



# FCC PART 15.407 TEST AND MEASUREMENT REPORT

For

# Ruckus Wireless, Inc.

350 West Java Drive, Sunnyvale, CA 94089, USA

FCC ID: S9GTDBAC22N Model: TDBAC22N

| Report Type: Original Re | eport                                                                                                                          | <b>Product Type:</b> 802.11a/b/g/n/ac Module |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|
| Prepared By              | Rui Zhou                                                                                                                       | Lvi                                          |  |
| Report Number            | R1407152-407W58 Rev C                                                                                                          |                                              |  |
| Report Date              | 2014-09-02                                                                                                                     |                                              |  |
| Reviewed By              | Ivan Cao  RF Lead  Ivan Cu                                                                                                     |                                              |  |
|                          | Bay Area Compliance Laboratories Corp. 1274 Anvilwood Avenue, Sunnyvale, CA 94089, USA Tel: (408) 732-9162 Fax: (408) 732-9164 |                                              |  |

**Note**: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by A2LA\*, NIST, or any agency of the Federal Government.

<sup>\*</sup> This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "\*"

# **TABLE OF CONTENTS**

| 1 | GEN                                                         | NERAL DESCRIPTION                                                                                                                                                                                                                                | 5                                |
|---|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 2 | 1.1<br>1.2<br>1.3<br>1.4<br>1.5<br>1.6<br>1.7               | PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).  MECHANICAL DESCRIPTION OF EUT.  OBJECTIVE  RELATED SUBMITTAL(S)/GRANT(S).  TEST METHODOLOGY.  MEASUREMENT UNCERTAINTY  TEST FACILITY.  TEST CONFIGURATION.                                  | 5<br>5<br>5<br>5                 |
| _ |                                                             |                                                                                                                                                                                                                                                  |                                  |
|   | 2.1<br>2.2<br>2.3<br>2.4<br>2.5                             | JUSTIFICATION EUT EXERCISE SOFTWARE EQUIPMENT MODIFICATIONS LOCAL SUPPORT EQUIPMENT EUT INTERNAL CONFIGURATION DETAILS                                                                                                                           | 7<br>7                           |
| 3 | SUM                                                         | IMARY OF TEST RESULTS                                                                                                                                                                                                                            | 8                                |
| 4 | FCC                                                         | C §2.1091 & §15.407(F) - RF EXPOSURE                                                                                                                                                                                                             | 9                                |
|   | 4.1                                                         | APPLICABLE STANDARD                                                                                                                                                                                                                              | 9                                |
|   | 4.2                                                         | MPE PREDICTION                                                                                                                                                                                                                                   | 9                                |
|   | 4.3                                                         | MPE RESULTS                                                                                                                                                                                                                                      | 9                                |
| 5 | FCC                                                         | C §15.203 – ANTENNA REQUIREMENTS                                                                                                                                                                                                                 | 11                               |
|   | 5.1<br>5.2                                                  | APPLICABLE STANDARD                                                                                                                                                                                                                              |                                  |
| 6 | FCC                                                         | C §15.207 - AC POWER LINE CONDUCTED EMISSIONS                                                                                                                                                                                                    | 12                               |
|   | 6.1<br>6.2<br>6.3<br>6.4<br>6.5<br>6.6<br>6.7<br>6.8<br>6.9 | APPLICABLE STANDARDS TEST SETUP TEST PROCEDURE TEST SETUP BLOCK DIAGRAM. CORRECTED AMPLITUDE & MARGIN CALCULATION TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS SUMMARY OF TEST RESULTS. CONDUCTED EMISSIONS TEST PLOTS AND DATA | 12<br>13<br>13<br>14<br>14<br>14 |
| 7 | FCC                                                         | C §15.209 & §15.407(B) - SPURIOUS RADIATED EMISSIONS                                                                                                                                                                                             | 17                               |
|   | 7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6<br>7.7<br>7.8        | APPLICABLE STANDARD  TEST SETUP  TEST PROCEDURE  CORRECTED AMPLITUDE & MARGIN CALCULATION  TEST EQUIPMENT LIST AND DETAILS  TEST ENVIRONMENTAL CONDITIONS  SUMMARY OF TEST RESULTS  RADIATED EMISSIONS TEST RESULT DATA                          | 18<br>19<br>19<br>19<br>20       |
| 8 | FCC                                                         | C §15.407(E) – BANDWIDTH MEASUREMENT                                                                                                                                                                                                             | 26                               |
|   | 8.1                                                         | APPLICABLE STANDARDS                                                                                                                                                                                                                             | 26                               |
|   | 8.2                                                         | MEASUREMENT PROCEDURE                                                                                                                                                                                                                            | 26                               |

| 8.3          | TEST EQUIPMENT LIST AND DETAILS                      |          |
|--------------|------------------------------------------------------|----------|
| 8.4          | TEST ENVIRONMENTAL CONDITIONS                        |          |
| 8.5          | TEST RESULTS                                         | 27       |
| 9 FC         | CC §407(A) – MAXIMUM CONDUCTED OUTPUT POWER          |          |
| 9.1          | APPLICABLE STANDARDS                                 | 39       |
| 9.2          | MEASUREMENT PROCEDURE                                |          |
| 9.3          | TEST EQUIPMENT LIST AND DETAILS                      |          |
| 9.4          | TEST ENVIRONMENTAL CONDITIONS                        | 39       |
| 9.5          | TEST RESULTS                                         | 40       |
| 10 FC        | CC §15.407(B) - OUT OF BAND EMISSIONS                | 46       |
| 10.1         | APPLICABLE STANDARD                                  | 46       |
| 10.2         | MEASUREMENT PROCEDURE                                | 46       |
| 10.3         | TEST EQUIPMENT LIST AND DETAILS                      |          |
| 10.4         | TEST ENVIRONMENTAL CONDITIONS                        |          |
| 10.5         | TEST RESULTS                                         | 47       |
| 11 FC        | CC §15.407(B) - SPURIOUS EMISSIONS AT ANTENNA PORTS  | 51       |
| 11.1         | APPLICABLE STANDARDS                                 |          |
| 11.2         | MEASUREMENT PROCEDURE                                |          |
| 11.3         | TEST EQUIPMENT LIST AND DETAILS                      |          |
| 11.4         | TEST ENVIRONMENTAL CONDITIONS                        |          |
| 11.5         | TEST RESULTS                                         | 52       |
| 12 FC        | CC §15.407(A) - POWER SPECTRAL DENSITY               | 75       |
| 12.1         | APPLICABLE STANDARDS                                 |          |
| 12.2         | MEASUREMENT PROCEDURE                                |          |
| 12.3         | TEST EQUIPMENT LIST AND DETAILS                      |          |
| 12.4         | TEST ENVIRONMENTAL CONDITIONS.                       |          |
| 12.5         | TEST RESULTS                                         |          |
| 13 EX        | XHIBIT A – FCC EQUIPMENT LABELING REQUIREMENTS       |          |
| 13.1         | FCC ID LABEL REQUIREMENTS                            | 82       |
| 13.2         | FCC ID LABEL CONTENTS AND LOCATION                   | 82       |
| 14 EX        | XHIBIT B - EUT SETUP PHOTOGRAPHS                     | 83       |
| 14.1         | RADIATED EMISSION BELOW 1 GHZ FRONT VIEW AT 3 METERS | 83       |
| 14.2         | RADIATED EMISSION BELOW 1 GHZ REAR VIEW AT 3 METERS  |          |
| 14.3         | RADIATED EMISSION ABOVE 1 GHZ FRONT VIEW AT 3 METERS |          |
| 14.4         | RADIATED EMISSION ABOVE 1 GHZ REAR VIEW AT 3 METERS  |          |
| 14.5         | AC LINE CONDUCTED EMISSION FRONT VIEW                |          |
| 14.6         | AC LINE CONDUCTED EMISSION SIDE VIEW                 | 85       |
| 15 EX        | XHIBIT C – EUT PHOTOGRAPHS                           | 86       |
| 15.1         | PCB1 MAIN BOARD SANTORINI: TOP VIEW                  |          |
| 15.2         | PCB1 MAIN BOARD SANTORINI: REAR VIEW                 |          |
| 15.3         | DC Adaptor/POE View                                  |          |
| 15.4         | AC Adaptor View                                      |          |
| 15.5         | EUT PHOTO: OPEN CASE VIEW                            |          |
| 15.6         |                                                      |          |
| 15.7         | PCB2 SANTORINI-N INTERFACE: REAR VIEW                |          |
| 15.8<br>15.9 | Antenna View 1                                       | 89<br>90 |
| 179          | ANTENNA VIEW /                                       | GH       |

# **DOCUMENT REVISION HISTORY**

| Revision Number | Report Number         | Description of Revision                  | Date of Revision |
|-----------------|-----------------------|------------------------------------------|------------------|
| 0               | R1407152-407 W58      | Original Report                          | 2014-08-08       |
| 1               | R1407152-407W58 Rev A | Revised Report with updated model number | 2014-08-21       |
| 2               | R1407152-407W58 Rev B | Updated MPE                              | 2014-08-28       |
| 3               | R1407152-407W58 Rev C | Updated IC                               | 2014-09-02       |

## 1 General Description

#### 1.1 Product Description for Equipment under Test (EUT)

This test and measurement report has been compiled on behalf of Ruckus Wireless, Inc, and their product, model number: *TDBAC22N*, FCC ID: S9GTDBAC22N which henceforth is referred to as the EUT (Equipment Under Test.). EUT is an 802.11a/b/g/n/ac Module.

## **1.2** Mechanical Description of EUT

The EUT measures approximately 15 cm (L) x 13 cm (W) x 2.0 cm (H) and weighs 114.5 g. Note: The EUT was tested without enclosure.

The test data gathered are from typical production sample, serial number: 171406000022 assigned by Client

# 1.3 Objective

This report is prepared on behalf of Ruckus Wireless, Inc, in accordance with FCC CFR47 §15.407.

The objective is to determine compliance with FCC Part 15.407 for Output Power, Antenna Requirements, AC Line Conducted Emissions, Bandwidth, Power spectral density, Band Edges Measurement, Spurious Emissions, Conducted and Radiated Spurious Emissions.

#### 1.4 Related Submittal(s)/Grant(s)

N/A.

#### 1.5 Test Methodology

All measurements contained in this report were conducted in accordance with ANSI C63.4-2009, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

#### 1.6 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on CISPR16-4-2:2011, The Treatment of Uncertainty in EMC Measurements, the values ranging from  $\pm 2.0$  dB for Conducted Emissions tests and  $\pm 4.0$  dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL Corp.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

#### 1.7 Test Facility

Bay area compliance Laboratories Corp. (BACL) is:

1- An independent Commercial Test Laboratory accredited to **ISO 17025:2005** by **A2LA**, in the fields of: Electromagnetic Compatibility & Telecommunications covering Emissions, Immunity, Radio, RF Exposure, Safety and Telecom. This includes NEBS (Network Equipment Building System), Wireless RF, Telecommunications Terminal Equipment (TTE); Network Equipment; Information Technology Equipment (ITE); Medical Electrical Equipment; Industrial, Commercial, and Medical Test Equipment; Professional Audio and Video Equipment; Electronic (Digital) Products; Industrial and Scientific Instruments; Cabled Distribution Systems and Energy Efficiency Lighting.

- 2- An ENERGY STAR Recognized Laboratory, for the LM80 Testing, a wide variety of Luminares and Computers.
- 3- A NIST Designated Phase-I and Phase-II CAB including: ACMA (Australian Communication and Media Authority), BSMI (Bureau of Standards, Metrology and Inspection of Taiwan), IDA (Infocomm Development Authority of Singapore), IC(Industry Canada), Korea (Ministry of Communications Radio Research Laboratory), NCC (Formerly DGT; Directorate General of Telecommunication of Chinese Taipei) OFTA (Office of the Telecommunications Authority of Hong Kong), Vietnam, VCCI Voluntary Control Council for Interference of Japan and a designated EU CAB (Conformity Assessment Body) (Notified Body) for the EMC and R&TTE Directives.
- 4- A Product Certification Body accredited to **ISO Guide 65:1996** by **A2LA** to certify:
- 2. Radio Standards Specifications (RSS) in the Category I Equipment Standards List and All Broadcasting Technical Standards (BETS) in Category I Equipment Standards List for Industry Canada.
- 3. Radio Communication Equipment for Singapore.
- 4. Radio Equipment Specifications, GMDSS Marine Radio Equipment Specifications, and Fixed Network Equipment Specifications for Hong Kong.
- 5. Japan MIC Telecommunication Business Law (A1, A2) and Radio Law (B1, B2 and B3).
- 6. Audio/Video, Battery Charging Systems, Computers, Displays, Enterprise Servers, Imaging Equipment, Set-Top Boxes, Telephony, Televisions, Ceiling Fans, CFLs (Including GU24s), Decorative Light Strings, Integral LED Lamps, Luminaires, Residential Ventilating Fans.

The test site used by BACL Corp. to collect radiated and conducted emissions measurement data is located at its facility in Sunnyvale, California, USA.

The test site at BACL Corp. has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997, and Article 8 of the VCCI regulations on December 25, 1997. The test site also complies with the test methods and procedures set forth in CISPR 22:2008 §10.4 for measurements below 1 GHz and §10.6 for measurements above 1 GHz as well as ANSI C63.4-2009, ANSI C63.4-2009, TIA/EIA-603 & CISPR 24:2010.

The Federal Communications Commission and Voluntary Control Council for Interference have the reports on file and they are listed under FCC registration number: 90464 and VCCI Registration No.: A-0027. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL Corp. is an American Association for Laboratory Accreditation (A2LA) accredited laboratory (Lab Code 3297-02). The current scope of accreditations can be found at

http://www.a2la.org/scopepdf/3297-02.pdf?CFID=1132286&CFTOKEN=e42a3240dac3f6ba-6DE17DCB-1851-9E57-477422F667031258&jsessionid=8430d44f1f47cf2996124343c704b367816b

# **2** EUT Test Configuration

#### 2.1 Justification

The EUT was configured for testing according to ANSI C63.4-2009 and KDB-789033 D02 General UNII Test Procedures New Rules v01

The EUT was tested in a testing mode to represent worst-case results during the final qualification test.

The worst-case data rates are determined to be as follows for each mode based upon investigation by measuring the average power, peak power and PPSD across all data rates bandwidths, and modulations.

#### 2.2 EUT Exercise Software

The test utility used was T300 ART was provided by Ruckus Wireless Inc., and was verified by Rui Zhou to comply with the standard requirements being tested against.

#### 2.3 Equipment Modifications

No modifications were made to the EUT.

