

Page 1 of 19

FCC-Certificate of Compliance

Test Report No.:	SKTFCE-060123-009					
NVLAP CODE :	200220-0					
Applicant:	Hitachi Cable, Ltd.					
Applicant Address:	Takasago Works, 880 Lsagoza	awa-cho, Hitachi-shi,	Ibaraki-ken, 319-1418 Japan			
Manufacturer :	UniData Communication Sys	stems, Inc.				
Manufacturer Address:	2F, OhSung-Bldg, 82-15, Nonl	2F, OhSung-Bldg, 82-15, NonHyun-Dong GangNam-Gu, Seoul, 135-010 Korea				
Product:	WLAN IP Phone					
FCC ID:	S99WIRELESSIP5000	Model No.:	WirelessIP 5000			
Receipt No.:	SKTEU06-0023	Date of receipt:	Jan. 19, 2006			
Date of Issue:	Jan. 23, 2006					
Testing location:	SK TECH CO., LTD. 820-2, Wolmoon-Ri, Wabu-Up	, Namyangju-Si, Kyu	nggi-Do, Korea			
Test Standards:	ANSI C63.4 / 2003					
Rule Parts:	FCC part 15 Subpart B					
Equipment Class :	Class B Digital Device Peripheral					
Other Aspects :	This Class B Digital apparatus complies with Canadian IECS-003					
Test Result:	The above mentioned product	has been tested and	passed.			
		_				

Prepared by: S.Y.Ye

Tested by: S.H. Yoon/Engineer

Approved by: D.H.Kang

/Manager& Chief Engineer

Date Signature

Signature Signature Other Aspects: Abbreviations: · OK, Pass = passed · Fail = failed · N/A = not applicable

- •This test report is not permitted to copy partly without our permission.
 - •This test result is dependent on only equipment to be used.

Date

- •This test result is based on a single evaluation of one sample of the above mentioned.
- •This test report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S Government.

Date

· We certify that this test report has been based on the measurement standards that is traceable to the national or International standards.

NVLAP Lab. Code: 200220-0

Page 2 of 19

		<pre>>> Contents 《《</pre>	
	Cont	ents	2
	List c	of Tables	2
	List c	of Figures	2
1.	Gene	eral	3
2.	Test	Site	3
	2.1	Location	3
	2.2	List of Test and Measurement Instruments	4
	2.3	Test Date	4
	2.4	Test Environment	4
3.	Desc	ription of the tested samples	5
	3.1	Rating and Physical Characteristics	5
	3.2	Submitted Documents	5
4.	Meas	surement Conditions	6
	4.1	Modes of Operation	6
	4.2	List of Peripherals	6
	4.3	Type of Used cables	7
	4.4	Test Setup	8
	4.5	Uncertainty	9
5.	EMIS	SSION Test	11
	5.1	Conducted Emissions	11
	5.2	Radiated Emissions	18
>	List	of Tables	
	ole 1	List of test and measurement Equipment	4
	ole 2 ole 3	Test Data, Conducted Disturbance(PC Power charge mode) Test Data, Conducted Disturbance(PC Download mode)	12 15
	ole 4	Test Data, Radiated Emissions	19
>	List	of Figures	
Fig	jure 1	Spectral Diagram, LINE-PE(EUT Power Charge Mode)	13
Fig	jure 2	Spectral Diagram, NEUTRAL-PE(EUT Power Charge Mode)	14
Fig	jure 3 jure 4	Spectral Diagram, LINE-PE(PC Download Mode) Spectral Diagram, NEUTRAL-PE(PC Download Mode)	16 17

Page 3 of 19

1. General

This equipment has been shown to be capable of compliance with the applicable technical standards and was tested in accordance with the measurement procedures as indicated in this report.

We attest to the accuracy of data. All measurements reported herein were performed by SK TECH Co., Ltd. and were made under Chief Engineer's supervision.

We assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

2. Test Site

SK TECH Co., Ltd.

