

TEST REPORT

STANDARD : FCC Part15C RSS-210 Issue 9

Applicant	Testing Laboratory	
OLYMPUS MEDICAL SYSTEMS CORP.	Intertek Japan K.K. Kashima Laboratory	
	(Anechoic chamber)	
2951 Ishikawa-machi, Hachioji-shi, Tokyo,	298-6 Sada, Kashima, Ibaraki	
192-8507, Japan	314-0027 Japan	
Tel. +81 42 642 2548	Tel. +81 299 82 8464	
	(Open area test site)	
	3-2 Sunayama, Kamisu, Ibaraki	
	314-0255 Japan	
	Tel. +81 479 40 1097	
	URL: http://www.japan.intertek-etlsemko.com	

Equipment Type ENDOSCOPE REPROCESSOR **Trademark OLYMPUS** Model(s) **OER-Elite** Serial No. No.12 **Equipment Authorization** Certification **FCC ID** S8Q-RU2020 **ISED CN and UPN** 4763B-RU2020 **Test Result** Complied 16050270JKA-002 **Report Number Original Issue Date** September 19, 2017

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Approved by

Hideaki Kosemura [Technical Manager]

Tested by

Koichi Wagatsuma

[Engineer]

Responsible Party of Test Item (Product)

Responsible Party :

Add. : Tel. :

Fax. :

Contact Person

Vagatsuma

Original: September 19, 2017

Report No.: 16050270JKA-002

FCC ID: S8Q-RU2020

ISED CN and UPN: 4763B-RU2020

TABLE OF CONTENTS

			Page
SECTION	1.	GENERAL INFORMATION	3
SECTION	2.	SUMMARY OF TEST RESULTS	4
SECTION	3.	EQUIPMENT UNDER TEST	5
SECTION	4.	SUPPORT EQUIPMENT	6
SECTION	5.	USED CABLE(S)	7
SECTION	6.	TEST CONFIGURATION	8
SECTION	7.	OPERATING CONDITION	9
SECTION	8.	UNCERTAINTY	10
SECTION	9.	EVALUATION OF TEST RESULTS	11
SECTION	10	. LIST OF MEASURING INSTRUMENTS	22
ANNEX			24
APPENDIX	PH	OTOGRAPHS OF MAXIMUM EMISSION SET-UP	

FCC ID: S8Q-RU2020

ISED CN and UPN: 4763B-RU2020

SECTION 1. GENERAL INFORMATION

Test Performed

EUT Received	July 08, 2016
Date of Test From July 11, 2016 to July 12, 2016	
Standard Applied	FCC Part15C RSS-210 Issue 9
Test methods	ANSI C63.10-2013
Deviation from Standard(s)	None

Qualifications of Testing Laboratory

Accreditation	Scope	Lab. Code	Remarks		
VLAC	EMC Testing	VLAC-008-1	JAPAN		
BSMI	EMC Testing	SL2-IN-E-6008	TAIWAN		
Filing	Filing				
VCCI	EMC Testing	A-0126	JAPAN		
FCC	EMC Testing	JP0008	USA		
IC	EMC Testing	2042K-3, 2042Q-12	CANADA		
CB-Scheme	EMC Testing	TL222	IECEE		
SAUDI ARABIA	EMC Testing	N/A			

Abbreviations

/ 1001 O 1 IG			
EUT	Equipment Under Test	DoC	Declaration of Conformity
AMN	Artificial Mains Network	ISN	Impedance Stabilization Network
LISN	Line Impedance Stabilization Network	Q-P	Quasi-peak
AMP	Amplifier	AVG	Average
ATT	Attenuator	PK	Peak
ANT	Antenna	Cal	Calibration
BBA	Broadband Antenna	N/A	Not applicable or Not available
DIP	Dipole Antenna	LCD	Liquid-Crystal Display
AE	Associated Equipment	HDMI	High-Definition Multimedia Interface
OBW	Occupied Bandwidth		

FCC ID: S8Q-RU2020

ISED CN and UPN: 4763B-RU2020

SECTION 2. SUMMARY OF TEST RESULTS

See Section9 for the detailed result.

Emission Tests

Standard Applied	FCC Part15C (15.207, 15.225, 15.209) RSS-210 Issue 9 (B.6)	
Test Item	Minimum margin	Remarks
Conducted disturbance at mains terminals	40.5 dB (0.9230 MHz) [Q-P]	
Radiated disturbance (IN band)	33.9 dB (13.5670 MHz)	
Radiated disturbance (OUT band)	4.0 dB (214.65 MHz)	

Standard Applied	FCC Part15C (15.225) RSS-210 Issue 9 (B.6)	
Test Item	Result	Remarks
Frequency Tolerance	PASS	

Standard Applied	FCC Part15C(15.215(c)) RSS-Gen Issue 4 (6.6)	
Test Item	Result	Remarks
20dB OBW 99%OBW	N/A	See Note

Note: None Limit (for reporting purposes only)

FCC ID: S8Q-RU2020

ISED CN and UPN: 4763B-RU2020

SECTION 3. EQUIPMENT UNDER TEST

The equipment under test (EUT) consisted of the following apparatus.

