

Königswinkel 10 32825 Blomberg Germany

Phone: +49 (0) 52 35 95 00-0 Fax: +49 (0) 52 35 95 00-10

Test Report

Report Number: F150998E3

Applicant:

WABCO Fahrzeugsysteme GmbH

Manufacturer:

WABCO Fahrzeugsysteme GmbH

Equipment under Test (EUT):

OptiTire ECU

Laboratory accredited by Deutsche Akkreditierungsstelle (DAkkS) GmbH in compliance with DIN EN ISO/IEC 17025

REFERENCES

- [1] **ANSI C63.10-2013** American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- [2] FCC CFR 47 Part 15 Radio Frequency Devices
- [3] **RSS-210 Issue 8 (December 2010)** Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment
- [4] RSS-Gen Issue 4 (November 2014) General Requirements for Compliance of Radio Apparatus
- [6] **Publication Number 913591 (March 2007)** Measurement of radiated emissions at the edge of the band for a Part 15 RF Device

TEST RESULT

The requirements of the tests performed as shown in the overview (clause 4) were fulfilled by the equipment under test.

The complete test results are presented in the following.

Test engineer:	Thomas KÜHN	T. LA	15 April 2015
	Name	Signature	Date
Authorized reviewer:	Bernd STEINER	B. Sluc	15 April 2015
_	Name	Signature	Date

RESERVATION

This test report is only valid in its original form.

Any reproduction of its contents in extracts without written permission of the accredited test laboratory PHOENIX TESTLAB GmbH is prohibited.

The test results herein refer only to the tested sample. PHOENIX TESTLAB GmbH is not responsible for any generalizations or conclusions drawn from these test results concerning further samples. Any modification of the tested samples is prohibited and leads to the invalidity of this test report. Each page necessarily contains the PHOENIX TESTLAB Logo and the TEST REPORT NUMBER.

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998

 page 2 of 35

C	ontents	:	Page
1	Identifi	cation	4
•		licant	
		nufacturer	
		t laboratory	
		Γ (Equipment Under Test)	
		hnical data of equipment	
		es	
2		ional states	
3	•	nal information	
4			
5		sults	
J		rage correction factor	
		rage correction ractor	
	5.2 Ball	Method of measurement (20 dB bandwidth)	
	5.2.2	Method of measurement (99 % bandwidth)	
	5.2.3	Test results (20 dB bandwidth)	
	5.2.4	Test results (99 % bandwidth)	
	_	id-edge compliance	
	5.3.1	Method of measurement (Band-edge compliance (radiated))	
	5.3.2	Test results (Band-edge compliance (radiated))	
	5.4 Trai	nsmission time control	19
	5.4.1	Method of measurement (transmission time control)	
	5.4.2	Test results (transmission time control)	
		liated emissions	
	5.5.1	Method of measurement (Radiated emissions)	
	5.5.2	Test results (radiated emissions)	
	5.5.2	,	
	5.5.2	,	
	5.5.2	,	
6		quipment and ancillaries used for tests	
7	Report	history	34
0	List of	annovae	25

1 Identification

1.1 Applicant

Name:	WABCO Fahrzeugsysteme GmbH
Address:	Am Lindener Hafen 21
	30453 Hannover
Country:	Germany
Name for contact purposes:	Mr. Hans-Jürgen FRANK
Phone:	+49 (0) 511-922-2411
Fax:	+49 (0) 511-922 – 12 82
eMail Address:	hans-juergen.frank@wabco-auto.com
Applicant represented during the test by the following person:	Mr. Hans-Jürgen FRANK

1.2 Manufacturer

Name:	WABCO Fahrzeugsysteme GmbH
Address:	Am Lindener Hafen 21 30453 Hannover
Country:	Germany
Name for contact purposes:	Mr. Hans-Jürgen FRANK
Phone:	+49 (0) 511-922-2411
Fax:	+49 (0) 511-511-922 – 12 82
eMail Address:	hans-juergen.frank@wabco-auto.com
Applicant represented during the test by the following person:	Mr. Hans-Jürgen FRANK

1.3 Test laboratory

The tests were carried out at: PHOENIX TESTLAB GmbH

Königswinkel 10 32825 Blomberg Germany

German

accredited by *Deutsche Akkreditierungsstelle GmbH* in compliance with DIN EN ISO/IEC 17025 under Reg. No. *D-PL-17186-01-02*, FCC Test site registration number 90877 and Industry Canada Test site registration IC3469A-1.

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998

 page 4 of 35

1.4 EUT (Equipment Under Test)

Test object: *	Tire pressure control system
HVIN: *	OptiTire ECU
FCC ID: *	SA4-OPTITIRE
IC: *	6970A-OPTITIRE
Article number: *	884 910 050 0
Serial number: *	000532
Hardware version: *	446 220 130
Software version: *	884 910 046 2
Lowest / highest internal frequency: *	235 kHz / 433.92 MHz

1.5 Technical data of equipment

Channel spacing: *	None (or	None (one channel operation)				
Antenna type: *	Integrate	Integrated PCB antenna				
Modulation: *	ASK	ASK				
Bit rate of transmitter: *	4096 bit/s					
Supply Voltage: *	$U_{Nom} = 24 V_{DC}$ $U_{Min} = 6 V_{DC}$ $U_{Max} = 32 V_{DC}$					
Power Supply:	External by vehicle battery					
Temperature range: *	-40 °C to +85 °C*					
Ancillaries to be tested with: *	-					

^{*} declared by the applicant.

The following external I/O cables were used:

Identification	Connector		Length
	EUT	Ancillary	
Supply / Sensor / CAN	8-pole jack	-	1.5 m
-	-	-	-
-	-	-	-

^{*:} Length during the test if no other specified.

