

Report No.: SZ12090185S01

FCC/IC SAR TEST REPORT

TESTING
CNAS L3572

Issued to

Coby Communications Ltd.

For

Mobile Internet Device

Model Name : MID7060/MID7065
 Trade Name : COBY
 Brand Name : COBY
 FCC ID : S7IMID7065-7060
 IC ID : 5824A-7060MID7065
 Standard : FCC Oet65 Supplement C Jun.2001
 47CFR 2.1093
 ANSI C95.1-1999
 IEEE 1528-2003
 Health Canada's Safety Code 6
 RSS-102 issue 4-2010
 MAX SAR : Body: 1.090 W/kg
 Test date : 2012-10-12
 Issue date : 2012-10-24

Shenzhen MORLAB Communication Technology Co., Ltd.

Tested by Zhu Zhan
 Zhu Zhan
 Date 2012.10.24

Approved by Wu Xuewen
 Wu Xuewen
 Date 2012.10.24

Review by Samuel Peng
 Samuel Peng
 Date 2012.10.24

CTIA Authorized Test Lab
 LAB CODE 20081223-00
 IEEE 1725

OFITA
 OTA
 電訊管理局

TAF
 Testing Laboratory

GCF
 Official Observer of
 Global Certification Forum

Bluetooth

FCC
 Reg. No.
 741109

The report refers only to the sample tested and does not apply to the bulk. This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen MORLAB Communication Technology Co., Ltd. It may not be reproduced either in its entirety or in part and it may not be used for advertising. The client to whom the report is issued may, however, show or send it, or a certified copy thereof prepared by the Shenzhen MORLAB Telecommunication Co., Ltd to his GPRS. Supplier or others persons directly concerned. Shenzhen MORLAB Telecommunication Co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report. In the event of the improper use of the report, Shenzhen MORLAB Telecommunication Co., Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

DIRECTORY

DIRECTORY.....	2
TESTING LABORATORY.....	4
1.1. Identification of the Responsible Testing Laboratory.....	4
1.2. Identification of the Responsible Testing Location.....	4
1.3. Accreditation Certificate.....	4
1.4. List of Test Equipments.....	4
2. TECHNICAL INFORMATION.....	5
2.1. Identification of Applicant.....	5
2.2. Identification of Manufacturer.....	5
2.3. Equipment Under Test (EUT).....	5
2.3.1. Photographs of the EUT.....	5
2.3.2. Identification of all used EUT.....	5
2.4. Applied Reference Documents.....	6
2.5. Device Category and SAR Limits.....	6
2.6. Test Environment/Conditions.....	7
3. SPECIFIC ABSORPTION RATE (SAR).....	8
3.1. Introduction.....	8
3.2. SAR Definition.....	8
4. SAR MEASUREMENT SETUP.....	9
4.1. The Measurement System.....	9
4.2. Probe.....	9
4.3. Probe Calibration Process.....	11
4.3.1 Dosimetric Assessment Procedure.....	11
4.3.2 Free Space Assessment Procedure.....	11
4.3.2 Temperature Assessment Procedure.....	11
4.4. Phantom.....	12
4.5. Device Holder.....	12
5. TISSUE SIMULATING LIQUIDS.....	13
6. UNCERTAINTY ASSESSMENT.....	15
6.1. UNCERTAINTY EVALUATION FOR EUT SAR TEST.....	15
6.2. UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK.....	16
7. SAR MEASUREMENT EVALUATION.....	18

7.1. System Setup.....	18
7.2. Validation Results.....	19
8. OPERATIONAL CONDITIONS DURING TEST.....	20
8.1. Body-worn Configurations.....	20
8.2. Measurement procedure.....	20
8.3. Description of interpolation/extrapolation scheme.....	21
9. Measurement Of Conducted Peak Output Power.....	22
10. TEST RESULTS LIST.....	23
ANNEX A EUT SETUP PHOTOS.....	24
ANNEX B GRAPH TEST RESULTS.....	27

Change History		
Issue	Date	Reason for change
1.0	Oct. 24 ,2012	First edition

Testing Laboratory

1.1. Identification of the Responsible Testing Laboratory

Company Name: Shenzhen Morlab Communications Technology Co., Ltd.
Department: Morlab Laboratory
Address: 3/F, Electronic Testing Building, Shahe Road, Nanshan District, Shenzhen, 518055 P. R. China
Responsible Test Lab Manager: Mr. Shu Luan
Telephone: +86 755 86130268
Facsimile: +86 755 86130218

1.2. Identification of the Responsible Testing Location

Name: Shenzhen Morlab Communications Technology Co., Ltd.
Morlab Laboratory
Address: 3/F, Electronic Testing Building, Shahe Road, Nanshan District, Shenzhen, 518055 P. R. China

1.3. Accreditation Certificate

Accredited Testing Laboratory: No. CNAS L3572

1.4. List of Test Equipments

No.	Instrument	Type	Cal. Date	Cal. Due
1	PC	Dell (Pentium IV 2.4GHz, SN:X10-23533)	(n.a)	(n.a)
2	Network Emulator	Rohde&Schwarz (CMU200, SN:105894)	2012-9-26	1year
3	Network Analyzer	Agilent (E5071B SN:MY42404762)	2012-9-26	1year
4	Voltmeter	Keithley (2000, SN:1000572)	2012-9-24	1year
5	Signal Generator	Rohde&Schwarz (SMP_02)	2012-9-24	1year
6	Amplifier	PRANA (Ap32 SV125AZ)	2012-9-24	1year
7	Power Meter	Rohde&Schwarz (NRVD, SN:101066)	2012-9-24	1year
8	Directional coupler	Giga-tronics(SN:1829112)	2012-9-24	1year
9	Probe	Satimo (SN:SN_3708_EP80)	2012-10-4	1year
10	DAE	Satimo (SN 35/08 SUPR31)	2012-9-24	1year
11	Dielectric Probe Kit	Agilent (85033E)	2012-9-24	1year
12	Phantom	Satimo (SN:SN_36_08_SAM62)	2012-9-24	1year
13	Liquid	Satimo (Last Calibration: 2012-10-17)	N/A	N.A
14	Dipole 2450MHz	Satimo (SN 36/08 DIPJ 103)	2012-10-5	1year

2. Technical Information

Note: the following data is based on the information by the applicant.