2.1 Location

820-2, Wolmoon Ri, Wabu-Up, Namyangju-Si, Kyunggi-Do, Korea

The test site is in compliance with ISO/IEC 17025 for general requirements for the competence of testing and calibration laboratories.

This laboratory is recognized as a Conformity Assessment Body(CAB) for CAB's Designation Number: **KR0007** by FCC, is accredited by NVLAP for NVLAP

Lab. Code: 200220-0 and DATech for DAR-Registration No.: DAT-P-076/97-0

Page 4 of 19

2.2 List of Test and Measurement Instruments

Table 1: List of Test and Measurement Equipment

Conducted Disturbance

Kind of Equipment	Туре	S/N	Calibrated until
EMI Receiver	ESHS10	862970/019	09.2006
Artificial Mains Network	ESH2-Z5	834549/011	08.2006
EMI Receiver	ESHS10	835871/002	09.2006
Artificial Mains Network	ESH3-Z5	836679/018	08.2006

Radiated Disturbance

Kind of Equipment	Туре	S/N	Calibrated until
EMI Receiver	ESVS 10	825120/013	09.2006
EMI Receiver	ESVS 10	834468/008	09.2006
Spectrum Analyzer	R3361A	11730187	09.2006
Amplifier	8447F	3113A05153	08.2006
Log Periodic Antenna	UHALP9107	1819	11.2006
Biconical Antenna	BBA9106	91031626	11.2006
Horn Antenna	SAS-200/571	304	04.2006
Open Site Cable	N/A	N/A	N/A
Antenna Turntable Driver	5907	N/A	N/A
Antenna Turntable controller	5906	N/A	N/A
Amp & Receiver connection cable	N/A	N/A	N/A
Amp & Spectrum connection cable	N/A	N/A	N/A
50 Ω Switcher	MP59B	6100214538	N/A

2.3 Test Date

Date of Application : Jan. 19, 2006

Date of Test : Jan. 20, 2006 ~ Jan. 21, 2006

2.4 Test Environment

See each test item's description.

Page 5 of 19

3. Description of the tested samples

The EUT is a WLAN IP Phone.

3.1 Rating and Physical Characteristics

Items	Specifications
WLAN	
Modulation	DSSS(IEEE 802.11b), OFDM(IEEE 802, 11g)
Modulation Type	DBPSK, DQPSK,CCK,BPSK,QPSK,16QAM,64QAM
Transfer Rate	1/2/5.5/11/6/9/12/18/24/36/48/54 Mbps
RF rated output power	16 dBm (IEEE 802.11b), 12 dBm (IEEE 802.11g)
Antenna Type	Integral (Max 3.3 dBi)
Operating Temperature	-10℃~50℃
Standard	(H x W x T): 127 x 43 x 19.2mm
Weight	103g
Adaptor	
Input voltage	AC100~240V, 50~60Hz
Rated Output Voltage	DC 5.0 V ±0.2 V
Max. Output Current	1A
Battery	
Battery Type	3.7 V Li-ion, 1300mAh
Time	Nominal capacity Stand by time 55 hour Talk time 4 hour Minimum capacity Stand by time 40hour Talk time 3 hour

3.2 Submitted Documents

N/A

Page 6 of 19

4. Measurement Conditions

Operating voltage of the EUT is AC120V, 60Hz.

Adaptor-Output 5.0 VDC, 1.0 A

-Input:100-240VAC, 50-60 Hz, 0.15A

-M/N: YFAF22073001

-Manufacturer : Yu Feng Electronics Limited.

4.1 Modes of Operation

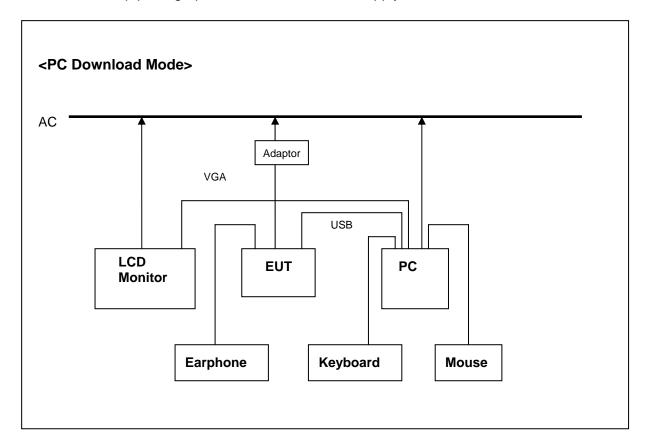
The EUT was in the following operation mode during all testing; During all tests, the EUT was in pc download mode.