1.6 Dates

Date of receipt of test sample:	04 March 2015
Start of test:	04 March 2015
End of test:	05 March 2015

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

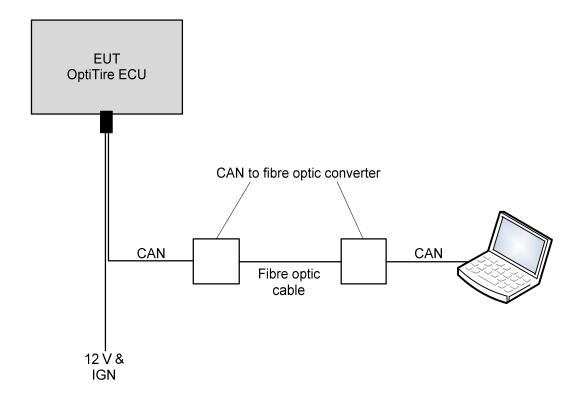
 Date of issue:
 15 April 2015
 Order Number:
 15-110998

 page 5 of 35

2 Operational states

The EUT is part of a tire pressure control system. It is able to transmit and receive data to / from ancillary sensors. The communication frequency is 433.92 MHz. For the measurements described in this test report it was possible to enable the necessary operation mode by using a laptop PC connected via CAN to the EUT running test software "UDT". The setup is shown in the following picture.

During all tests except the measurement of the transmitter timing for calculating the average correction factor were carried out with the EUT transmits data telegrams continuously.


The EUT was supplied with 12 V DC by an external power supply during all measurements because of the higher current consumption.

As declared by the applicant, the EUT will be mounted in different positions. Therefore the measurements were carried out in two orthogonal directions of the EUT. These positions were defined as follows:

Position 1: Connector shows upwards, EUT lying horizontal.

Position 2: Connector shows away from the measurement antenna, EUT lying horizontal.

For details of these positions refer also the photographs in annex A of this test report.

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998

 page 6 of 35

3 Additional information

The tested sample was not labelled with a FCC-label.

4 Overview

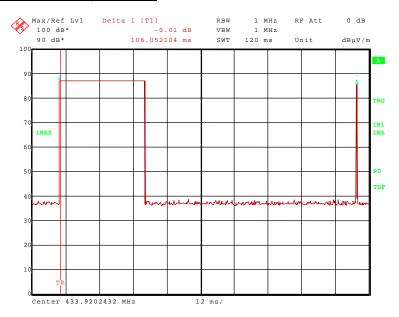
Application	Frequency range [MHz]	FCC 47 CFR Part 15 section [2]	RSS 210, Issue 8 [3] or RSS-Gen, Issue 4 [4]	Status	Refer page
Occupied bandwidth	433	15.231 (c)	A1.1.3 [3]	Passed	14 et seq.
Transmission time control	433	15.231 (a) (3)	A1.1.1 [c]	Passed	19 et seq.
Radiated emissions	0.009 – 4,500	15.231 (b) 15.205 (a) 15.209 (a)	2.5 [3] A1.1 [3] 8.9 [4]	Passed	22 et seq.
Conducted emissions on supply line	0.15 - 30	15.207 (a)	8.8 [4]	Not applicable*	-

^{*} EUT is intended to be used in vehicular environment only.

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998

 page 7 of 35
 page 7 of 35

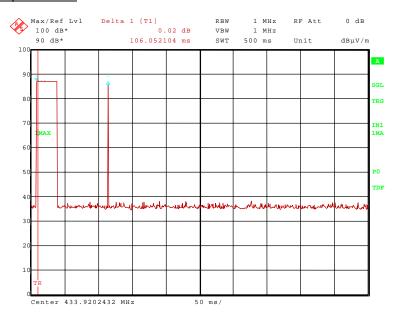

5 Test results

5.1 Average correction factor

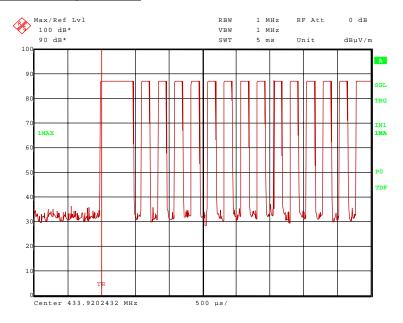
Because of a single transmission all measurements were carried out with a peak detector and the average value is calculated over the real pulse train as required in Part 15.35.

To calculate the average value a timing of the emission was measured. A detail view to the transmission pulse was recorded and the total transmitter on time was calculated.

150998_3.wmf: Detail view to total pulse train:

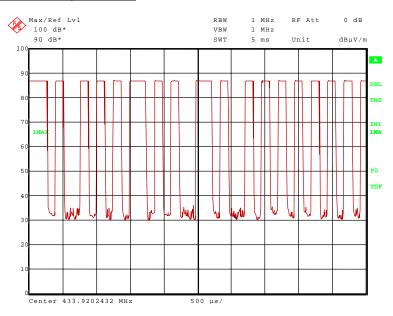

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998

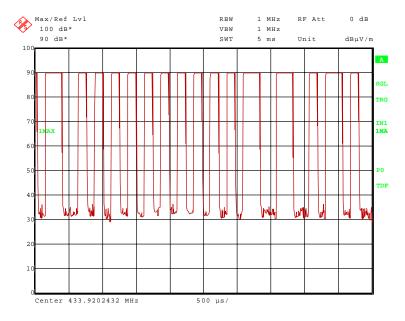

 page 8 of 35

150998_4.wmf: Total pulse train:

150998_5.wmf: Detail view 1 to pulse train:

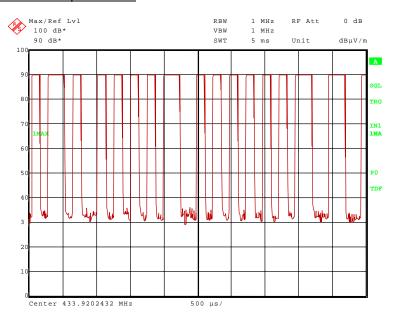

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998

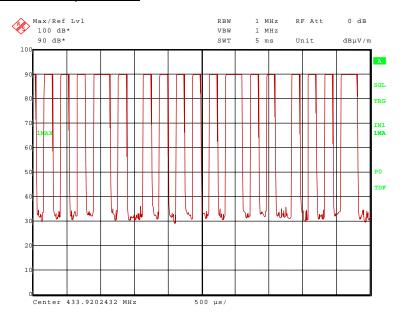

 page 9 of 35

150998_6.wmf: Detail view 2 to pulse train:

150998_7.wmf: Detail view 3 to pulse train:

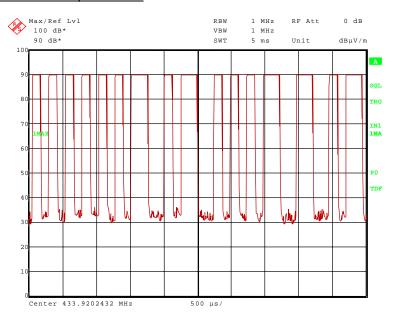

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998

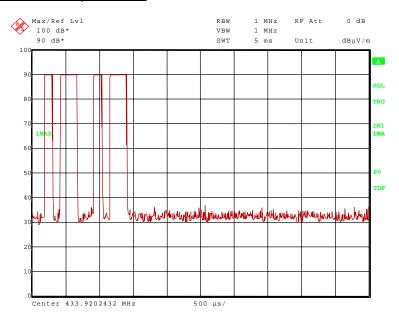

page 10 of 35

150998_8.wmf: Detail view 4 to pulse train:

150998 9.wmf: Detail view 5 to pulse train:

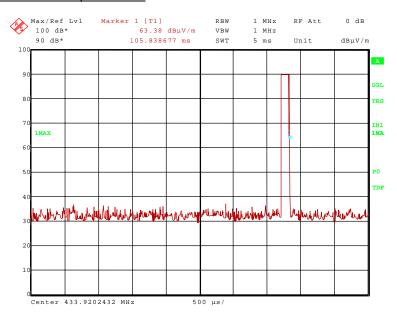

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998


page 11 of 35

150998_10.wmf: Detail view 6 to pulse train:

150998 11.wmf: Detail view 7 to pulse train:


 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998

page 12 of 35

150998_12.wmf: Detail view 8 to pulse train:

Summary of the complete pulse train:

The pulse train consists of

2 pulses type 1: 2 * 500 μ s = 1,000 μ s 80 pulses type 2: 80 *130 μ s = 10,400 μ s 20 pulses type 3: 20 * 250 μ s = 5,000 μ s

total on time of sub pulse = $16,400 \mu s$ total length of one sub pulse = 30.5 ms

Duty cycle correction factor according to 15.35c

Because the pulse is longer than 100 ms the duty cycle correction factor has to be calculated with 100 ms.

 $F [dB] = 20 * log (16,400 \mu s / 100 ms) = -15.7 dB$

So the measured peak values were calculated with 15.7 dB down into average values.

Test equipment used (refer clause 6):

24, 26, 31

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998

5.2 Bandwidth

5.2.1 Method of measurement (20 dB bandwidth)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed or a test fixture has to be used. The EUT has to be switched on. The transmitter shall work with its maximum data rate.

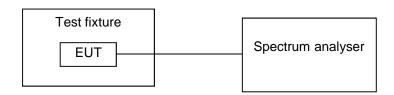
The following spectrum analyser settings shall be used:

- Span: App. 2 to 3 times the 20 dB bandwidth, centred on the actual channel.
- Resolution bandwidth: If no requirements were made, the following minimum values shall be used:

From 9 kHz to 30 MHz: $RBW_{min} = 1$ kHz; from 30 MHz to 1000 MHz $RBW_{min} = 10$ kHz, and from 1000 MHz to 40 GHz $RBW_{min} = 100$ kHz

- Video bandwidth: ≥ the resolution bandwidth.
- Sweep: Auto.
- Detector function: peak.Trace mode: Max hold.

After trace stabilisation the marker shall be set on the signal peak. If possible the 20 dB down function of the analyser shall be used, if not, the display lines of the analyser shall be used as follows: The first display line has to be set on this value. The second display line has to be set 20 dB below the first line (or the peak marker). The frequency lines shall be set on the intersection points between the second display line and the measured curve.


5.2.2 Method of measurement (99 % bandwidth)

The following spectrum analyser settings shall be used (99 % bandwidth):

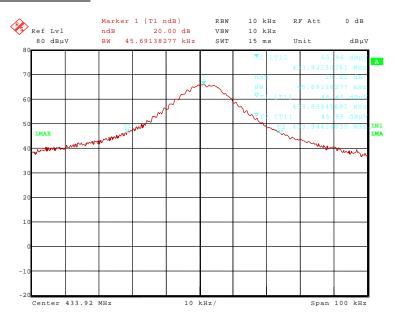
- Span: The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.
- Resolution bandwidth: App. 1% to 5% of the occupied bandwidth (OBW).
- Video bandwidth: 3 x RBW.
- Sweep: Auto.
- Detector function: peak.
- Trace mode: Max hold.

After trace stabilisation the marker shall be set on the signal peak. The 99 % bandwidth function of the analyser shall be used to determine 99 % bandwidth of the EUTs transmission.