3.1 System Configuration

Symbol	Item	Model No.	Serial No.	Manufacturer	Remarks
Α	ENDOSCOPE REPROCESSOR	OER-Elite	No.12	OLYMPUS MEDICAL SYSTEMS CORP.	
Rated Po	Rated Power : AC 120V±10% 60Hz / 660VA				
Supplied	Supplied Power : AC 120V, 60Hz				
Condition	Condition of Equipment Pre-Production				
Туре	Type Floor standing				
Suppress	uppression Devices No Modifications by the laboratory were made to the device				

3.2 Overview of EUT

Frequency Ranges	13.56 MHz
Modulation Method	Transmitting – Amplitude Shift Keying

3.3 Port(s)/Connector(s)

Port Name	Connector Type	Connector Pin	Remarks
Portable memory port	USB type A	4 pin	
Bar code reader port	USB type A	4 pin	
Printer communication port(RS232C)	D-Sub	9 pin	
100BASE-TX terminal	RJ-45	8 pin	

3.4 Highest Frequency Generated / Used

Operating Frequency	Operating mode	Remarks
240 MHz	RFID Active mode	

FCC ID: S8Q-RU2020

ISED CN and UPN: 4763B-RU2020

SECTION 4. SUPPORT EQUIPMENT

The EUT was supported by the following equipment during the test.

Symbol	Item	Model No.	Serial No.	Manufacturer	Remarks	FCC ID
В	Portable Memory	MAJ-1925	16B3	OLYMPUS MEDICAL SYSTEMS CORP.		N/A
С	PRINTER	MAJ-2144	00103	OLYMPUS MEDICAL SYSTEMS CORP.		N/A
D	AC Adapter	BLS-120W(M AJ-2144)	82-31-299-1234	OLYMPUS MEDICAL SYSTEMS CORP.		N/A
E	Scope ID master card	GT970700	None	OLYMPUS MEDICAL SYSTEMS CORP.		N/A
F	BARCODE READER	MAJ-2130	16067	OLYMPUS MEDICAL SYSTEMS CORP.		N/A

FCC ID: S8Q-RU2020

ISED CN and UPN: 4763B-RU2020

SECTION 5. USED CABLE(S)

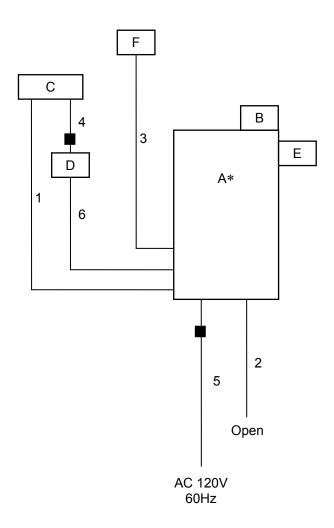
The following cable(s) was used for the test.

No.	Name	Length (m)	Shield	Metal Connector	Ferrite Core
1	RS232 Cable(GT8040)	1.8	Yes	Yes	
2	LAN Cable	1.0	No	No	
3	USB Cable	1.5	Yes	Yes	
4	Power Cable for PRINTER (DC)	1.3	No	No	Fixed x 1
5	Power Cable for EUT(AC)(RL5450)	3.4	No	No	Fixed x 1
6	Power for PRINTER (AC)	1.7	No	No	

Note:

No.4 cable is supplied together with PRINTER (C)

No.5 cable is supplied together with EUT(A)


FCC ID: S8Q-RU2020

ISED CN and UPN: 4763B-RU2020

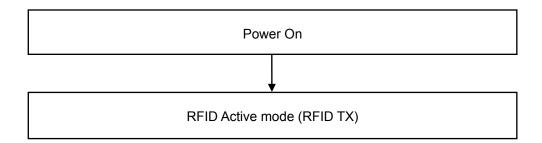
SECTION 6. TEST CONFIGURATION

6.1 Conducted disturbance at mains terminals Tests and Radiated disturbance tests

* : EUT ■: Ferrite core

The symbols and numbers assigned to the equipments and cables on this diagram correspond to the ones in Sections 3 to 5.

FCC ID: S8Q-RU2020


ISED CN and UPN: 4763B-RU2020

SECTION 7. OPERATING CONDITION

The test was carried out under the following mode.

7.1 RFID Active mode

Cycle time for operation: Continuity

FCC ID: S8Q-RU2020

ISED CN and UPN: 4763B-RU2020

SECTION 8. UNCERTAINTY

Traceability to national standard in SI units is ensured with these values.

Compliance with the limits in this standard are determined without in consideration of the measurement uncertainty of the measurement instrumentation.

8.1 Emission tests

Radiated disturbance at 3m	U _{lab} [<i>k</i> = 2]	U _{cispr}
30 MHz – 1000 MHz	+/- 4.05 dB	6.3 dB
CISPR22 Above 1 GHz	+/- 4.79 dB	5.2 dB
ANCI 63.4	+/- 4.80 dB	Nil
Radiated disturbance at 10m		
30 MHz – 1000 MHz	+/- 4.32 dB	6.3 dB
Above 1 GHz	+/- 4.79 dB	Nil
Radiated disturbance at 30m		
	N/A	Nil
Radiated Magnetic disturbance at	3m	
9 kHz – 30 MHz	+/- 2.16 dB	Nil
Conducted disturbance at mains t	erminals	
9 kHz – 150 kHz	+/- 1.73 dB	3.8 dB
150 kHz – 30 MHz	+/- 1.85 dB	3.4 dB
Conducted disturbance at telecon	nmunication ports (ISN)	
150 kHz – 30 MHz	+/- 4.77 dB	5.0 dB
Conducted disturbance at telecom	nmunication ports (Capacitive Vol	tage Probe)
150 kHz – 30 MHz	+/- 2.92 dB	3.9 dB
Conducted disturbance at telecom	nmunication ports (Current Probe)	
150 kHz – 30 MHz	+/- 1.69 dB	2.9 dB
Conducted disturbance at termina	ls	
150 kHz – 30 MHz	+/- 1.51 dB	2.9 dB
Disturbance power		
30 MHz – 300 MHz	+/- 1.91 dB	4.5 dB
Conducted power on antenna port		
30 MHz – 1000 MHz	+/- 2.90 dB	Nil
Above 1 GHz	+/- 1.60 dB	INII
Frequency Tolerance		
	+/- 2.79 Hz	Nil

The above expanded instrumentation uncertainty, $U_{lab.}$, is estimated in accordance with CISPR 16-4-2:2011.

