz

Temperature: 19.9°C Humidity: 43 %

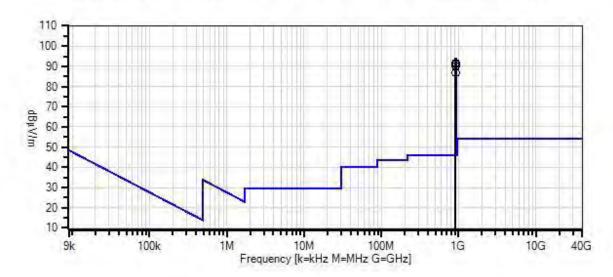
Atmospheric Pressure: 101.8 kPa

High Clock: 10MHz

Transmitting operating frequency= 915MHz

RBW=680kHz VBW=3MHz

Method: ANSI C 63.10 2013


The EUT is a wall mounted device and operated at 5VDC through a USB cable from a power adapter.

It is placed on a Styrofoam table and at the center of a turning table. The EUT is set in continuously transmitting or receiving as intended.

> Page 11 of 46 Report No.: 96897-9



SmartLabs, Inc WO#: 96897 Sequence#: 2 Date: 2/1/2016 15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter) Test Distance: 3 Meters Vert



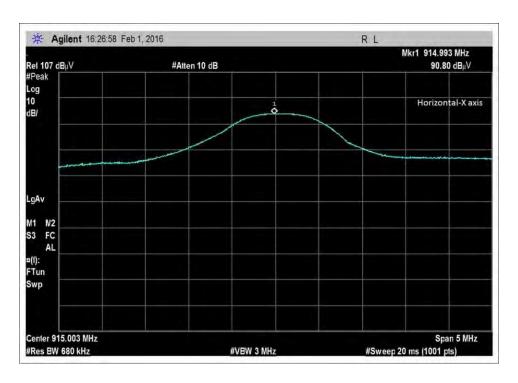
- Readings
- O Peak Readings
- × QP Readings
- \* Average Readings
- ▼ Ambient

Software Version: 5.03.00

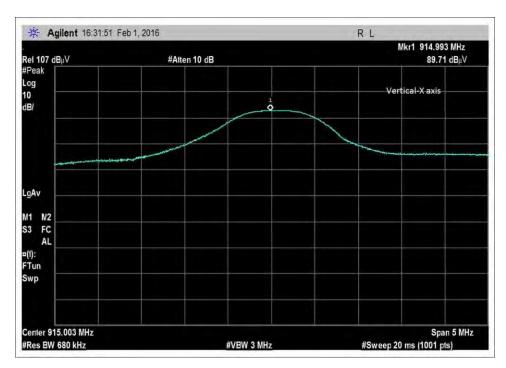
1 - 15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)



## Test Equipment:

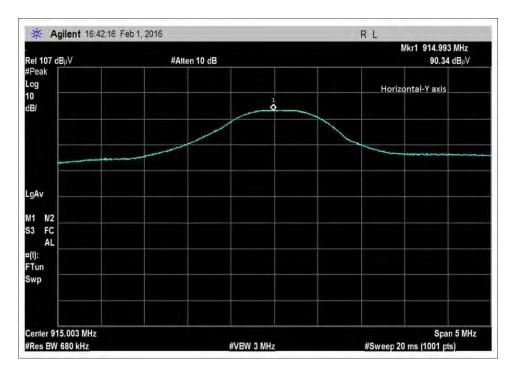

| ID | Asset #/Serial # | Description        | Model      | Calibration Date | Cal Due Date |
|----|------------------|--------------------|------------|------------------|--------------|
| T1 | AN00567          | Preamp             | 8447D      | 1/2/2015         | 1/2/2017     |
| T2 | AN00852          | Biconilog Antenna  | CBL 6111C  | 11/24/2014       | 11/24/2016   |
| T3 | ANP00880         | Cable              | RG214U     | 6/13/2014        | 6/13/2016    |
| T4 | ANP01187         | Cable              | CNT-195    | 12/30/2014       | 12/30/2016   |
| T5 | ANP06691         | Cable              | PE3062-180 | 8/8/2014         | 8/8/2016     |
|    | AN03471          | RF Characteristics | E4440A     | 1/4/2016         | 1/4/2018     |
|    |                  | Analyzer           |            |                  |              |

| Measu | rement Data: | Re        | eading lis | ted by ma | argin. |      | Т     | est Distance | e: 3 Meters    |        |       |
|-------|--------------|-----------|------------|-----------|--------|------|-------|--------------|----------------|--------|-------|
| #     | Freq         | Rdng      | T1         | T2        | T3     | T4   | Dist  | Corr         | Spec           | Margin | Polar |
|       |              |           | T5         |           |        |      |       |              |                |        |       |
|       | MHz          | $dB\mu V$ | dB         | dB        | dB     | dB   | Table | $dB\mu V/m$  | $dB\mu V/m \\$ | dB     | Ant   |
| 1     | 914.993M     | 90.8      | -28.0      | +23.4     | +3.2   | +0.7 | +0.0  | 91.5         | 94.0           | -2.5   | Horiz |
|       |              |           | +1.4       |           |        |      |       |              | X axis         |        |       |
| 2     | 914.993M     | 90.3      | -28.0      | +23.4     | +3.2   | +0.7 | +0.0  | 91.0         | 94.0           | -3.0   | Horiz |
|       |              |           | +1.4       |           |        |      |       |              | Y axis         |        |       |
| 3     | 914.993M     | 89.7      | -28.0      | +23.4     | +3.2   | +0.7 | +0.0  | 90.4         | 94.0           | -3.6   | Vert  |
|       |              |           | +1.4       |           |        |      |       |              | X axis         |        |       |
| 4     | 914.993M     | 85.9      | -28.0      | +23.4     | +3.2   | +0.7 | +0.0  | 86.6         | 94.0           | -7.4   | Vert  |
|       |              |           | +1.4       |           |        |      |       |              | Y-axis         |        |       |

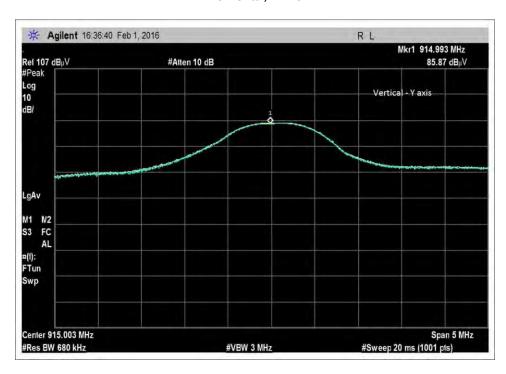

Page 13 of 46 Report No.: 96897-9



### **Plots**



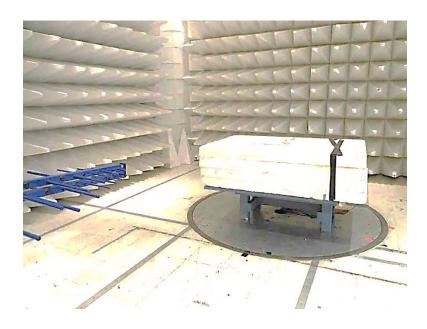

Horizontal, X axis




Vertical, X Axis






Horizontal, Y Axis



Vertical, Y Axis



# **Test Setup Photos**









X Axis



Y Axis



## 15.249(a) Radiated Emissions

## **Test Setup / Conditions / Data**

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 •(510) 249-1170

Customer: SmartLabs, Inc.