Test set-up: (20 dB and 99 % bandwidth)

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998


 page 14 of 35

5.2.3 Test results (20 dB bandwidth)

Ambient temperature	22 °C	Relative humidity	28 %
---------------------	-------	-------------------	------

150998_16.wmf: 20 dB Bandwidth:

Lower frequency	Upper frequency	20 dB bandwidth	LIMIT (0.25 % of the center frequency)
433.898457 MHz	433.944148 MHz	45.691 kHz	1084.135 kHz
Measurement	uncertainty		< 1*10 ⁻⁷

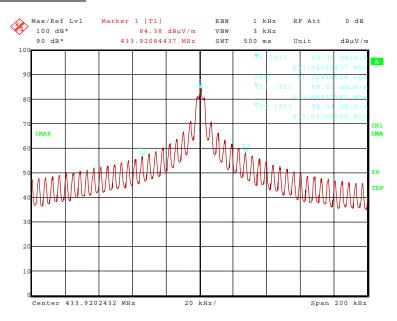
Test: Passed

Test equipment used (refer clause 6):

24, 26, 31

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998


page 15 of 35

5.2.4 Test results (99 % bandwidth)

Ambient temperature	22 °C	Relative humidity	28 %
---------------------	-------	-------------------	------

150998_17.wmf: 99 % Bandwidth:

Lower frequency	Upper frequency	99 % bandwidth	LIMIT (0.25 % of the center frequency)
433.886375 MHz	433.947698 MHz	61.323 kHz	1084.135 kHz
Measurement uncertainty		< 1*10 ⁻⁷	

Test: Passed

Test equipment used (refer clause 6):

24, 26, 31

Test engineer: Thomas KÜHN Date of issue: 15 April 2015 Report Number: Order Number: F150998E3 15-110998 page 16 of 35

5.3 Band-edge compliance

5.3.1 Method of measurement (Band-edge compliance (radiated))

The same test set-up as used for the final radiated emission measurement shall be used (refer also subclause 5.5.1 of this test report).

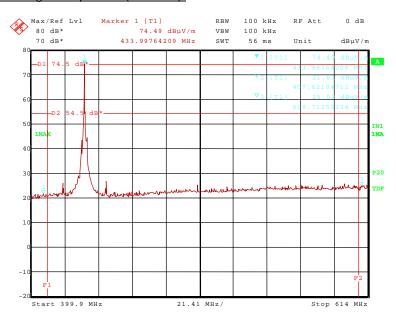
The following spectrum analyser settings shall be used:

- Span: Wide enough to capture the peak level of the emission on the channel closest to the band-edge, as well as any modulation products, which fall outside the assigned frequency band.
- Resolution bandwidth: 100 kHz.
- Video bandwidth: ≥ the resolution bandwidth.
- Sweep: Auto.
- Detector function: Peak.Trace mode: Max hold.

After trace stabilisation the marker shall be set on the signal peak. The first display line has to be set on this value. The second display line has to be set 20 dB below the first line (or the peak marker). The frequency line shall be set on the edge of the assigned frequency band. Set the second marker on the emission at the band-edge, or on the highest modulation product outside of the band, if this level is higher than that at the band-edge. This frequency shall be measured with the EMI receiver as described in subclause 5.5.1of this test report, but 100 kHz resolution bandwidth shall be used.

The measurement will be performed at the upper end of the assigned frequency band if applicable.

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3


 Date of issue:
 15 April 2015
 Order Number:
 15-110998
 page 17 of 35

5.3.2 Test results (Band-edge compliance (radiated))

Ambient temperature	22 °C	Relative humidity	28 %
---------------------	-------	-------------------	------

150998_19.wmf: Band edge compliance (radiated):

Test: Passed

Test equipment used (refer clause 6):

24, 29, 31 – 35, 142

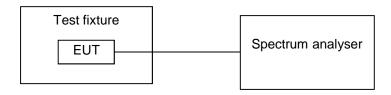
 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998

page 18 of 35

5.4 Transmission time control

5.4.1 Method of measurement (transmission time control)


The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed or a test fixture has to be used. The EUT has to be switched on, the transmitter shall work with its maximum data rate.

The following spectrum analyser settings shall be used:

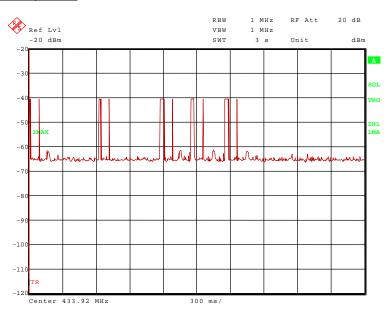
- Span: = 0 Hz.
- Resolution bandwidth: 1 MHz.
- Video bandwidth: ≥ the resolution bandwidth.
- Sweep: Sufficient to detect single transmission pulses and the gap between them.
- Detector function: peak.
- Trace mode: Max hold.

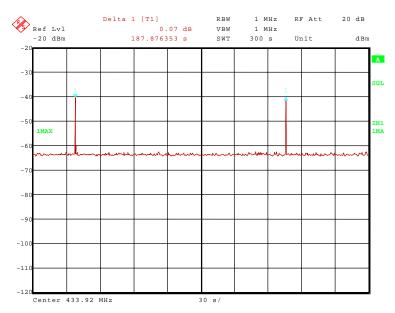
The time between two transmissions shall be measured with the delta marker function of the spectrum analyser and the total transmitter on time per hour shall be calculated.

Test set-up:

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998


 page 19 of 35


5.4.2 Test results (transmission time control)

Ambient temperature	22 °C		Relative humidity	28 %
---------------------	-------	--	-------------------	------

150998_20.wmf: Start sequence:

150998_21.wmf: Time between two transmissions:

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998

 page 20 of 35

Calculation of the total transmission time per hour:

During the normal operation mode of the EUT, the following behavior occurs: After turning on the vehicle ignition a start sequence with five pulses will be transmitted. After that start sequence one pulse will be transmitted every 188 s. So during one hour 24 pulses will be transmitted. For details of the transmission pulse refer also clause 5.1 of this test report.

As declared by the applicant, in alarm mode one additional message is transmitted.