### 2.4 Local Support Equipment

| Manufacturer | Description    | Model          | Serial Number |  |
|--------------|----------------|----------------|---------------|--|
| Ruckus       | DC Adaptor/POE | NPE-5818       | 740-64157-001 |  |
| Ruckus       | AC Adaptor     | PA10244HUB     | 740-64125-010 |  |
| Dell         | Laptop         | Latitude E5420 | CHZCMQ1       |  |

#### 2.5 EUT Internal Configuration Details

| Manufacturer | Description               | Model                    | Serial Number |  |
|--------------|---------------------------|--------------------------|---------------|--|
| Ruckus       | Main Board<br>(SANTORINI) | ASM 120-11257-003 rev. 4 | RUK02806      |  |
| Ruckus       | Interface                 | -                        | -             |  |

# **3** Summary of Test Results

| FCC Rules                 | Description of Test                               | Result    |
|---------------------------|---------------------------------------------------|-----------|
| FCC§2.1091, §15.407(f)    | RF Exposure                                       | Compliant |
| FCC §15.203               | Antenna Requirement                               | Compliant |
| FCC §15.207               | AC Power Line Conducted Emissions                 | Compliant |
| FCC §15.209(a), 15.407(b) | Spurious Radiated Emissions                       | Compliant |
| FCC §15.407(a)            | Emission Bandwidth Complian                       |           |
| FCC §407(a)               | Maximun Output Power Measurement Complia          |           |
| FCC §2.1051, §15.407(b)   | Band Edges Compli                                 |           |
| FCC §15.407(a)            | Power Spectral Density Complian                   |           |
| FCC §2.1051, §15.407(b)   | Spurious Emissions at Antenna Terminals Compliant |           |

# 4 FCC §2.1091 & §15.407(f) - RF Exposure

#### 4.1 Applicable Standard

According to FCC §15.407(f) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for General Population/Uncontrolled Exposure

| Frequency<br>Range<br>(MHz) | Electric Field<br>Strength<br>(V/m) | Magnetic Field<br>Strength<br>(A/m) | Power Density<br>(mW/cm²) | Averaging Time (minutes) |
|-----------------------------|-------------------------------------|-------------------------------------|---------------------------|--------------------------|
|                             | Limits for Gen                      | eral Population/Uncont              | rolled Exposure           |                          |
| 0.3-1.34                    | 614                                 | 1.63                                | * (100)                   | 30                       |
| 1.34-30                     | 824/f                               | 2.19/f                              | * (180/f <sup>2</sup> )   | 30                       |
| 30-300                      | 27.5                                | 0.073                               | 0.2                       | 30                       |
| 300-1500                    | /                                   | /                                   | f/1500                    | 30                       |
| 1500-100,000                | /                                   | /                                   | 1.0                       | 30                       |

f = frequency in MHz

#### 4.2 MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

#### 4.3 MPE Results

5725-5850 MHz

| <u>24.9</u> |
|-------------|
| 309.03      |
| <u>20</u>   |
| <u>5785</u> |
| <u>8</u>    |
| <u>6.31</u> |
| 0.3813      |
| 3.813       |
| 1.0         |
| <u>10</u>   |
|             |

<sup>\* =</sup> Plane-wave equivalent power density

#### 2400-2483.5 MHz

24.58 Maximum peak output power at antenna input terminal (dBm): Maximum peak output power at antenna input terminal (mW): 287.08 <u>20</u> Prediction distance (cm): 2437 Prediction frequency (MHz): Maximum Antenna Gain, typical (dBi): 3.9811 Maximum Antenna Gain (numeric): 0.2275 Power density of prediction frequency at 20.0 cm (mW/cm<sup>2</sup>): 2.275 Power density of prediction frequency at 20.0 cm ( $W/m^2$ ): 1.0 MPE limit for uncontrolled exposure at prediction frequency (mW/cm<sup>2</sup>): 10 MPE limit for uncontrolled exposure at prediction frequency (W/m<sup>2</sup>):

According to KDB 447498 D01 General RF Exposure Guidance v05r02, EUT has 5 GHz and 2.4 GHz transmitting simultaneously. So the sum of MPE ratio for four antennas is 0.6088 which is smaller than 1.0. So the colocation exposure exclusion applies.

# 5 FCC §15.203 – Antenna Requirements

# 5.1 Applicable Standard

According to FCC §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### **5.2** Antenna Description

The antenna uses a unique coupling to the EUT, which complies with the antenna requirement. And the antenna gain is 8dBi. Please refer to the internal photos.

## 6 FCC §15.207 - AC Power Line Conducted Emissions

#### **6.1** Applicable Standards

As per FCC §15.207 Conducted limits:

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

| Frequency of Emission | Conducted Limit (dBuV) |                 |  |
|-----------------------|------------------------|-----------------|--|
| (MHz)                 | Quasi-peak             | Average         |  |
| 0.15-0.5              | 66 to 56 Note 1        | 56 to 46 Note 1 |  |
| 0.5-5                 | 56                     | 46              |  |
| 5-30                  | 60                     | 50              |  |

Note 1 Decreases with the logarithm of the frequency.

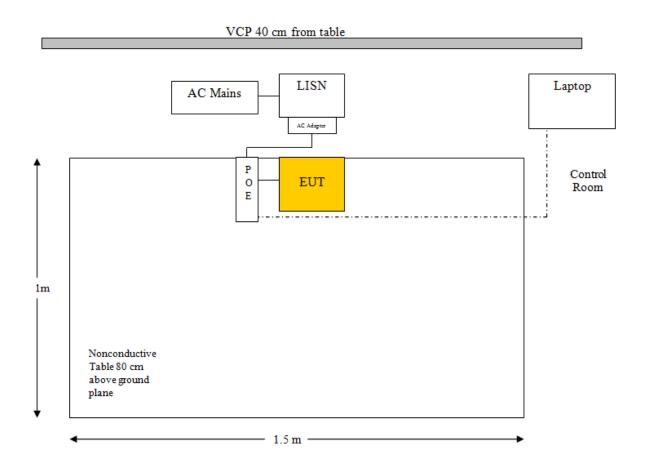
#### 6.2 Test Setup

The measurement was performed at shield room, using the setup per ANSI C63.4-2009 measurement procedure. The specification used was FCC §15.207 limits.

External I/O cables were draped along the edge of the test table and bundle when necessary.

The AC/DC power adapter of the EUT was connected with LISN-1 which provided 120 V / 60 Hz AC power.

#### **6.3** Test Procedure


During the conducted emissions test, the power cord of the EUT host system was connected to the mains outlet of the LISN-1 and the power cord of the support equipment was connected to LISN-2.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the peak detection mode, quasi-peak and average. Quasi-Peak readings are distinguished with a "QP." Average readings are distinguished with an "Ave".

#### 6.4 Test Setup Block Diagram

POE:



#### 6.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Cable Loss (CL), the Attenuator Factor (Atten) to indicated Amplitude (Ai) reading. The basic equation is as follows:

$$CA = Ai + CL + Atten$$

For example, a corrected amplitude of 46.2 dBuV = Indicated Reading (32.5 dBuV) + Cable Loss (3.7 dB) + Attenuator (10 dB)

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

# 6.6 Test Equipment List and Details

| Manufacturer      | Description       | Model No.          | Serial No. | Calibration<br>Date | Calibration<br>Interval |
|-------------------|-------------------|--------------------|------------|---------------------|-------------------------|
| Rohde & Schwarz   | EMI Test Receiver | ESCI 1166.5950K03  | 100337     | 2013-09-28          | 1 year                  |
| Solar Electronics | LISN              | 9252-50-R-24-N     | 511213     | 2014-7-14           | 1 year                  |
| TTE               | Filter, High Pass | H962-150K-50-21378 | K7133      | 2013-07-30          | 1 year                  |

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

#### **6.7** Test Environmental Conditions

| Temperature:       | 22-24° C        |  |
|--------------------|-----------------|--|
| Relative Humidity: | 40-41 %         |  |
| ATM Pressure:      | 103.1-104.1 KPa |  |

The testing was performed by Rui Zhou on 2014-07-22 in 5m chamber3.

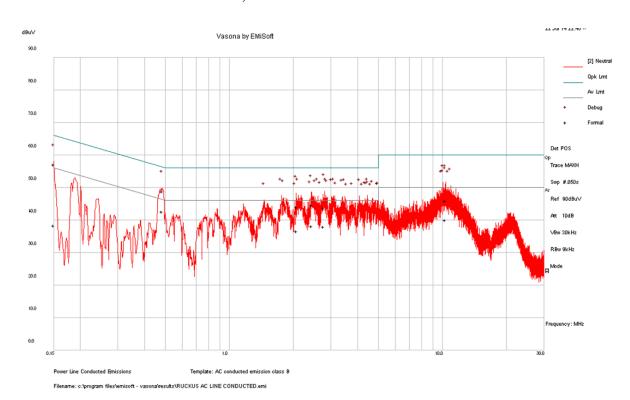
# **6.8** Summary of Test Results

According to the recorded data in following table, the EUT <u>complied with the FCC Part 15 standard's</u> conducted emissions limits, with the margin reading of:

| Connection: AC/DC adapter connected to 120 V/60 Hz, AC         |          |         |         |  |  |
|----------------------------------------------------------------|----------|---------|---------|--|--|
| MarginFrequencyConductor ModeRange(dB)(MHz)(Line/Neutral)(MHz) |          |         |         |  |  |
| -3.61                                                          | 0.483687 | Neutral | 0.15-30 |  |  |

# 6.9 Conducted Emissions Test Plots and Data

120 V, 60 Hz – Line




Filename: o:\program files\emisoft - vasona\results\RUCKU\$ AC LINE CONDUCTED.emi

| Frequency (MHz) | Corrected<br>Amplitude<br>(dBµV) | Conductor<br>(Line/Neutral) | Limit<br>(dBµV) | Margin<br>(dB) | Detector<br>(QP/Ave.) |
|-----------------|----------------------------------|-----------------------------|-----------------|----------------|-----------------------|
| 0.485898        | 48.83                            | Line                        | 56.24           | -7.4           | QP                    |
| 0.150024        | 58.2                             | Line                        | 66              | -7.8           | QP                    |
| 2.098737        | 42.21                            | Line                        | 56              | -13.79         | QP                    |
| 2.466447        | 41.83                            | Line                        | 56              | -14.17         | QP                    |
| 0.774414        | 39.73                            | Line                        | 56              | -16.27         | QP                    |
| 0.728286        | 37.63                            | Line                        | 56              | -18.37         | QP                    |

| Frequency (MHz) | Corrected<br>Amplitude<br>(dBµV) | Conductor<br>(Line/Neutral) | Limit<br>(dBµV) | Margin<br>(dB) | Detector<br>(QP/Ave.) |
|-----------------|----------------------------------|-----------------------------|-----------------|----------------|-----------------------|
| 0.485898        | 41.7                             | Line                        | 46.24           | -4.54          | Ave.                  |
| 2.466447        | 35.9                             | Line                        | 46              | -10.1          | Ave.                  |
| 2.098737        | 35.41                            | Line                        | 46              | -10.59         | Ave.                  |
| 0.774414        | 31.73                            | Line                        | 46              | -14.27         | Ave.                  |
| 0.150024        | 41.41                            | Line                        | 56              | -14.59         | Ave.                  |
| 0.728286        | 28.76                            | Line                        | 46              | -17.24         | Ave.                  |

120 V, 60 Hz – Neutral



| Frequency (MHz) | Corrected<br>Amplitude<br>(dBµV) | Conductor<br>(Line/Neutral) | Limit<br>(dBµV) | Margin<br>(dB) | Detector<br>(QP/Ave.) |
|-----------------|----------------------------------|-----------------------------|-----------------|----------------|-----------------------|
| 0.483687        | 48.84                            | Neutral                     | 56.28           | -7.44          | QP                    |
| 0.150341        | 57.22                            | Neutral                     | 65.98           | -8.76          | QP                    |
| 2.435819        | 44.61                            | Neutral                     | 56              | -11.39         | QP                    |
| 2.071862        | 44.06                            | Neutral                     | 56              | -11.94         | QP                    |
| 2.778528        | 43.89                            | Neutral                     | 56              | -12.11         | QP                    |
| 10.350781       | 45.92                            | Neutral                     | 60              | -14.08         | QP                    |

| Frequency (MHz) | Corrected<br>Amplitude<br>(dBµV) | Conductor<br>(Line/Neutral) | Limit<br>(dBµV) | Margin (dB) | Detector<br>(QP/Ave.) |
|-----------------|----------------------------------|-----------------------------|-----------------|-------------|-----------------------|
| 0.483687        | 42.67                            | Neutral                     | 46.28           | -3.61       | Ave.                  |
| 2.435819        | 38.26                            | Neutral                     | 46              | -7.74       | Ave.                  |
| 2.778528        | 38.03                            | Neutral                     | 46              | -7.97       | Ave.                  |
| 2.071862        | 36.63                            | Neutral                     | 46              | -9.37       | Ave.                  |
| 10.35078        | 40.14                            | Neutral                     | 50              | -9.86       | Ave.                  |
| 0.150341        | 38.46                            | Neutral                     | 55.98           | -17.52      | Ave.                  |

# 7 FCC §15.209 & §15.407(b) - Spurious Radiated Emissions

#### 7.1 Applicable Standard

As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz

The emissions from an intentional radiator shall not exceed the field strength levels specified in the following

| Frequency<br>(MHz) | Field Strength<br>(micro volts/meter) | Measurement Distance<br>(meters) |
|--------------------|---------------------------------------|----------------------------------|
| 0.009 - 0.490      | 2400/F(kHz)                           | 300                              |
| 0.490 - 1.705      | 24000/F(kHz)                          | 30                               |
| 1.705 - 30.0       | 30                                    | 30                               |
| 30 - 88            | 100 Note 1                            | 3                                |
| 88 - 216           | 150 Note 1                            | 3                                |
| 216 - 960          | 200 Note 1                            | 3                                |
| Above 960          | 500                                   | 3                                |

Note 1: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

| MHz                                                                                                                                                                                                                                                                                                                 | MHz                                                                                                                                                                                                                                                                          | MHz                                                                                                                                                                                                                              | GHz                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.090 - 0.110<br>0.495 - 0.505<br>2.1735 - 2.1905<br>4.125 - 4.128<br>4.17725 - 4.17775<br>4.20725 - 4.20775<br>6.215 - 6.218<br>6.26775 - 6.26825<br>6.31175 - 6.31225<br>8.291 - 8.294<br>8.362 - 8.366<br>8.37625 - 8.38675<br>8.41425 - 8.41475<br>12.29 - 12.293<br>12.51975 - 12.52025<br>12.57675 - 12.57725 | 16.42 - 16.423<br>16.69475 - 16.69525<br>25.5 - 25.67<br>37.5 - 38.25<br>73 - 74.6<br>74.8 - 75.2<br>108 - 121.94<br>123 - 138<br>149.9 - 150.05<br>156.52475 - 156.52525<br>156.7 - 156.9<br>162.0125 - 167.17<br>167.72 - 173.2<br>240 - 285<br>322 - 335.4<br>399.9 - 410 | 960 - 1240<br>1300 - 1427<br>1435 - 1626.5<br>1645.5 - 1646.5<br>1660 - 1710<br>1718.8 - 1722.2<br>2200 - 2300<br>2310 - 2390<br>2483.5 - 2500<br>2690 - 2900<br>3260 - 3267<br>3.332 - 3.339<br>3 3458 - 3 358<br>3.600 - 4.400 | 4. 5 – 5. 15<br>5. 35 – 5. 46<br>7.25 – 7.75<br>8.025 – 8.5<br>9.0 – 9.2<br>9.3 – 9.5<br>10.6 – 12.7<br>13.25 – 13.4<br>14.47 – 14.5<br>15.35 – 16.2<br>17.7 – 21.4<br>22.01 – 23.12<br>23.6 – 24.0<br>31.2 – 31.8<br>36.43 – 36.5<br>Above 38.6 |
| 13.36 – 13.41                                                                                                                                                                                                                                                                                                       | 608 - 614                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                  | A00ve 36.0                                                                                                                                                                                                                                       |

#### As per FCC Part 15.407 (b)

(4) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.