2.1. Identification of Applicant

Company Name: Coby Communications Ltd.
Address: Unit C-E, 8/F, PO Shau Centre, 115 How Ming Street, Kwun Tong
Kowloon, Hong Kong

2.2. Identification of Manufacturer

Company Name: ShenZhen COBY Communications Ltd
Address: Block 2 ~ 3, TaoXia 2nd Industrial Zone, LongHua Town, BaoAn
District, ShenZhen City GuangDong Province P.R. China

2.3. Equipment Under Test (EUT)

Model Name: MID7060/MID7065
Trade Name: COBY
Brand Name: COBY
Hardware Version: EM_MID7060/MID7065_V3.0
Software Version: 4.0.4
Frequency Bands: WIFI802.11 B/G/N; Bluetooth
Modulation Mode: WIFI802.11B: DSSS; WIFI802.11G: OFDM;
WIFI802.11N: OFDM;
Bluetooth:GFSK/Π/4-DQPSK/8-DPSK
Antenna type: Fixed Internal Antenna
Development Stage: Identical prototype
Battery Model: TCL-D3572102Q01
Battery specification: 3.7V, 3100mAh

2.3.1. Photographs of the EUT

Please see for photographs of the EUT.

2.3.2. Identification of all used EUT

The EUT identity consists of numerical and letter characters, the letter character indicates the test sample, and the following two numerical characters indicate the software version of the test sample.

EUT Identity	Hardware Version	Software Version
1#	EM_MID7060/MID7065_V3.0	4.0.4

2.4. Applied Reference Documents

Leading reference documents for testing:

No.	Identity	Document Title
1	47 CFR§2.1093	Radiofrequency Radiation Exposure Evaluation: Portable Devices
2	FCC OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01)	Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields
3	ANSI C95.1-1999	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300 GHz
4	IEEE 1528-2003	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate(SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.
6	Health Canada's Safety Code 6	Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range from 3 kHz to 300 GHz - Safety Code 6 (2009)
7	RSS-102, Issue 4-2010	Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands)
8	KDB 616217 D03	SAR Evaluation Considerations for Laptop/Notebook/Netbook and Tablet Computers
9	KDB 447498 D01	Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies
10	KDB 248227 D01	SAR Measurement Procedures for 802.11a/b/g Transmitters

2.5. Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

2.6. Test Environment/Conditions

Normal Temperature (NT):	20 ... 25 °C
Relative Humidity:	30 ... 75 %
Air Pressure:	980 ... 1020 hPa
Test frequency:	WIFI 802.11B/G/N
Operation mode:	Call established
Power Level:	WIFI Maximum output power

During SAR test, EUT is in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established.

During WIFI SAR test, the EUT was located at channel 1, 6, 11. And EUT was commanded to operate at maximum transmitting power.

The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset.

The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the handset by at least 35 dB.

Engineering testing software installed on the EUT can provide continuous transmitting RF signal. The RF signal utilized in SAR measurement has almost 100% duty cycle, and its crest factor is 1.

3. Specific Absorption Rate (SAR)

3.1. Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

3.2. SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density. ρ). The equation description is as below:

$$\text{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$\text{SAR} = C \frac{\delta T}{\delta t}$$

, where C is the specific heat capacity, δT is the temperature rise and δt the exposure duration, or related to the electrical field in the tissue by

$$\text{SAR} = \frac{\sigma |E|^2}{\rho}$$

, where σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

4. SAR Measurement Setup

4.1. The Measurement System

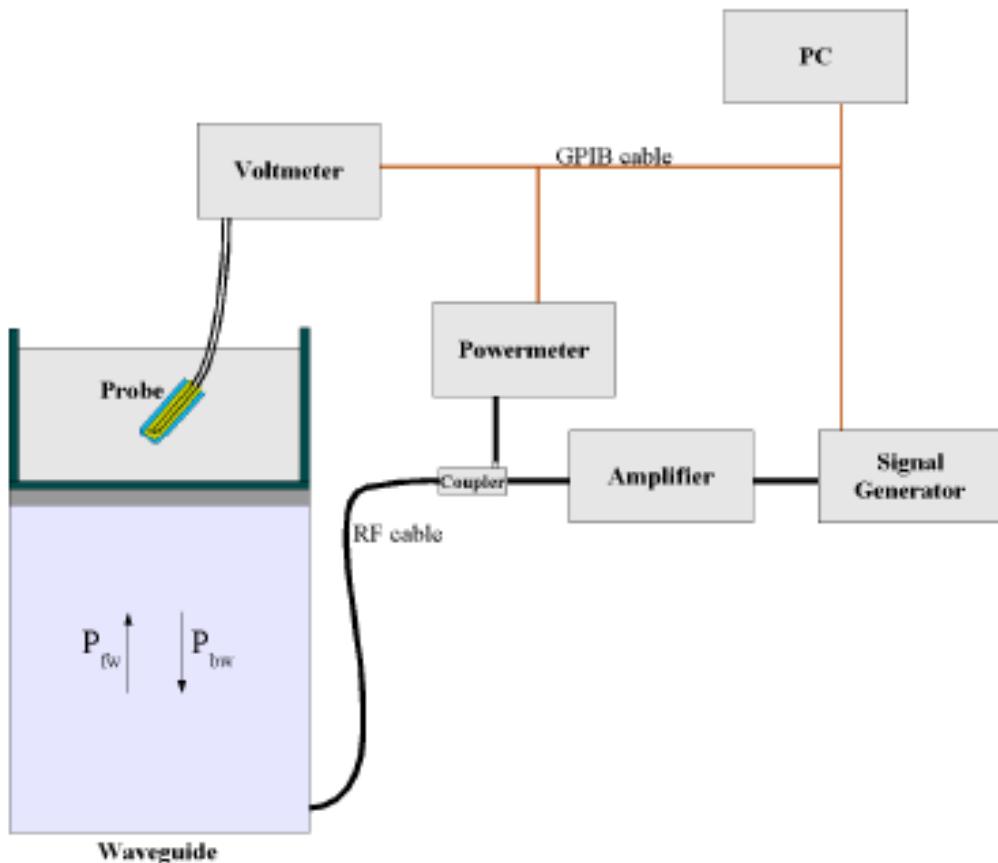
Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