Number of pulses per hour	Pulse length	Total transmission time per hour	Limit	Result
24	16.4 ms	393.6 ms	2000 ms	Passed
Measurement uncertainty		<10 ⁻⁷		

Test equipment used (refer clause 6):

24, 26, 31

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998

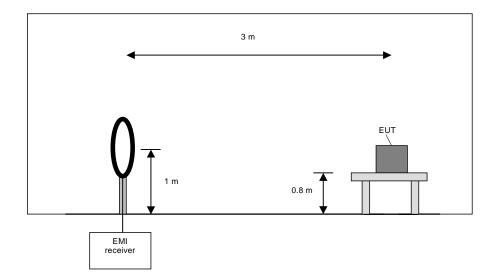
5.5 Radiated emissions

5.5.1 Method of measurement (Radiated emissions)

The radiated emission measurement is subdivided into four stages.

- A preliminary measurement carried out in a fully anechoic chamber with a fixed antenna height in the frequency range 150 kHz to 1 GHz.
- A final measurement carried out on an open area test side with reflecting ground plane and various antenna heights in the frequency range 30 MHz to 1 GHz.
- A preliminary measurement carried out in a fully anechoic chamber with a variable antenna distance and height in the frequency range 1 GHz to 5 GHz.
- A final measurement carried out in a fully anechoic chamber with a fixed antenna height in the frequency range 1 GHz to 5 GHz.

Preliminary measurement (9 kHz to 30 MHz):


In the first stage a preliminary measurement will be performed in a shielded room with a measuring distance of

3 meters. Tabletop devices will set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices will be placed directly on the turntable/ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2009 [1].

The frequency range 9 kHz to 30 MHz will be monitored with a spectrum analyser while the system and its cables will be manipulated to find out the configuration with the maximum emission levels if applicable. The EMI Receiver will be set to MAX Hold mode. The EUT and the measuring antenna will be rotated around their vertical axis to found the maximum emissions.

The resolution bandwidth of the spectrum analyser will be set to the following values:

Frequency range	Resolution bandwidth
9 kHz to 150 kHz	200 Hz
150 kHz to 30 MHz	10 kHz

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998

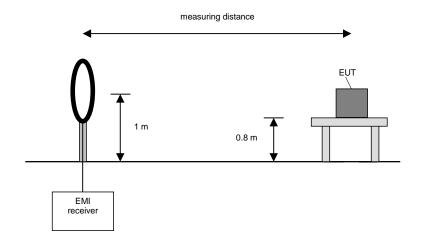
 page 22 of 35

Preliminary measurement procedure:

Prescans were performed in the frequency range 9 kHz to 150 kHz and 150 kHz to 30 MHz.

The following procedure will be used:

- 1) Monitor the frequency range at horizontal polarisation and a EUT azimuth of 0 °.
- 2) Manipulate the system cables within the range to produce the maximum level of emission.
- 3) Rotate the EUT by 360 ° to maximize the detected signals.
- 4) Make a hardcopy of the spectrum.
- 5) Measure the frequencies of highest detected emission with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 6) Repeat steps 1) to 5) with the other orthogonal axes of the EUT (because of EUT is a module and might be used in a handheld equipment application).
- 7) Rotate the measuring antenna and repeat steps 1) to 5).


Final measurement (9 kHz to 30 MHz):

In the second stage a final measurement will be performed on an open area test site with no conducting ground plane in measuring distances of 3 m, 10 m and 30 m. In the case where larger measuring distances is required the results will be extrapolated based on the values measured on the closer distances according to Section 15.31 (f) (2) [2]. The final measurement will be performed with a EMI Receiver set to Quasi Peak detector except for the frequency bands 9 kHz to 90 kHz and 110 kHz to 490 kHz where an average detector will be used according Section 15.209 (d) [2].

On the during the preliminary measurement detected frequencies the final measurement will be performed while rotating the EUT and the measuring antenna in the range of 0 ° to 360 ° around their vertical axis until the maximum value is found.

The resolution bandwidth of the EMI Receiver will be set to the following values:

Frequency range	Resolution bandwidth
9 kHz to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

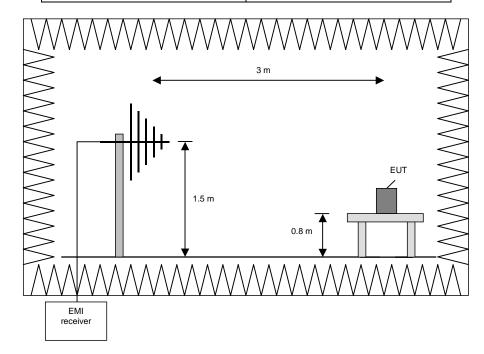
 Date of issue:
 15 April 2015
 Order Number:
 15-110998

 page 23 of 35

Final measurement procedure:

The following procedure will be used:

- 1) Monitor the frequency range with the measuring antenna at vertical orientation parallel to the EUT at an azimuth of 0 °.
- 2) Rotate the EUT by 360 ° to maximize the detected signals and note the azimuth and orientation.
- 3) Rotate the measuring antenna to find the maximum and note the value.
- 4) Rotate the measuring antenna and repeat steps 1) to 3) until the maximum value is found.
- 5) Repeat steps 1) to 4) with the other orthogonal axes of the EUT (because of EUT is a module and might be used in a handheld equipment application).


Preliminary measurement (30 MHz to 1 GHz)

In the first stage a preliminary measurement will be performed in a fully anechoic chamber with a measuring distance of 3 meter. Tabletop devices will set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices will be placed directly on the turntable/ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2009 [1].

The frequency range 30 MHz to 1 GHz will be measured with an EMI Receiver set to MAX Hold mode and a resolution bandwidth of 100 kHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 $^{\circ}$ to 360 $^{\circ}$.