Software: EMITest 5.03.00

**Equipment Tested:** 

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

#### Test Conditions / Notes:

Radiated Spurious Emission

Frequency Range: 9kHz to 1000MHz

Firmware Used: TxAlways p41.HEX for 915MHz.

Temperature: 19.9°C Humidity: 43 %

Atmospheric Pressure: 101.8 kPa

High Clock: 10MHz

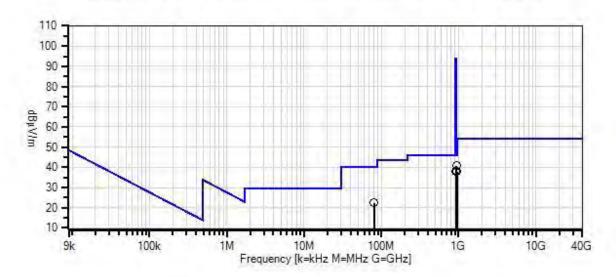
Transmitting operating frequency= 915MHz

Method: ANSI C 63.10 2013 Number of Channel=1

9 kHz -150 kHz;RBW=200 Hz,VBW=200 Hz; 150 kHz-30 MHz;RBW=9 kHz,VBW=9 kHz; 30 MHz-1000 MHz;RBW=120 kHz,VBW=120 kHz, 1000 MHz-10000MHz;RBW=1 MHz,VBW=1 MHz.

The EUT is a wall mounted device and operated at 5VDC through a USB cable from a power adapter. It is placed on a Styrofoam table and at the center of a turning table.

The EUT is set in continuously transmitting or receiving as intended.


TX Mode

X-axis

Page 18 of 46 Report No.: 96897-9



SmartLabs, Inc WO#: 96897 Sequence#: 20 Date: 2/1/2016 15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter) Test Distance: 3 Meters



- Readings
- O Peak Readings
- × QP Readings
- \* Average Readings
- ▼ Ambient

Software Version: 5.03.00

1 - 15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)



## Test Equipment:

| ID | Asset #/Serial # | Description        | Model      | Calibration Date | Cal Due Date |
|----|------------------|--------------------|------------|------------------|--------------|
| T1 | AN00567          | Preamp             | 8447D      | 1/2/2015         | 1/2/2017     |
| T2 | AN00852          | Biconilog Antenna  | CBL 6111C  | 11/24/2014       | 11/24/2016   |
| T3 | ANP00880         | Cable              | RG214U     | 6/13/2014        | 6/13/2016    |
| T4 | ANP01187         | Cable              | CNT-195    | 12/30/2014       | 12/30/2016   |
| T5 | ANP06691         | Cable              | PE3062-180 | 8/8/2014         | 8/8/2016     |
|    | AN03471          | RF Characteristics | E4440A     | 1/4/2016         | 1/4/2018     |
|    |                  | Analyzer           |            |                  |              |
|    | AN00432          | Loop Antenna       | 6502       | 5/8/2015         | 5/8/2017     |

| Measur | rement Data: | Re   | eading lis | ted by ma | argin. |      | Т     | est Distance | e: 3 Meters |        |       |
|--------|--------------|------|------------|-----------|--------|------|-------|--------------|-------------|--------|-------|
| #      | Freq         | Rdng | T1         | T2        | Т3     | T4   | Dist  | Corr         | Spec        | Margin | Polar |
|        |              |      | T5         |           |        |      |       |              |             |        |       |
|        | MHz          | dΒμV | dB         | dB        | dB     | dB   | Table | $dB\mu V/m$  | $dB\mu V/m$ | dB     | Ant   |
| 1      | 934.987M     | 39.6 | -27.9      | +23.7     | +3.2   | +0.7 | +0.0  | 40.7         | 46.0        | -5.3   | Vert  |
|        |              |      | +1.4       |           |        |      |       |              |             |        |       |
| 2      | 944.965M     | 36.6 | -27.9      | +23.8     | +3.3   | +0.7 | +0.0  | 37.9         | 46.0        | -8.1   | Horiz |
|        |              |      | +1.4       |           |        |      |       |              |             |        |       |
| 3      | 928.020M     | 36.8 | -27.9      | +23.6     | +3.2   | +0.7 | +0.0  | 37.8         | 46.0        | -8.2   | Vert  |
|        |              |      | +1.4       |           |        |      |       |              |             |        |       |
| 4      | 79.978M      | 41.6 | -27.9      | +7.5      | +0.8   | +0.2 | +0.0  | 22.5         | 40.0        | -17.5  | Vert  |
|        |              |      | +0.3       |           |        |      |       |              |             |        |       |



Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: SmartLabs, Inc.

Specification:15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)Work Order #:96897Date: 2/1/2016Test Type:Radiated ScanTime: 10:44:00Tested By:Hieu Song NguyenphamSequence#: 5

Software: EMITest 5.03.00

**Equipment Tested:** 

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

#### Test Conditions / Notes:

Radiated Spurious Emission

Frequency Range: 1000MHz to 10000MHz

Firmware Used: TxAlways p41.HEX for 915MHz.

Temperature: 19.9°C Humidity: 43 %

Atmospheric Pressure: 101.8 kPa

High Clock: 10MHz

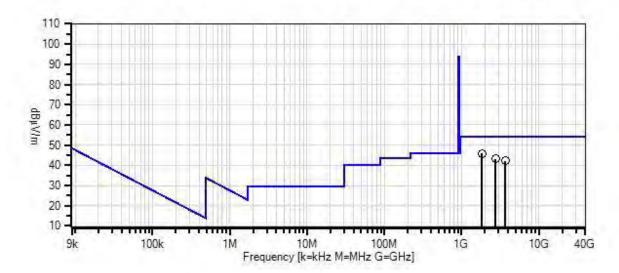
Transmitting operating frequency= 915MHz

Method: ANSI C 63.10 2013 Number of Channel =1

9 kHz -150 kHz;RBW=200 Hz,VBW=200 Hz; 150 kHz-30 MHz;RBW=9 kHz,VBW=9 kHz; 30 MHz-1000 MHz;RBW=120 kHz,VBW=120 kHz, 1000 MHz-10000MHz;RBW=1 MHz,VBW=1 MHz.