FCC ID: S8Q-RU2020

ISED CN and UPN: 4763B-RU2020

SECTION 9. EVALUATION OF TEST RESULTS

9.1 Emission tests

9.1.1 Conducted disturbance at mains terminals

Location	Kashima No.12 Test Site
Test Engineer	Koichi Wagatsuma

Frequency Range of Measurements

Required Measurement Frequency Range	Measured Frequency Range		
0.15 – 30 MHz	0.15 – 30 MHz		

Test Procedure

Item	Document number
Conducted disturbance at mains terminals	LEN-RJP-TE003

Setting for the Measuring instruments

Instrument	Detector	Resolution Bandwidth	Video Bandwidth	
Receiver	Quasi Peak	10 kHz	N/A	
	Average	10 kHz	N/A	

< Measurement data correction >

Emission Level = Meter Reading + Factor

Margin = Limit- Emission Level

Factor = LISN Factor + Cable Loss + Attenuator

FCC ID: S8Q-RU2020

ISED CN and UPN: 4763B-RU2020

Result of Conducted disturbance at mains terminals

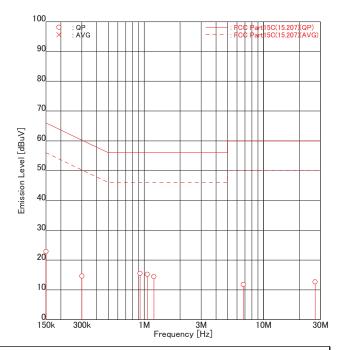
Intertek Japan K.K.

Kashima No.12 Test Site

Conducted Voltages on Mains Port

APPLICANT : OLYMPUS MEDICAL SYSTEMS CORP.

EUT NAME : ENDOSCOPE REPROCESSOR


MODEL NO. : OER-Elite SERIAL NO. : No.12

TEST MODE : RF-ID Active mode POWER SOURCE : AC120 V, 60 Hz DATE TESTED : Jul 11 2016

FILE NO. : -

REGULATION : FCC Part15C(15.207)
TEST METHOD : ANSI C63.10-2013
TEMPERATURE : 22.3 [degC]
HUMIDITY : 48.0 [%]

NOTE :

ENGINEER : Koichi Wagatsuma

FR [No]	EQUENCY [MHz]	MODE	READING [dBuV]	3	FACTOF [dB]	₹	EMISSIO [dBuV]	N	LIMIT [dBuV]	MARO [dB]	
			Line1	Line2	Line1	Line2	Line1	Line2		Line1	Line2
1	0.1500	QP	12.7	10.8	10.2	10.2		21.0	66.0	43.1	45.0
2	0.3000	QΡ	4.4	4.1	10.2	10.2	14.6	14.3	60.2	45.6	45.9
3	0.9230	QP	5.2	4.4	10.3	10.3	15.5	14.7	56.0	40.5	41.3
4	1.0605	QP	4.9	3.6	10.3	10.3	15.2	13.9	56.0	40.8	42.1
5	1.2060	QP	<u>4.1</u>	3.9	10.3	10.3	<u>14.4</u>	14.2	56.0	<u>41.6</u>	41.8
6	6.7800 27.1200	QP QP	1.0 1.0	1.0 1.0	10.8 11.4	10.8 11.7	11.8 12.4	11.8	60.0 60.0	48.2 47.6	48.2 47.3
'	21.1200	QP	1.0	1.0	11.4	11.7	12.4	<u>12.7</u>	00.0	47.0	41.3

Higher six points are underlined.

Other frequencies : Below the FCC Part15C(15.207) limit Emisson Level = Read + Factor(LISN,Pad,Cable)

emiT 3, 0, 0, 0

FCC ID: S8Q-RU2020

ISED CN and UPN: 4763B-RU2020

9.1.2 Radiated disturbance (IN band and OUT band)

Location	Kashima No.12
Test Engineer	Koichi Wagatsuma

Frequency Range of Measurements

Operating mode	Required Frequency Range	Measured Frequency Range	
RF-ID Active mode	30 – 2000 MHz	30 – 2000 MHz	

Test Procedure

1001110004410				
Item	Document number			
Radiated disturbance	LEN-RJP-TE003			

Setting for the Measuring instruments

Frequency [MHz]	Instrument	Detector Resolution Bandwidth		Video Bandwidth
0.009 - 30	Receiver	AVG : 0.009 - 0.090 MHz QP : 0.090 - 0.110 MHz AVG : 0.110 - 0.490 MHz QP : 0.490 - 30 MHz	200 Hz : 0.009 - 0.15 MHz 10 kHz : 0.15 – 30 MHz	N/A
30 – 1000	Receiver	Quasi Peak	120 kHz	N/A
Above 1000	Receiver	Peak	1 MHz	N/A
Above 1000	Receiver	Average	1 MHz	N/A

