Date of Report: May 14, 2005 Date of Submission: July 27, 2005

Federal Communications Commission

Via: Electronic Filing

Attention: Authorization & Evaluation Division

Applicant: SkyeTek, Inc. Equipment: DR1000 FCC ID: SAGH3 FCC Rules: 15.225

Gentlemen:

On behalf of the Applicant, enclosed please find Application Form 731, Engineering Test Report and all pertinent documentation, the whole for approval of the referenced equipment as shown.

Filing fees are attached.

We trust the same is in order. Should you need any further information, kindly contact the writer who is authorized to act as agent.

Sincerely yours,

Michael Schafer, President

enclosure(s) cc: Applicant MS/del

Transmitter Certification

of

Model: DR1000 FCC ID: SAGH3

to

Federal Communications Commission

Rule Part(s) 15.225

Date of Report: May 14, 2005 Date of Submission: July 27, 2005

On the Behalf of the Applicant:

SkyeTek, Inc.

At the Request of: P.O. 2005-N166

SkyeTek, Inc.

2845 Wilderness Place Boulder, CO 80301

Attention of: Tom DiGennero

(303)615-8090

E-mail: tom.digennaro@skyetek.com

Compiled by: Michael Findley, Laboratory Manager

The Applicant has been cautioned as to the following:

15.21 **Information to the User**.

The users manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

15.27(a) **Special Accessories**.

Equipment marketed to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer, without additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

Table of Contents

<u>Rule</u>	<u>Description</u>	<u>Page</u>
	Standard Test Conditions and Engineering Practices	2
2.1033(c)	General Information Required	4
2.1046(a)	RF Power Output (Radiated)	5
2.1049(c)(1)	Emission Masks (Occupied Bandwidth)	6
2.1055(a)(1)	Frequency Stability (Temperature Variation)	11
2.1055(b)(1)	Frequency Stability (Voltage Variation)	13
2.202(g)	Necessary Bandwidth and Emission Bandwidth	15

Required information per ISO/IEC Guide 25-1990, paragraph 13.2:

a) Test Report

b) Laboratory: M. Flom Associates, Inc.

(FCC: 31040/SIT) 3356 N. San Marcos Place, Suite 107

(Canada: IC 2044) Chandler, AZ 85225

c) Report Number: d0540030

d) Client: SkyeTek, Inc.

2845 Wilderness Place Boulder, CO 80301

e) Identification: DR1000

FCC ID: SAGH3

EUT Description: Bar Code Scanner and RFID Reader

f) EUT Condition: Not required unless specified in individual tests.

g) Report Date: May 16, 2005 EUT Received: April 21, 2005

h, j, k): As indicated in individual tests.

i) Sampling method: No sampling procedure used.

I) Uncertainty: In accordance with MFA internal quality manual.

m) Supervised by:

Michael Findley, Laboratory Manager

n) Results: The results presented in this report relate only to the item tested.

o) Reproduction: This report must not be reproduced, except in full, without written

permission from this laboratory.

Accessories:

OtyTypeMake, ModelS/NFCC ID1PSUPS1-5 (Generic 5V, 500mA)NoneNone

Cables:

Qty	Туре	Length, m	Shield	Shielded Hood	Ferrite
1	USB	2.0	No	No	No
1	RS-232 (+Ext Power)	2.0	No	No	No
1	PS-2	2.0	No	No	No

Standard Test Conditions and Engineering Practices

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI C63.4-1992/2000, section 6.1.9, and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10° to 40°C (50° to 104 °F) unless the particular equipment requirements specify testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

Prior to testing, the EUT was tuned up in accordance with the manufacturer's alignment procedures. All external gain controls were maintained at the position of maximum and/or optimum gain throughout the testing.

Measurement results, unless otherwise noted, are worst-case measurements.

A2LA

"A2LA has accredited M. Flom Associates, Inc. Chandler, AZ for technical competence in the field of Electrical Testing. The accreditation covers the specific tests and types of tests listed on the agreed scope of accreditation. This laboratory meets the requirements of ISO/IEC 17025 – 1999 'General Requirements for the Competence of Testing and Calibration Laboratories' and any additional program requirements in the identified field of testing."