#### 7.2 Test Setup

The radiated emissions tests were performed in the 5-meter Chamber, using the setup in accordance with ANSI C63.4-2009. The specification used was the FCC 15C/15E limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

#### 7.3 Test Procedure

For the radiated emissions test, the EUT host, and all support equipment power cords were connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT is set 3 meter away from the testing antenna, which is varied from 1-4 meter, and the EUT is placed on a turntable, which is 0.8 meter above ground plane, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

The spectrum analyzer or receiver is set as:

Below 1000 MHz:

$$RBW = 100 \text{ kHz} / VBW = 300 \text{ kHz} / Sweep = Auto$$

Above 1000 MHz:

- (1) Peak: RBW = 1MHz / VBW = 1MHz / Sweep = Auto
- (2) Average: RBW = 1MHz / VBW = 10Hz / Sweep = Auto

#### 7.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Antenna Factor (AF), the Cable Loss (CL), the Attenuator Factor (Atten) and subtracting the Amplifier Gain (Ga) to indicated Amplitude (Ai) reading. The basic equation is as follows:

$$CA = Ai + AF + CL + Atten - Ga$$

For example, a corrected amplitude of 40.3 dBuV/m = Indicated Reading (32.5 dBuV) + Antenna Factor (+23.5dB) + Cable Loss (3.7 dB) + Attenuator (10 dB) - Amplifier Gain (29.4 dB)

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit for Class A. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

#### 7.5 Test Equipment List and Details

| Manufacturer       | Description                    | Model No.         | Serial No. | Calibration<br>Date | Calibration<br>Interval |
|--------------------|--------------------------------|-------------------|------------|---------------------|-------------------------|
| Sunol Science Corp | System Controller              | SC99V             | 122303-1   | N/R                 | N/R                     |
| Sunol Science Corp | Combination<br>Antenna         | JB3               | A020106-3  | 2014-07-18          | 1 year                  |
| Hewlett Packard    | Pre-amplifier<br>1GHz-26.5GHz  | 8447D             | 2944A06639 | 2013-08-09          | 1 year                  |
| Agilent            | Spectrum Analyzer              | E4446A            | MY48250238 | 2013-08-29          | 1 year                  |
| EMCO               | Horn Antenna                   | 3315              | 9511-4627  | 2013-10-17          | 1 year                  |
| Rohde & Schwarz    | EMI Test Receiver              | ESCI 1166.5950K03 | 100337     | 2013-09-28          | 1 year                  |
| Wisewave           | Pre-amplifier<br>26.5GHz-40GHz | ALN-33144030-01   | 11424-01   | 2013-03-20          | 2 years                 |
| Wisewave           | Horn Antenna<br>26.5GHz-40GHz  | ARH-4223-02       | 10555-02   | 2013-09-20          | 3 years                 |

Statement of Traceability: BACL attests that all calibrations have been performed per the A2LA requirements, traceable to NIST

#### 7.6 Test Environmental Conditions

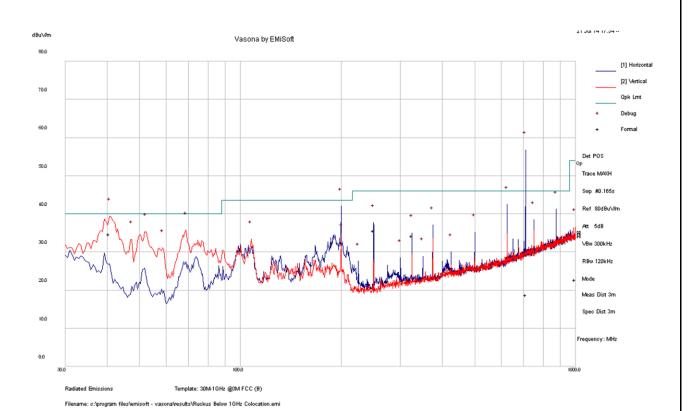
| Temperature:       | 22-24° C        |
|--------------------|-----------------|
| Relative Humidity: | 40-41 %         |
| ATM Pressure:      | 103.1-104.1 KPa |

The testing was performed by Rui Zhou on 2014-07-21 at 5 meter 3.

# 7.7 Summary of Test Results

According to the data hereinafter, the EUT <u>complied with the FCC Part 15.205, 15.209 and 15.407</u> standard's radiated emissions limits, and had the worst margin of:

#### **30 MHz-1 GHz**


| <b>Mode: Transmitting</b> |                    |                                       |                |
|---------------------------|--------------------|---------------------------------------|----------------|
| Margin<br>(dB)            | Frequency<br>(MHz) | Polarization<br>(Horizontal/Vertical) | Channel, Range |
| -5.3                      | 40.53075           | Vertical                              | 30MHz-1GHz     |

#### 1 GHz-40 GHz

| <b>Mode: Transmitting</b> |                    |                                       |                |
|---------------------------|--------------------|---------------------------------------|----------------|
| Margin<br>(dB)            | Frequency<br>(MHz) | Polarization<br>(Horizontal/Vertical) | Channel, Range |
| -2.39                     | 17385              | Vertical                              | 1 GHz-40 GHz   |

# 7.8 Radiated Emissions Test Result Data

#### 1) 30 MHz – 1 GHz



| Frequency<br>MHz | Cord.<br>Reading<br>(dBµV/m) | Measurement<br>Type | Antenna<br>Polarity<br>(H/V) | Antenna<br>Height<br>(cm) | Turntable<br>Azimuth<br>(degrees) | Limit (dBµV/m) | Margin (dB) |
|------------------|------------------------------|---------------------|------------------------------|---------------------------|-----------------------------------|----------------|-------------|
| 40.53075         | 34.7                         | QP                  | V                            | 102                       | 252                               | 40             | -5.30       |
| 249.95275        | 35.69                        | QP                  | Н                            | 101                       | 324                               | 46             | -10.31      |
| 324.9985         | 34.24                        | QP                  | Н                            | 103                       | 313                               | 46             | -11.76      |
| 709.69125        | 18.83                        | QP                  | Н                            | 264                       | 25                                | 46             | -27.17      |
| 997.00275        | 22.79                        | QP                  | V                            | 101                       | 52                                | 54             | -31.21      |

# 2) 1–40 GHz

802.11a Mode

| E                  | S.A.           | Turntable         | T           | est Anten      | na            | Cable        | Pre-      | Cord.            | I                 | FCC            |          |
|--------------------|----------------|-------------------|-------------|----------------|---------------|--------------|-----------|------------------|-------------------|----------------|----------|
| Frequency<br>(MHz) | Reading (dBµV) | Azimuth (degrees) | Height (cm) | Polarity (H/V) | Factor (dB/m) | Loss<br>(dB) | Amp. (dB) | Reading (dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Comments |
|                    |                |                   | Lo          | w Channe       | el 5745 M     | Hz, mea      | sured at  | 3 meters         |                   |                |          |
| 11490              | 45.53          | 0                 | 100         | V              | 38.1          | 4.07         | 33.87     | 53.83            | 74                | -20.17         | Peak     |
| 11490              | 44.72          | 0                 | 100         | Н              | 38.1          | 4.07         | 33.87     | 53.02            | 74                | -20.98         | Peak     |
| 11490              | 31.53          | 0                 | 100         | V              | 38.1          | 4.07         | 33.87     | 39.83            | 54                | -14.17         | Ave      |
| 11490              | 31.52          | 0                 | 100         | Н              | 38.1          | 4.07         | 33.87     | 39.82            | 54                | -14.18         | Ave      |
| 17235              | 47.79          | 0                 | 100         | V              | 42.941        | 5.17         | 33.82     | 62.081           | 74                | -11.919        | Peak     |
| 17235              | 47.77          | 0                 | 100         | Н              | 42.941        | 5.17         | 33.82     | 62.061           | 74                | -11.939        | Peak     |
| 17235              | 33.62          | 0                 | 100         | V              | 42.941        | 5.17         | 33.82     | 47.911           | 54                | -6.089         | Ave      |
| 17235              | 33.6           | 0                 | 100         | Н              | 42.941        | 5.17         | 33.82     | 47.891           | 54                | -6.109         | Ave      |
| 22980              | 44.47          | 0                 | 100         | V              | 35.001        | 6.04         | 34.79     | 50.721           | 74                | -23.279        | Peak     |
| 22980              | 44.53          | 0                 | 100         | Н              | 35.001        | 6.04         | 34.79     | 50.781           | 74                | -23.219        | Peak     |
| 22980              | 30.76          | 0                 | 100         | V              | 35.001        | 6.04         | 34.79     | 37.011           | 54                | -16.989        | Ave      |
| 22980              | 30.7           | 0                 | 100         | Н              | 35.001        | 6.04         | 34.79     | 36.951           | 54                | -17.049        | Ave      |
|                    |                |                   | Mid         | dle Chanı      | nel 5785 I    | MHz, me      | easured a | it 3 meters      |                   |                |          |
| 11570              | 45.98          | 0                 | 100         | V              | 38.845        | 4.07         | 33.87     | 55.025           | 74                | -18.975        | Peak     |
| 11570              | 45.59          | 0                 | 100         | Н              | 38.845        | 4.07         | 33.87     | 54.635           | 74                | -19.365        | Peak     |
| 11570              | 31.74          | 0                 | 100         | V              | 38.845        | 4.07         | 33.87     | 40.785           | 54                | -13.215        | Ave      |
| 11570              | 31.94          | 0                 | 100         | Н              | 38.845        | 4.07         | 33.87     | 40.985           | 54                | -13.015        | Ave      |
| 17355              | 48.68          | 0                 | 100         | V              | 46.58         | 5.17         | 33.82     | 66.61            | 74                | -7.39          | Peak     |
| 17355              | 48.23          | 0                 | 100         | Н              | 46.58         | 5.17         | 33.82     | 66.16            | 74                | -7.84          | Peak     |
| 17355              | 33.08          | 0                 | 100         | V              | 46.58         | 5.17         | 33.82     | 51.01            | 54                | -2.99          | Ave      |
| 17355              | 32.8           | 0                 | 100         | Н              | 46.58         | 5.17         | 33.82     | 50.73            | 54                | -3.27          | Ave      |
| 23140              | 44             | 0                 | 100         | V              | 35.001        | 6.04         | 34.74     | 50.301           | 74                | -23.699        | Peak     |
| 23140              | 43.58          | 0                 | 100         | Н              | 35.001        | 6.04         | 34.74     | 49.881           | 74                | -24.119        | Peak     |
| 23140              | 29.83          | 0                 | 100         | V              | 35.001        | 6.04         | 34.74     | 36.131           | 54                | -17.869        | Ave      |
| 23140              | 29.99          | 0                 | 100         | Н              | 35.001        | 6.04         | 34.74     | 36.291           | 54                | -17.709        | Ave      |
|                    |                | •                 | Hig         | gh Chann       | el 5825 M     | IHz, mea     | asured at | 3 meters         |                   |                |          |
| 11650              | 44.54          | 0                 | 100         | V              | 39.015        | 4.07         | 34.27     | 53.355           | 74                | -20.645        | Peak     |
| 11650              | 44.37          | 0                 | 100         | Н              | 39.015        | 4.07         | 34.27     | 53.185           | 74                | -20.815        | Peak     |
| 11650              | 30.55          | 0                 | 100         | V              | 39.015        | 4.07         | 34.27     | 39.365           | 54                | -14.635        | Ave      |
| 11650              | 30.76          | 0                 | 100         | Н              | 39.015        | 4.07         | 34.27     | 39.575           | 54                | -14.425        | Ave      |
| 17475              | 47.32          | 0                 | 100         | V              | 45.021        | 5.17         | 33.78     | 63.731           | 74                | -10.269        | Peak     |
| 17475              | 47.66          | 0                 | 100         | Н              | 45.021        | 5.17         | 33.78     | 64.071           | 74                | -9.929         | Peak     |
| 17475              | 32.78          | 0                 | 100         | V              | 45.021        | 5.17         | 33.78     | 49.191           | 54                | -4.809         | Ave      |
| 17475              | 33.48          | 0                 | 100         | Н              | 45.021        | 5.17         | 33.78     | 49.891           | 54                | -4.109         | Ave      |
| 23300              | 44.22          | 0                 | 100         | V              | 34.854        | 6.04         | 34.71     | 50.404           | 74                | -23.596        | Peak     |
| 23300              | 43.57          | 0                 | 100         | Н              | 34.854        | 6.04         | 34.71     | 49.754           | 74                | -24.246        | Peak     |
| 23300              | 30.46          | 0                 | 100         | V              | 34.854        | 6.04         | 34.71     | 36.644           | 54                | -17.356        | Ave      |
| 23300              | 29.81          | 0                 | 100         | Н              | 34.854        | 6.04         | 34.71     | 35.994           | 54                | -18.006        | Ave      |

802.11n-HT20 Mode

| _                  | S.A.                                       | Turntable         | Т           | est Anteni     | na            | Cable        | Pre-      | Cord.            | F                 | CCC         |          |
|--------------------|--------------------------------------------|-------------------|-------------|----------------|---------------|--------------|-----------|------------------|-------------------|-------------|----------|
| Frequency<br>(MHz) | Reading (dBµV)                             | Azimuth (degrees) | Height (cm) | Polarity (H/V) | Factor (dB/m) | Loss<br>(dB) | Amp. (dB) | Reading (dBµV/m) | Limit<br>(dBµV/m) | Margin (dB) | Comments |
|                    | Low Channel 5745 MHz, measured at 3 meters |                   |             |                |               |              |           |                  |                   |             |          |
| 11490              | 45.72                                      | 0                 | 100         | V              | 38.1          | 4.07         | 33.87     | 54.02            | 74                | -19.98      | Peak     |
| 11490              | 44.85                                      | 0                 | 100         | Н              | 38.1          | 4.07         | 33.87     | 53.15            | 74                | -20.85      | Peak     |
| 11490              | 31.57                                      | 0                 | 100         | V              | 38.1          | 4.07         | 33.87     | 39.87            | 54                | -14.13      | Ave      |
| 11490              | 32.12                                      | 0                 | 100         | Н              | 38.1          | 4.07         | 33.87     | 40.42            | 54                | -13.58      | Ave      |
| 17235              | 48.04                                      | 0                 | 100         | V              | 42.941        | 5.17         | 33.82     | 62.33            | 74                | -11.67      | Peak     |
| 17235              | 46.97                                      | 0                 | 100         | Н              | 42.941        | 5.17         | 33.82     | 61.26            | 74                | -12.74      | Peak     |
| 17235              | 33.58                                      | 0                 | 100         | V              | 42.941        | 5.17         | 33.82     | 47.87            | 54                | -6.13       | Ave      |
| 17235              | 32.93                                      | 0                 | 100         | Н              | 42.941        | 5.17         | 33.82     | 47.22            | 54                | -6.78       | Ave      |
| 22980              | 43.95                                      | 0                 | 100         | V              | 35.001        | 6.04         | 34.79     | 50.20            | 74                | -23.80      | Peak     |
| 22980              | 43.58                                      | 0                 | 100         | Н              | 35.001        | 6.04         | 34.79     | 49.83            | 74                | -24.17      | Peak     |
| 22980              | 29.9                                       | 0                 | 100         | V              | 35.001        | 6.04         | 34.79     | 36.15            | 54                | -17.85      | Ave      |
| 22980              | 30.07                                      | 0                 | 100         | Н              | 35.001        | 6.04         | 34.79     | 36.32            | 54                | -17.68      | Ave      |
|                    |                                            |                   | Mid         | dle Chanı      | nel 5785 N    | ЛНz, me      | easured a | t 3 meters       |                   |             |          |
| 11570              | 45.94                                      | 0                 | 100         | V              | 38.845        | 4.07         | 33.87     | 54.985           | 74                | -19.015     | Peak     |
| 11570              | 44.83                                      | 0                 | 100         | Н              | 38.845        | 4.07         | 33.87     | 53.875           | 74                | -20.125     | Peak     |
| 11570              | 31.93                                      | 0                 | 100         | V              | 38.845        | 4.07         | 33.87     | 40.975           | 54                | -13.025     | Ave      |
| 11570              | 31.64                                      | 0                 | 100         | Н              | 38.845        | 4.07         | 33.87     | 40.685           | 54                | -13.315     | Ave      |
| 17355              | 47.83                                      | 0                 | 100         | V              | 46.58         | 5.17         | 33.82     | 65.76            | 74                | -8.24       | Peak     |
| 17355              | 48.19                                      | 0                 | 100         | Н              | 46.58         | 5.17         | 33.82     | 66.12            | 74                | -7.88       | Peak     |
| 17355              | 33.64                                      | 0                 | 100         | V              | 46.58         | 5.17         | 33.82     | 51.57            | 54                | -2.43       | Ave      |
| 17355              | 33.98                                      | 0                 | 100         | Н              | 46.58         | 5.17         | 33.82     | 51.91            | 54                | -2.09       | Ave      |
| 23140              | 43.59                                      | 0                 | 100         | V              | 35.001        | 6.04         | 34.74     | 49.891           | 74                | -24.109     | Peak     |
| 23140              | 44.51                                      | 0                 | 100         | Н              | 35.001        | 6.04         | 34.74     | 50.811           | 74                | -23.189     | Peak     |
| 23140              | 30.01                                      | 0                 | 100         | V              | 35.001        | 6.04         | 34.74     | 36.311           | 54                | -17.689     | Ave      |
| 23140              | 30.04                                      | 0                 | 100         | Н              | 35.001        | 6.04         | 34.74     | 36.341           | 54                | -17.659     | Ave      |
|                    |                                            |                   | Hig         | gh Channe      | el 5825 M     | Hz, mea      | sured at  | 3 meters         |                   |             |          |
| 11650              | 44.89                                      | 0                 | 100         | V              | 39.015        | 4.07         | 34.27     | 53.705           | 74                | -20.295     | Peak     |
| 11650              | 44.19                                      | 0                 | 100         | Н              | 39.015        | 4.07         | 34.27     | 53.005           | 74                | -20.995     | Peak     |
| 11650              | 30.68                                      | 0                 | 100         | V              | 39.015        | 4.07         | 34.27     | 39.495           | 54                | -14.505     | Ave      |
| 11650              | 31.45                                      | 0                 | 100         | Н              | 39.015        | 4.07         | 34.27     | 40.265           | 54                | -13.735     | Ave      |
| 17475              | 47.69                                      | 0                 | 100         | V              | 45.021        | 5.17         | 33.78     | 64.101           | 74                | -9.899      | Peak     |
| 17475              | 47.61                                      | 0                 | 100         | Н              | 45.021        | 5.17         | 33.78     | 64.021           | 74                | -9.979      | Peak     |
| 17475              | 33.37                                      | 0                 | 100         | V              | 45.021        | 5.17         | 33.78     | 49.781           | 54                | -4.219      | Ave      |
| 17475              | 34.16                                      | 0                 | 100         | Н              | 45.021        | 5.17         | 33.78     | 50.571           | 54                | -3.429      | Ave      |
| 23300              | 44.67                                      | 0                 | 100         | V              | 34.854        | 6.04         | 34.71     | 50.854           | 74                | -23.146     | Peak     |
| 23300              | 44.97                                      | 0                 | 100         | Н              | 34.854        | 6.04         | 34.71     | 51.154           | 74                | -22.846     | Peak     |
| 23300              | 31.21                                      | 0                 | 100         | V              | 34.854        | 6.04         | 34.71     | 37.394           | 54                | -16.606     | Ave      |
| 23300              | 30.93                                      | 0                 | 100         | Н              | 34.854        | 6.04         | 34.71     | 37.114           | 54                | -16.886     | Ave      |