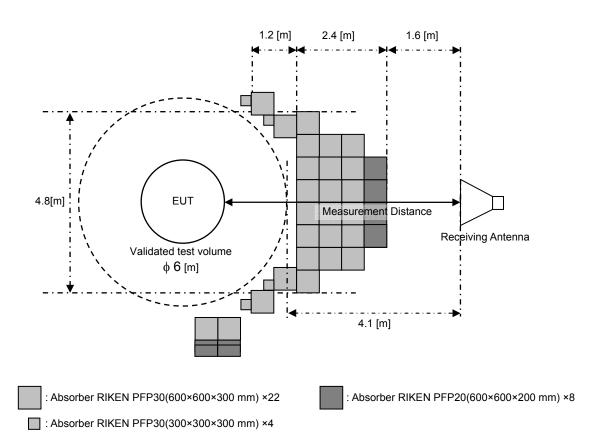
< Measurement data correction >

Emission Level = Meter Reading + Factor

Margin = Limit - Emission Level

Factor = Antenna Factor + Cable Loss - Amplifier Gain + Attenuator (+ Distance Conversion Factor)*

Distance Conversion Factor = 20 log (Measurement distance / Standard distance)


^{*} For other than Standard distance:

FCC ID: S8Q-RU2020

ISED CN and UPN: 4763B-RU2020

Operating Condition	Frequency Range	Measurement distance
DE ID Active made	0.009 -1000 MHz	3 m
RF-ID Active mode	Above 1 GHz	6.65 m

Absorber placement and Receive Antenna location in Radiated disturbance above 1 GHz

FCC ID: S8Q-RU2020

ISED CN and UPN: 4763B-RU2020

Result of Radiated disturbances 9.1.2.1 IN band

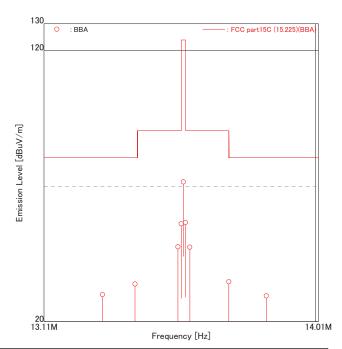
Intertek Japan K.K. Kashima No.12 Test Site

Field Strength Emission Test

APPLICANT : OLYMPUS MEDICAL SYSTEMS CORP.

EUT NAME : ENDOSCOPE REPROCESSOR

MODEL NO. : OER-Elite SERIAL NO. : No.12


TEST MODE : RF-ID Active mode
POWER SOURCE : AC 120V/60Hz
DATE TESTED : Jul 11 2016

FILE NO. :-

REGULATION : FCC part15C (15.225) TEST METHOD : ANSI C63.10 :2013

DISTANCE : 3.00 [m]
TEMPERATURE : 20.9 [degC]
HUMIDITY : 49.0 [%]

NOTE :

ENGINEER : Koichi Wagatsuma

FR [No]	EQUENCY [MHz]	READING [dBuV] Hori	Vert	FACTOR [dB] Hori	Vert	EMISSION [dBuV/m] Hori	[c Vert	LIMIT dBuV/m]	MARG [dB] Hori	
1	13.2969	4.0	2.8	26.0	26.0	30.0	28.8	80.5	50.5	51.7
2	13.4020	7.9	6.8	26.0	26.0	33.9	32.8	80.5	46.6	47.7
3	13.5420	21.6	20.3	26.0	26.0	47.6	46.3	90.5	42.9	44.2
4	13.5530	30.1	29.5	26.0	26.0	56.1	55.5	90.5	34.4	35.0
5	13.5600	45.6	43.8	26.0	26.0	71.6	69.8	124.0	52.4	54.2
6	13.5670	30.6	30.6	26.0	26.0	<u>56.6</u>	56.6	90.5	33.9	33.9
7	13.5810	21.5	20.2	26.0	26.0	47.5	46.2	90.5	43.0	44.3
8	13.7100	8.7	7.5	26.0	26.0	34.7	33.5	80.5	45.8	47.0
9	13.8348	3.5	2.7	26.0	26.0	29.5	28.7	80.5	51.0	51.8

Higher six points are underlined.

Other frequencies : Below the FCC part15C (15.225) limit Emisson Level = Read + Factor(Antenna, Cable, Preamp)

emiT 3, 0, 0, 0

FCC ID: S8Q-RU2020

ISED CN and UPN: 4763B-RU2020

9.1.2.2 Out band 0.009 – 30 MHz

Intertek Japan K.K.

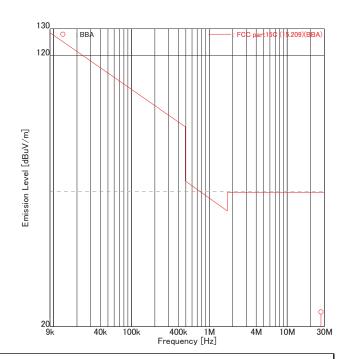
Kashima No.12 Test Site

Spurious Emissions - Radiated Test

APPLICANT : OLYMPUS MEDICAL SYSTEMS CORP.