4.2 List of Peripherals

Equipment	Equipment Manufacturer		Serial No.
Wireless LAN AP	Supplied by the applicant	WL AP 2454 NM	N/A
AP Adaptor	AP Adaptor FA IRWAY ELECTRONIC CO., LTD		N/A
Keyboard(PS2)	Jing Mold Enterprise Co., LTd.	LKB-0107	20103814
Mouse(USB)	LG	LMULBGS01I	04CU000259
LCD Monitor	LG	1510TFT Rev B	304KG04896
Personal Computer SAMSUNG		DM-P40	Z39699AXC00334V
Earphone	Supplied by the applicant	N/A	N/A

Page 7 of 19

4.3 Type of Used Cables


Equipment	Manufacturer	M/N	S/N	Cables &connectors
Wireless LAN AP	Supplied by the applicant	2454NM	N/A	1.2m unshielded USB cable
Adaptor (for Wireless LAN AP)	FAIRWAY ELECTRONIC CO., LTD	WN05-050	N/A	1.5m unshielded power cable
Keyboard(PS2)	Jing Mold Enterprise Co., Ltd.	ise Co., LKB-0107 20103814 1.5m		1.5m unshielded ps/2 cable
Mouse(USB)	LG	LMULBGS01I	04CU000259	1.5m unshielded USB cable
LCD Monitor	LG	1510TFT Rev B	304KG04896	1.5m unshielded power cable 1.5m shielded VGA cable
Personal Computer	SAMSUNG	DM-P40	203KI12463	1.5m unshielded power cable 1.0m unshielded USB cable
Earphone	Supplied by the applicant	N/A	N/A	0.5m unshielded earphone cable

Page 8 of 19

4.4 Test Setup

The test setup photographs showed the external supply connections and interfaces.

Page 9 of 19

4.5 Uncertainty

1) Radiated disturbance

•Radiated disturbances from 30 MHz to 1000 MHz at a distance of 3m and 10 m

Input quantity	Xi	Probability distribution function	
Receiver reading	Vr	Rectangular √ 3	
Attenuation: antenna-receiver	Lc	k=1	
Amplifier Error	Ae	k=2	
antenna factor	Lac	k=2	
Receiver corrections:			
Sine wave voltage	dVsw	Rectangular √ 3	
Pulse amplitude response	dVpa	Rectangular √ 3	
Pulse repetition rete response	dVpr	Rectangular √ 3	
Mismatch: antenna-receiver	dM	k=1	
antenna corrections:	1		
AF frequency interpolation	dAFf	Rectangular √ 3	
AF height deviations	dAFh	Rectangular √ 3	
Directivity difference at 3 m Directivity difference at 10 m	dAdir dAdir	Rectangular √ 3 Rectangular √ 3	
Phase centre location at 3 m	dAdii	Rectangular √ 3	
Phase centre location at 10 m	dAph	Rectangular √ 3	
Cross-polarisation	dAcp	Rectangular √ 3	
Balance	dAbal	Rectangular √ 3	
Site corrections:			
Site imperfections	dSA	Rectangular √ 6	
Separation distance at 3 m	dd	Rectangular √ 3	
Separation distance at 10 m	dd	Rectangular √ 3	
Table height at 3 m	dh	k=2	
Table height at 10m	dh	k=2	
Combined Standard Uncertainty			
Expanded Uncertainty		4.60(Vertical)/4.59(Horizontal) k=2 (Level of confidance)	

Expanded Uncertainty

U= k*Uc(xi) = 2 * 2.3= 4.60dB (The coverage factor k =2 yields approximately a 95% level of confidence)