Certificate Number: 2152-01

September 15, 1999

Mr. Mortou Fleer M. Flora Associates Inc. 3356 N. San Marcon Place, Saite 107 Chandler, AZ 85224

I am pleased to inform you that your laboratory has been validated by the Chinese Taipel Bureau of Brandards, Metrology, and Suspection (BSM) under the Asia Facilite Booseenic Cooperation Mobal Macagalities Arrangement (APUE MRA). Year laboratory is now Formally designated to set us a Condituality Ameriments they (CAB) under Appendix B, Flanca I Procedures, of the APEC MRA between the American Institute in Taiwas (AIT) and the Taipel Economics and Cultimal Representative Miller (TEXR) in the United States, covering equipment subject to Election-Magnetic Computibility (SMC) requirements. The among of all validated and operatured inhomosphere will be persisted out the MIST. website at http://ta.nist.gov/mcs.under the "Asia" category

As of August 1, 1999, you may submit test date to BSMI to verify that the equipment to be impossed into Chinese Taigot settleffee the applicable BMC requirements. Your assigned #85MI number in BSMI. You'd Side in the settlement of the member when sending test reports to BSMI. You'd Side patients will remain in Force as long as posen NVLAF and/or AZLA and/or BSMI accreditation remains sprace as long as posen NVLAF and/or AZLA and/or BSMI accreditation remains valid for the CMS 13428.

Pieses note that BSMI requires that the cetty making application for the approval of regulated equipment must make such application in person at their Taipul office. BSMI stor requires the materiol flow attention of greatment of the attention of the attention of the control of the property of the control of the property of the control of the control

NIST

If you have any questions, please content Robert Gladbill at 301-975-4273 or for Dhillon as 301-975-5521. We appreciate year continued interest in our international conformity assessment activities.

puil Acelin Helinda L. Collins, 75 D. Director, Office of Stands

NIST

I am pleased to inform you that your laboratory has been validated by the Chinese Taipei Bureau of Standards, Metrology and Inspection (BSMI) under the Asia Pacific Economic Cooperation Mutual Recognition Agreement (APEC MRA). Your laboratory is now formally designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC MRA between the American Institute in Taiwan (AIT) and the Taipei Economic and Cultural Representative Office (TECRO) in the United States, covering equipment subject to Electro-Magnetic Compatibility (EMC) requirements. The names of all validated and nominated laboratories will be posted on the NIST website at http://ts.nist.gov/mra under the 'Asia' category."

BSMI Number: SL2-IN-E-041R

List of General Information Required for Certification

In Accordance with FCC Rules and Regulations, Volume II, Part 2 and to 15.225

Sub-par	t 2.1033				
(c)(1):	: Name and Address of Applicant:				
		SkyeTek, Inc. 2845 Wilderness Place Boulder, CO 80301			
	Manufacturer:				
		SkyeTek, Inc. 2845 Wilderness Place Boulder, CO 80301			
(c)(2):	FCC ID:		SAGH3		
	Model Number:		DR1000		
(c)(3):	Instruction Manual(s):				
	Please se	ee attached exhibits			
(c)(4):	Type of Emission:		190KF1D		
(c)(5):	Frequency Range, MHz:		13.56		
(c)(6):	Power Rating, mV/m Switchable	Variable	599.1 @ 3n X	n N/A	
(c)(7):	Maximum Power Rating	, mV/m	10,000 @ 3	80m	
	DUT Results:		Passes	Х	Fails

Name of Test: RF Power Output (Radiated)

Specification: 47 CFR 2.1046(a)

Test Equipment: As per attached page

Measurement Procedure (Radiated)

- 1. The EUT was placed on an open-field site and its radiated field strength at a known distance was measured by means of a spectrum analyzer. Equivalent loading was calculated from the equation $P_t=((E \times R)^2/49.2)$ watts, where R=3m.
- 2. Measurement accuracy is ±1.5 dB.

Measurement Results

Limit = 10,000 mV/m @ 30 m

g0540056: 2005-Apr-21 Thu 10:42:00

State: 0:General

Frequency Emission, MHz	Level, dBuV @ m		C.F., dB	μV/m @	® m	Margin, dB
 13.548100	25.34	3	30.21	599.1	3	-28.9