EUT NAME : ENDOSCOPE REPROCESSOR

MODEL NO. : OER-Elite SERIAL NO. : No.12


TEST MODE : RF-ID Active mode POWER SOURCE : AC 120V/60Hz DATE TESTED : Jul 11 2016

FILE NO. :-

REGULATION : FCC part15C (15.209) TEST METHOD : ANSI C63.10-2013

DISTANCE : 3.00 [m]
TEMPERATURE : 20.9 [degC]
HUMIDITY : 49.0 [%]

NOTE :

ENGINEER : Koichi Wagatsuma

FREQUENCY	READING	FACTOR	EMISSION	LIMIT MARGIN
[No] [MHz]	[dBuV]	[dB]	[dBuV/m]	[dBuV/m] [dB]
1 27.1700	Hori Ver 		Hori Ver 	

Higher six points are underlined.

Other frequencies : Below the FCC part15C (15.209) limit Emisson Level = Read + Factor(Antenna, Cable, Preamp)

emiT 3, 0, 0, 0

FCC ID: S8Q-RU2020

ISED CN and UPN: 4763B-RU2020

30 - 1000 MHz

Intertek Japan K.K.

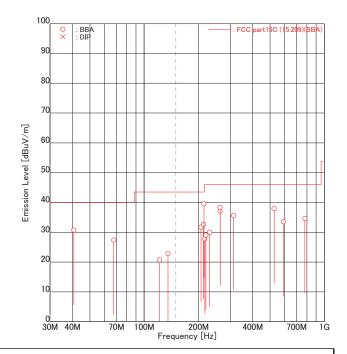
Kashima No.12 Test Site

Spurious Emissions - Radiated Test

APPLICANT : OLYMPUS MEDICAL SYSTEMS CORP.

EUT NAME : ENDOSCOPE REPROCESSOR

MODEL NO. : OER-Elite SERIAL NO. : No.12


TEST MODE : RF-ID Active mode POWER SOURCE : AC120 V, 60 Hz DATE TESTED : Jul 11 2016

FILE NO. :-

REGULATION : FCC part15C (15.209) TEST METHOD : ANSI C63.10-2013

DISTANCE : 3.00 [m]
TEMPERATURE : 21.6 [degC]
HUMIDITY : 59.0 [%]

NOTE :

ENGINEER : Koichi Wagatsuma

[No]	REQUENCY [MHz]	ANT.	READING [dBuV] Hori	Vert	FACTOR [dB/m] Hori	Vert	EMISSION [dBuV/m] Hori	Vert	LIMIT [dBuV/m]	MARG [dB] Hori	
1 2 3 4 5	40.67 67.80 122.04 135.60 206.69	BBA BBA BBA BBA BBA	28.7 25.9 23.7 24.5	32.8 29.8 20.8 22.7 34.4	-2.1 -2.4 -3.0 -1.7 -2.7	-2.1 -2.4 -3.0 -1.7 -2.7	26.6 23.5 20.7 22.8	30.7 27.4 17.8 21.0 31.7	40.0 40.0 43.5 43.5 43.5	13.4 16.5 22.8 20.7	9.3 12.6 25.7 22.5 11.8
6 7 8 9 10	213.33 214.65 216.96 220.20 231.20	BBA BBA BBA BBA	41.7 29.7 - 31.3	35.0 <u>41.8</u> 30.0 31.0 31.5	-2.4 -2.3 -2.2 -2.0 -1.5	-2.4 -2.3 -2.2 -2.0 -1.5	39.4 27.5 - 29.8	32.6 39.5 27.8 29.0 30.0	43.5 43.5 46.0 46.0 46.0	4.1 18.5 - 16.2	10.9 4.0 18.2 17.0 16.0
11 12 13 14 15	264.20 264.20 313.34 526.66 593.34 780.02	BBA BBA BBA BBA BBA	38.2 33.5 - 23.1 20.5	37.0 - 32.1 29.3 -	0.1 0.1 2.1 8.6 10.4 14.1	0.1 0.1 2.1 8.6 10.4 14.1	38.3 35.6 - 33.5 34.6	37.1 34.2 37.9	46.0 46.0 46.0 46.0 46.0	7.7 10.4 - 12.5 11.4	8.9 - 11.8 8.1 -

Higher six points are underlined.

Other frequencies: Below the FCC part15C (15.209) limit

Emisson Level = Read + Factor(Antenna,Antenna Pad,Cable,Preamp)
ANT.: Used antenna(BBA = Broadband antenna, DIP = Dipole antenna)

emiT 3, 0, 0, 0

FCC ID: S8Q-RU2020

ISED CN and UPN: 4763B-RU2020

1000 - 2000 MHz

Intertek Japan K.K.

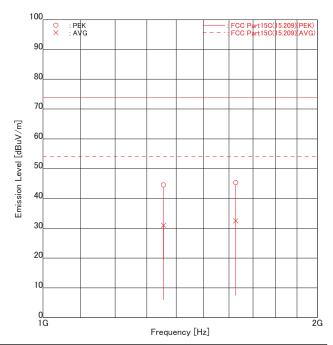
Kashima No.12 Test Site

Radiated Electric Field

APPLICANT : OLYMPUS MEDICAL SYSTEMS CORP.