#### 802.11n-HT40 mode

| Engguenav          | S.A.                                       | Turntable         | Т           | est Anten      | na            | Cable        | Pre-      | Cord.            | I                 | FCC         |          |
|--------------------|--------------------------------------------|-------------------|-------------|----------------|---------------|--------------|-----------|------------------|-------------------|-------------|----------|
| Frequency<br>(MHz) | Reading (dBµV)                             | Azimuth (degrees) | Height (cm) | Polarity (H/V) | Factor (dB/m) | Loss<br>(dB) | Amp. (dB) | Reading (dBµV/m) | Limit<br>(dBµV/m) | Margin (dB) | Comments |
|                    | Low Channel 5755 MHz, measured at 3 meters |                   |             |                |               |              |           |                  |                   |             |          |
| 11510              | 45.8                                       | 0                 | 100         | V              | 38.1          | 4.07         | 33.87     | 54.1             | 74                | -19.9       | Peak     |
| 11510              | 45.06                                      | 0                 | 100         | Н              | 38.1          | 4.07         | 33.87     | 53.36            | 74                | -20.64      | Peak     |
| 11510              | 31.68                                      | 0                 | 100         | V              | 38.1          | 4.07         | 33.87     | 39.98            | 54                | -14.02      | Ave      |
| 11510              | 32.26                                      | 0                 | 100         | Н              | 38.1          | 4.07         | 33.87     | 40.56            | 54                | -13.44      | Ave      |
| 17265              | 48.73                                      | 0                 | 100         | V              | 42.941        | 5.17         | 33.82     | 63.021           | 74                | -10.979     | Peak     |
| 17265              | 48.43                                      | 0                 | 100         | Н              | 42.941        | 5.17         | 33.82     | 62.721           | 74                | -11.279     | Peak     |
| 17265              | 34.06                                      | 0                 | 100         | V              | 42.941        | 5.17         | 33.82     | 48.351           | 54                | -5.649      | Ave      |
| 17265              | 33.3                                       | 0                 | 100         | Н              | 42.941        | 5.17         | 33.82     | 47.591           | 54                | -6.409      | Ave      |
| 23020              | 44.38                                      | 0                 | 100         | V              | 35.001        | 6.04         | 34.79     | 50.631           | 74                | -23.369     | Peak     |
| 23020              | 44.25                                      | 0                 | 100         | Н              | 35.001        | 6.04         | 34.79     | 50.501           | 74                | -23.499     | Peak     |
| 23020              | 29.78                                      | 0                 | 100         | V              | 35.001        | 6.04         | 34.79     | 36.031           | 54                | -17.969     | Ave      |
| 23020              | 29.93                                      | 0                 | 100         | Н              | 35.001        | 6.04         | 34.79     | 36.181           | 54                | -17.819     | Ave      |
|                    |                                            |                   | Hiş         | gh Chann       | el 5795 M     | Hz, mea      | sured at  | 3 meters         |                   |             |          |
| 11590              | 45.73                                      | 0                 | 100         | V              | 38.845        | 4.07         | 33.87     | 54.775           | 74                | -19.225     | Peak     |
| 11590              | 45.03                                      | 0                 | 100         | Н              | 38.845        | 4.07         | 33.87     | 54.075           | 74                | -19.925     | Peak     |
| 11590              | 31.77                                      | 0                 | 100         | V              | 38.845        | 4.07         | 33.87     | 40.815           | 54                | -13.185     | Ave      |
| 11590              | 31.66                                      | 0                 | 100         | Н              | 38.845        | 4.07         | 33.87     | 40.705           | 54                | -13.295     | Ave      |
| 17385              | 48.61                                      | 0                 | 100         | V              | 46.58         | 5.17         | 33.82     | 66.54            | 74                | -7.46       | Peak     |
| 17385              | 48.3                                       | 0                 | 100         | Н              | 46.58         | 5.17         | 33.82     | 66.23            | 74                | -7.77       | Peak     |
| 17385              | 33.68                                      | 0                 | 100         | V              | 46.58         | 5.17         | 33.82     | 51.61            | 54                | -2.39       | Ave      |
| 17385              | 32.87                                      | 0                 | 100         | Н              | 46.58         | 5.17         | 33.82     | 50.8             | 54                | -3.2        | Ave      |
| 23180              | 43.76                                      | 0                 | 100         | V              | 35.001        | 6.04         | 34.74     | 50.061           | 74                | -23.939     | Peak     |
| 23180              | 44.47                                      | 0                 | 100         | Н              | 35.001        | 6.04         | 34.74     | 50.771           | 74                | -23.229     | Peak     |
| 23180              | 30.66                                      | 0                 | 100         | V              | 35.001        | 6.04         | 34.74     | 36.961           | 54                | -17.039     | Ave      |
| 23180              | 30.66                                      | 0                 | 100         | Н              | 35.001        | 6.04         | 34.74     | 36.961           | 54                | -17.039     | Ave      |

802.11ac- VHT80 mode

| E                  | S.A.                           | Turntable         | Т           | est Anten         | na            | Cable        | Pre-      | Cord.            | F                 | CC          |          |
|--------------------|--------------------------------|-------------------|-------------|-------------------|---------------|--------------|-----------|------------------|-------------------|-------------|----------|
| Frequency<br>(MHz) | Reading (dBµV)                 | Azimuth (degrees) | Height (cm) | Polarity<br>(H/V) | Factor (dB/m) | Loss<br>(dB) | Amp. (dB) | Reading (dBµV/m) | Limit<br>(dBµV/m) | Margin (dB) | Comments |
|                    | 5775 MHz, measured at 3 meters |                   |             |                   |               |              |           |                  |                   |             |          |
| 11550              | 45.19                          | 0                 | 100         | V                 | 38.845        | 4.07         | 33.87     | 54.235           | 74                | -19.765     | Peak     |
| 11550              | 44.18                          | 0                 | 100         | Н                 | 38.845        | 4.07         | 33.87     | 53.225           | 74                | -20.775     | Peak     |
| 11550              | 31.52                          | 0                 | 100         | V                 | 38.845        | 4.07         | 33.87     | 40.565           | 54                | -13.435     | Ave      |
| 11550              | 31.05                          | 0                 | 100         | Н                 | 38.845        | 4.07         | 33.87     | 40.095           | 54                | -13.905     | Ave      |
| 17325              | 47.53                          | 0                 | 100         | V                 | 46.58         | 5.17         | 33.82     | 65.46            | 74                | -8.54       | Peak     |
| 17325              | 47.42                          | 0                 | 100         | Н                 | 46.58         | 5.17         | 33.82     | 65.35            | 74                | -8.65       | Peak     |
| 17325              | 33.22                          | 0                 | 100         | V                 | 46.58         | 5.17         | 33.82     | 51.15            | 54                | -2.85       | Ave      |
| 17325              | 33.81                          | 0                 | 100         | Н                 | 46.58         | 5.17         | 33.82     | 51.74            | 54                | -2.26       | Ave      |
| 23100              | 44.62                          | 0                 | 100         | V                 | 35.001        | 6.04         | 34.74     | 50.921           | 74                | -23.079     | Peak     |
| 23100              | 45.42                          | 0                 | 100         | Н                 | 35.001        | 6.04         | 34.74     | 51.721           | 74                | -22.279     | Peak     |
| 23100              | 31.17                          | 0                 | 100         | V                 | 35.001        | 6.04         | 34.74     | 37.471           | 54                | -16.529     | Ave      |
| 23100              | 30.81                          | 0                 | 100         | Н                 | 35.001        | 6.04         | 34.74     | 37.111           | 54                | -16.889     | Ave      |

Note: Restrict band limit is used in all of the frequency as it is tighter limit comparing to the limit outside of restrict band.

# 8 FCC §15.407(e) – Bandwidth Measurement

#### 8.1 Applicable Standards

FCC §15.407(e)

#### 8.2 Measurement Procedure

#### **Emission Bandwidth:**

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW)  $\geq 3 \times RBW$ .
- c) Detector = Peak.
- $\overrightarrow{d}$ ) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

#### 99-percent occupied bandwidth:

The 99-percent occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5 % of the total mean power of the given emission. Measurement of the 99-percent occupied bandwidth is required only as a condition for using the optional bandedge measurement techniques described in section II.G.3.d).

Measurements of 99-percent occupied bandwidth may also optionally be used in lieu of the EBW to 789033 D02 General UNII Test Procedures New Rules v01

Page 4define the minimum frequency range over which the spectrum is integrated when measuring maximum conducted output power as described in section II.E. However, the EBW must be measured to determine bandwidth dependent limits on maximum conducted output power in accordance with 15.407(a).

The following procedure shall be used for measuring (99 %) power bandwidth:

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1 % to 5 % of the OBW
- 4. Set VBW  $\geq 3$  RBW
- 5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- 6. Use the 99 % power bandwidth function of the instrument (if available).
- 7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

# 8.3 Test Equipment List and Details

| Manufacturer | Description       | Model No. | Serial No. | Calibration<br>Date | Calibration<br>Interval |
|--------------|-------------------|-----------|------------|---------------------|-------------------------|
| Agilent      | Spectrum Analyzer | E4446A    | US44300386 | 2013-09-29          | 1 year                  |

Statement of Traceability: BACL Corp. attests that all calibrations have been performed according to A2LA requirements, traceable to the NIST.

#### **8.4** Test Environmental Conditions

| Temperature:       | 22-24° C        |
|--------------------|-----------------|
| Relative Humidity: | 40-41 %         |
| ATM Pressure:      | 103.1-104.1 KPa |

The testing was performed by Rui Zhou on 2014-07-18 to 2014-07-22 at RF site.

#### 8.5 Test Results

802.11a mode

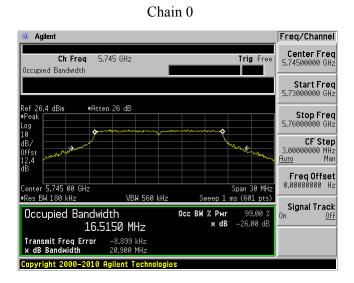
| Channel | Frequency (MHz) 6 dB Emission Bandwidth (MHz) |         | 99% Emission Bandwidth<br>(MHz) |
|---------|-----------------------------------------------|---------|---------------------------------|
|         |                                               | Chain 0 |                                 |
| Low     | 5745                                          | 16.567  | 16.515                          |
| Middle  | 5785                                          | 16.577  | 16.5376                         |
| High    | 5825                                          | 16.545  | 16.5373                         |
|         |                                               | Chain 1 |                                 |
| Low     | 5745                                          | 16.534  | 16.4916                         |
| Middle  | 5785                                          | 16.546  | 16.5563                         |
| High    | 5825                                          | 16.424  | 16.5485                         |

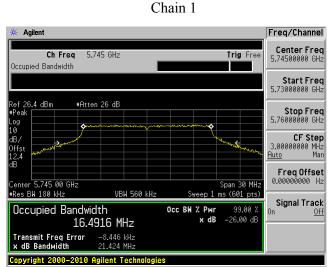
802.11n-HT20 mode

| Channel | Frequency (MHz) 6 dB Emission Bandwidth (MHz) |         | 99% Emission Bandwidth<br>(MHz) |  |  |  |  |  |
|---------|-----------------------------------------------|---------|---------------------------------|--|--|--|--|--|
|         | Chain 0                                       |         |                                 |  |  |  |  |  |
| Low     | 5745                                          | 17.649  | 17.6978                         |  |  |  |  |  |
| Middle  | 5785                                          | 17.763  | 17.6992                         |  |  |  |  |  |
| High    | 5825                                          | 17.718  | 17.7656                         |  |  |  |  |  |
|         |                                               | Chain 1 |                                 |  |  |  |  |  |
| Low     | 5745                                          | 17.771  | 17.7028                         |  |  |  |  |  |
| Middle  | 5785                                          | 17.777  | 17.7739                         |  |  |  |  |  |
| High    | 5825                                          | 17.633  | 17.7011                         |  |  |  |  |  |

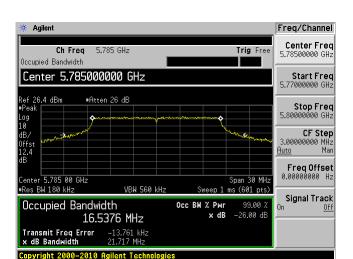
#### 802.11n-HT40 mode

| Channel | Frequency<br>(MHz) | 6 dB Emission Bandwidth (MHz) | 99% Emission Bandwidth (MHz) |  |  |  |  |  |
|---------|--------------------|-------------------------------|------------------------------|--|--|--|--|--|
|         |                    | Chain 0                       |                              |  |  |  |  |  |
| Low     | 5755               | 36.545                        | 36.2121                      |  |  |  |  |  |
| High    | 5795               | 36.371                        | 36.1669                      |  |  |  |  |  |
|         | Chain 1            |                               |                              |  |  |  |  |  |
| Low     | 5755               | 36.44                         | 36.236                       |  |  |  |  |  |
| High    | 5795               | 36.395                        | 36.1984                      |  |  |  |  |  |

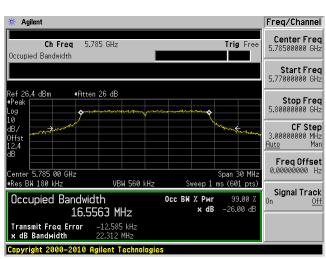

802.11ac-VHT80 mode


| Channel | Frequency (MHz) 6 dB Emission Bandwid (MHz) |        | 99% Emission Bandwidth (MHz) |  |  |  |  |  |
|---------|---------------------------------------------|--------|------------------------------|--|--|--|--|--|
| Chain 0 |                                             |        |                              |  |  |  |  |  |
| -       | 5775                                        | 76.54  | 75.6068                      |  |  |  |  |  |
|         | Chain 1                                     |        |                              |  |  |  |  |  |
| -       | 5775                                        | 76.626 | 75.5636                      |  |  |  |  |  |

Please refer to the following plots.