4.2. Probe


For the measurements the Specific Dosimetric E-Field Probe SN 37/08 EP80 with following specifications is used

- Dynamic range: 0.01-100 W/kg
- Tip Diameter : 6.5 mm
- Distance between probe tip and sensor center: 2.5mm
- Distance between sensor center and the inner phantom surface: 4 mm
(repeatability better than +/- 1mm)

- Probe linearity: <0.25 dB
- Axial Isotropy: <0.25 dB
- Spherical Isotropy: <0.25 dB
- Calibration range: 835 to 2500MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Probe calibration is realized, in compliance with CENELEC EN 62209 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 62209-1 annex technique using reference guide at the five frequencies.

$$SAR = \frac{4(P_{fw} - P_{bw})}{ab\delta} \cos^2\left(\pi \frac{y}{a}\right) e^{-(2z/\delta)}$$

Where :

- Pfw = Forward Power
- Pbw = Backward Power
- a and b = Waveguide dimensions
- δ = Skin depth
- Keithley configuration:

Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO
 After each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

$$CF(N) = SAR(N) / V_{lin}(N) \quad (N=1,2,3)$$

The linearised output voltage $V_{lin}(N)$ is obtained from the displayed output voltage $V(N)$ using

$$V_{lin}(N) = V(N) * (1 + V(N) / DCP(N)) \quad (N=1,2,3)$$

where DCP is the diode compression point in mV.

4.3. Probe Calibration Process

4.3.1 Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. SATIMO Probe calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an with CALISAR, Antenna proprietary calibration system.

4.3.2 Free Space Assessment Procedure

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

4.3.2 Temperature Assessment Procedure

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

Where:

$$SAR = C \frac{\Delta T}{\Delta t}$$

Δt = exposure time (30 seconds),

C = heat capacity of tissue (brain or muscle),

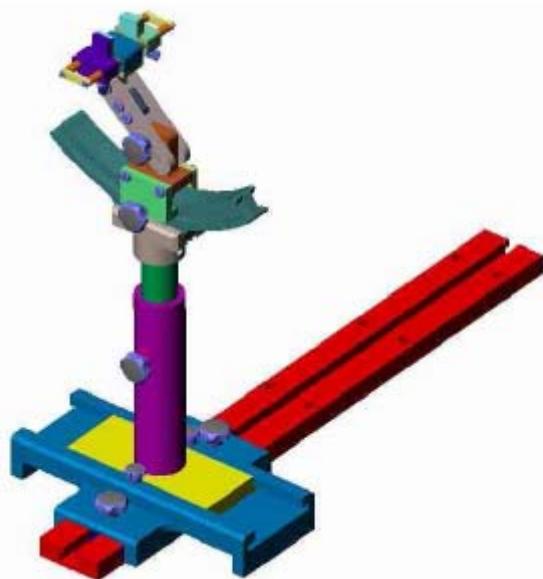
ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T / \Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

$$SAR = \frac{|E|^2 \cdot \sigma}{\rho}$$

Where:

σ = simulated tissue conductivity,


ρ = Tissue density (1.25 g/cm³ for brain tissue)

4.4. Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

4.5. Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1°.

Device holder

System Material	Permittivity	Loss Tangent
Delrin	3.7	0.005

5. Tissue Simulating Liquids

Simulant liquids that are used for testing at frequencies of 2450MHz. which are made mainly of sugar, salt and water solutions may be left in the phantoms. Approximately 20litres are needed for an upright head compared to about 25 litres for a horizontal bath phantom. The liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is or from the flat phantom to the liquid top surface is 15cm.

Following are the recipes for one liter of head and body tissue simulating liquid for frequency band 2450 MHz.

Ingredients (% by weight)	Frequency Band
	2450MHz
Tissue Type	Body
Water	73.2
Salt(NaCl)	0.04
Sugar	0.0
HEC	0.0
Bactericide	0.0
Triton	0.0
DGBE	0.0
Acticide SPX	26.7
Dielectric Constant	52.7
Conductivity (S/m)	1.97

Recipes for Tissue Simulating Liquid

Table 1: Dielectric Performance of Body Tissue Simulating Liquid

Temperature: 22.0~23.8°C, humidity: 54~60%.			
Frequency	Description	Permittivity ϵ	Conductivity σ (S/m)
2450MHz	Reference result per OET65 ±5% window	52.7 50.635 to 55.965	1.95 1.853 to 2.048
	Reference result per probe calibration ±5% window	52.5 49.875 to 55.125	1.78 1.691 to 1.869
	Validation value (Oct. 17)	52.548876	1.853978

Note:1.The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85033E Dielectric Probe Kit and an Agilent Network Analyzer.

2.For body-worn measurements, the device was tested against flat phantom representing the user body. Under measurement phone was put on in the phone holder.

3. Per KDB 450824 D01, tissue used during test are within 5% tolerances of probe calibration report, and also within 5% of the target dielectric parameters for OET65.

"when the actual tissue dielectric parameters are recorded for the probe calibration, the differences for ϵ and σ between probe calibration and routine measurements should each be $\leq 5\%$ while satisfying the required $\pm 5\%$ tolerances in target dielectric parameters. "(KDB 450824 D01)

6. Uncertainty Assessment

The following table includes the uncertainty table of the IEEE 1528. The values are determined by Antennessa.