The EUT is a wall mounted device and operated at 5VDC through a USB cable from a power adapter. It is placed on a Styrofoam table and at the center of a turning table.

The EUT is set in continuously transmitting or receiving as intended.


TX Mode

X-axis

Page 21 of 46 Report No.: 96897-9



SmartLabs, Inc WO#: 96897 Sequence#: 5 Date: 2/1/2016 15,249 Carrier and Spurious Emissions (902-928 MHz Transmitter). Test Distance: 3 Meters



- Readings
- O Peak Readings
- × QP Readings
- \* Average Readings
- ▼ Ambient

Software Version: 5.03.00

- 1 - 15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)



## Test Equipment:

| ID | Asset #/Serial # | Description        | Model         | Calibration Date | Cal Due Date |
|----|------------------|--------------------|---------------|------------------|--------------|
| T1 | AN03114          | Preamp             | AMF-7D-       | 4/22/2015        | 4/22/2017    |
|    |                  |                    | 00101800-30-  |                  |              |
|    |                  |                    | 10P           |                  |              |
| T2 | AN02113          | Horn Antenna       | 3115          | 2/3/2015         | 2/3/2017     |
| T3 | AN03302          | Cable              | 32026-29094K- | 3/24/2014        | 3/24/2016    |
|    |                  |                    | 29094K-72TC   |                  |              |
| T4 | ANP01210         | Cable              | FSJ1P-50A-4A  | 1/15/2015        | 1/15/2017    |
| T5 | ANP06900         | Cable              | 32022-29094K- | 12/30/2015       | 12/30/2017   |
|    |                  |                    | 29094K-36TC   |                  |              |
|    | AN03471          | RF Characteristics | E4440A        | 1/4/2016         | 1/4/2018     |
|    |                  | Analyzer           |               |                  |              |
| T6 | AN03172          | High Pass Filter   | HM1155-11SS   | 1/18/2016        | 1/18/2018    |

| Measi | ırement Data: | Re        | eading lis | ted by ma | argin. |      | Т     | est Distance | e: 3 Meters | 1      |       |
|-------|---------------|-----------|------------|-----------|--------|------|-------|--------------|-------------|--------|-------|
| #     | Freq          | Rdng      | T1         | T2        | Т3     | T4   | Dist  | Corr         | Spec        | Margin | Polar |
|       |               |           | T5         | T6        |        |      |       |              |             |        |       |
|       | MHz           | $dB\mu V$ | dB         | dB        | dB     | dB   | Table | $dB\mu V/m$  | $dB\mu V/m$ | dB     | Ant   |
| 1     | 1830.315M     | 75.9      | -58.2      | +23.9     | +1.0   | +2.2 | +0.0  | 45.9         | 54.0        | -8.1   | Vert  |
|       |               |           | +0.5       | +0.6      |        |      |       |              |             |        |       |
| 2     | 2744.743M     | 69.7      | -58.5      | +27.4     | +1.2   | +2.7 | +0.0  | 43.2         | 54.0        | -10.8  | Vert  |
|       |               |           | +0.6       | +0.1      |        |      |       |              |             |        |       |
| 3     | 3659.657M     | 66.2      | -58.8      | +29.5     | +1.4   | +3.2 | +0.0  | 42.3         | 54.0        | -11.7  | Vert  |
|       |               |           | +0.6       | +0.2      |        |      |       |              |             |        |       |



Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 •(510) 249-1170

Customer: SmartLabs, Inc.

Specification:15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)Work Order #:96897Date: 2/1/2016Test Type:Radiated ScanTime: 15:58:42Tested By:Hieu Song NguyenphamSequence#: 23

Software: EMITest 5.03.00

#### Equipment Tested:

| Device          | Manufacturer | Model # | S/N |  |
|-----------------|--------------|---------|-----|--|
| Configuration 1 |              |         |     |  |

#### Support Equipment:

| Device          | Manufacturer | Model # | S/N |  |
|-----------------|--------------|---------|-----|--|
| Configuration 1 |              |         |     |  |

#### Test Conditions / Notes:

Radiated Spurious Emission

Frequency Range: 9kHz to 1000MHz

Firmware Used: TxAlways p41.HEX for 915MHz.

Temperature: 19.9°C Humidity: 43 %

Atmospheric Pressure: 101.8 kPa

High Clock: 10MHz

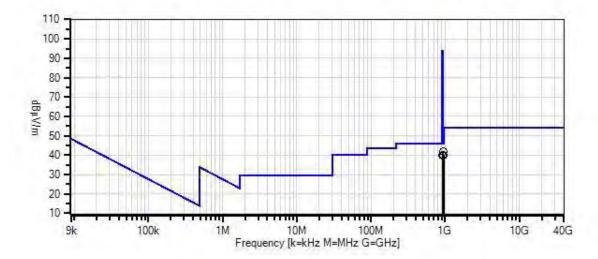
Transmitting operating frequency= 915MHz

Method: ANSI C 63.10 2013 Number of Channel =1

9 kHz -150 kHz;RBW=200 Hz,VBW=200 Hz; 150 kHz-30 MHz;RBW=9 kHz,VBW=9 kHz; 30 MHz-1000 MHz;RBW=120 kHz,VBW=120 kHz, 1000 MHz-10000MHz RBW=1 MHz,VBW=1 MHz.

The EUT is a wall mounted device and operated at 5VDC through a USB cable from a power adapter. It is placed on a Styrofoam table and at the center of a turning table.

The EUT is set in continuously transmitting or receiving as intended.