#### 99% Occupied Channel Bandwidth:

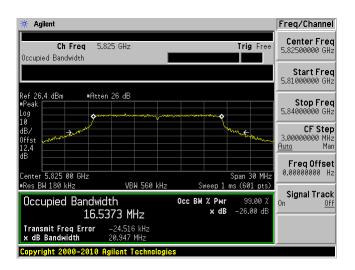
#### 802.11a, Low Channel, 5745 MHz

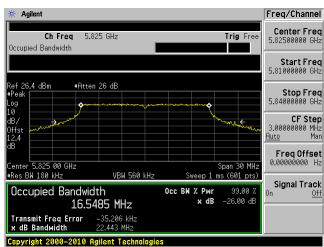




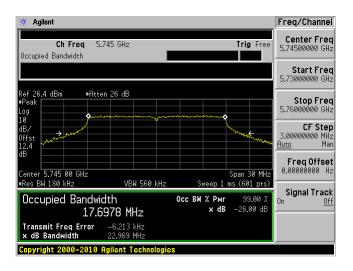

#### 802.11a, Middle Channel, 5785 MHz

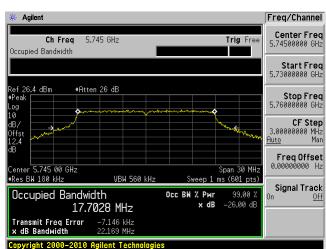



Chain 0



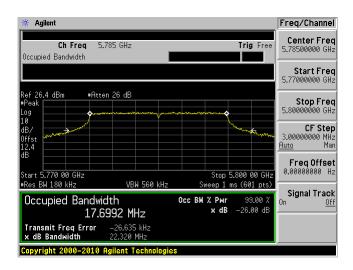

Chain 1

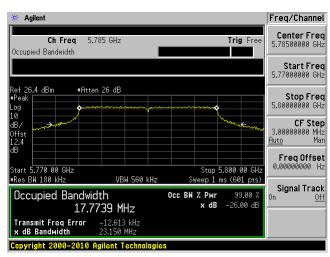

#### 802.11a, High Channel, 5825 MHz


Chain 0 Chain 1



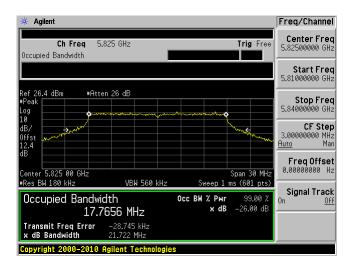


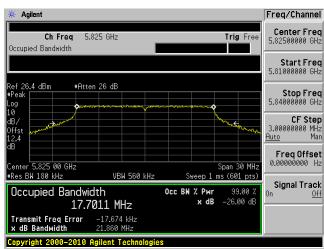

#### 802.11n-HT 20, Low Channel 5745 MHz





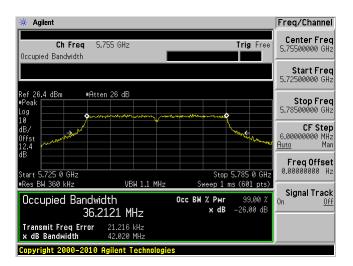

#### 802.11n-HT20, Middle Channel 5785 MHz

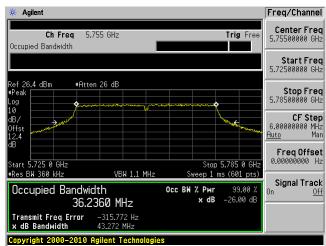

Chain 0 Chain 1





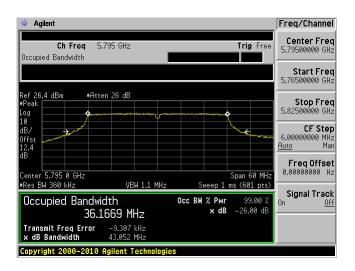

#### 802.11n-HT20, High Channel, 5825 MHz

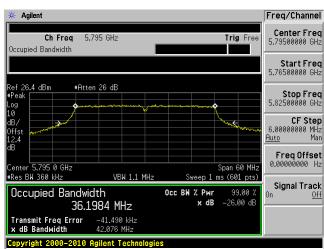

Chain 0 Chain 1



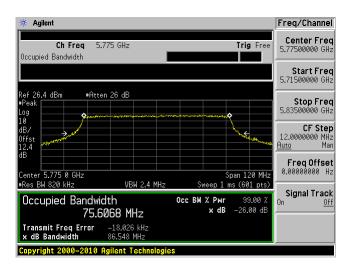


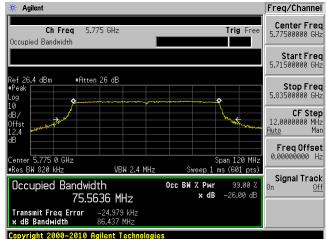

#### 802.11n-HT40, Low Channel 5755 MHz


Chain 0 Chain 1





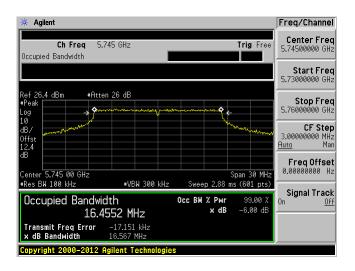


#### 802.11n-HT40, High Channel 5795 MHz

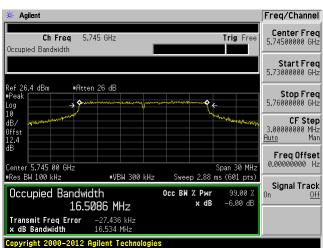

Chain 0 Chain 1



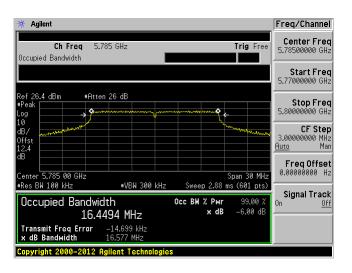


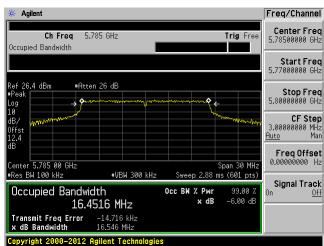
#### 802.11ac-VHT80, High Channel 5775 MHz



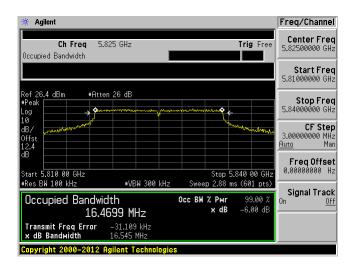

#### 6 dB Emission Bandwidth:

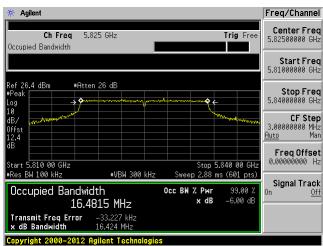

#### 802.11a, Low Channel, 5745 MHz


Chain 0 Chain 1

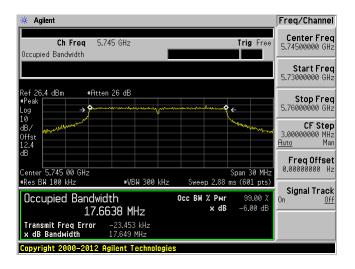


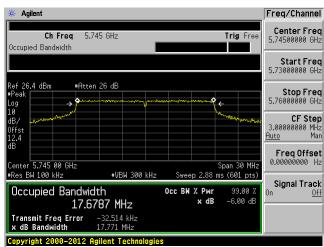



#### 802.11a, Middle Channel, 5785 MHz



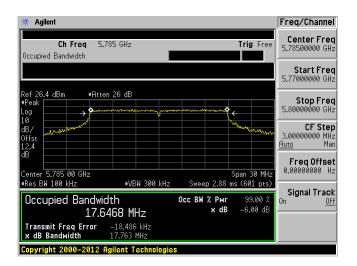


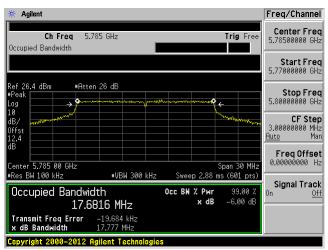


#### 802.11a, High Channel, 5825 MHz


Chain 0 Chain 1

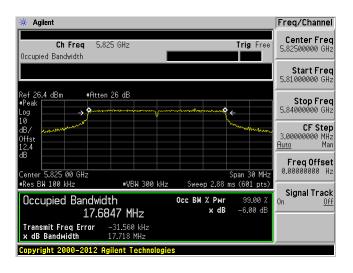


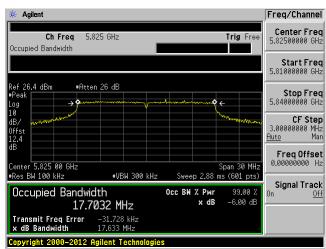



#### 802.11n-HT 20, Low Channel 5745 MHz



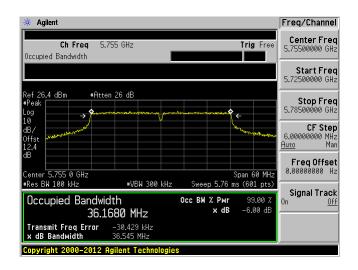


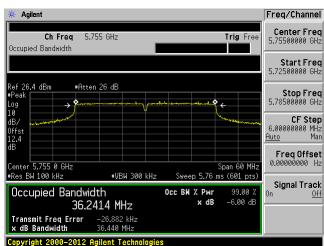


#### 802.11n-HT20, Middle Channel 5785 MHz


Chain 0 Chain 1

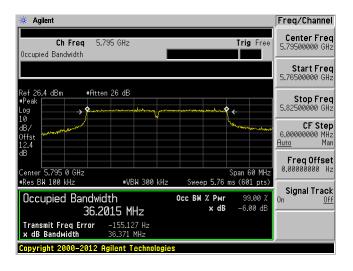


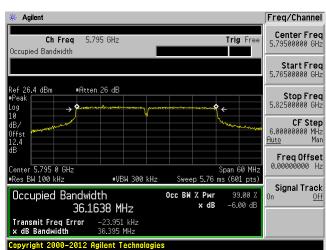



#### 802.11n-HT20, High Channel, 5825 MHz

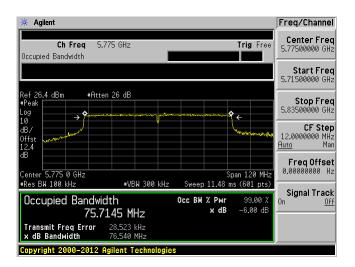


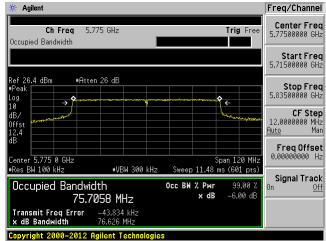




#### 802.11n-HT40, Low Channel 5755 MHz


Chain 0 Chain 1







## 802.11n-HT40, High Channel 5795 MHz





# 802.11ac-VHT80, High Channel 5775 MHz





# 9 FCC §407(a) – Maximum Conducted Output Power

# 9.1 Applicable Standards

According to FCC §15.407(a)

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

### 9.2 Measurement Procedure

Test measurements are base on FCC KDB 789033 D02 General UNII Test Procedures New Rules v01, GUIDELINES FOR COMPLIANCE TESTING OF UNLICENSED NATIONAL INFORAMTION INFRASTRUCTURE (U-NII) DEVICES PART 15, SUBPART E

# 9.3 Test Equipment List and Details

| Manufacturer | Description Model No. |        | Serial No. | Calibration<br>Date | Calibration<br>Interval |
|--------------|-----------------------|--------|------------|---------------------|-------------------------|
| Agilent      | Spectrum Analyzer     | E4446A | US44300386 | 2013-09-29          | 1 year                  |

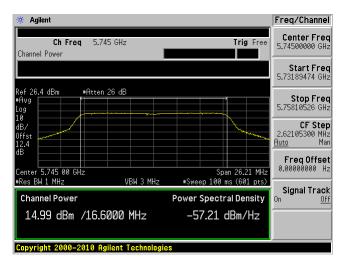
Statement of Traceability: BACL Corp. attests that all calibrations have been performed according to A2LA requirements, traceable to the NIST.

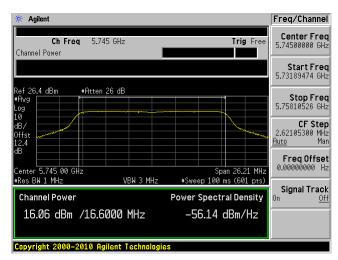
### 9.4 Test Environmental Conditions

| Temperature:       | 22-24° C        |
|--------------------|-----------------|
| Relative Humidity: | 40-41 %         |
| ATM Pressure:      | 103.1-104.1 KPa |

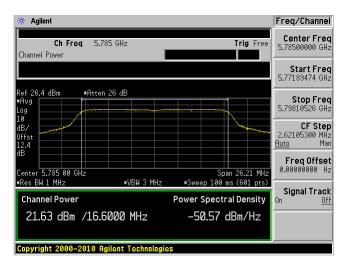
The testing was performed by Rui Zhou on 2014-07-18 to 2014-07-22 at RF site.

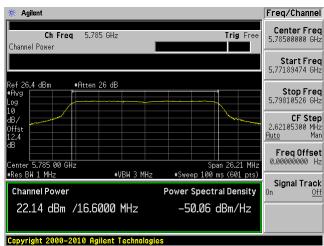
# 9.5 Test Results


| Channel Frequency (MHz) |       |          | Output Power<br>Bm) | Total Output<br>Power | Limit<br>(dBm) | Margin<br>(dB) | Power   |
|-------------------------|-------|----------|---------------------|-----------------------|----------------|----------------|---------|
|                         | (MHZ) | Chain J0 | Chain J1            | (dBm)                 | (UDIII)        | (ub)           | Setting |
|                         |       |          | 802.11a             | mode                  |                |                |         |
| Low                     | 5745  | 15.00    | 16.06               | 18.57                 | 28             | -9.43          | 15.5    |
| Middle                  | 5785  | 21.63    | 22.14               | 24.90                 | 28             | -3.10          | target  |
| High                    | 5825  | 18.80    | 20.03               | 22.47                 | 28             | -5.53          | 20      |
|                         |       |          | 802.11n-H           | Γ20 mode              |                |                |         |
| Low                     | 5745  | 14.94    | 16.09               | 18.56                 | 28             | -9.44          | 15.5    |
| Middle                  | 5785  | 21.45    | 22.09               | 24.79                 | 28             | -3.21          | target  |
| High                    | 5825  | 17.66    | 18.57               | 21.15                 | 28             | -6.85          | 19      |
|                         |       |          | 802.11n-H           | Γ40 mode              |                |                |         |
| Low                     | 5755  | 16.31    | 17.48               | 19.94                 | 28             | -8.06          | 17      |
| High                    | 5795  | 19.40    | 20.25               | 22.86                 | 28             | -5.14          | 20      |
|                         |       |          | 802.11ac-VH         | IT80 mode             |                |                |         |
| -                       | 5775  | 13.88    | 14.98               | 17.48                 | 28             | -10.52         | 15      |


Note: The antenna gain is 8 dBi, so 8-6=2 dBi should be declined for the limit 30 dBm, and the limit is 28 dBm.