EUT NAME : ENDOSCOPE REPROCESSOR

MODEL NO. : OER-Elite SERIAL NO. : No.12


TEST MODE : RF-ID Active mode POWER SOURCE : AC120 V, 60 Hz DATE TESTED : Jul 11 2016

FILE NO. :-

REGULATION : FCC Part15C(15.209) TEST METHOD : ANSI C63.10-2013

DISTANCE : 6.65 [m]
TEMPERATURE : 22.0 [degC]
HUMIDITY : 48.0 [%]

NOTE :

ENGINEER : Koichi Wagatsuma

FF [No]	REQUENCY MODE [MHz]	READING [dBuV] Hori	Vert	FACTOR [dB/m] Hori	Vert	EMISSION [dBuV/m] Hori	[Vert	LIMIT dBuV/m]	MARG [dB] Hori	IN Vert
1	1356.00 PEK	<u>41.6</u>	41.4	2.9	2.9	44.5	44.3	74.0	29.5	29.7
2	1356.00 AVG	28.1	28.1	2.9	2.9	31.0	31.0	54.0	23.0	23.0
3	1627.20 PEK	41.3	41.2	4.0	4.0	45.3	45.2	74.0	28.7	28.8
4	1627.20 AVG	28.5	28.1	4.0	4.0	32.5	32.1	54.0	21.5	21.9

Higher six points are underlined.

Other frequencies : Below the FCC Part15C(15.209) limit

Emisson Level = Read + Factor

Factor = Ant.Factor + Cable Loss - Amp. Gain + ATT - Dist. Conversion

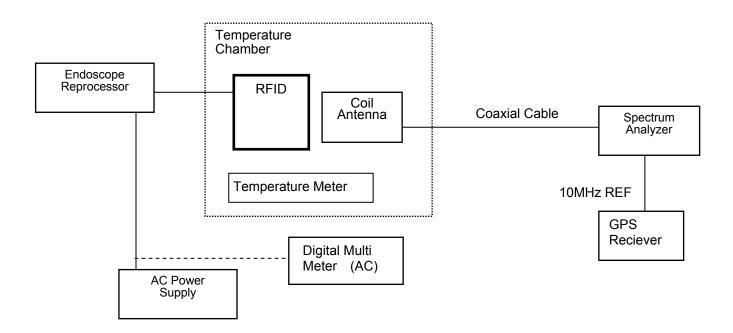
emiT 3, 0, 0, 0

FCC ID: S8Q-RU2020

ISED CN and UPN: 4763B-RU2020

9.2 Frequency Tolerance (Temperature Variation and Voltage Variation)

Location	Kashima No.1
Test date	July 12, 2016
Test Engineer	Koichi Wagatsuma
Test Procedure	LEN-RJP-TE003


Test Procedure

Frequency Tolerance (Temperature Variation)

- 1. The EUT and test equipment were set up as shown on the following page.
- 2. Set the temperature -30 degrees C.
- 3. Leave the EUT for 1 hour after it became the temperature that was set up.
- 4. Make the EUT the transmitting.
- 5. Measure the output frequency. (Startup, 2min, 5min and 10min)
- 6. Set the temperature -20 degrees C to +50 degrees C.
- 7. Repeat test procedure 4 to 6

Frequency Tolerance (Voltage Variation)

- 1. The EUT and test equipment (Set the Supply Voltage 100%) were set up as shown on the following page.
- 2. Set the temperature +20 degrees C.
- 3. Leave the EUT for 1 hour after it became the temperature that was set up.
- 4. Make the EUT the transmitting.
- 5. Measure the output frequency.
- 6. Set the Supply Voltage 85% and 115%.
- 7. Repeat test procedure 4 to 6

FCC ID: S8Q-RU2020

ISED CN and UPN: 4763B-RU2020

Result of Frequency Tolerance (Temperature Variation and Voltage Variation) 9.2.1 Temperature Variation

Reference Frequency: 13.560000 MHz (FCC Stability) /13.560085 MHz (RSS Stability)

Temperature	Voltage		Frequency				Deviation (ppm)							Limit
				Hz)			rtUP		nin		nin		min	(+/-)
(Degree C)	(%)	StartUP	2min	5min	10min	FCC	RSS	FCC	RSS	FCC	RSS	FCC	RSS	(ppm)
-30	100	13.560001	13.560010	13.560015	13.560017	0.09	-6.18	0.77	-5.50	1.11	-5.16	1.25	-5.01	100.0
-20	100	13.560064	13.560073	13.560077	13.560079	4.72	-1.55	5.38	-0.88	5.68	-0.59	5.83	-0.44	100.0
-10	100	13.560102	13.560107	13.560109	13.560110	7.52	1.25	7.89	1.62	8.04	1.77	8.11	1.84	100.0
0	100	13.560115	13.560115	13.560114	13.560114	8.48	2.21	8.48	2.21	8.41	2.14	8.41	2.14	100.0
10	100	13.560105	13.560102	13.560099	13.560098	7.74	1.47	7.52	1.25	7.30	1.03	7.23	0.96	100.0
20	100	13.560085	13.560079	13.560075	13.560072	6.27	0.00	5.83	-0.44	5.53	-0.74	5.31	-0.96	100.0
30	100	13.560053	13.560047	13.560044	13.560042	3.91	-2.36	3.47	-2.80	3.24	-3.02	3.10	-3.17	100.0
40	100	13.560019	13.560016	13.560014	13.560012	1.40	-4.87	1.18	-5.09	1.03	-5.24	0.88	-5.38	100.0
50	100	13.559998	13.559997	13.559996	13.559995	-0.15	-6.42	-0.22	-6.49	-0.29	-6.56	-0.37	-6.64	100.0

9.2.2 Voltage Variation

Reference Frequency: 13.560000 MHz (FCC Stability) /13.560085 MHz (RSS Stability)