6.1. UNCERTAINTY EVALUATION FOR EUT SAR TEST

a	b	c	d	e= f(d,k)	f	g	h= c*f/e	i= c*g/e	k
Uncertainty Component	Sec.	Tol (+-)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-)	Vi
Measurement System									
Probe calibration	E.2.1	4.76	N	1	1	1	4.76	4.76	∞
Axial Isotropy	E.2.2	2.5	R	$\sqrt{3}$	0.7	0.7	1.01	1.01	∞
Hemispherical Isotropy	E.2.2	4.0	R	$\sqrt{3}$	0.7	0.7	1.62	1.62	∞
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	E.2.4	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	∞
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Readout Electronics	E.2.6	0.02	N	1	1	1	0.02	0.02	∞
Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	∞
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioner Mechanical Tolerance	E.6.2	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	∞
Probe positioning with respect to Phantom Shell	E.6.3	0.05	R	$\sqrt{3}$	1	1	0.03	0.03	∞
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	E.5.2	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	∞
Test sample Related									
Test sample positioning	E.4.2.1	0.03	N	1	1	1	0.03	0.03	N-1
Device Holder Uncertainty	E.4.1.1	5.00	N	1	1	1	5.00	5.00	N-1
Output power Power drift - SAR drift measurement	6.6.2	4.04	R	$\sqrt{3}$	1	1	2.33	2.33	∞
Phantom and Tissue Parameters									
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	0.05	R	$\sqrt{3}$	1	1	0.03	0.03	∞
Liquid conductivity - deviation	E.3.2	4.57	R	$\sqrt{3}$	0.64	0.43	1.69	1.13	∞

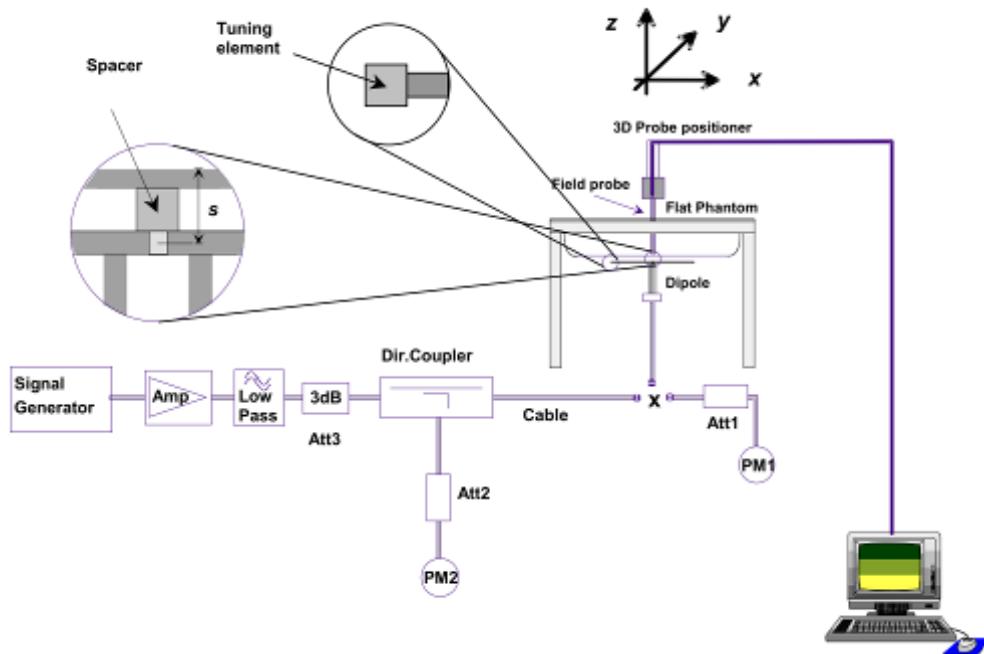
from target value									
Liquid conductivity - measurement uncertainty	E.3.3	5.00	N	1	0.64	0.43	3.20	2.15	M
Liquid permittivity - deviation from target value	E.3.2	3.69	R	$\sqrt{3}$	0.6	0.49	1.28	1.04	∞
Liquid permittivity - measurement uncertainty	E.3.3	10.00	N	1	0.6	0.49	6.00	4.90	M
Combined Standard Uncertainty			RSS				11.55	10.67	
Expanded Uncertainty (95% Confidence interval)			K=2				23.11	21.33	

6.2. UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK

a	b	c	d	e= f(d,k)	f	g	h= c*f/e	i= c*g/e	k
Uncertainty Component	Sec.	Tol (+-%)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	Vi
Measurement System									
Probe calibration	E.2.1	4.76	N	1	1	1	4.76	4.76	∞
Axial Isotropy	E.2.2	2.5	R	$\sqrt{3}$	0.7	0.7	1.01	1.01	∞
Hemispherical Isotropy	E.2.2	4.0	R	$\sqrt{3}$	0.7	0.7	1.62	1.62	∞
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	E.2.4	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	∞
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Readout Electronics	E.2.6	0.02	N	1	1	1	0.02	0.02	∞
Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	∞
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioner Mechanical Tolerance	E.6.2	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	∞
Probe positioning with respect to Phantom Shell	E.6.3	0.05	R	$\sqrt{3}$	1	1	0.03	0.03	∞
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	E.5.2	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	∞
Dipole									
Dipole axis to liquid Distance	8,E.4.2	1.00	N	$\sqrt{3}$	1	1	0.58	0.58	∞
Input power and SAR drift	8,6.6.2	4.04	R	$\sqrt{3}$	1	1	2.33	2.33	∞

measurement									
Phantom and Tissue Parameters									
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	0.05	R	$\sqrt{3}$	1	1	0.03	0.03	∞
Liquid conductivity - deviation from target value	E.3.2	4.57	R	$\sqrt{3}$	0.64	0.43	1.69	1.13	∞
Liquid conductivity - measurement uncertainty	E.3.3	5.00	N	$\sqrt{3}$	0.64	0.43	1.85	1.24	M
Liquid permittivity - deviation from target value	E.3.2	3.69	R	$\sqrt{3}$	0.6	0.49	1.28	1.04	∞
Liquid permittivity - measurement uncertainty	E.3.3	10.00	N	$\sqrt{3}$	0.6	0.49	3.46	2.83	M
Combined Standard Uncertainty			RSS				8.83	8.37	
Expanded Uncertainty (95% Confidence interval)			K=2				17.66	16.7	3

7. SAR Measurement Evaluation


7.1. System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 2450MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom.