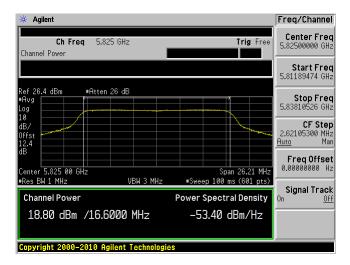
Please refer to the plots as following:

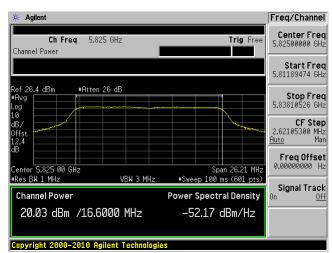

### 802.11a, Low Channel, 5745 MHz



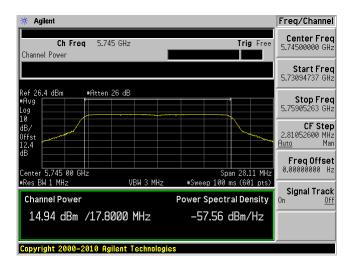


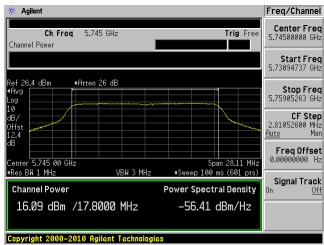




### 802.11a, Middle Channel, 5785 MHz



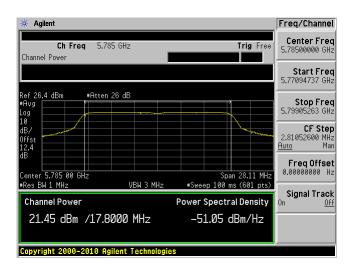


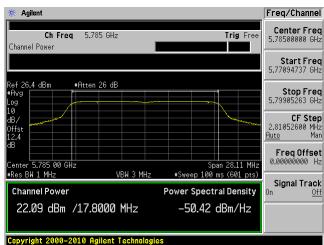


# 802.11a, High Channel, 5825 MHz


Chain 0 Chain 1

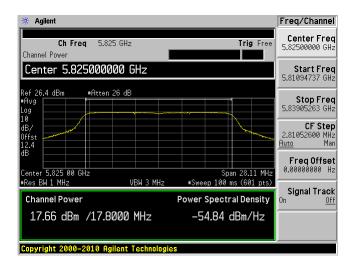


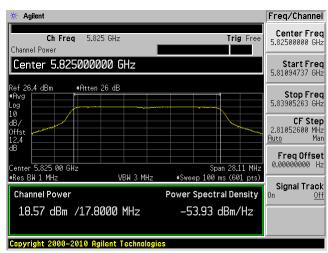



### 802.11n-HT 20, Low Channel 5745 MHz



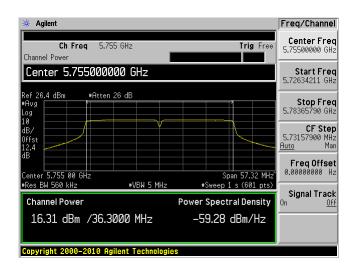


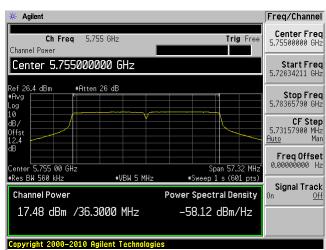


# 802.11n-HT20, Middle Channel 5785 MHz


Chain 0 Chain 1

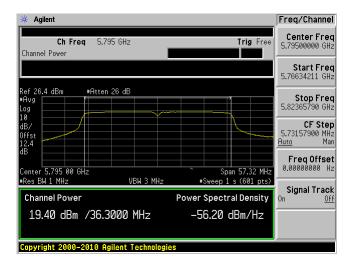


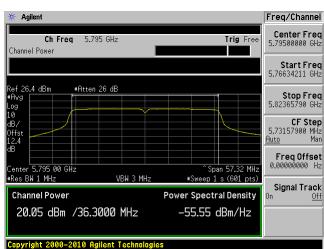



### 802.11n-HT20, High Channel, 5825 MHz

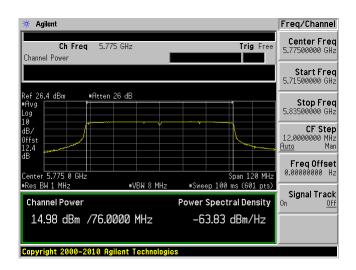


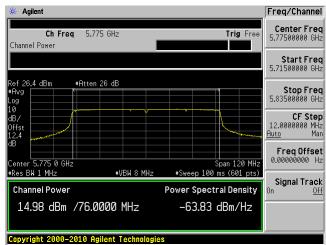




#### 802.11n-HT40, Low Channel 5755 MHz


Chain 0 Chain 1







## 802.11n-HT40, High Channel 5795 MHz





# 802.11ac-VHT80, 5775 MHz





# 10 FCC §15.407(b) - Out of Band Emissions

# 10.1 Applicable Standard

### According to FCC §15.407(b)

(b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (4) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.

#### 10.2 Measurement Procedure

The measurements are base on FCC KDB 789033 D02 General UNII Test Procedures New Rules v01: GUIDELINES FOR COMPLIANCE TESTING OF UNLICENSED NATIONAL INFORAMTION INFRASTRUCTURE (U-NII) DEVICES PART 15, SUBPART E

# 10.3 Test Equipment List and Details

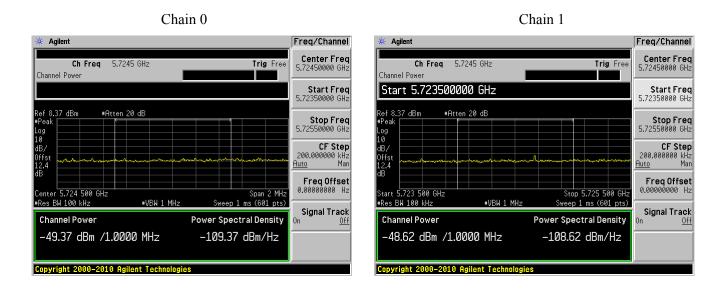
| Manufacturer | Description       | Model No. | Serial No. | Calibration<br>Date | Calibration<br>Interval |
|--------------|-------------------|-----------|------------|---------------------|-------------------------|
| Agilent      | Spectrum Analyzer | E4446A    | US44300386 | 2013-09-29          | 1 year                  |

Statement of Traceability: BACL Corp. attests that all calibrations have been performed according to A2LA requirements, traceable to the NIST.

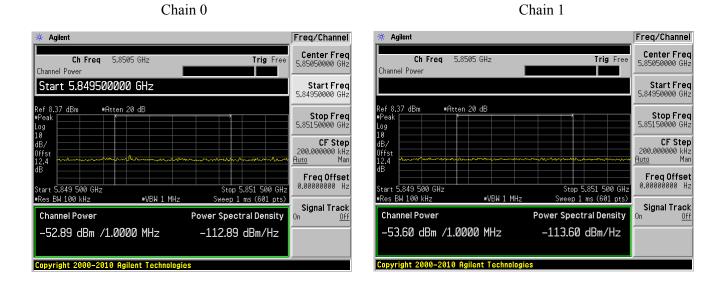
#### 10.4 Test Environmental Conditions

| Temperature:       | 21°C        |
|--------------------|-------------|
| Relative Humidity: | 43 %        |
| ATM Pressure:      | 101-102 kPa |

The testing was performed by Rui Zhou from 2014-07-18 to 2014-07-22 at RF site.


Please refer to the following plots.

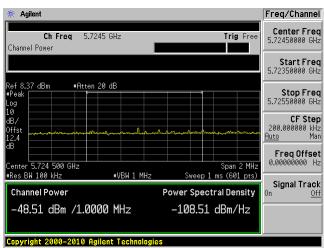
Note: The offset include the attenuation, cable loss and antenna gain 8dBi. And the magin between limit line and the emission covers other requirements in the KDB 789033.


#### 10.5 Test Results

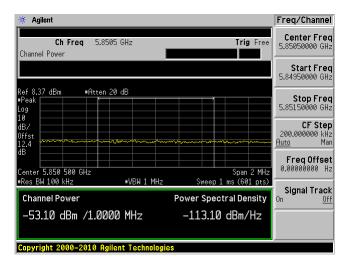
#### **Band Edge Measurement**

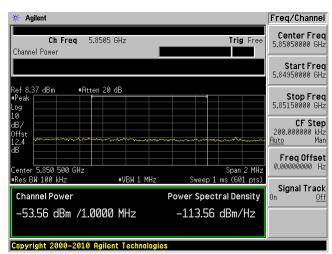
### 802.11a, Low Channel, 5745 MHz





# 802.11a, High Channel, 5825 MHz

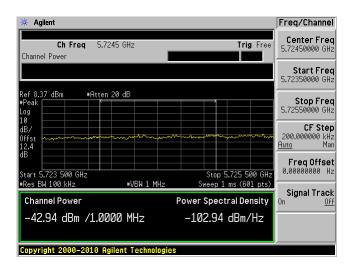


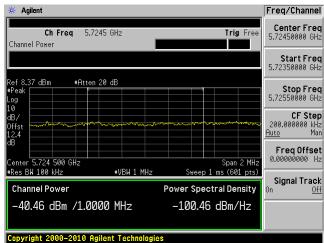

### 802.11n-HT 20, Low Channel 5745 MHz


Chain 0 Chain 1

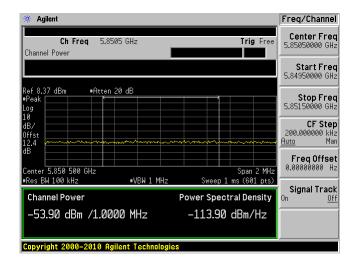


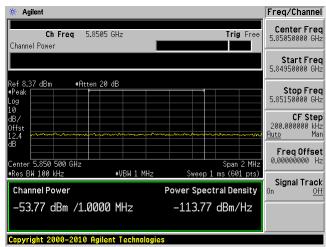



## 802.11n-HT20, High Channel, 5825 MHz



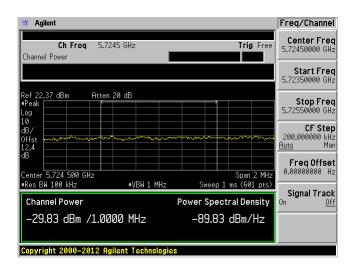


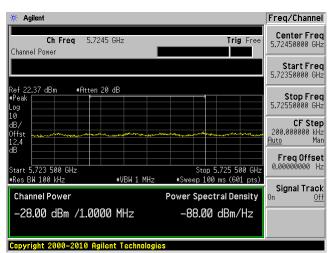


# 802.11n-HT40, Low Channel 5755 MHz


Chain 0 Chain 1

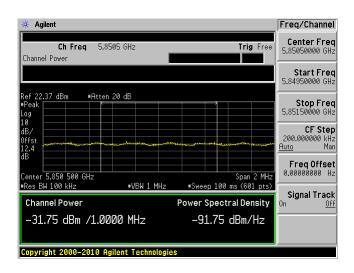


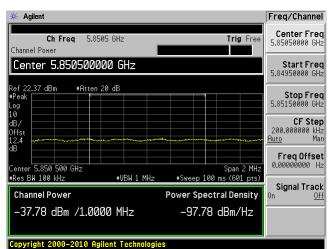



# 802.11n-HT40, High Channel 5795 MHz







#### 802.11ac-VHT80, 5775 MHz Lower Band at 5725MHz


Chain 0 Chain 1





## 802.11ac-VHT80, 5775 MHz Higher Band at 5850MHz





# 11 FCC §15.407(b) - Spurious Emissions at Antenna Ports

# 11.1 Applicable Standards

FCC §15.407(b)

(4) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

#### 11.2 Measurement Procedure

Procedure for Unwanted Emissions Measurements below 1000 MHz

- a) Follow the requirements in section II.G.3., "General Requirements for Unwanted Emissions Measurements".
- b) Compliance shall be demonstrated using CISPR quasi-peak detection; however, peak detection is permitted as an alternative to quasi-peak detection.
- 5. Procedure for Unwanted Maximum Emissions Measurements above 1000 MHz
- a) Follow the requirements in section II.G.3., "General Requirements for Unwanted Emissions Measurements".
- b) Maximum emission levels are measured by setting the analyzer as follows:
- (i) RBW = 1 MHz.
- (ii) VBW  $\geq$  3 MHz.
- (iii) Detector = Peak.
- (iv) Sweep time = auto.
- (v) Trace mode = max hold.
- (vi) Allow sweeps to continue until the trace stabilizes. Note that if the transmission is not continuous, the time required for the trace to stabilize will increase by a factor of approximately 1/x, where x is the duty cycle. For example, at 50 percent duty cycle, the measurement time will increase by a factor of two relative to measurement time for continuous transmission.

Unwanted Emissions in the Restricted Bands

- a) For all measurements, follow the requirements in section II.G.3., "General Requirements for Unwanted Emissions Measurements".
- b) At frequencies below 1000 MHz, use the procedure described in section II.G.4., "Procedure for Unwanted Emissions Measurements Below 1000 MHz".
- c) At frequencies above 1000 MHz, measurements performed using the peak and average measurement procedures described in sections II.G.5. and II.G.6, respectively, must satisfy the respective peak and average limits. If all peak measurements satisfy the average limit, then average measurements are not required.
- d) For conducted measurements above 1000 MHz, EIRP shall be computed as specified in section II.G.3.b) and then field strength shall be computed as follows (see KDB Publication 412172):
- (i)  $E[dB\mu V/m] = EIRP[dBm] 20 \log(d[meters]) + 104.77$ , where E = field strength and d = distance at which field strength limit is specified in the rules;
- (ii)  $E[dB\mu V/m] = EIRP[dBm] + 95.2$ , for d = 3 meters. 789033 D02 General UNII Test Procedures New Rules v01

Page 11

e) For conducted measurements below 1000 MHz, the field strength shall be computed as specified in d), above, and then an additional 4.7 dB shall be added as an upper bound on the field strength that would be observed on a test range with a ground plane for frequencies between 30 MHz and 1000 MHz, or an additional 6 dB shall be added for frequencies below 30 MHz.2

# 11.3 Test Equipment List and Details

| Manufacturer | Description       | Model No. | Serial No. | Calibration<br>Date | Calibration<br>Interval |
|--------------|-------------------|-----------|------------|---------------------|-------------------------|
| Agilent      | Spectrum Analyzer | E4446A    | US44300386 | 2013-09-29          | 1 year                  |

Statement of Traceability: BACL Corp. attests that all calibrations have been performed according to A2LA requirements, traceable to the NIST.

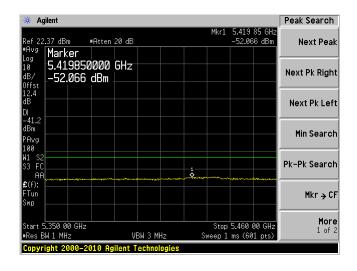
# 11.4 Test Environmental Conditions

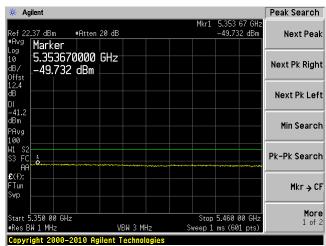
| Temperature:       | 22-24° C        |
|--------------------|-----------------|
| Relative Humidity: | 40-41 %         |
| ATM Pressure:      | 103.1-104.1 KPa |

The testing was performed by Rui Zhou 2014-07-18 to 2014-07-22 at RF site.

# 11.5 Test Results

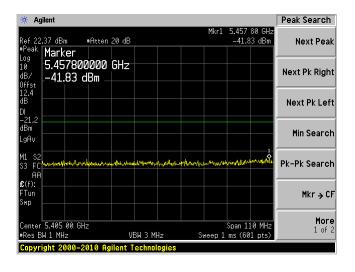
Note: The offset include the attenuation, cable loss. And the magin between limit line and the emission covers other requirements in the KDB 789033.

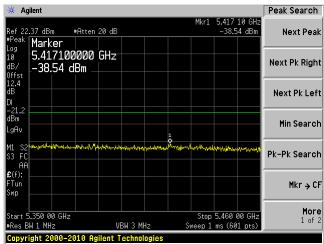

Please refer to following plots of spurious emissions.