The resolution bandwidth of the EMI Receiver will be set to the following values:

Frequency range	Resolution bandwidth	
30 MHz to 230 MHz	100 kHz	
230 MHz to 1 GHz	100 kHz	

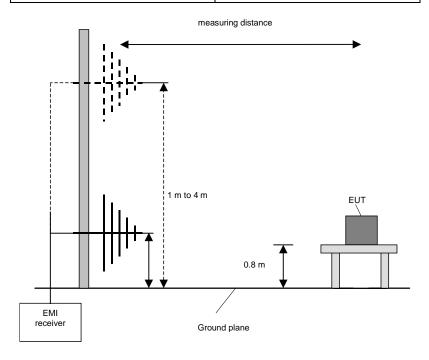
 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998

 page 24 of 35

Procedure preliminary measurement:

Prescans were performed in the frequency range 30 MHz to 230 MHz and 230 MHz to 1 GHz. The following procedure will be used:


- 1. Monitor the frequency range at horizontal polarisation and a EUT azimuth of 0 °.
- 2. Manipulate the system cables within the range to produce the maximum level of emission.
- 3. Rotate the EUT by 360 ° to maximize the detected signals.
- 4. Make a hardcopy of the spectrum.
- 5. Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 6. Repeat 1) to 4) with the other orthogonal axes of the EUT (because of EUT is a module and might be used in a handheld equipment application).
- 7. Repeat 1) to 5) with the vertical polarisation of the measuring antenna.

Final measurement (30 MHz to 1 GHz)

A final measurement on an open area test site will be performed on selected frequencies found in the preliminary measurement. During this test the EUT will be rotated in the range of 0 ° to 360 °, the measuring antenna will be set to horizontal and vertical polarisation and raised and lowered in the range from 1 m to 4 m to find the maximum level of emissions.

The resolution bandwidth of the EMI Receiver will be set to the following values:

Frequency range	Resolution bandwidth	
30 MHz to 1 GHz	120 kHz	

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998

 page 25 of 35

Procedure final measurement:

The following procedure will be used:

- 1) Measure on the selected frequencies at an antenna height of 1 m and a EUT azimuth of 23 °.
- 2) Move the antenna from 1 m to 4 m and note the maximum value at each frequency.
- 3) Rotate the EUT by 45 ° and repeat 2) until an azimuth of 337 ° is reached.
- 4) Repeat 1) to 3) for the other orthogonal antenna polarization.
- 5) Move the antenna and the turntable to the position where the maximum value is detected.
- 6) Measure while moving the antenna slowly +/- 1 m.
- 7) Set the antenna to the position where the maximum value is found.
- 8) Measure while moving the turntable +/- 45 °.
- 9) Set the turntable to the azimuth where the maximum value is found.
- 10) Measure with Final detector (QP and AV) and note the value.
- 11) Repeat 5) to 10) for each frequency.
- 12) Repeat 1) to 11) for each orthogonal axes of the EUT (because of EUT is a module and might be used in a handheld equipment application).

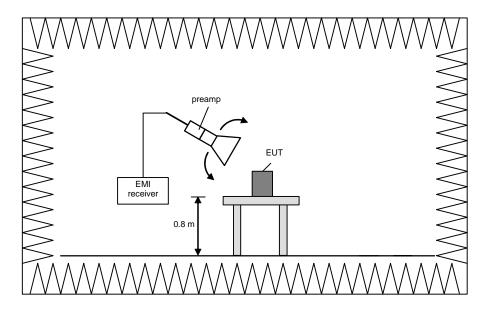
Preliminary and final measurement (1 GHz to 40 GHz)

This measurement will be performed in a fully anechoic chamber. Tabletop devices will set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices will be placed directly on the turntable/ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2009 [1].

Preliminary measurement (1 GHz to 40 GHz)

The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The spectrum analyser set to MAX Hold mode and a resolution bandwidth of 100 kHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna, the antenna close to the EUT and while moving the antenna over all sides of the EUT. With the spectrum analyser in CLEAR / WRITE mode the cone of the emission should be found and than the measuring distance will be set to 3 m with the receiving antenna moving in this cone of emission. At this position the final measurement will be carried out.

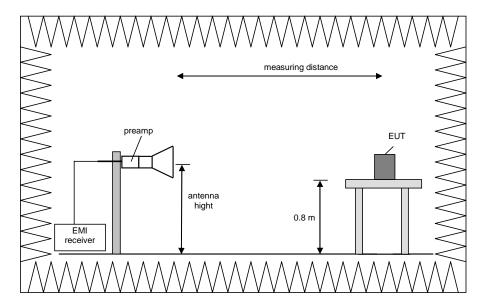
The resolution bandwidth of the EMI Receiver will be set to the following values:


Frequency range	Resolution bandwidth	
1 GHz to 4 GHz	100 kHz	
4 GHz to 12 GHz	100 kHz	
12 GHz to 18 GHz	100 kHz	
18 GHz to 25 / 26.5 GHz	100 kHz	
26.5 GHz to 40 GHz	100 kHz	

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998

 page 26 of 35



Final measurement (1 GHz to 40 GHz)

The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1 MHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 ° to 360 ° in order to have the antenna inside the cone of radiation.

The resolution bandwidth of the EMI Receiver will be set to the following values:

Frequency range	Resolution bandwidth	
1 GHz to 4 GHz	1 MHz	
4 GHz to 12 GHz	1 MHz	
12 GHz to 18 GHz	1 MHz	
18 GHz to 25 / 26.5 GHz	1 MHz	
26.5 GHz to 40 GHz	1 MHz	

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998

 page 27 of 35

Procedure of measurement:

The measurements were performed in the frequency ranges 1 GHz to 4 GHz, 4 GHz to 12 GHz, 12 GHz to 18 GHz, 18 GHz to 25 /26.5 GHz and 26.5 GHz to 40 GHz.

The following procedure will be used:

- 1) Monitor the frequency range at horizontal polarisation and move the antenna over all sides of the EUT (if necessary move the EUT to another orthogonal axis).
- 2) Change the antenna polarisation and repeat 1) with vertical polarisation.
- 3) Make a hardcopy of the spectrum.
- 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 5) Change the analyser mode to Clear / Write and found the cone of emission.
- 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3 m and the antenna will be still inside the cone of emission.
- 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarisation and azimuth and the peak and average detector, which causes the maximum emission.
- 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.