g0540054: 2005-Apr-21 Thu 09:10:00

STATE: 0:General

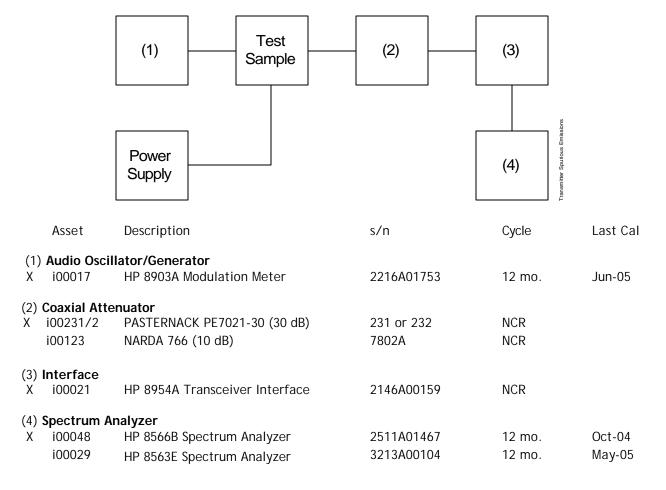
_	Frequency Emission,	LEVEL, dBuV	@ m	C.F., dB	Pol	dBuV/m	@ m
_	MHz						
	135.000000	31.55	3	2.44	V	33.99	3
	148.833333	29.80	3	2.63	V	32.43	3
	148.833333	29.22	3	2.63	Н	31.85	3
	149.094307	30.47	3	2.64	V	33.11	3
	162.166667	29.22	3	1.91	V	31.13	3
	203.040000	29.72	3	0.10	V	29.82	3
	243.666667	27.47	3	2.66	V	30.13	3
	267.006667	29.47	3	4.12	V	33.59	3
	297.666667	28.05	3	6.06	V	34.11	3
	297.666667	24.97	3	6.06	Н	31.03	3
	352.166667	25.47	3	7.74	Н	33.21	3
	352.193333	27.30	3	7.74	V	35.04	3
	381.988333	27.05	3	8.61	V	35.66	3
	388.250000	30.05	3	8.78	V	38.83	3
	406.460000	28.80	3	9.22	Н	38.02	3
	406.533333	27.47	3	9.23	V	36.70	3
	432.993333	29.80	3	9.73	V	39.53	3
	570.531667	29.38	3	11.81	V	41.19	3
	648.816667	25.13	3	13.30	V	38.43	3
	796.455000	25.47	3	14.67	V	40.14	3

All other emissions in the required measurement range were more that 20 dB below the required limits.

12/2

David E. Lee, Test Engineer

Performed by:

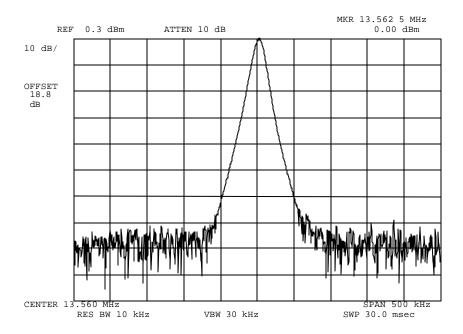

Specification: 47 CFR 2.1049(c)(1)

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.11

Measurement Procedure

- A) The EUT and test equipment were set up as shown below
- B) For EUTs supporting audio modulation, the audio signal generator was adjusted to the frequency of maximum response and with output level set for $\pm 2.5/\pm 1.25$ kHz deviation (or 50% modulation). With level constant, the signal level was increased 16 dB.
- C) For EUTs supporting digital modulation, the digital modulation mode was operated to its maximum extent.
- D) The Occupied Bandwidth was measured with the Spectrum Analyzer controls set as shown on the test results.

Transmitter Test Set-Up: Occupied Bandwidth



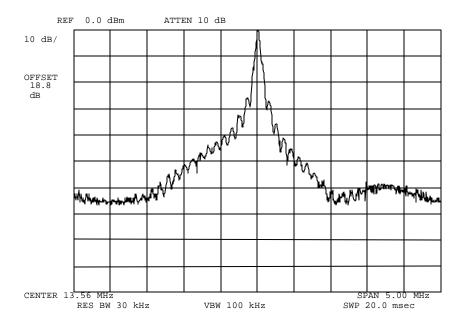
Measurement Results

g0540057: 2005-Apr-21 Thu 11:50:00

State: 2:High Power Ambient Temperature: 23°C ± 3°C

Power: HIGH Modulation: NONE

Performed by:

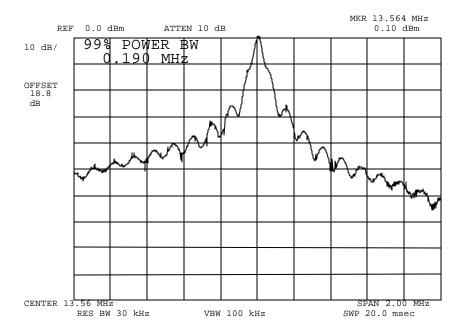

David E. Lee, Test Engineer

Measurement Results

g0540059: 2005-Apr-21 Thu 11:58:00

State: 2:High Power Ambient Temperature: 23°C ± 3°C

Power: HIGH Ext. Modulation: FID


Performed by: David E. Lee, Test Engineer

Measurement Results

g0540060: 2005-Apr-21 Thu 12:00:00

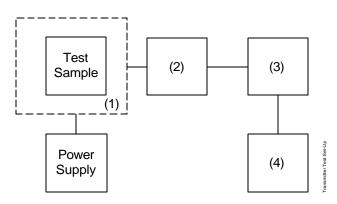
State: 2:High Power Ambient Temperature: 23°C ± 3°C