### **Restrict Band Measurement**

#### 802.11a, Low Channel, 5745 MHz

Chain 0 AVG


Chain 1 AVG

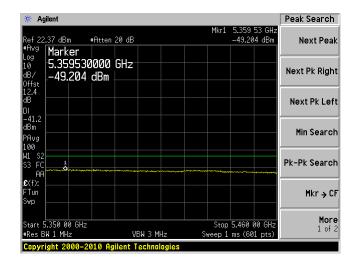




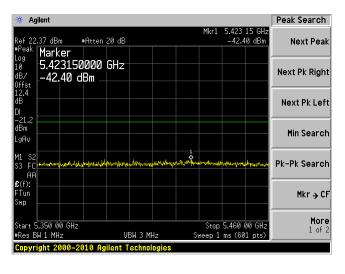

Chain 0 PEAK

Chain 1 PEAK

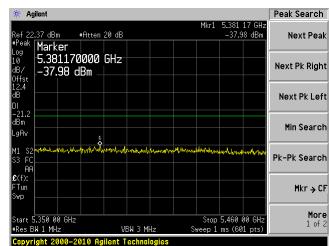





### 802.11n-HT 20, Low Channel 5745 MHz


Chain 0 AVG

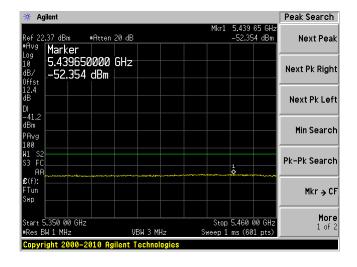
🗯 Agilent Peak Search 5.431 40 GHz -52.171 dBm Ref 22.37 dBm #Atten 20 dB Next Peak Marker 5.431400000 GHz Next Pk Right -52.171 dBm Next Pk Left Min Search Pk-Pk Search Mkr → CF More Stop 5.460 00 GHz eep 1 ms (601 pts) 850 00 GHz VBW 3 MHz

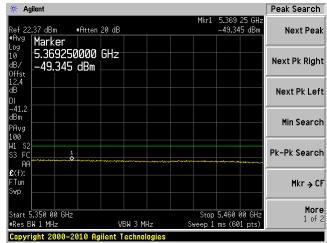

Chain 1 AVG



Chain 0 PEAK

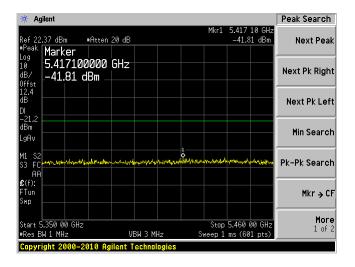


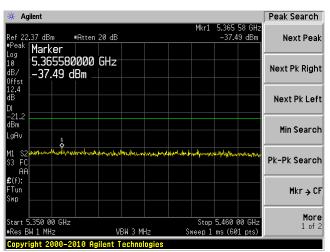

Chain 1 PEAK




# 802.11n-HT40, Low Channel 5755 MHz

Chain 0 AVG


Chain 1 AVG

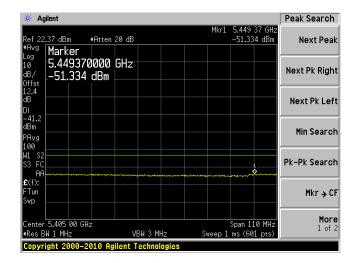





Chain 0 PEAK

Chain 1 PEAK

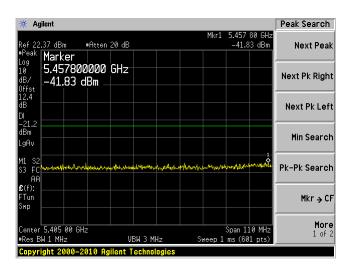




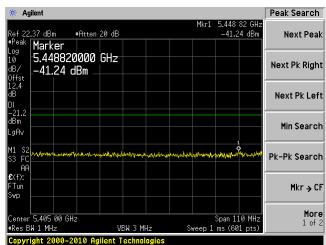

### 802.11ac-VHT80, High Channel 5775 MHz

#### Chain 0 AVG

# Agilent Peak Search 5.457 25 GH: -51.914 dBm Ref 22.37 dBm #Atten 20 dB **Next Peak** Marker 5.457250000 GHz -51.914 dBm Next Pk Right Next Pk Left Min Search Pk-Pk Search Mkr → CF More 1 of 2 Span 110 MHz Sweep 1 ms (601 pts) enter 5.405 00 GHz


Chain 1 AVG

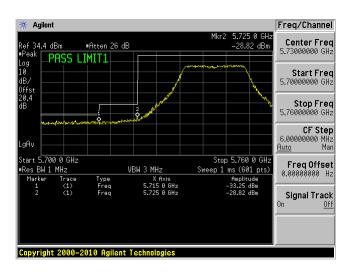


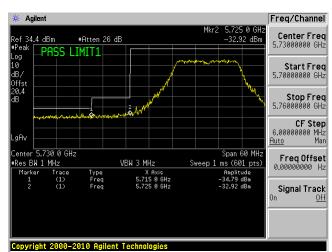

Chain 0 PEAK

VBW 3 MHz

#Res BW 1 MHz




Chain 1 PEAK




### 10 MHz Band Edge Emission Mask:

## 802.11a, Low Channel, 5745 MHz

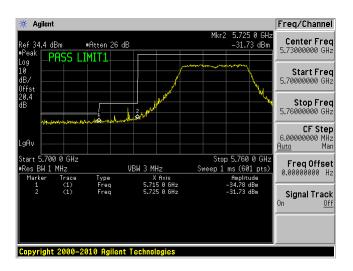
Chain 0

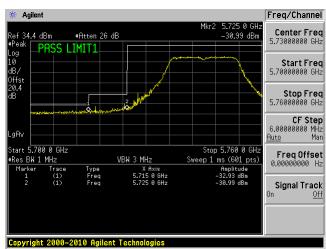




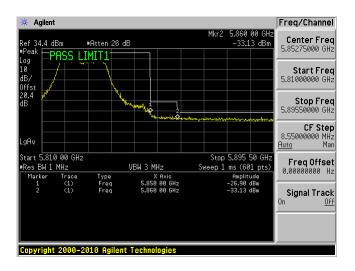

Chain 1

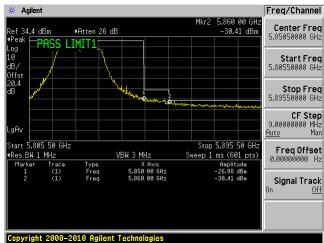
# 802.11a, High Channel, 5825 MHz


Chain 0 Chain 1



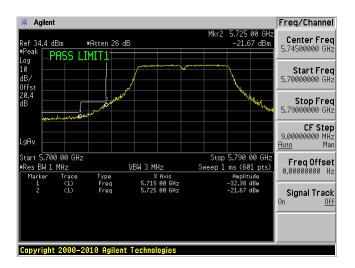


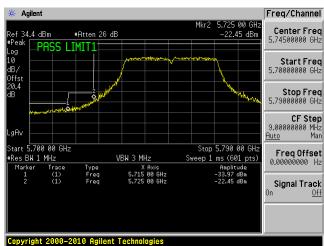


### 802.11n-HT 20, Low Channel 5745 MHz


Chain 0 Chain 1



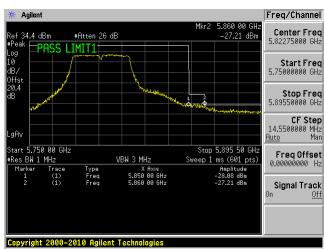



# 802.11n-HT20, High Channel, 5825 MHz






# 802.11n-HT40, Low Channel 5755 MHz

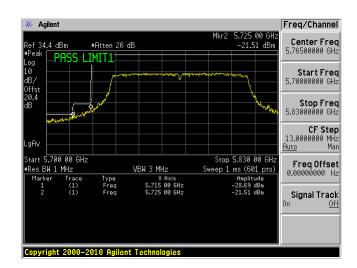

Chain 0 Chain 1





## 802.11n-HT40, High Channel 5795 MHz

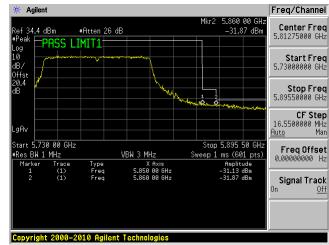





# 802.11ac-VHT80, High Channel 5775 MHz

Chain 0 Lower Band Edge

Freq/Channel 1kr2 5.725 00 GH: -22.84 dBm Center Freq 5.76500000 GHz #Atten 26 dB Ref 34.4 dBm PASS LIMIT1 Start Freq 5.70000000 GHz Stop Freq 5.83000000 GHz **CF Step** 13.0000000 MHz <u>Auto</u> Man Stop 5.830 00 GHz Sweep 1 ms (601 pts) Start 5.700 00 GHz Freq Offset 0.00000000 Hz Res BW 1 MHz VBW 3 MHz Amplitude -31.09 dBm -22.84 dBm X Axis 5.715 00 GHz 5.725 00 GHz Signal Track Copyright 2000-2010 Agilent Technologies


Chain 1 Lower Band Edge

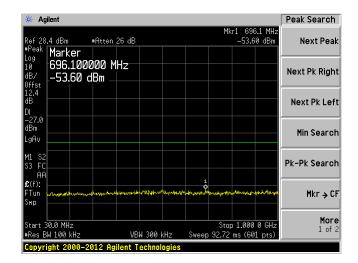


Chain 0 Higher Band Edge

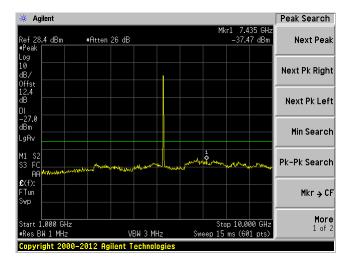


Chain 1 Higher Band Edge

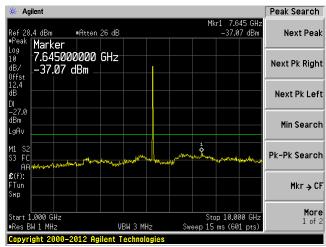



### **Spurious Emission 30 MHz-40 GHz:**

#### 802.11a Mode Low Channel 5745MHz


Chain 0 30MHz—1GHz

# Agilent Peak Search Ref 28.4 dBm #Atten 26 dB **Next Peak** Marker 440.600000 MHz Next Pk Right -52.82 dBm Next Pk Left Min Search Pk-Pk Search Tun Mkr → CF More 1 of 2 Start 30.0 MHz Res BW 100 kHz Stop 1.000 0 GHz Sweep 92.72 ms (601 pts) VBW 300 kHz


Chain 1 30MHz---1GHz



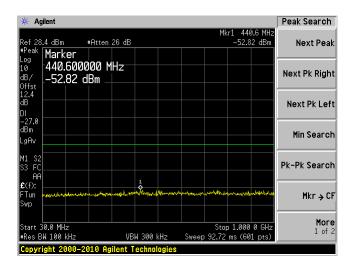
Chain 0 1GHz---10GHz



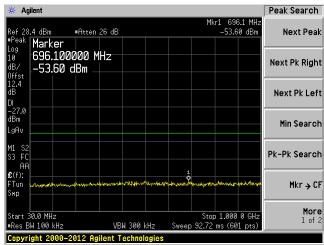
Chain 1 1GHz—10GHz



Chain 0 10GHz—40GHz



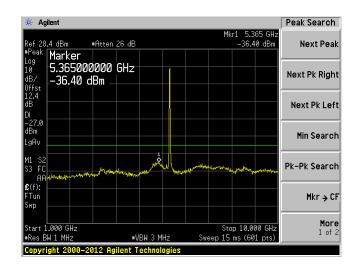

Chain 1 10GHz---40GHz



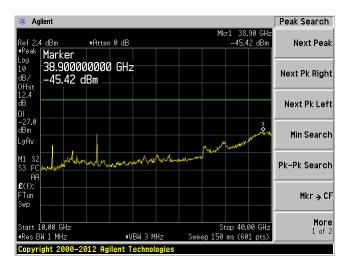

#### 802.11 a Mode Mid Channel 5785MHz

Chain 0 30MHz—1GHz




Chain 1 30MHz---1GHz




Chain 0 1GHz---10GHz

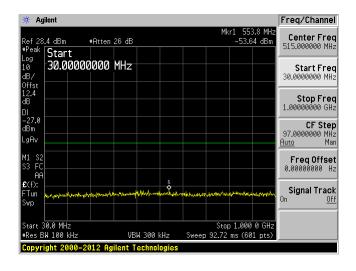
Peak Search Mkr1 5.110 GHz -34.03 dBm #Atten 26 dB Next Peak Ref 28.4 dBm Marker 5.110000000 GHz Next Pk Right -34.03 dBm Next Pk Left Min Search Pk-Pk Search FTun Mkr → CF More 1 of 2 Stop 10.000 GHz Sweep 15 ms (601 pts) ŧRes BW 1 MHz #VBW 3 MHz

Chain 1 1GHz—10GHz



Chain 0 10GHz—40GHz

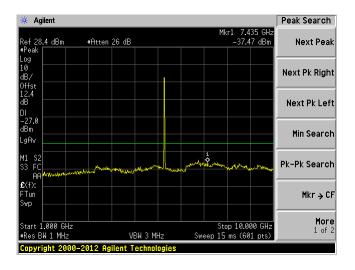


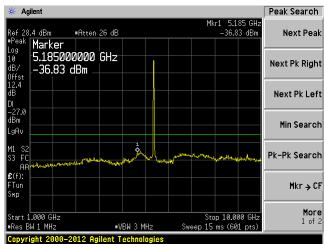

Chain 1 10GHz---40GHz




# 802.11a Mode High Channel 5825MHz

#### Chain 0 30MHz—1GHz


Chain 1 30MHz---1GHz






Chain 0 1GHz---10GHz

Chain 1 1GHz—10GHz






Chain 0 10GHz—40GHz

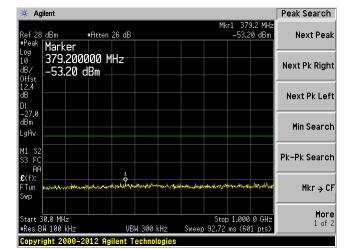
🔆 Agilent Peak Search 2.4 dBm **Next Peak** Marker 39.600000000 GHz Next Pk Right -45.57 dBm Next Pk Left Min Search Pk-Pk Search -Tun Mkr → CF

Stop 40.00 GHz Sweep 150 ms (601 pts)

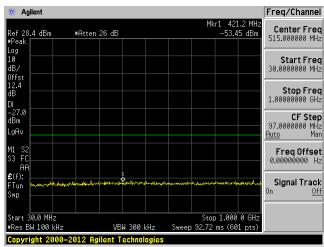
Chain 1 10GHz---40GHz



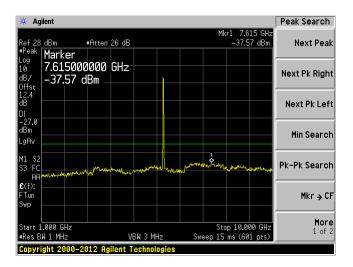
#### 802.11 n-HT20 Mode Low Channel 5745 MHz


More 1 of 2

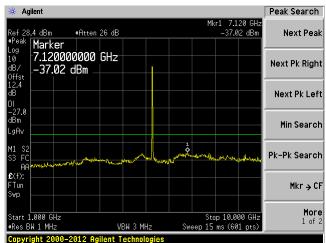
Chain 0 30MHz—1GHz


#VBW 3 MHz

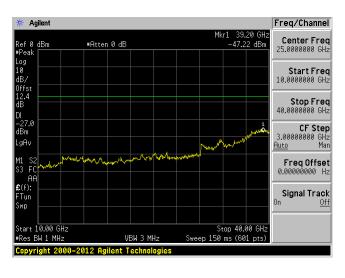
Start 10.00 GHz


#Res BW 1 MHz




Chain 1 30MHz---1GHz




Chain 0 1GHz---10GHz



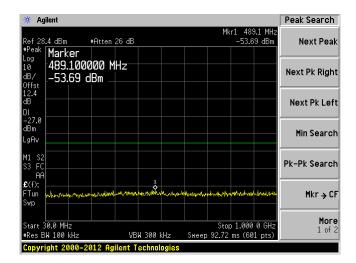
Chain 1 1GHz—10GHz



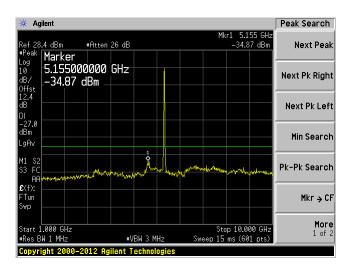
Chain 0 10GHz—40GHz



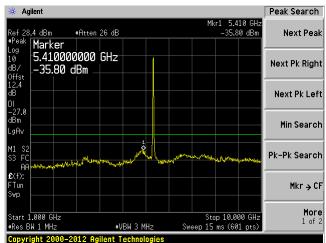
Chain 1 10GHz---40GHz




### 802.11 n-HT20 Mode Middle Channel 5785MHz


Chain 0 30MHz—1GHz

# Agilent Peak Search 28.4 dBm Next Peak Marker 364.600000 MHz Next Pk Right -53.42 dBm Next Pk Left Min Search Pk-Pk Search £(f): -Tun Mkr → CF **More** 1 of 2 Start 30.0 MHz Stop 1.000 0 GHz Sweep 92.72 ms (601 pts) #Res BW 100 kHz VBW 300 kHz Copyright 2000-2012 Agilent Technologies