Page 10 of 19

2) Conducted disturbance

\odot Conducted disturbance from 150 KHz to 30 MHz using a 50 Ω /50 uH AMN

Input quantity	Xi	Probability distribution function
Receiver reading	Vr	Rectangular √ 3
Attenuation: AMN-receiver	Lc	k=1
AMN voltage division factor	Lamn	k=2
Receiver corrections		
Sine wave voltage	dVsw	Rectangular √ 3
Pulse amplitude response	dVpa	Rectangular √ 3
Pulse repetition rete response	dVpr	Rectangular √ 3
Mismatch: AMN-receiver	dM	U-shape √ 2
AMN impedance	dΖ	Triangular √ 6
Combined Standard Uncertainty		1.96
Expanded Uncertainty		3.99 k=2 (Level of confidance)

Expanded uncertainty

 $U = k^*Uc(xi) = 2 * 1.96 = 3.92dB$

The coverage factor k =2 yields approximately a 95% level of confidence

Page 11 of 19

5. EMISSION Test

5.1 Conducted Emissions

Result: PASS

The line-conducted facility is located inside a 2.6M x 3.6M x 7.0M shielded enclosure.

The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 604-05.

A 1 m x 1.5 m wooden table 80 cm high is placed 40 cm. away from the vertical wall and 1.5 m away from the side wall of the shielded room. ROHDE & SCHWARZ Model ESH3-Z5 (10 kHz-30 MHz) 50 ohm/50 uH Line-Impedance Stabilization Networks(LISNs) are bonded to the shielded room.

The EUT is powered from the ROHDE & SCHWARZ LISN and the support equipment is powered from the ROHDE & SCHWARZ LISN. Power to the LISNs are filtered by a high-current high-insertion loss Lindgren enclosures power line filters (100dB 14 kHz-10 GHz).

The purpose of the filter is to attenuate ambient signal interference and this filter is also bonded to the shielded enclosure.

All electrical cables are shielded by braided tinned copper zipper tubing with inner diameter of 1/2". If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the ROHDE & SCHWARZ LISN. All interconnecting cables more than 1 meter were shortened by non-inductive bundling (serpentine fashion) to a 1-meter length.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT.

The spectrum was scanned from 150 kHz to 30 MHz with 100msec. sweep time.

The frequency producing the maximum level was reexamined using EMI/field Intensity Meter (ESHS 10) and Quasi-Peak adapter. The detector function was set to CISPR quasi-peak mode.

The bandwidth of the receiver was set to 10 kHz. The ELIT, support equipment, and interconnection

The bandwidth of the receiver was set to 10 kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each EME emission.

Each emission was maximized by: switching power lines; varying the mode of operation or resolution; clock or data exchange speed; if applicable; whichever determined the worst-case emission.

Photographs of the worst-case emission can be seen in photograph of conducted test.

Each EME reported was calibrated using self-calibrating mode.

Page 12 of 19

Table 2: Test Data, Conducted Disturbance(EUT Power Charge Mode)

<Quasi-Peak>

Frequency (MHz)	Reading (dBuV)	Line	C/F (dB)	C/L (dB)	Actual (dBuV)	Limit (dBuV)	Margin (dB)
0.565	38.18	L	0.13	0.04	38.35	56.00	17.65
0.575	36.01	L	0.13	0.04	36.18	56.00	19.82
0.690	36.65	N	0.12	0.05	36.82	56.00	19.18
0.790	37.16	L	0.14	0.05	37.35	56.00	18.65
0.800	36.62	N	0.13	0.06	36.81	56.00	19.19
0.810	38.92	L	0.14	0.06	39.12	56.00	16.88