Equipments:

name	Type and specification
Signal generator	Rohde&Schwarz (SMP_02)
Directional coupler	Giga-tronics(SN:1829112)
Amplifier	PRANA (Ap32 SV125AZ)
Reference dipole	2450MHz:SN 36/08 DIPJ 103

System Verification Setup Block Diagram

7.2. Validation Results

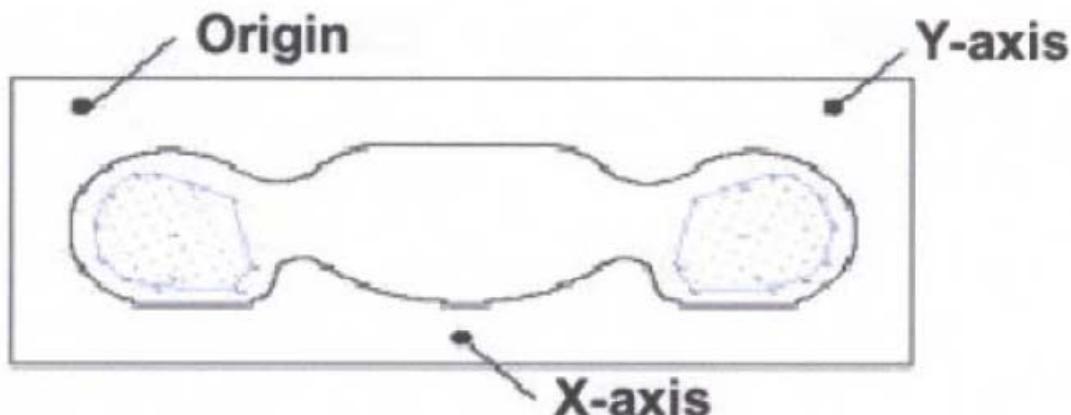
Comparing to the original SAR value provided by SATIMO, the validation data should be within its specification of 10 %.

Frequency	2450MHz(Body)
Target value (1g)	53.590 W/Kg
250 mW input power	12.789 W/Kg
Test value (1g)	51.156W/Kg

Note: System checks the specific test data please see page 38~39.

8. Operational Conditions During Test

The EUT antenna and battery are those specified by the manufacturer. The battery is fully charged before each measurement. The output power and frequency are controlled using a base station simulator. The EUT is set to transmit at its highest output peak power level.


Remark: Please refer to Appendix B for the test setup photos.

8.1. Body-worn Configurations

The body-worn configurations shall be tested with the supplied accessories (belt-clips, holsters, etc.) attached to the device in normal use configuration.

The depth of the body tissue was 15.1cm. The distance between the back of the device and the bottom of the flat phantom is 1.5cm(taking into account of the IEEE 1528 and the place of the antenna)

For body-worn and other configurations a flat phantom shall be used which is comprised of material with electrical properties similar to the corresponding tissues.

SAR Measurement Points in Area Scan

8.2. Measurement procedure

The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors can not directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.

- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

8.3. Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

9.Measurement Of Conducted Peak Output Power.

1. Wifi peak output power

Band	Channel	Frequency (MHz)	Output Power(dBm)		
			802.11B (DSSS)	802.11G (OFDM)	802.11N20 (OFDM)
WiFi	1	2412	13.88	12.45	11.37
	6	2437	13.93	12.67	11.58
	11	2462	14.13	12.82	11.63

2. Bluetooth peak output power

Band	Channel	Frequency (MHz)	Output Power(dBm)		
			GFSK	$\Pi/4$ -DQPSK	8-DPSK
BT	0	2402	7.885	7.754	8.111
	38	2441	5.638	5.121	5.420
	79	2480	2.160	1.488	1.935

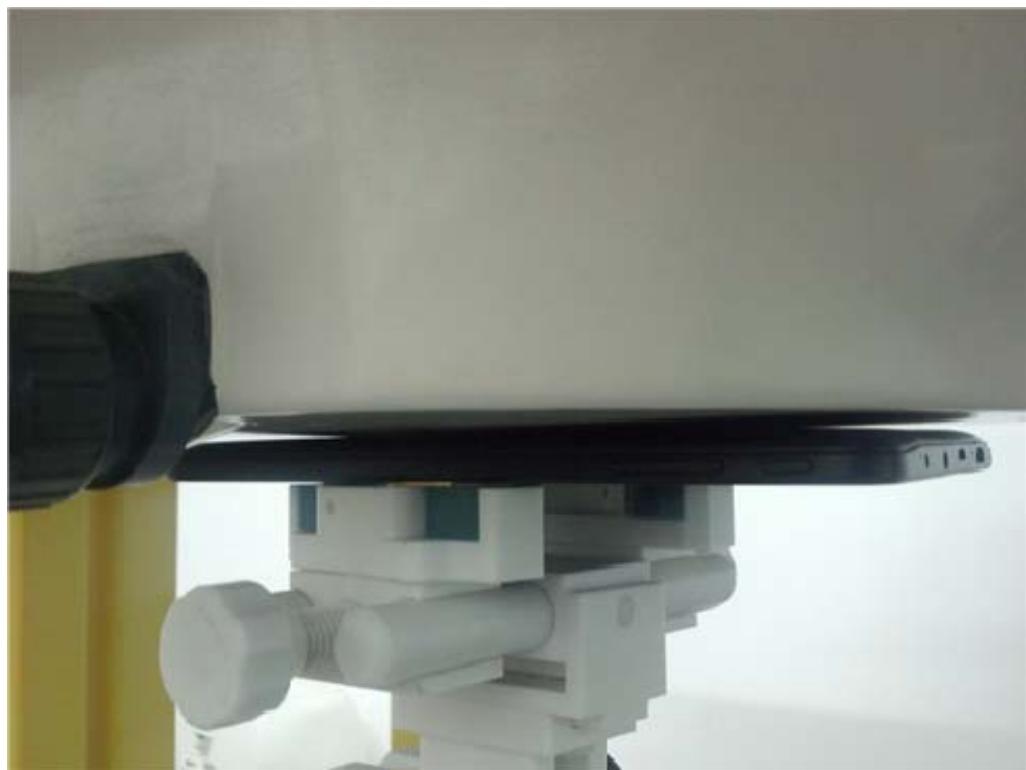
10. Test Results List

Summary of Measurement Results (WLAN 802.11 Band)