Chain 1 30MHz---1GHz



Chain 0 1GHz---10GHz



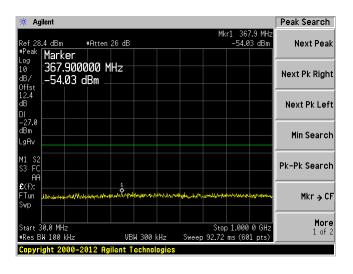
Chain 1 1GHz—10GHz



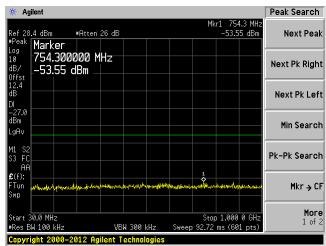
Chain 0 10GHz—40GHz

Stop 40.00 GHz Sweep 150 ms (601 pts)

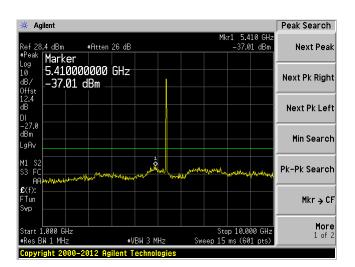
Chain 1 10GHz---40GHz



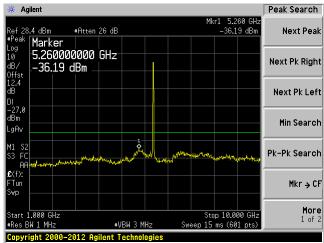

### 802.11 n-HT20 Mode High Channel 5825 MHz


Chain 0 30MHz—1GHz

#VBW 3 MHz


tart 10.00 GHz




Chain 1 30MHz---1GHz



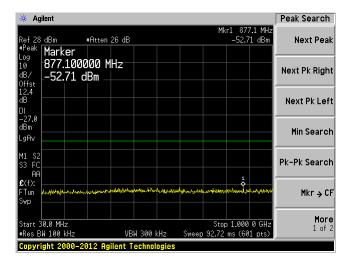
Chain 0 1GHz---10GHz



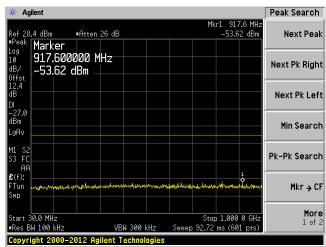
Chain 1 1GHz—10GHz



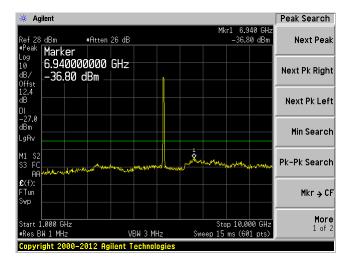
Chain 0 10GHz—40GHz



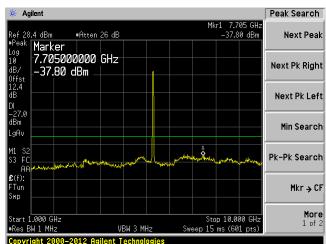

Chain 1 10GHz---40GHz




### 802.11 n-HT40 Mode Low Channel 5755 MHz


Chain 0 30MHz—1GHz




Chain 1 30MHz---1GHz



Chain 0 1GHz---10GHz

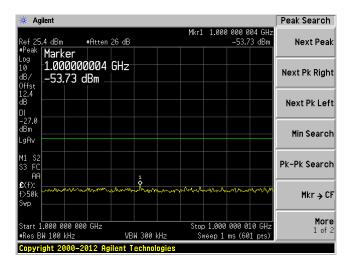


Chain 1 1GHz—10GHz

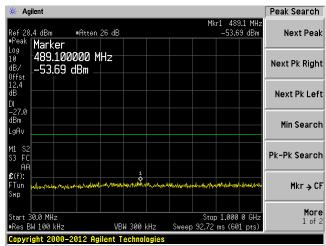


Chain 0 10GHz—40GHz

Peak Search Mkr1 39.10 GH: -45.07 dBm Ref 2.4 dBm #Peak Morl Next Peak Marker 39.100000000 GHz Next Pk Right -45.07 dBm Next Pk Left Min Search gAv Pk-Pk Search -Tun Mkr → CF Start 10.00 GHz #Res BW 1 MHz More Stop 40.00 GHz Sweep 150 ms (601 pts) 1 of 2 VBW 3 MHz


Chain 1 10GHz---40GHz

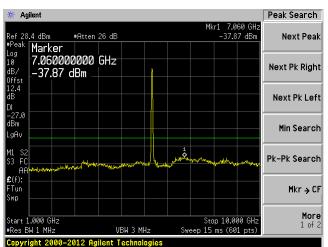



# 802.11 n-HT40 Mode High Channel 5795MHz

Chain 0 30MHz—1GHz


Copyright 2000-2012 Agilent Technologies




Chain 1 30MHz---1GHz



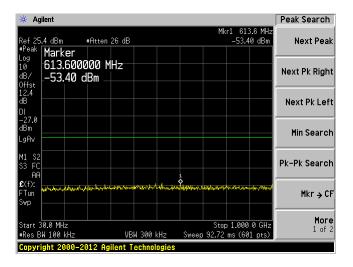
Chain 0 1GHz---10GHz



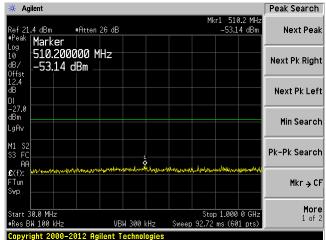
Chain 1 1GHz—10GHz



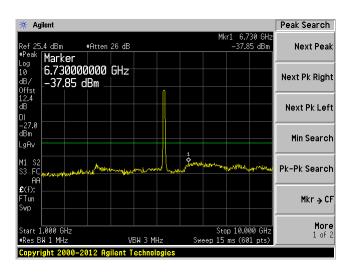
Chain 0 10GHz—40GHz



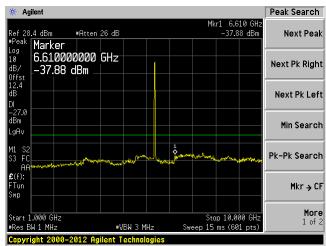

Chain 1 10GHz---40GHz




# 802.11 ac-VHT80 Mode 5775 MHz


Chain 0 30MHz—1GHz




Chain 1 30MHz---1GHz



Chain 0 1GHz---10GHz



Chain 1 1GHz—10GHz



Chain 0 10GHz—40GHz

Peak Search Mkr1 38.70 GHz -45.38 dBm Ref 2.4 dBm #Atten 0 dB Next Peak Marker 38.700000000 GHz Next Pk Right -45.38 dBm Next Pk Left Min Search LgAv Pk-Pk Search €(f): FTun Mkr → CF Start 10.00 GHz #Res BW 1 MHz Stop 40.00 GHz Sweep 150 ms (601 pts) VBW 3 MHz Copyright 2000-2012 Agilent Technologies

Chain 1 10GHz---40GHz



# 12 FCC §15.407(a) - Power Spectral Density

# 12.1 Applicable Standards

According to FCC §15.407(a)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

#### 12.2 Measurement Procedure

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:

- a) Set RBW  $\geq 1/T$ , where T is defined in section II.B.l.a).
- b) Set VBW  $\geq$  3 RBW.
- c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

## 12.3 Test Equipment List and Details

| Manufacturer | Description       | Model No. | Serial No. | Calibration<br>Date | Calibration<br>Interval |
|--------------|-------------------|-----------|------------|---------------------|-------------------------|
| Agilent      | Spectrum Analyzer | E4446A    | US44300386 | 2013-09-29          | 1 year                  |

Statement of Traceability: BACL Corp. attests that all calibrations have been performed according to A2LA requirements, traceable to the NIST.

# 12.4 Test Environmental Conditions

| Temperature:          | 22-24° C        |
|-----------------------|-----------------|
| Relative<br>Humidity: | 40-41 %         |
| ATM Pressure:         | 103.1-104.1 KPa |

The testing was performed by Rui Zhou on 2014-07-18 to 2014-07-22 at RF site.

Note: The PSA's RBW=100kHz and a 10\*log(5) factor is added to compare the limit as 30dBm/500kHz.

# 12.5 Test Results

802.11a mode

| Channel | Frequency<br>(MHz) | Chain 0<br>PSD<br>(dBm) | Chain 1<br>PSD<br>(dBm) | Factor<br>(dBi) | Total<br>PSD<br>(dBm) | Limit (dBm) |
|---------|--------------------|-------------------------|-------------------------|-----------------|-----------------------|-------------|
| Low     | 5745               | -5.49                   | -5.38                   | 6.99            | 4.56                  | 28          |
| Middle  | 5785               | -0.09                   | 1.66                    | 6.99            | 10.87                 | 28          |
| High    | 5825               | -1.76                   | -0.46                   | 6.99            | 8.94                  | 28          |

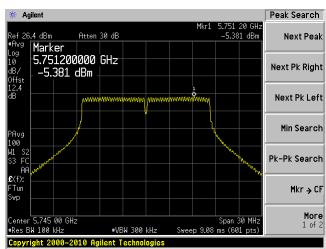
802.11n-HT20 mode

| Channel | Frequency (MHz) | Chain 0<br>PSD<br>(dBm) | Chain 1<br>PSD<br>(dBm) | Factor<br>(dBi) | Total<br>PSD<br>(dBm) | Limit (dBm) |
|---------|-----------------|-------------------------|-------------------------|-----------------|-----------------------|-------------|
| Low     | 5745            | -5.78                   | -4.71                   | 6.99            | 4.78                  | 28          |
| Middle  | 5785            | 0.78                    | 1.29                    | 6.99            | 11.04                 | 28          |
| High    | 5825            | -3.20                   | -2.07                   | 6.99            | 7.40                  | 28          |

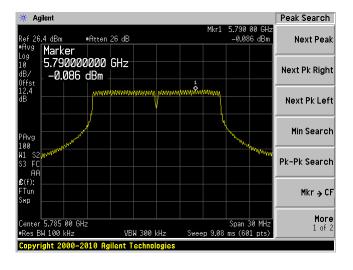
802.11n-HT40 mode

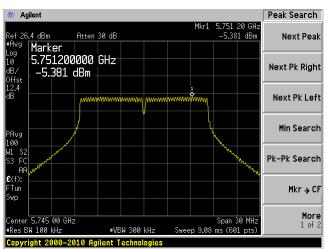
| Channel | Frequency (MHz) | Chain 0<br>PSD<br>(dBm) | Chain 1<br>PSD<br>(dBm) | Factor<br>(dBi) | Total<br>PSD<br>(dBm) | Limit (dBm) |
|---------|-----------------|-------------------------|-------------------------|-----------------|-----------------------|-------------|
| Low     | 5755            | -7.57                   | -6.56                   | 6.99            | 2.97                  | 28          |
| High    | 5795            | -4.71                   | -3.98                   | 6.99            | 5.67                  | 28          |


802.11ac-VHT80 mode


| Channel | Frequency<br>(MHz) | Chain 0<br>PSD<br>(dBm) | Chain 1<br>PSD<br>(dBm) | Factor<br>(dBi) | Total<br>PSD<br>(dBm) | Limit<br>(dBm) |
|---------|--------------------|-------------------------|-------------------------|-----------------|-----------------------|----------------|
| -       | 5775               | -13.76                  | -12.67                  | 6.99            | -3.18                 | 28             |

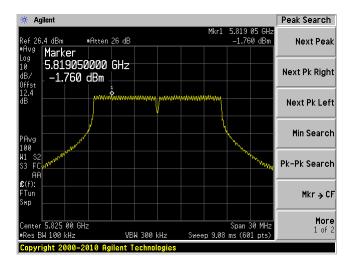
Please refer to the following plots.

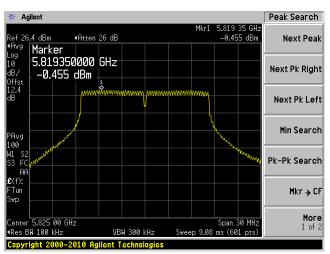

### 802.11a, Low Channel, 5745 MHz


Chain 0 Chain 1

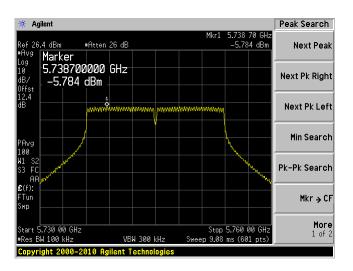


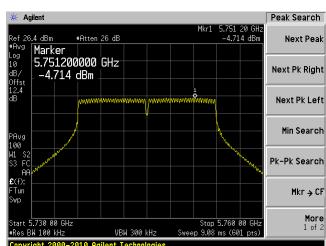



## 802.11a, Middle Channel, 5785 MHz



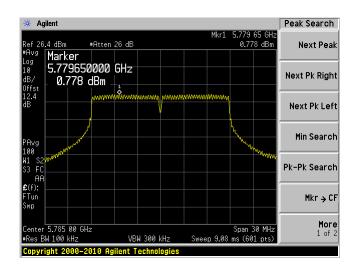


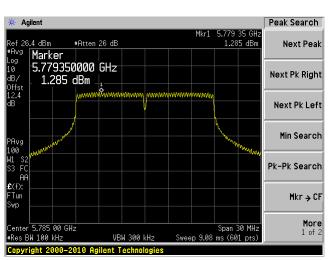


# 802.11a, High Channel, 5825 MHz


Chain 0 Chain 1

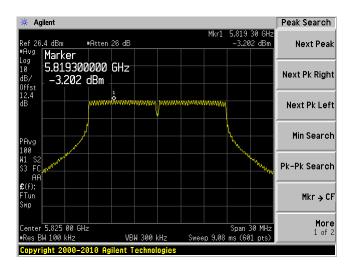


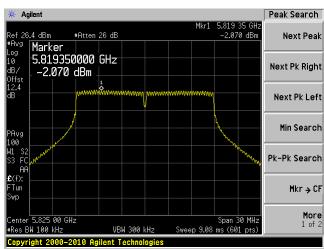



# 802.11n-HT 20, Low Channel 5745 MHz



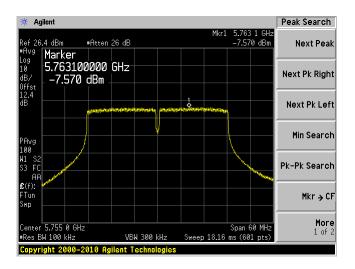


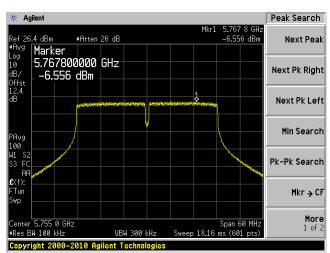


### 802.11n-HT20, Middle Channel 5785 MHz


Chain 0 Chain 1

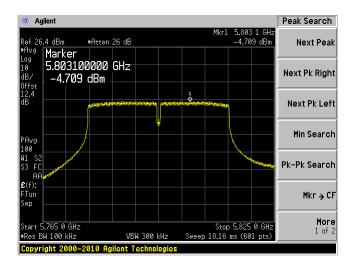


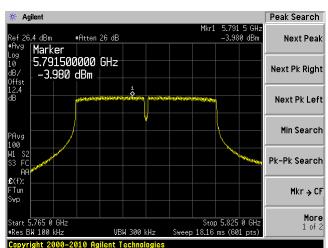



# 802.11n-HT20, High Channel, 5825 MHz

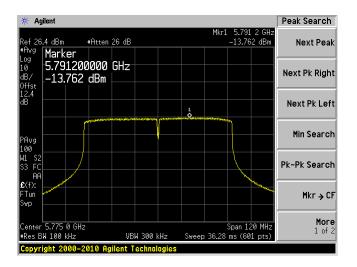


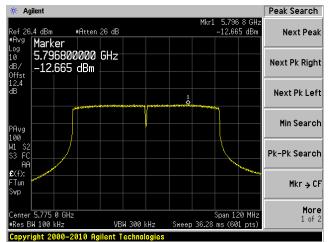




### 802.11n-HT40, Low Channel 5755 MHz


Chain 0 Chain 1







## 802.11n-HT40, High Channel 5795 MHz





# 802.11ac-VHT80, High Channel 5775 MHz