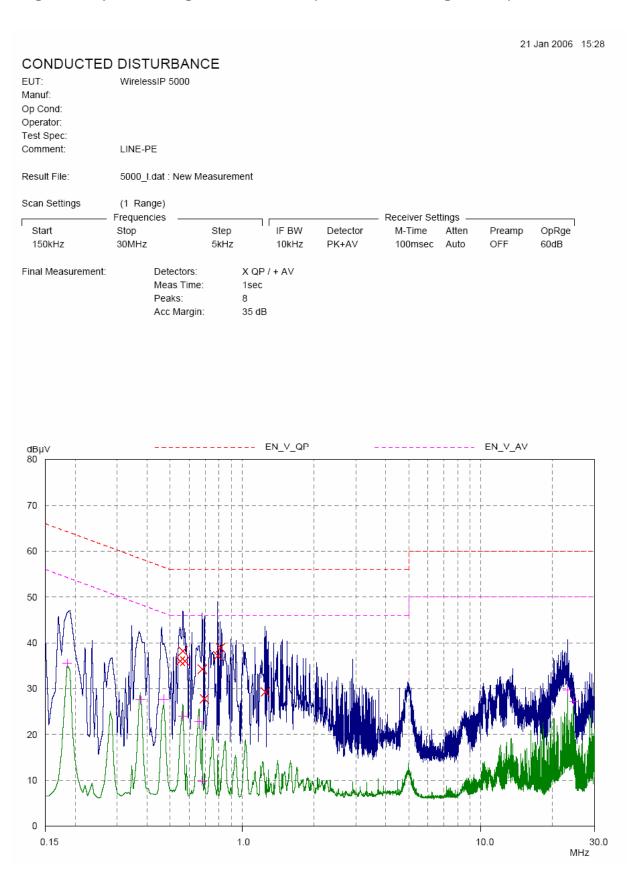
<Average>

Frequency (MHz)	Reading (dBuV)	Line	C/F (dB)	C/L (dB)	Actual (dBuV)	Limit (dBuV)	Margin (dB)
0.185	35.52	L	0.13	0.01	35.66	54.26	18.60
0.375	27.69	L	0.13	0.04	27.86	48.39	20.53
0.470	27.64	L	0.13	0.04	27.81	46.51	18.70
0.565	23.97	L	0.13	0.04	24.14	46.00	21.86
23.125	29.65	Ĺ	1.18	0.40	31.23	50.00	18.77
24.575	27.21	L	1.18	0.41	28.80	50.00	21.20

▶ NOTE

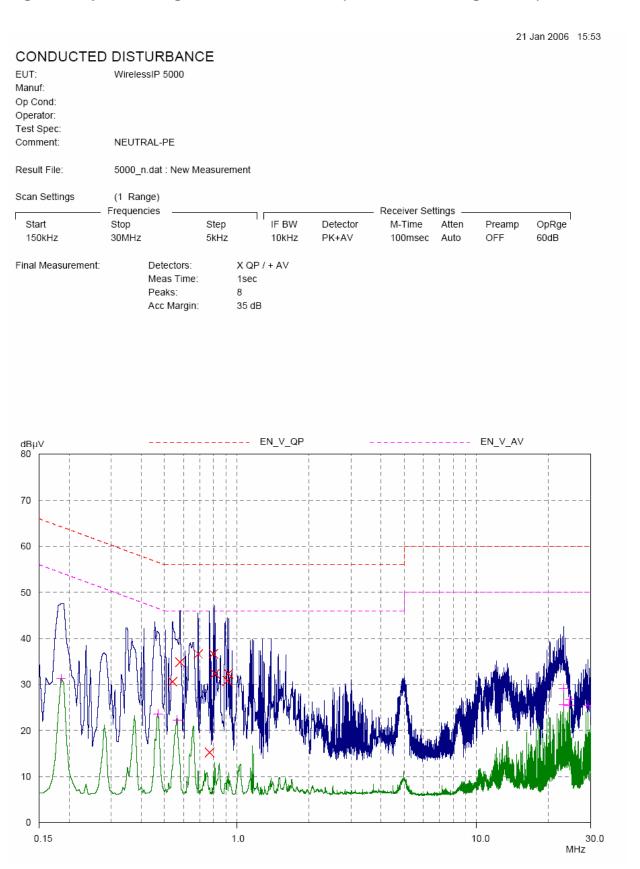
* C/F = Correction Factor

* C/L = Cable Loss


* LINE : L = Line-PE, N = Neutral-PE

* Margin Calculation Margin(Q.P) = Limit - Actual [Actual(Q.P) = Reading(Q.P) + C/F + C/L]