### TX Mode

Y-axis

Page 24 of 46 Report No.: 96897-9



SmartLabs, Inc WO#: 96897 Sequence#: 23 Date: 2/1/2016 15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter) Test Distance: 3 Meters



- Readings Peak Readings QP Readings 0
- Average Readings
- Ambient
  - Software Version: 5.03.00
- 1 15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)



## Test Equipment:

| Asset #/Serial #        | Description                                                       | Model                                                                                                                     | <b>Calibration Date</b>                                                                                                                                                                                                                                                                                                                                 | Cal Due Date                                                                                                                                                                                                                          |
|-------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AN00567                 | Preamp                                                            | 8447D                                                                                                                     | 1/2/2015                                                                                                                                                                                                                                                                                                                                                | 1/2/2017                                                                                                                                                                                                                              |
| AN00852                 | Biconilog Antenna                                                 | CBL 6111C                                                                                                                 | 11/24/2014                                                                                                                                                                                                                                                                                                                                              | 11/24/2016                                                                                                                                                                                                                            |
| ANP00880 Cable RG214U 6 |                                                                   | 6/13/2014                                                                                                                 | 6/13/2016                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                       |
| ANP01187                | Cable                                                             | CNT-195                                                                                                                   | 12/30/2014                                                                                                                                                                                                                                                                                                                                              | 12/30/2016                                                                                                                                                                                                                            |
| ANP06691                | Cable                                                             | PE3062-180                                                                                                                | 8/8/2014                                                                                                                                                                                                                                                                                                                                                | 8/8/2016                                                                                                                                                                                                                              |
| AN03471                 | RF Characteristics                                                | E4440A                                                                                                                    | 1/4/2016                                                                                                                                                                                                                                                                                                                                                | 1/4/2018                                                                                                                                                                                                                              |
|                         | Analyzer                                                          |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                       |
| AN00432                 | Loop Antenna                                                      | 6502                                                                                                                      | 5/8/2015                                                                                                                                                                                                                                                                                                                                                | 5/8/2017                                                                                                                                                                                                                              |
|                         | AN00567<br>AN00852<br>ANP00880<br>ANP01187<br>ANP06691<br>AN03471 | AN00567 Preamp AN00852 Biconilog Antenna ANP00880 Cable ANP01187 Cable ANP06691 Cable AN03471 RF Characteristics Analyzer | AN00567         Preamp         8447D           AN00852         Biconilog Antenna         CBL 6111C           ANP00880         Cable         RG214U           ANP01187         Cable         CNT-195           ANP06691         Cable         PE3062-180           AN03471         RF Characteristics         E4440A           Analyzer         Analyzer | AN00567 Preamp 8447D 1/2/2015 AN00852 Biconilog Antenna CBL 6111C 11/24/2014 ANP00880 Cable RG214U 6/13/2014 ANP01187 Cable CNT-195 12/30/2014 ANP06691 Cable PE3062-180 8/8/2014 AN03471 RF Characteristics E4440A 1/4/2016 Analyzer |

| Mea | surement Data: | Re        | Reading listed by margin. |       |      | Test Distance: 3 Meters |       |             |             |        |       |
|-----|----------------|-----------|---------------------------|-------|------|-------------------------|-------|-------------|-------------|--------|-------|
| #   | Freq           | Rdng      | T1                        | T2    | T3   | T4                      | Dist  | Corr        | Spec        | Margin | Polar |
|     |                |           | T5                        |       |      |                         |       |             |             |        |       |
|     | MHz            | $dB\mu V$ | dB                        | dB    | dB   | dB                      | Table | $dB\mu V/m$ | $dB\mu V/m$ | dB     | Ant   |
|     | 1 934.987M     | 40.8      | -27.9                     | +23.7 | +3.2 | +0.7                    | +0.0  | 41.9        | 46.0        | -4.1   | Vert  |
|     |                |           | +1.4                      |       |      |                         |       |             |             |        |       |
|     | 2 944.965M     | 38.8      | -27.9                     | +23.8 | +3.3 | +0.7                    | +0.0  | 40.1        | 46.0        | -5.9   | Vert  |
|     |                |           | +1.4                      |       |      |                         |       |             |             |        |       |
|     | 3 929.461M     | 39.1      | -27.9                     | +23.6 | +3.2 | +0.7                    | +0.0  | 40.1        | 46.0        | -5.9   | Vert  |
|     |                |           | +1.4                      |       |      |                         |       |             |             |        |       |

Page 26 of 46 Report No.: 96897-9



Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: SmartLabs, Inc.

Specification:15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)Work Order #:96897Date: 2/1/2016Test Type:Radiated ScanTime: 11:22:23Tested By:Hieu Song NguyenphamSequence#: 8

Software: EMITest 5.03.00

#### **Equipment Tested:**

| Device          | Manufacturer | Model # | S/N |
|-----------------|--------------|---------|-----|
| Configuration 1 |              |         |     |

#### Support Equipment:

| Device          | Manufacturer | Model # | S/N |  |
|-----------------|--------------|---------|-----|--|
| Configuration 1 |              |         |     |  |

#### Test Conditions / Notes:

Radiated Spurious Emission

Frequency Range: 1000MHz to 10000MHz

Firmware Used: TxAlways p41.HEX for 915MHz.

Temperature: 19.9°C Humidity: 43 %

Atmospheric Pressure: 101.8 kPa

High Clock: 10MHz

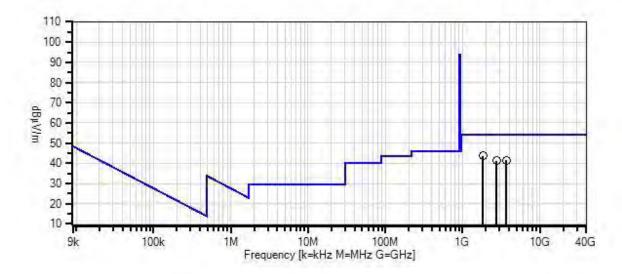
Transmitting operating frequency= 915MHz

Method: ANSI C 63.10 2013 Number of Channel=1

9 kHz -150 kHz;RBW=200 Hz,VBW=200 Hz; 150 kHz-30 MHz;RBW=9 kHz,VBW=9 kHz; 30 MHz-1000 MHz;RBW=120 kHz,VBW=120 kHz, 1000 MHz-10000MHz;RBW=1 MHz,VBW=1 MHz.

The EUT is a wall mounted device and operated at 5VDC through a USB cable from a power adapter. It is placed on a Styrofoam table and at the center of a turning table.

The EUT is set in continuously transmitting or receiving as intended.


### TX Mode

Y-axis

Page 27 of 46 Report No.: 96897-9



SmartLabs, Inc WO#: 96897 Sequence#: 8 Date: 2/1/2016 15,249 Carrier and Spurious Emissions (902-928 MHz Transmitter). Test Distance: 3 Meters



- Readings
- O Peak Readings
- × QP Readings
- \* Average Readings
- ▼ Ambient

Software Version: 5.03.00

1 - 15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)