Power: HIGH

Ext. Modulation: F1D (99% Power Bandwidth)

Performed by: David E. Lee, Test Engineer

Name of Test: Frequency Stability (Temperature Variation)


Specification: 47 CFR 2.1055(a)(1)

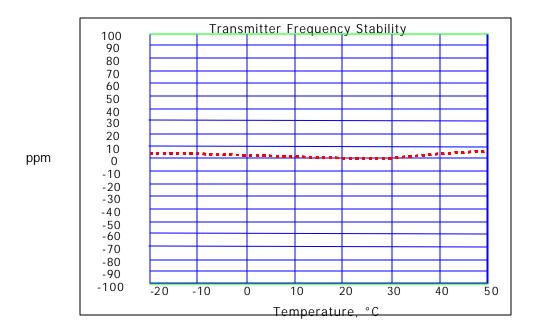
Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.2

Measurement Procedure

- A) The EUT and test equipment were set up as shown on the following page.
- B) With all power removed, the temperature was decreased to -30°C and permitted to stabilize for three hours. Power was applied and the maximum change in frequency was noted within one minute.
- C) With power OFF, the temperature was raised in 10°C steps. The sample was permitted to stabilize at each step for at least one-half hour. Power was applied and the maximum frequency change was noted within one minute.
- D) The temperature tests were performed for the worst case.

Transmitter Test Set-Up: Temperature Variation

Asse	et Description	s/n	Cycle	Last Cal		
(1) Temp	erature, Humidity, Vibration					
X i000	Tenney Temp. Chamber	9083-765-234	NCR			
(2) Coaxi	al Attenuator					
X i0023		•	NCR			
i0012	22/3 NARDA 766 (10 dB)	7802 or 7802A	NCR			
(3) RF Po	wer					
X i000	HP 8920A Communications T:	S 3345U01242	12 mo.	Jun-05		
(4) Frequency Counter						
X i000	=	S 3345U01242	12 mo.	Jun-05		



Name of Test: Frequency Stability (Temperature Variation)

Measurement Results

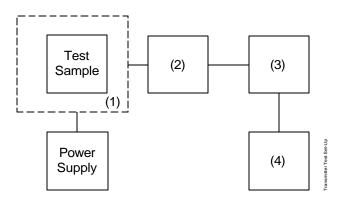
g0540049: 2005-Apr-21 Thu 09:36:39

State: 0:General Ambient Temperature: 23°C ± 3°C

Performed by:

David E. Lee, Test Engineer

Name of Test: Frequency Stability (Voltage Variation)


Specification: 47 CFR 2.1055(d)(1)

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.2

Measurement Procedure

- A) The EUT was placed in a temperature chamber (if required) at 25±5°C and connected as shown below.
- B) The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- C) The variation in frequency was measured for the worst case.

Transmitter Test Set-Up: Voltage Variation

	Asset	Description	s/n	Cycle	Last Cal		
(1)	(1) Temperature, Humidity, Vibration						
	i00027	Tenney Temp. Chamber	9083-765-234	NCR			
(2)	Coaxial Atte	nuator					
X	i00231/2	PASTERNACK PE7021-30 (30 dB)	231 or 232	NCR			
	i00122/3	NARDA 766 (10 dB)	7802 or 7802A	NCR			
(3)	RF Power						
Χ	i00020	HP 8901A Power Mode	2105A01087	12 mo.	Jun-05		
(4) Frequency Counter							
Χ	i00020	HP 8901A Frequency Mode	2105A01087	12 mo.	Jun-05		

Results: Frequency Stability (Voltage Variation)

g0540079: 2005-Apr-21 Thu 15:47:09 State: 0:General Ambient Temperature: 23°C ± 3°C

> Limit, ppm = 100 Limit, Hz = 1356 Battery End Point (Voltage) = 4.3

% of STV	Voltage	Frequency, MHz	Change, Hz	Change, ppm
85	4.25	13.560010	10	0.74
100	5.00	13.560000	0	0.00
115	5.75	13.560140	140	10.32
86	4.30	13.560000	0	0.00

Performed by: David E. Lee, Test Engineer

Name of Test: Necessary Bandwidth and Emission Bandwidth

Specification: 47 CFR 2.202(g)

Modulation =F1D

Necessary Bandwidth Measured, kHz: 190.0

= 190KF1D

Performed by: David E. Lee, Test Engineer

END OF TEST REPORT

Testimonial and Statement of Certification

This is to Certify:

- 1. **That** the application was prepared either by, or under the direct supervision of, the undersigned.
- 2. **That** the technical data supplied with the application was taken under my direction and supervision.
- 3. **That** the data was obtained on representative units, randomly selected.
- 4. **That**, to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct.

Certifying Engineer:

Michael Findley, Laboratory Manager