Step 1) to 6) are defined as preliminary measurement.

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998

 page 28 of 35

5.5.2 Test results (radiated emissions)

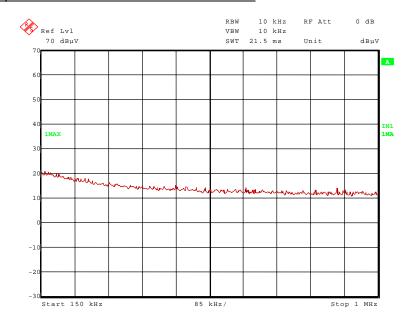
5.5.2.1 Preliminary radiated emission measurement (150 kHz to 5 GHz)

Ambient temperature	22 °C	Relative humidity	28 %
---------------------	-------	-------------------	------

Position of EUT: The EUT was set-up on a non-conducting table of a height of 0.8 m. The

distance between EUT and antenna was 3 m.

Cable guide: The cable of the EUT runs vertically to the false floor. For detail information of


test set-up and cable run refer to the photographs in annex A of this test report.

Test record: All results are shown in the following.

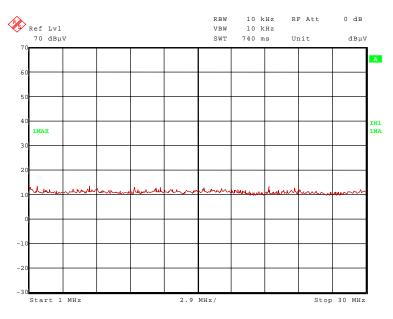
Supply voltage: During all measurements the EUT was supplied by 12.0 V DC by an external

power supply.

150998_14.wmf: Spurious emissions from 150 kHz to 1 MHz:

Test equipment used (refer clause 6):

24, 29, 31 - 36, 133, 142 - 144


 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

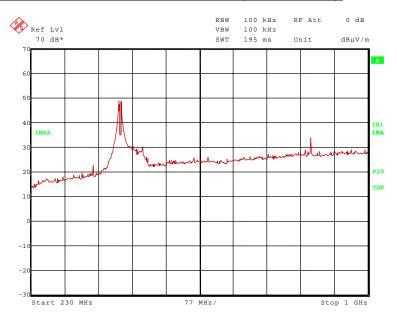
 Date of issue:
 15 April 2015
 Order Number:
 15-110998

 page 29 of 35

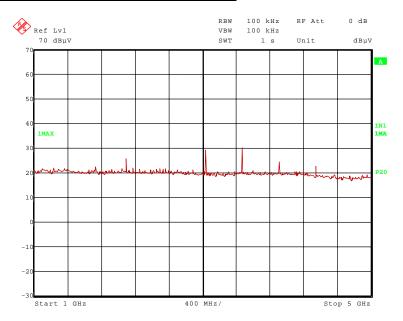
150998_18.wmf: Spurious emissions from 1 MHz to 30 MHz:

No frequencies were found during the preliminary measurement, so no final measurement on the outdoor test site was carried out.

150998_1.wmf: Spurious emissions from 30 MHz to 230 MHz:



 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3


 Date of issue:
 15 April 2015
 Order Number:
 15-110998

150998_2.wmf: Spurious emissions from 230 MHz to 1 GHz (carrier notched):

150998 13.wmf: Spurious emissions from 1 GHz to 5 GHz:

The following frequencies were found inside the restricted bands during the preliminary radiated emission test:

- 3905.280 MHz and 4339.200 MHz.

The following frequencies were found outside the restricted bands during the preliminary radiated emission test:

- 433.920 MHz, 485.206 MHz, 867.840 MHz, 2169.600 MHz, 3037.440 MHz and 3471.360 MHz.

These frequencies have to be measured in a final measurement. The results were presented in the following.

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998

 page 31 of 35

5.5.2.2 Final radiated emission measurement (30 MHz to 1 GHz)

Ambient temperature	20 °C	Relative humidity	32 %
---------------------	-------	-------------------	------

Position of EUT: The EUT was set-up on a non-conducting table of a height of 0.8 m. The

distance between EUT and antenna was 3 m.

Cable guide: The cable of the EUT runs vertically to the false floor. For detail information of

test set-up and cable run refer to the photographs in annex A of this test report.

Test record: All results are shown in the following.

Supply voltage: During all measurements the EUT was supplied by 12.0 V DC by an external

power supply.

The results of the standard subsequent measurement on the open area test site are indicated in the table below. The limits as well as the measured results (levels) refer to the above mentioned standard while taking account of the specified requirements for a 3 m measuring distance.

The measurement time with the peak detector is 1 second.

Result measured with the peak detector and corrected to average:

Spurious emissions outside restricted bands											
Frequency	Result	Limit	Margin	Readings	Antenna factor	Cable loss	Average correction	Height	Azimuth	Pol.	Pos.
MHz	dBµV/m	dBµV/m	dB	dΒμV	dB/m	dB	factor [dB]	cm	deg		
433.920	79.9	80.8	0.9	76.8	16.4	2.4	-15.7	227	270	Hor.	1
485.206	16.2	60.8	44.6	12.3	17.1	2.5	-15.7	204	283	Hor.	2
867.840	29.2	60.8	31.6	19.4	22.1	3.4	-15.7	100	270	Hor.	2
Measurement uncertainty				+2.2 dB / -3.6 dB							

The test results were calculated with the following formula:

Result [dB μ V/m] = reading [dB μ V] + cable loss [dB] + antenna factor [dB/m] + average correction factor [dB].