Page 13 of 19


Figure 1: Spectral Diagram, LINE – PE (EUT Power Charge Mode)

Page 14 of 19

Figure 2: Spectral Diagram, NEUTRAL – PE (EUT Power Charge Mode)

Page 15 of 19

Table 3: Test Data, Conducted Disturbance(PC Download Mode)

<Quasi-Peak>

Frequency (MHz)	Reading (dBuV)	Line	C/F (dB)	C/L (dB)	Actual (dBuV)	Limit (dBuV)	Margin (dB)
0.660	48.56	L	0.14	0.05	48.75	56.00	7.25
0.820	48.62	L	0.14	0.06	48.82	56.00	7.18
2.895	48.49	L	0.18	0.11	48.78	56.00	7.22
2.925	46.54	N	0.15	0.11	46.80	56.00	9.20
3.000	47.70	L	0.18	0.11	47.99	56.00	8.01
3.030	49.49	L	0.18	0.11	49.78	56.00	6.22

<Average>

Frequency (MHz)	Reading (dBuV)	Line	C/F (dB)	C/L (dB)	Actual (dBuV)	Limit (dBuV)	Margin (dB)
0.440	45.27	L	0.13	0.04	45.44	47.06	1.62
0.580	36.29	L	0.13	0.04	36.46	46.00	9.54
0.660	43.12	Ν	0.12	0.05	43.29	46.00	2.71
0.810	38.02	N	0.13	0.06	38.21	46.00	7.79
1.160	41.62	L	0.15	0.07	41.84	46.00	4.16
3.280	35.88	Ĺ	0.18	0.11	36.17	46.00	9.83

▶ NOTE

* C/F = Correction Factor

* C/L = Cable Loss

* LINE : L = Line-PE, N = Neutral-PE

* Margin Calculation Margin(Q.P) = Limit - Actual [Actual(Q.P) = Reading(Q.P) + C/F + C/L]

Page 16 of 19

Figure 3: Spectral Diagram, LINE – PE (PC Download Mode)

21 Jan 2006 14:42

CONDUCTED DISTURBANCE

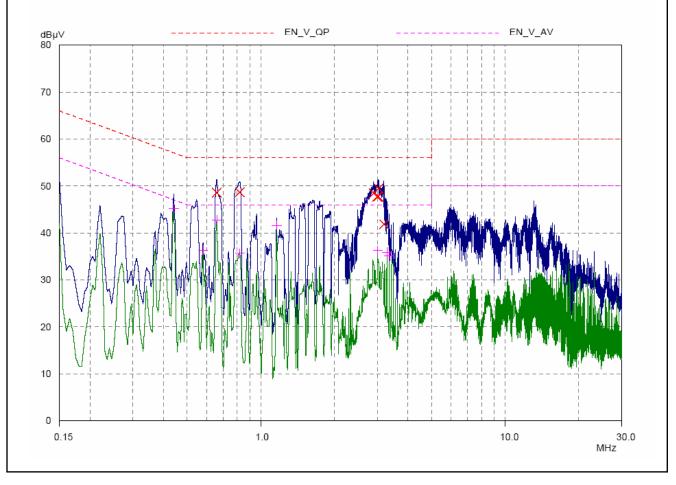
EUT: WirelessIP 5000

Manuf: Op Cond: Operator: Test Spec:

Comment: LINE-PE

Result File: 5000_I.dat : New Measurement

Scan Settings (1 Range)


Frequencies Receiver Settings -Step IF BW Start Stop Detector M-Time Atten Preamp OpRge 150kHz 30MHz 5kHz 10kHz PK+AV 100msec Auto OFF 60dB

Final Measurement: Detectors: X QP / + AV

 Meas Time:
 1sec

 Peaks:
 8

 Acc Margin:
 35 dB

Page 17 of 19

Figure 4: Spectral Diagram, NEUTRAL – PE (PC Download Mode)