## Test Equipment:

| ID | Asset #/Serial # | Description        | Model         | Calibration Date | Cal Due Date |
|----|------------------|--------------------|---------------|------------------|--------------|
| T1 | AN03114          | Preamp             | AMF-7D-       | 4/22/2015        | 4/22/2017    |
|    |                  |                    | 00101800-30-  |                  |              |
|    |                  |                    | 10P           |                  |              |
| T2 | AN02113          | Horn Antenna       | 3115          | 2/3/2015         | 2/3/2017     |
| T3 | AN03302          | Cable              | 32026-29094K- | 3/24/2014        | 3/24/2016    |
|    |                  |                    | 29094K-72TC   |                  |              |
| T4 | ANP01210         | Cable              | FSJ1P-50A-4A  | 1/15/2015        | 1/15/2017    |
| T5 | ANP06900         | Cable              | 32022-29094K- | 12/30/2015       | 12/30/2017   |
|    |                  |                    | 29094K-36TC   |                  |              |
|    | AN03471          | RF Characteristics | E4440A        | 1/4/2016         | 1/4/2018     |
|    |                  | Analyzer           |               |                  |              |
| Т6 | AN03172          | High Pass Filter   | HM1155-11SS   | 1/18/2016        | 1/18/2018    |

| Measi | ırement Data: | Reading listed by margin. |       |       | Test Distance: 3 Meters |      |       |             |             |        |       |
|-------|---------------|---------------------------|-------|-------|-------------------------|------|-------|-------------|-------------|--------|-------|
| #     | Freq          | Rdng                      | T1    | T2    | Т3                      | T4   | Dist  | Corr        | Spec        | Margin | Polar |
|       |               |                           | T5    | T6    |                         |      |       |             |             |        |       |
|       | MHz           | dΒμV                      | dB    | dB    | dB                      | dB   | Table | $dB\mu V/m$ | $dB\mu V/m$ | dB     | Ant   |
| 1     | 1830.260M     | 73.7                      | -58.2 | +23.9 | +1.0                    | +2.2 | +0.0  | 43.7        | 54.0        | -10.3  | Horiz |
|       |               |                           | +0.5  | +0.6  |                         |      |       |             |             |        |       |
| 2     | 3660.658M     | 65.4                      | -58.8 | +29.5 | +1.4                    | +3.2 | +0.0  | 41.5        | 54.0        | -12.5  | Horiz |
|       |               |                           | +0.6  | +0.2  |                         |      |       |             |             |        |       |
| 3     | 2744.915M     | 67.7                      | -58.5 | +27.4 | +1.2                    | +2.7 | +0.0  | 41.2        | 54.0        | -12.8  | Horiz |
|       |               |                           | +0.6  | +0.1  |                         |      |       |             |             |        |       |



|                    | Band Edge Summary |           |                                |                       |         |  |  |  |  |  |
|--------------------|-------------------|-----------|--------------------------------|-----------------------|---------|--|--|--|--|--|
| Frequency<br>(MHz) | Modulation        | Ant. Type | Field Strength<br>(dBuV/m @3m) | Limit<br>(dBuV/m @3m) | Results |  |  |  |  |  |
| 915                | FSK 8kbps         | Integral  | 91.5                           | <46                   | Pass    |  |  |  |  |  |
|                    |                   |           |                                |                       |         |  |  |  |  |  |

Test performed using operational mode with the highest output power, representing worst case

## Band Edge Setup/ Data

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: SmartLabs, Inc.

Software: EMITest 5.03.00

Equipment Tested:

| <u> </u>        |              |         |     |  |
|-----------------|--------------|---------|-----|--|
| Device          | Manufacturer | Model # | S/N |  |
| Configuration 1 |              |         |     |  |

Support Equipment:

| Device          | Manufacturer | Model # | S/N |  |
|-----------------|--------------|---------|-----|--|
| Configuration 1 |              |         |     |  |

#### Test Conditions / Notes:

Band Edge

Firmware Used: TxAlways p41.HEX for 915MHz

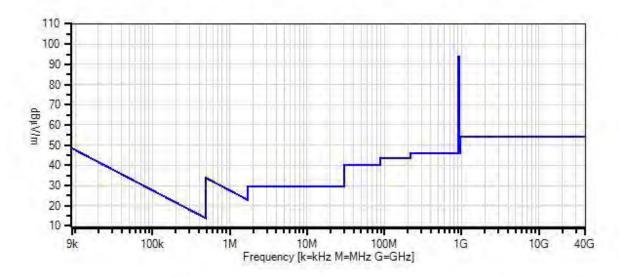
Temperature: 19.9°C Humidity: 43 %

Atmospheric Pressure: 101.8 kPa

High Clock: 10MHz

Transmitting operating frequency= 915MHz

Method: ANSI C 63.10 2013


The EUT is a wall mounted device and operated at 5VDC through a USB cable from a power adapter.

It is placed on a Styrofoam table and at the center of a turning table. The EUT is set in continuously transmitting or receiving as intended.

> Page 30 of 46 Report No.: 96897-9

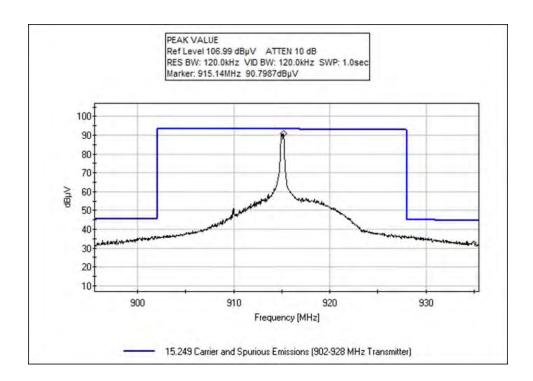


SmartLabs, Inc WO#: 96897 Sequence#: 2 Date: 2/1/2016 15,249 Carrier and Spurious Emissions (902-928 MHz Transmitter) Test Distance: 3 Meters Horiz



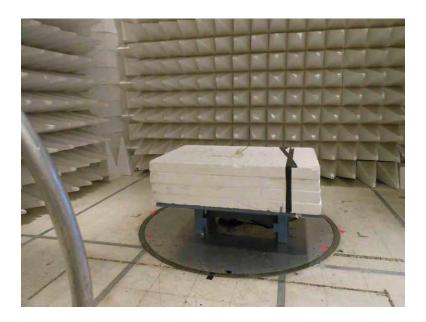
- Readings
- O Peak Readings
- × QP Readings
- \* Average Readings
- ▼ Ambient

Software Version: 5.03.00

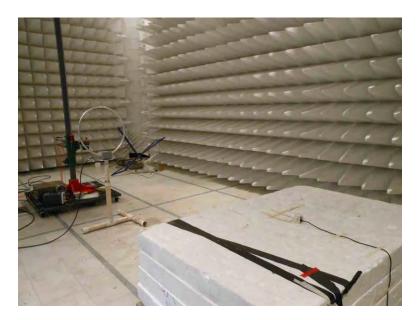

1 - 15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)