Test: Passed

Test equipment used (refer clause 6):

14 - 20, 24

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998

page 32 of 35

5.5.2.3 Final radiated emission measurement (1 GHz to 5 GHz)

Ambient temperature	22 °C	Relative humidity	28 %
---------------------	-------	-------------------	------

Position of EUT: The EUT was set-up on a non-conducting table of a height of 0.8 m. The

distance between EUT and antenna was 3 m.

Cable guide: The cable of the EUT runs vertically to the false floor. For detail information of

test set-up and cable run refer to the photographs in annex A of this test report.

Test record: All results are shown in the following.

Supply voltage: During all measurements the EUT was supplied by 12.0 V DC by an external

power supply.

Resolution bandwidth: For all measurements a resolution bandwidth of 1 MHz was used.

Result measured with the peak detector and converted to average:

Frequency	Result	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Average correction	Height	Pol.	Pos.	Restr. Band
MHz	dBµV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	factor [dB	cm			
2169.600	23.4	60.8	37.4	34.6	27.7	26.0	2.8	-15.7	150	Vert.	1	No
3037.440	25.4	60.8	35.4	33.2	30.3	25.8	3.4	-15.7	150	Hor.	2	No
3471.360	28.4	60.8	32.4	35.3	31.1	25.9	3.6	-15.7	150	Hor.	1	No
3905.280	26.9	60.8	33.9	31.3	32.8	25.3	3.8	-15.7	150	Hor.	2	Yes
4339.200	26.7	60.8	34.1	31.7	32.0	25.4	4.1	-15.7	150	Vert.	1	Yes
	Measurement uncertainty				+2.2 dB / -3.6 dB							

The test results were calculated with the following formula:

Result [dB μ V/m] = reading [dB μ V] + cable loss [dB] + antenna factor [dB/m] – preamp. [dB] + average correction factor [dB]

Test: Passed

Test equipment used (refer clause 6):

24, 29, 31 - 34, 36, 73, 143, 144

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998

 page 33 of 35

6 Test equipment and ancillaries used for tests

No.	Test equipment	Туре	Manufacturer	Serial No.	PM. No.	Cal. Date	Cal. due	
14	Open area test site	-	Phoenix Test-Lab	-	480085	Weekly verification (system cal.)		
15	Measuring receiver	ESIB7	Rohde & Schwarz	100304	480521	03/02/2015	03/2017	
16	Controller	HD100	Deisel	100/670	480139	-	=	
17	Turntable	DS420HE	Deisel	420/620/80	480087	-	=	
18	Antenna support	AS615P	Deisel	615/310	480086	-	=	
19	Antenna	CBL6111 D	Chase	25761	480894			
20	EMI Software	ES-K1	Rohde & Schwarz	-	480111	-	-	
24	Power supply	TOE 8752	Toellner	480009	31569	Not applicable		
26	Test fixture	-	Phoenix Test-Lab	-	410160	Not applicable		
29	Fully anechoic chamber M20	-	Albatross Projects	B83107-E2439- T232	480303	Weekly verification (system cal.)		
31	Measuring receiver	ESI 40	ESI 40 Rohde & Schwarz		480355	03/02/2015	03/2017	
32	Controller	MCU	Maturo	MCU/043/971107	480832	-	=	
33	Turntable	DS420HE	Deisel	420/620/80	480315	-	=	
34	Antenna support	AS615P	Deisel 615/310		480187	-	=	
35	Antenna	CBL6112 B	Chase	2688	480328	04/14/2014	04/2017	
36	Horn Antenna	3115 A	EMCO	9609-4918	480183	11/10/2014	11/2017	
73	High Pass Filter	WHJS1000C11/6 0EF	Wainwright Instruments GmbH	1	480413	Monthly verification (system cal.)		
82	Band Reject Filter WRCA 432.9/434.9-431/437-50/6EE 1000		Wainwright Instruments GmbH	6	480474	Monthly ve (system		
133	Loop antenna	HFH2-Z2	Rohde & Schwarz	832609/014	480059	02/18/2014	02/2016	
142	RF-cable No. 36 Sucoflex 106B		Huber + Suhner -		480865	Weekly verification (system cal.)		
143	RF-cable No. 3	Sucoflex 106B	Suhner	I USD 3/DB I 48UD/U I		_	y verification stem cal.)	
144	RF-cable No. 40 Sucoflex 106B		Suhner	0708/6B	481330 Weekly verifica (system cal.			

7 Report history

Report Number	Date	Comment			
F150998E3	15 April 2015	Document created			
-	-	-			
-	-	-			

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998

 page 34 of 35

8 List of annexes

ANNEX A TEST SET-UP PHOTOGRAPHS

7 pages

150998_e.JPG: OptiTire ECU, test set-up fully anechoic chamber, pos. 1 150998_a.JPG: OptiTire ECU, test set-up fully anechoic chamber, pos. 2 150998_h.JPG: OptiTire ECU, test set-up fully anechoic chamber 150998_d.JPG: OptiTire ECU, test set-up fully anechoic chamber 150998_g.JPG: OptiTire ECU, test set-up fully anechoic chamber 150998_i.JPG: OptiTire ECU, test set-up open area test site, pos. 1 150998_i.JPG: OptiTire ECU, test set-up open area test site, pos. 2

ANNEX B EXTERNAL PHOTOGRAPHS

4 pages

150998_7.JPG: OptiTire ECU, 3-D-view 1 150998_5.JPG: OptiTire ECU, 3-D-view 2 150998_6.JPG: OptiTire ECU, type plate view 150998_1.JPG: OptiTire ECU, top view

ANNEX C INTERNAL PHOTOGRAPHS

3 pages

150998_10.JPG: OptiTire ECU, internal view 150998_3.JPG: OptiTire ECU, PCB, top view 150998_4.JPG: OptiTire ECU, PCB, bottom view

 Test engineer:
 Thomas KÜHN
 Report Number:
 F150998E3

 Date of issue:
 15 April 2015
 Order Number:
 15-110998

 page 35 of 35