21 Jan 2006 11:43 CONDUCTED DISTURBANCE EUT: WirelessIP 5000 Manuf: Op Cond: Operator: Test Spec: Comment: NEUTRAL-PE Result File: 5000_N.dat : New Measurement Scan Settings (1 Range) Frequencies Receiver Settings IF BW Start Stop Step Detector M-Time Atten Preamp OpRge 150kHz 30MHz 5kHz 10kHz OFF 60dB PK+AV 100msec Auto Final Measurement: Detectors: X QP / + AV Meas Time: 1sec Peaks: 35 dB Acc Margin: dBµ∨ 80 г EN_V_QP EN_V_AV 70 60 50 40 30 20 10 0 1.0 10.0 0.15 30.0 MHz

Page 18 of 19

5.2 Radiated Emissions

Result: PASS

Preliminary measurements were made indoors at 3 meter using broadband antennas, broadband amplifier, and spectrum analyzer to determine the frequency producing the maximum EME. Appropriate precaution was taken to ensure that all EME from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, turntable azimuth with respect to the antenna were noted for each frequency found.

The spectrum was scanned from 30 to 300 MHz using biconical antenna and from 300 to 1000 MHz using log-periodic antenna. Above 1 GHz, linearly polarized double ridge horn antennas were used.

Final measurements were made outdoors at 3-meter test range using SCHWARZBECK dipole antennas. The test equipment was placed on a wooden table situated on a 4x4 meter area adjacent to the measurement area. Turntable was to protect from weather in the dome that made with FRP. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. Each frequency found during pre-scan measurements was re-examined and investigated using EMI/Field Intensity Meter(ESVS 10) and Quasi-Peak Adapter. The detector function was set to CISPR quasi-peak mode and the bandwidth of the receiver was set to 100 kHz or 1 MHz depending on the frequency or type of signal.

The half-wave dipole antenna was tuned to the frequency found during preliminary radiated measurements. The EUT, support equipment and interconnecting cables were re-configured to the set-up producing the maximum emission for the frequency and were placed on top of a 0.8-meter high non-metallic 1 x 1.5 meter table.

The EUT, support equipment, and interconnecting cables were re-arranged and manipulated to maximize each EME emission. The turntable containing the system was rotated; the antenna height was varied 1 to 4 meters and stopped at the azimuth or height producing the maximum emission. Each emission was maximized by: varying the mode of operation or resolution; clock or data exchange speed, and/or support equipment, if applicable; and changing the polarity of the antenna, whichever determined the worst-case emission.

Photographs of the worst-case emission can be seen in photograph of radiated emission test. Each EME reported was calibrated using self-calibrating mode.

Page 19 of 19

Table 4: Test Data, Radiated Emissions

<PC Download Mode>

Frequency	Pol.	Height	Real	Correction Factor		T-Fact	Data	Limits	Margin
[MHz]		[m]	Reading	Antenna	Cable	[dB]	[dBuV/m]	[dBuV/m]	[dB]
161.18	Н	4.0	9.0	15.3	1.3	16.6	25.6	30.0	4.4
241.25	Ι	1.0	3.5	17.4	1.3	18.7	22.2	37.0	14.8
320.98	Ι	1.0	8.3	16.6	1.5	18.1	26.4	37.0	10.6
481.06	Η	1.0	8.1	18.4	1.9	20.3	28.4	37.0	8.6
691.87	Η	1.0	2.1	22.2	2.4	24.6	26.7	37.0	10.3

Table. Radiated Measurements at 10-meters.

NOTES:

- 1. All modes of operation were investigated and the worst-case emission are reported.
- 2. All other emission are non-significant.
- 3. All readings are calibrated by self-mode in receiver.
- 4. Measurements using CISPR Quasi-peak mode.
- 5. H = Horizontal, V = Vertical Polarization
- 6. Data = Real Reading + T Fact(Antenna+Cable)
- 7. Margin = Limits Data