## Test Equipment:

| ID | Asset #/Serial # | Description        | Model      | Calibration Date | Cal Due Date |
|----|------------------|--------------------|------------|------------------|--------------|
|    | AN00567          | Preamp             | 8447D      | 1/2/2015         | 1/2/2017     |
|    | AN00852          | Biconilog Antenna  | CBL 6111C  | 11/24/2014       | 11/24/2016   |
|    | ANP00880         | Cable              | RG214U     | 6/13/2014        | 6/13/2016    |
|    | ANP01187         | Cable              | CNT-195    | 12/30/2014       | 12/30/2016   |
|    | ANP06691         | Cable              | PE3062-180 | 8/8/2014         | 8/8/2016     |
|    | AN03471          | RF Characteristics | E4440A     | 1/4/2016         | 1/4/2018     |
|    |                  | Analyzer           |            |                  |              |




## **Band Edge Plot**






# **Test Setup Photos**



9kHz – 30MHz

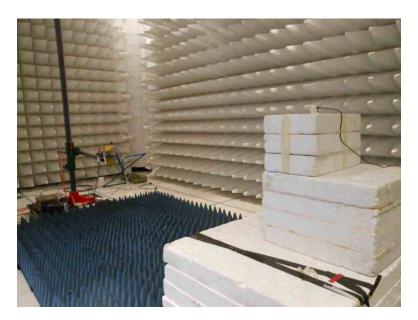


9kHz – 30MHz





30MHz **–** 1GHz




30MHz **–** 1GHz





1 – 10GHz



1 – 10GHz





X Axis



Y Axis



## 15.207 AC Conducted Emissions

### Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer: SmartLabs, Inc.

Specification: 15.207 AC Mains - Average

Work Order #: 96897 Date: 2/3/2016
Test Type: Conducted Emissions Time: 08:49:41
Tested By: Hieu Song Nguyenpham Sequence#: 24

Software: EMITest 5.03.00 120V 60Hz

**Equipment Tested:** 

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

**Device** Manufacturer Model # S/N
Configuration 1

#### Test Conditions / Notes:

Conducted Emission

Frequency Range: 150kHz to 30MHz

Firmware Used: TxAlways p41.HEX for 915MHz.

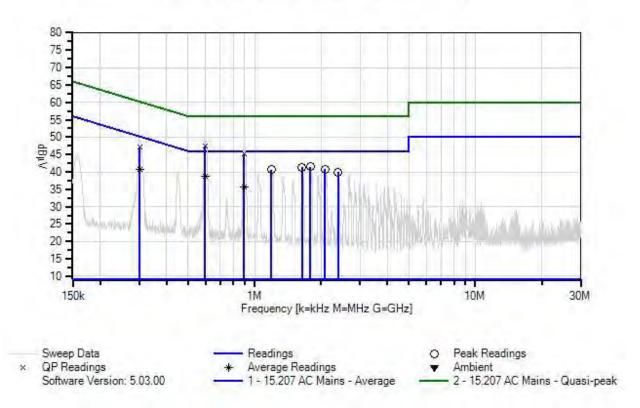
Temperature: 19.9°C Humidity: 43 %

Atmospheric Pressure: 101.8 kPa

High Clock: 10MHz

Transmitting operating frequency= 915MHz

Method: ANSI C 63.10 2013 Number of Channel=1


The EUT is a wall mounted device and operated at 5VDC through a USB cable from a power adapter. It is placed on a Styrofoam table. The EUT is set in continuously transmitting or receiving as intended.

TX Mode

Page 37 of 46 Report No.: 96897-9



SmartLabs, Inc WO#: 96897 Sequence#: 24 Date: 2/3/2016 15.207 AC Mains - Average Test Lead: 120V 60Hz





Test Equipment:

| ID | Asset #/Serial # | Description                                      | Model                   | Calibration Date | Cal Due Date |
|----|------------------|--------------------------------------------------|-------------------------|------------------|--------------|
| T1 | ANP01211         | Attenuator                                       | 23-10-34                | 3/31/2015        | 3/31/2017    |
| T2 | ANP00880         | Cable                                            | RG214U                  | 6/13/2014        | 6/13/2016    |
| T3 | ANP06691         | Cable                                            | PE3062-180              | 8/8/2014         | 8/8/2016     |
| T4 | AN00493          | 50uH LISN-L1 (L)<br>Loss W/O<br>European Adapter | 3816/NM                 | 3/4/2015         | 3/4/2017     |
|    | AN00493          | 50uH LISN-L(2) N<br>Loss W/O<br>European Adapter | 3816/NM                 | 3/4/2015         | 3/4/2017     |
|    | AN03471          | RF Characteristics<br>Analyzer                   | E4440A                  | 1/4/2016         | 1/4/2018     |
| T5 | ANP05258         | High Pass Filter                                 | HE9615-150K-<br>50-720B | 11/14/2014       | 11/14/2016   |