Temperature: 21.0~23.8°C, humidity: 54~60%.						
Phantom Configurations	Description			SAR(W/Kg), 1g Peak	Scaling Factor	Scaled SAR(W/Kg), 1g Peak
	Device Test Positions	Mode	Channel			
Body (direct touch)	Face upward	B	11	0.373	1.122	0.419
	Back Upward			0.512		0.574
	EDGE A		1	1.034	1.189	1.229
			6	0.974	1.175	1.144
			11	1.090	1.122	1.223

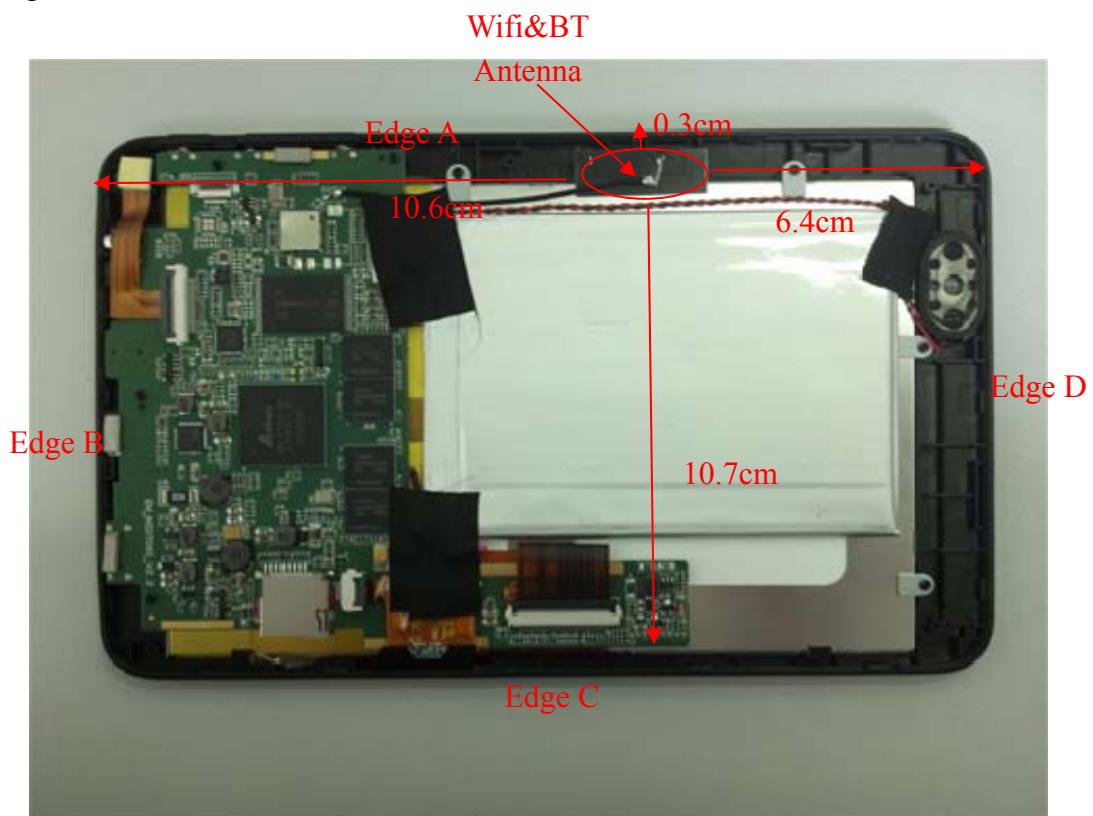
Note:

- 1.Based on the Measurement Of Conducted Peak Output Power, the max power of 801.11b is 26mW> 24mW(13.8dBm) ,the SAR test for 802.11b is required, 802.11g/HT20 is not required , for the maximum average output power is less than 1/4 dB higher than measured on the corresponding 802.11b channels; Bluetooth SAR is not required for the max power of BT is 6mW< 24 mW. (60/f(GHz)mW)
2. The SAR is performed on the highest power channel, refer to KDB 447498, when the SAR of highest power channel of each configurations is less than 0.8 W/kg, testing for the other channels is not required.
3. According to KDB 447498 4)b)ii)(2), for each antenna, SAR is only required for the edge with the most conservative exposure condition. Edge B&C&D are not required to test(please refer to EUT test setup photo), for antenna-to-edge distance is greater than 5cm.
4. Simultaneous Transmission SAR evaluation is not required for BT and WiFi, because they share the same antenna.
- 5.Scaled SAR calculation


Band	Turn up Power (dBm)	SAR test Channel Power (dBm)	Scaling Factor
802.11B band	14.13 ±0.5	13.88(low)	1.189
		13.93(middle)	1.175
		14.13(high)	1.122

Annex A EUT Setup Photos

1. Face upward


2. Back upward

3. EDGE A

Edge configuration

Liquid Level Photo

Annex B Graph Test Results

<u>BAND</u>	<u>PARAMETERS</u>
<u>WIFI</u> <u>802.11B</u>	<u>Measurement 1:</u> Flat Plane with Body device position on High channel (Face upward) <u>Measurement 2:</u> Flat Plane with Body device position on High channel (Back upward) <u>Measurement 3:</u> Flat Plane with Body device position on Low channel (Edge A) <u>Measurement 4:</u> Flat Plane with Body device position on Middle channel (Edge A) <u>Measurement 5:</u> Flat Plane with Body device position on High channel (Edge A)