Temperature	Voltage	Frequency	Deviation (ppm)				Limit
(Degree C)	(%)		FCC	RSS	Supply V	(+/-) (ppm)	
	85	13.560083	6.12	-0.15	102V	60Hz	100.0
20	100	13.560085	6.27	0.00	120V	60Hz	100.0
	115	13.560084	6.19	-0.07	138V	60Hz	100.0

FCC ID: S8Q-RU2020

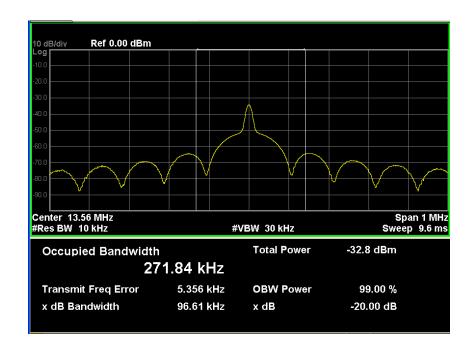
ISED CN and UPN: 4763B-RU2020

9.3 20dB OBW, 99% OBW

Location	Kashima No.1
Test date	July 12, 2016
Test Engineer	Koichi Wagatsuma
Test Procedure	LEN-RJP-TE003

Test Procedure

1 The EUT and test equipment were set up as shown on the following page.


2 Adjust the test instrument for the following setting:

RBW : 1 % to 5 % of the Necessary bandwidth

VBW : at least 3 times the RBW

Detector : Peak
Sweep Time : Auto
Trace mode : Max Hold
3 Allow trace to fully stabilize.

4 Use "Occupied Bandwidth Measurement" function to measure the Occupied Bandwidth.

FCC ID: S8Q-RU2020

ISED CN and UPN: 4763B-RU2020

SECTION 10. LIST OF MEASURING INSTRUMENTS

Test instruments are calibrated according to Quality Manual and Calibration Rules of Intertek Japan K.K.

All measurements equipment used for the measurement is calibrated based on standard.

Each measurement result is traceable to national or international standards. Antenna used for the measurement is calibrated based on the ANSI C63.5.

Instrument	Model No.	Serial No.	Manufacturer	Cal. Interval	Effective period
Conducted disturband	ce at mains terminals			l	ı
LISN	ESH2-Z5	890484/001	ROHDE & SCHWARZ	1 Y	Nov. 30, 2016
10 dB Attenuator	CFA-01	None(KSR00240)	TAMAGAWA	1 Y	Nov. 30, 2016
Coaxial cable	RG-5A/U(14.0 m)	R2	FUJIKURA	1 Y	Feb. 28, 2017
Coaxial cable	10D-2W(7.0 m)	R4	FUJIKURA	1 Y	Feb. 28, 2017
Coaxial cable	RG-5A/U(4.0 m)	R6	FUJIKURA	1 Y	Feb. 28, 2017
Coaxial cable	RG-5A/U(0.6 m)	R7	FUJIKURA	1 Y	Feb. 28, 2017
Coaxial cable	5D-2W(1.2m)	R10	FUJIKURA	1 Y	Feb. 28, 2017
RF Switch	ACX-150	None(A12301501)	Intertek	1 Y	Feb. 28, 2017
EMI Test receiver	N9038A (Firmware Version A.13.58)	MY51210201	Agilent	1 Y	Sep. 30, 2016
Radiated disturbance					
Loop antenna	HFH2-Z2	892665/009	ROHDE & SCHWARZ	1 Y	Oct. 31, 2016
6 dB Attenuator	6806.17.B	4692	HUBER-SUHNER	1 Y	Jan. 31, 2017
Coaxial cable(M1)	5D-2W(8.0 m)	None(KSR00312)	FUJIKURA	1 Y	May 31, 2017
Broad Band antenna	Tri-Log VULB9168WP	288	Schwarzbeck	1 Y	Aug. 31, 2016
6 dB Attenuator	UFA-01	None(A00040805)	TAMAGAWA	1 Y	Feb. 28, 2017
Amplifier	ZX60-3018G	005	Intertek	1 Y	Feb. 28, 2017
Coaxial cable(R11)	5D-2W(8.7 m)	R11	FUJIKURA	1 Y	Feb. 28, 2017
Coaxial cable(R1)	5D-2W(8.0 m)	R1	FUJIKURA	1 Y	Feb. 28, 2017
Coaxial cable(R3)	10D-2W(7.0 m)	R3	FUJIKURA	1 Y	Feb. 28, 2017
Coaxial cable(R5)	RG-5A/U(4.0 m)	R5	FUJIKURA	1 Y	Feb. 28, 2017
Coaxial cable(R7)	RG-5A/U(0.6 m)	R7	FUJIKURA	1 Y	Feb. 28, 2017
Coaxial cable(R10)	5D-2W(1.2 m)	R10	FUJIKURA	1 Y	Feb. 28, 2017
RF Switch	ACX-150	None(A12301501)	Intertek	1 Y	Feb. 28, 2017
EMI Test receiver	N9038A (Firmware Version A.13.58)	MY51210201	Agilent	1 Y	Sep.30, 2016
Site Attenuation				1 Y	Feb. 28, 2017
Double Ridged antenna	3115	5045	Schwarzbeck	1 Y	Mar. 31, 2017
3 dB Attenuator	6803.17.B	KSR00089	SUHNER	1 Y	Feb. 28, 2017
Amplifier (1-18 GHz)	TPA0118-30	0402	TOYO	1 Y	Feb. 28, 2017
Coaxial cable(G1)	SUCOFLEX 104(1.0 m)	229603/4(R14)	SUHNER	1 Y	Feb. 28, 2017
Coaxial cable(G2)	5B-048-98-98-5000(5.0m) 111130(R15)	Candox	1 Y	Feb. 28, 2017
SVSWR	1		ı	1 Y	Oct. 31, 2016
Common				1	1
Testing Software	emiT (Version 3,0,0,0)				