| Measu | rement Data: | Re    | eading list | ted by ma | ırgin. |      |       | Test Lead | d: Line |        |       |
|-------|--------------|-------|-------------|-----------|--------|------|-------|-----------|---------|--------|-------|
| #     | Freq         | Rdng  | T1          | T2        | T3     | T4   | Dist  | Corr      | Spec    | Margin | Polar |
|       |              |       | T5          |           |        |      |       |           |         |        |       |
|       | MHz          | dΒμV  | dB          | dB        | dB     | dB   | Table | dΒμV      | dBμV    | dB     | Ant   |
| 1     | 1.787M       | 31.3  | +9.8        | +0.1      | +0.0   | +0.1 | +0.0  | 41.5      | 46.0    | -4.5   | Line  |
|       | 4 6 4 9 3 5  |       | +0.2        | 0.1       |        |      |       |           | 160     |        |       |
| 2     | 1.643M       | 31.1  | +9.8        | +0.1      | +0.0   | +0.1 | +0.0  | 41.3      | 46.0    | -4.7   | Line  |
|       | 2 00 53 6    | 20.5  | +0.2        | .0.1      |        | .0.1 |       | 40.0      | 46.0    |        | т.    |
| 3     | 2.085M       | 30.5  | +9.9        | +0.1      | +0.0   | +0.1 | +0.0  | 40.8      | 46.0    | -5.2   | Line  |
| 4     | 1 1021/4     | 30.5  | +0.2        | +0.1      | +0.0   | +0.1 | +0.0  | 40.7      | 46.0    | -5.3   | Tina  |
| 4     | 1.192M       | 30.3  | +9.8        | +0.1      | +0.0   | +0.1 | +0.0  | 40.7      | 40.0    | -3.3   | Line  |
| 5     | 2.387M       | 29.8  | +9.8        | +0.1      | +0.0   | +0.1 | +0.0  | 40.0      | 46.0    | -6.0   | Line  |
| 3     | 2.36/IVI     | 29.8  | +0.2        | ±0.1      | +0.0   | ±0.1 | +0.0  | 40.0      | 40.0    | -0.0   | Line  |
| 6     | 595.497k     | 28.7  | +9.9        | +0.0      | +0.0   | +0.1 | +0.0  | 38.8      | 46.0    | -7.2   | Line  |
|       | Ave          | 20.7  | +0.1        | 10.0      | 10.0   | 10.1 | 10.0  | 30.0      | 70.0    | -7.2   | Line  |
| 7     |              | 37.3  | +9.9        | +0.0      | +0.0   | +0.1 | +0.0  | 47.4      | 56.0    | -8.6   | Line  |
|       | QP           |       | +0.1        |           |        |      |       |           |         |        |       |
| ^     | 595.497k     | 39.5  | +9.9        | +0.0      | +0.0   | +0.1 | +0.0  | 49.6      | 46.0    | +3.6   | Line  |
|       |              |       | +0.1        |           |        |      |       |           |         |        |       |
| 9     | 301.279k     | 30.5  | +9.9        | +0.0      | +0.0   | +0.1 | +0.0  | 40.6      | 50.2    | -9.6   | Line  |
|       | Ave          |       | +0.1        |           |        |      |       |           |         |        |       |
| 10    | 894.856k     | 25.6  | +9.9        | +0.1      | +0.0   | +0.1 | +0.0  | 35.8      | 46.0    | -10.2  | Line  |
|       | Ave          |       | +0.1        |           |        |      |       |           |         |        |       |
| 11    | 894.856k     | 35.0  | +9.9        | +0.1      | +0.0   | +0.1 | +0.0  | 45.2      | 56.0    | -10.8  | Line  |
|       | QP           |       | +0.1        |           |        |      |       |           |         |        |       |
| ^     | 894.856k     | 36.7  | +9.9        | +0.1      | +0.0   | +0.1 | +0.0  | 46.9      | 46.0    | +0.9   | Line  |
|       | 201.250      |       | +0.1        | 0.6       | 0.6    |      |       |           |         |        |       |
| 13    | 301.279k     | 37.0  | +9.9        | +0.0      | +0.0   | +0.1 | +0.0  | 47.1      | 60.2    | -13.1  | Line  |
|       | QP           | • • • | +0.1        |           |        |      |       |           |         |        |       |
| ^     | 301.279k     | 38.6  | +9.9        | +0.0      | +0.0   | +0.1 | +0.0  | 48.7      | 50.2    | -1.5   | Line  |
|       |              |       | +0.1        |           |        |      |       |           |         |        |       |



Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 •

Customer: SmartLabs, Inc.

Specification: 15.207 AC Mains - Average

Work Order #: 96897 Date: 2/3/2016
Test Type: Conducted Emissions Time: 09:00:44
Tested By: Hieu Song Nguyenpham Sequence#: 25

Software: EMITest 5.03.00 120V 60Hz

#### **Equipment Tested:**

Device Manufacturer Model # S/N
Configuration 1

#### Support Equipment:

| Device          | Manufacturer | Model # | S/N |  |
|-----------------|--------------|---------|-----|--|
| Configuration 1 |              |         |     |  |

#### Test Conditions / Notes:

Conducted Emission

Frequency Range: 150kHz to 30MHz

Firmware Used: TxAlways p41.HEX for 915MHz.

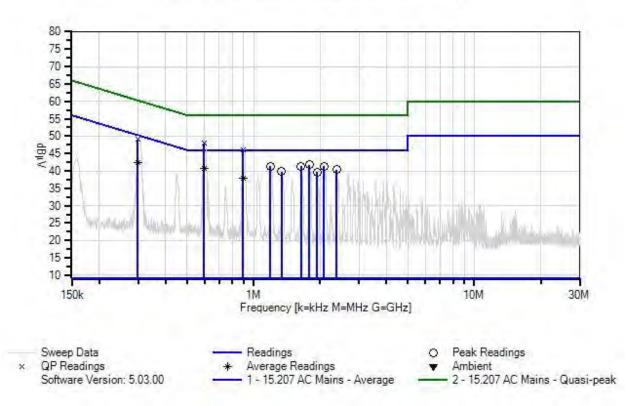
Temperature: 19.9°C Humidity: 43 %

Atmospheric Pressure: 101.8 kPa

High Clock: 10MHz

Transmitting operating frequency= 915MHz

Method: ANSI C 63.10 2013 Number of Channel=1


The EUT is a wall mounted device and operated at 5VDC through a USB cable from a power adapter. It is placed on a Styrofoam table. The EUT is set in continuously transmitting or receiving as intended.

#### TX Mode

Page 40 of 46 Report No.: 96897-9



SmartLabs, Inc WO#: 96897 Sequence#: 25 Date: 2/3/2016 15.207 AC Mains - Average Test Lead: 120V 60Hz

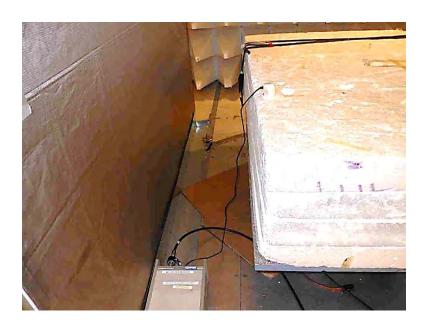




## Test Equipment:

| ID | Asset #/Serial # | Description                                      | Model                   | Calibration Date | Cal Due Date |
|----|------------------|--------------------------------------------------|-------------------------|------------------|--------------|
| T1 | ANP01211         | Attenuator                                       | 23-10-34                | 3/31/2015        | 3/31/2017    |
| T2 | ANP00880         | Cable                                            | RG214U                  | 6/13/2014        | 6/13/2016    |
| T3 | ANP06691         | Cable                                            | PE3062-180              | 8/8/2014         | 8/8/2016     |
|    | AN00493          | 50uH LISN-L1 (L)<br>Loss W/O<br>European Adapter | 3816/NM                 | 3/4/2015         | 3/4/2017     |
| T4 | AN00493          | 50uH LISN-L(2) N<br>Loss W/O<br>European Adapter | 3816/NM                 | 3/4/2015         | 3/4/2017     |
|    | AN03471          | RF Characteristics<br>Analyzer                   | E4440A                  | 1/4/2016         | 1/4/2018     |
| T5 | ANP05258         | High Pass Filter                                 | HE9615-150K-<br>50-720B | 11/14/2014       | 11/14/2016   |