MEASUREMENT 1

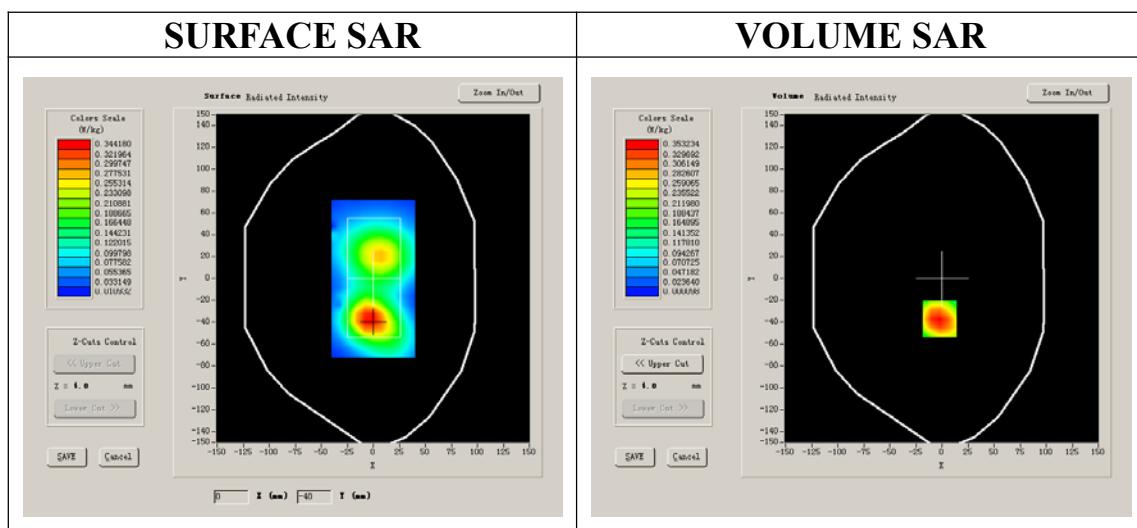
Type: Phone measurement (Complete)

Area scan resolution: $dx=8\text{mm}, dy=8\text{mm}$

Zoom scan resolution: $dx=8\text{mm}, dy=8\text{mm}, dz=5\text{mm}$

Date of measurement: 17/10/2012

Measurement duration: 9 minutes 5 seconds

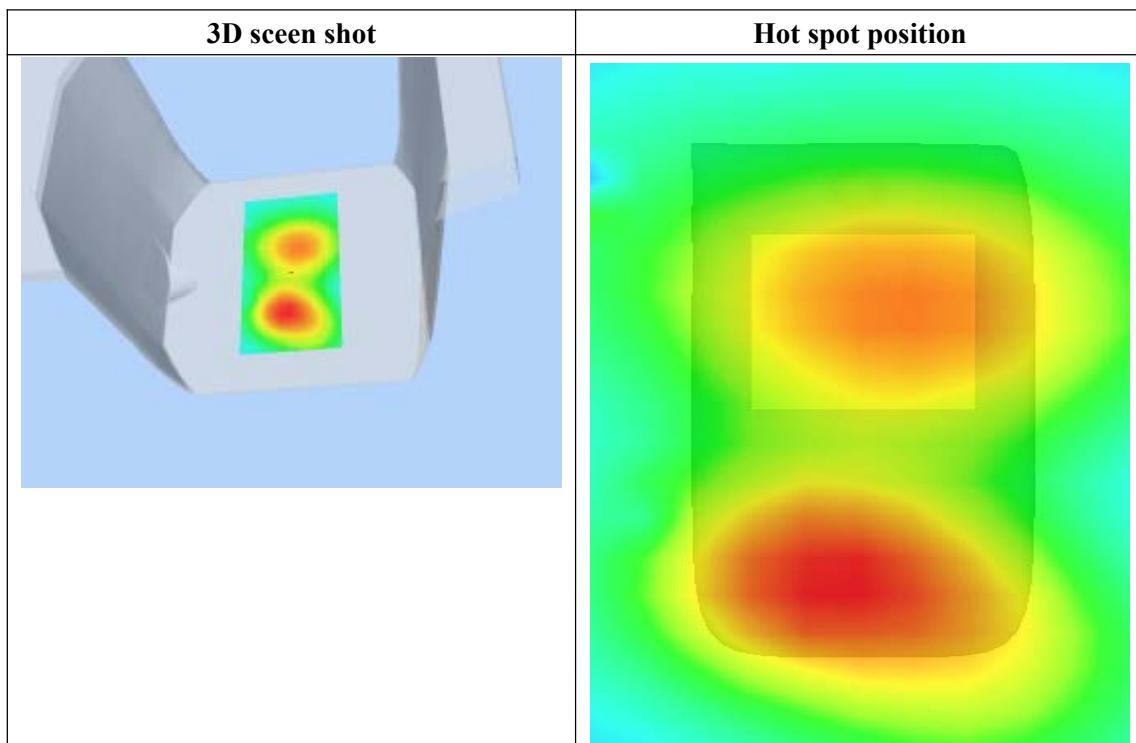
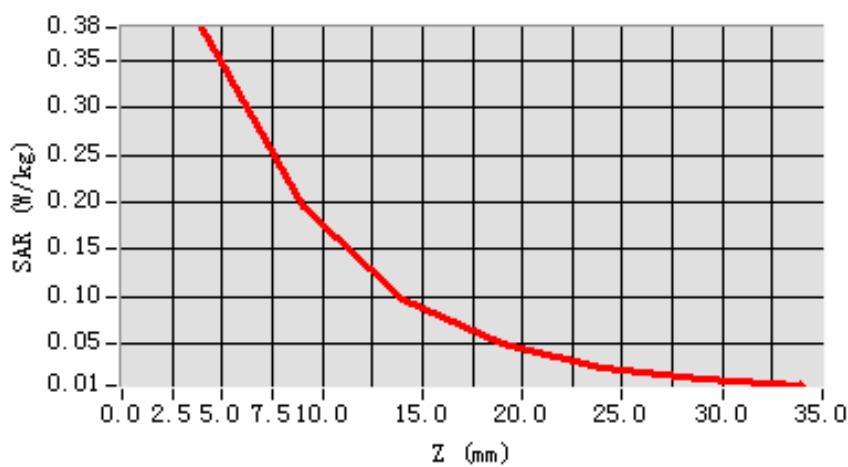