FCC ID: S8Q-RU2020

ISED CN and UPN: 4763B-RU2020

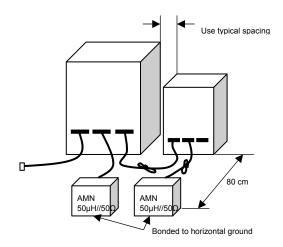
Instrument	Model No.	Serial No.	Manufacturer	Cal. Interval	Effective period
Frequency Tolerance	and OBW	-	-	-	
Spectrum Analyzer	N9000A	MY51260520	Agilent	1 Y	May 31, 17
Digital Multi Meter	8846A	9642018	FLUKE	1 Y	Jul. 31, 16
Temperature Chamber	PL-3F	5103661	Tabai	-	None
Temperature Meter	PC-5000TRH-II	A11999972	Sato	1 Y	Nov. 30, 16
Coil antenna	None	None	Intertek Japan	-	None
GPS Receiver	HP Z3801A	3542A02414	Hewlett Packard	-	None
Coaxial Cable	3D-2V	KSR00100	Daiyu Densen	1 Y	Jan. 31, 17

FCC ID: S8Q-RU2020

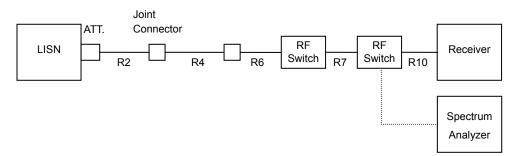
ISED CN and UPN: 4763B-RU2020

ANNEX

FCC ID: S8Q-RU2020


ISED CN and UPN: 4763B-RU2020

A. TEST PROCEDURE(S)


Test was carried out under the following conditions.

Conducted disturbance at mains terminals

Test setup as per standard

Diagram of the measuring instruments

[Preliminary Measurement]

EUT is tested on all operating conditions.

The spectrum analyzer is controlled by the computer program to sweep the frequency range to be measured, then spectrum chart is plotted out to find the worst emission conditions in operating mode and/or configuration decision for the final test.

All leads other than safety ground are tested.

EUT was placed in transmission mode then tested for conducted emissions per 15.207 to ensure the device complies with 15.207 outside the transmitter fundamental emissions band.

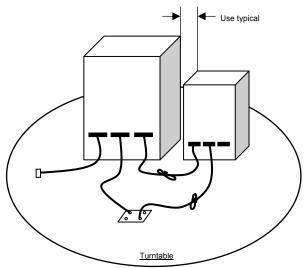
After, with a dummy load in lieu of the antenna from the EUT and only the fundamental emission band was measured to show that the fundamental emission band is in compliance with the 15.207 limits.

*In accordance with "174176 D01 Line Conducted FAQ v01r01"

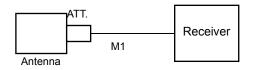
[Final Measurement]

The EUT is operated in the worst emission condition found by the preliminary test.

The equipment and cables are arranged or manipulated within the range of the test standard in the above condition.


At least six highest spectrum are measured in quasi-peak and average (if necessary) using the test receiver.

FCC ID: S8Q-RU2020


ISED CN and UPN: 4763B-RU2020

Radiated disturbance

Test setup as per standard

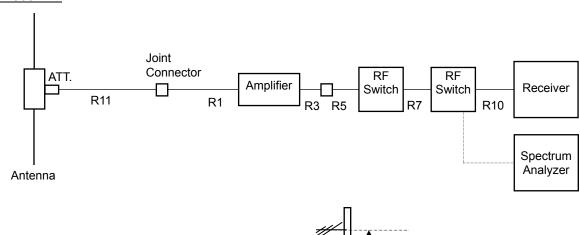
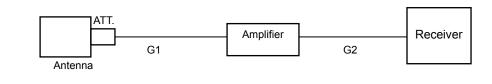
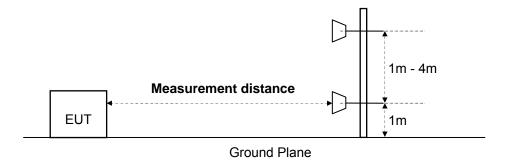


Diagram of the measuring instruments (Below 30MHz)

30-1000MHz




Ground Plane

FCC ID: S8Q-RU2020

ISED CN and UPN: 4763B-RU2020

Above 1GHz

*Measurement distance : See Section 9.1.2

[Preliminary Measurement]

EUT is tested on all operating conditions.

The spectrum analyzer is set max-hold mode and swept during turntable was rotated 0 to 360 degree, And find the worst emission conditions in configuration, operating mode, or ambient noise notation.

[Final Measurement]

The EUT operated in the worst emission condition found by the preliminary test.

The turntable azimuth (EUT direction) and antenna height are adjusted the position so that maximum field strength is obtained for each frequency spectrum to be measured.

The equipment and cables are arranged or manipulated within the range of the test standard in the above condition. At least six highest spectrums are measured by the test receiver (quasi-peak) and spectrum analyzer (peak and average). When the uncertain result was obtained (30 – 1000 MHz), the measurement is retried by using the half wave dipole antenna instead of the broadband antenna.