| Measur | rement Data: | Re   | eading list | ted by ma | argin. |      |       | Test Lead | d: Neutral |        |       |
|--------|--------------|------|-------------|-----------|--------|------|-------|-----------|------------|--------|-------|
| #      | Freq         | Rdng | T1          | T2        | T3     | T4   | Dist  | Corr      | Spec       | Margin | Polar |
|        |              |      | T5          |           |        |      |       |           |            |        |       |
|        | MHz          | dΒμV | dB          | dB        | dB     | dB   | Table | dΒμV      | dΒμV       | dB     | Ant   |
| 1      | 1.792M       | 31.0 | +9.8        | +0.1      | +0.0   | +0.7 | +0.0  | 41.8      | 46.0       | -4.2   | Neutr |
|        |              |      | +0.2        |           |        |      |       |           |            |        |       |
| 2      | 1.643M       | 30.6 | +9.8        | +0.1      | +0.0   | +0.7 | +0.0  | 41.4      | 46.0       | -4.6   | Neutr |
|        |              |      | +0.2        |           |        |      |       |           |            |        |       |
| 3      | 1.192M       | 30.5 | +9.8        | +0.1      | +0.0   | +0.7 | +0.0  | 41.3      | 46.0       | -4.7   | Neutr |
|        |              |      | +0.2        |           |        |      |       |           |            |        |       |
| 4      | 2.089M       | 30.4 | +9.9        | +0.1      | +0.0   | +0.7 | +0.0  | 41.3      | 46.0       | -4.7   | Neutr |
|        |              |      | +0.2        |           |        |      |       |           |            |        |       |
| 5      | 596.996k     | 30.0 | +9.9        | +0.0      | +0.0   | +0.7 | +0.0  | 40.7      | 46.0       | -5.3   | Neutr |
| 1      | Ave          |      | +0.1        |           |        |      |       |           |            |        |       |
| 6      | 2.383M       | 29.5 | +9.8        | +0.1      | +0.0   | +0.7 | +0.0  | 40.3      | 46.0       | -5.7   | Neutr |
|        |              |      | +0.2        |           |        |      |       |           |            |        |       |
| 7      | 1.341M       | 29.0 | +9.8        | +0.1      | +0.0   | +0.7 | +0.0  | 39.8      | 46.0       | -6.2   | Neutr |
|        |              |      | +0.2        |           |        |      |       |           |            |        |       |
| 8      | 1.936M       | 28.8 | +9.8        | +0.1      | +0.0   | +0.7 | +0.0  | 39.6      | 46.0       | -6.4   | Neutr |
|        |              |      | +0.2        |           |        |      |       |           |            |        |       |
| 9      | 299.517k     | 31.6 | +9.9        | +0.0      | +0.0   | +0.7 | +0.0  | 42.3      | 50.3       | -8.0   | Neutr |
| 1      | Ave          |      | +0.1        |           |        |      |       |           |            |        |       |




| 10 5 | 596.996k | 37.2 | +9.9 | +0.0 | +0.0 | +0.7 | +0.0 | 47.9 | 56.0 | -8.1  | Neutr |
|------|----------|------|------|------|------|------|------|------|------|-------|-------|
| QP   | )        |      | +0.1 |      |      |      |      |      |      |       |       |
| ^ 5  | 596.996k | 39.0 | +9.9 | +0.0 | +0.0 | +0.7 | +0.0 | 49.7 | 46.0 | +3.7  | Neutr |
|      |          |      | +0.1 |      |      |      |      |      |      |       |       |
| 12 8 | 895.316k | 27.0 | +9.9 | +0.1 | +0.0 | +0.7 | +0.0 | 37.8 | 46.0 | -8.2  | Neutr |
| Av   | re       |      | +0.1 |      |      |      |      |      |      |       |       |
| 13 8 | 895.316k | 35.3 | +9.9 | +0.1 | +0.0 | +0.7 | +0.0 | 46.1 | 56.0 | -9.9  | Neutr |
| QP   | )        |      | +0.1 |      |      |      |      |      |      |       |       |
| ^ 8  | 895.316k | 36.9 | +9.9 | +0.1 | +0.0 | +0.7 | +0.0 | 47.7 | 46.0 | +1.7  | Neutr |
|      |          |      | +0.1 |      |      |      |      |      |      |       |       |
| 15 2 | 299.517k | 38.3 | +9.9 | +0.0 | +0.0 | +0.7 | +0.0 | 49.0 | 60.3 | -11.3 | Neutr |
| QP   | )        |      | +0.1 |      |      |      |      |      |      |       |       |
| ^ 2  | 299.517k | 39.7 | +9.9 | +0.0 | +0.0 | +0.7 | +0.0 | 50.4 | 50.3 | +0.1  | Neutr |
|      |          |      | +0.1 |      |      |      |      |      |      |       |       |



# **Test Setup Photos**







# SUPPLEMENTAL INFORMATION

## **Measurement Uncertainty**

| Uncertainty Value | Parameter                 |
|-------------------|---------------------------|
| 4.73 dB           | Radiated Emissions        |
| 3.34 dB           | Mains Conducted Emissions |
| 3.30 dB           | Disturbance Power         |

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

## **Emissions Test Details**

#### **TESTING PARAMETERS**

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

#### **CORRECTION FACTORS**

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in  $dB\mu V/m$ , the spectrum analyzer reading in  $dB\mu V$  was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on the limit value subtracting the corrected measured value; a negative margin represents a measurement less than the limit while a positive margin represents a measurement exceeding the limit.

| SAMPLE CALCULATIONS |                      |          |  |  |  |  |
|---------------------|----------------------|----------|--|--|--|--|
|                     | Meter reading (dBμV) |          |  |  |  |  |
| +                   | Antenna Factor       | (dB/m)   |  |  |  |  |
| +                   | Cable Loss           | (dB)     |  |  |  |  |
| -                   | Distance Correction  | (dB)     |  |  |  |  |
| -                   | Preamplifier Gain    | (dB)     |  |  |  |  |
| =                   | Corrected Reading    | (dBμV/m) |  |  |  |  |

Page 45 of 46 Report No.: 96897-9



#### **TEST INSTRUMENTATION AND ANALYZER SETTINGS**

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

| MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE |                     |                  |                   |  |  |  |
|------------------------------------------------------------|---------------------|------------------|-------------------|--|--|--|
| TEST                                                       | BEGINNING FREQUENCY | ENDING FREQUENCY | BANDWIDTH SETTING |  |  |  |
| CONDUCTED EMISSIONS                                        | 150 kHz             | 30 MHz           | 9 kHz             |  |  |  |
| RADIATED EMISSIONS                                         | 9 kHz               | 150 kHz          | 200 Hz            |  |  |  |
| RADIATED EMISSIONS                                         | 150 kHz             | 30 MHz           | 9 kHz             |  |  |  |
| RADIATED EMISSIONS                                         | 30 MHz              | 1000 MHz         | 120 kHz           |  |  |  |
| RADIATED EMISSIONS                                         | 1000 MHz            | >1 GHz           | 1 MHz             |  |  |  |

#### SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

#### **Peak**

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

#### **Quasi-Peak**

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

#### **Average**

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 46 of 46 Report No.: 96897-9