

Compliance with 47 CFR 15.247(i)

“Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.”

The EUT will only be used with a separation distance of 20 centimeters or greater between the antenna and the body of the user or nearby persons and can therefore be considered a mobile transmitter per 47 CFR 2.1091 (b).

The total transmit power is than 1.5 W (ERP), therefore the EUT is categorically excluded from routine environmental evaluation per 47 CFR 2.1091(c).

The MPE estimates are as follows:

Table 1 in 47 CFR 1.1310 defines the maximum permissible exposure (MPE) for the general population. The exposure level at a 20 cm distance from the EUT's transmitting antenna is calculated using the general equation:

$$S = (PG)/4\pi R^2$$

Where: S = power density (mW/cm^2)

P = power input to the antenna (mW)

G = numeric power gain relative to an isotropic radiator

R = distance to the center of the radiation of the antenna (20 cm = limit for MPE estimates)

PG = EIRP

Solving for S, the maximum power densities 20 cm from the transmitting antennas are summarized in the following tables:

MPE Estimates for Self Co-located Device

FCC ID: S8PTL-C4-B

GSM Radio

Antenna Type	Antenna Part No.	Transmit Frequency (MHz)	Max Peak Conducted Output Power (mW)	Antenna Gain (dBi)	Minimum Antenna Cable Loss (dB)	Power Density @ 20 cm (mW/cm^2)	General Population Exposure Limit from 1.1310 (mW/cm^2)	Ratio of Power Density to the Exposure Limit
Whip	MMC/P3ESMA	1850	1.34	3	0	0.001	1	0.00053
		824	18.49	3	0	0.007	0.55	0.01336

Worst Case Ratio of Power Density to the Exposure Limit = 0.01336

Bluetooth Radio

Antenna Type	Antenna Part No.	Transmit Frequency (MHz)	Max Peak Conducted Output Power (mW)	Antenna Gain (dBi)	Minimum Antenna Cable Loss (dB)	Power Density @ 20 cm (mW/cm^2)	General Population Exposure Limit from 1.1310 (mW/cm^2)	Ratio of Power Density to the Exposure Limit
Whip	MS3E2400SMA	2400	1.91	3	0	0.001	1	0.00076

Worst Case Ratio of Power Density to the Exposure Limit = 0.00076

Worst Case Co-located Exposure Condition

Per Note 24 shown below, the Sum of Worst Case Power Ratios cannot exceed 1.0

GSM Radio Worst Case Ratio of Power Density to the Exposure Limit	Bluetooth Radio Worst Case Ratio of Power Density to the Exposure Limit	Sum of Worst Case Ratios (Power Density to the Exposure Limit)	FCC Limit for Sum of Worst Case Ratios	
0.01336	0.00076	0.01412	1.0	PASS

The results shown in the above table are equivalent to the Sum of the EIRP of the Two Co-located Transmitters (EIRP TX1 + EIRP TX2) compared to the exposure limit. The benefit of this method, is that accounts for transmitters operating at different frequencies against different exposure limits.

Excerpts from TCB Training, April 3, 2002, “Mobile Transmitters”, Slide 6:

“Devices operating in multiple frequency bands

- When RF exposure evaluation is required for TCB approval
 - Separate antennas – estimated minimum separation distances may be considered for the frequency bands that do not require evaluation or TCB approval, however, the estimated distance should take into account the effect of co-located transmitters. (Note 24)

Note 24 According to multiple frequency exposure criteria, the ratio of field strength or power density to the applicable exposure limit at the exposure location should be determined for each transmitter and the sum of these ratios must not exceed 1.0 for the location to be compliant.”

The sum of the worst-case Power Ratios does not exceed 1.0; therefore the exposure condition is compliant with FCC rules.