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	802.11B
Channels	High
Signal	Duty Cycle: 1.00

B. SAR Measurement Results

Higher band SAR (channel 11):

Frequency (MHz)	2462.000000
Relative permittivity (real part)	52.548876
Relative permittivity	12.991650
Conductivity (S/m)	1.853978
Power drift (%)	1.080000
Ambient Temperature:	22.6°C
Liquid Temperature:	22.3°C
ConvF:	39.772,33.946,37.835
Crest factor:	1:1



Maximum location: X=-2.00, Y=-37.00

SAR 10g (W/Kg)	0.197220
SAR 1g (W/Kg)	0.372706

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	0.3846	0.1964	0.0968	0.0495	0.0256	0.0132

SAR, Z Axis Scan (X = -2, Y = -37)

MEASUREMENT 2

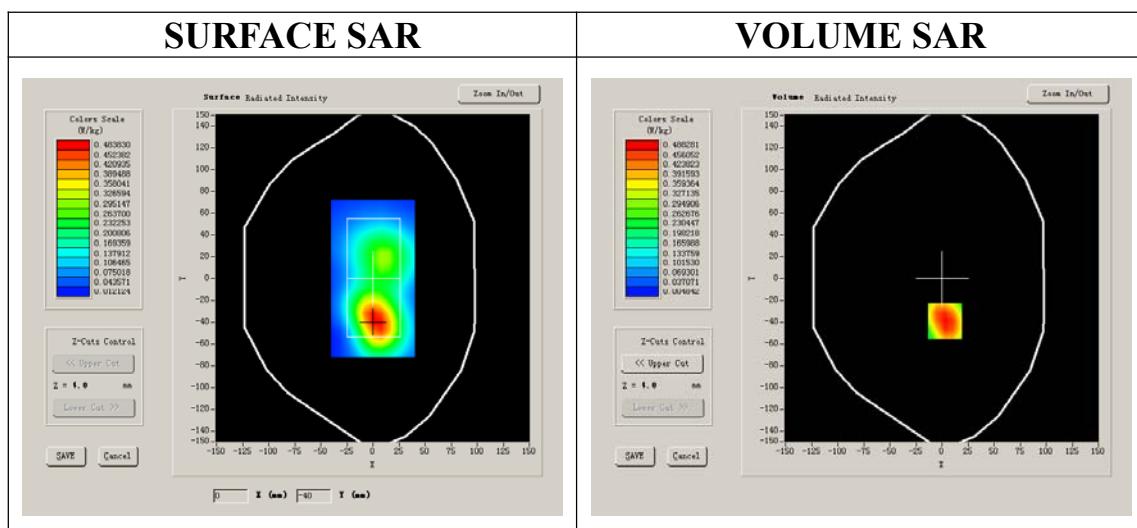
Type: Phone measurement (Complete)

Area scan resolution: $dx=8\text{mm}, dy=8\text{mm}$

Zoom scan resolution: $dx=8\text{mm}, dy=8\text{mm}, dz=5\text{mm}$

Date of measurement: 17/10/2012

Measurement duration: 9 minutes 4 seconds

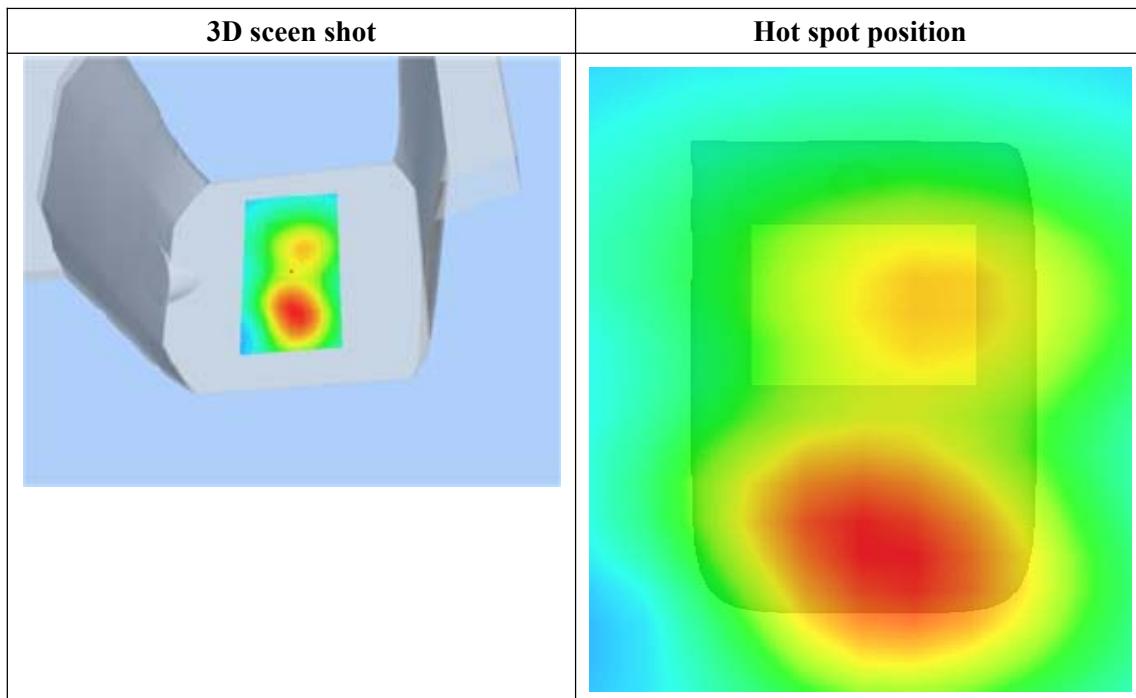

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	802.11B
Channels	High
Signal	Duty Cycle: 1.00

B. SAR Measurement Results

Higher band SAR (channel 11):

Frequency (MHz)	2462.000000
Relative permittivity (real part)	52.548876
Relative permittivity	12.991650
Conductivity (S/m)	1.853978
Power drift (%)	1.070000
Ambient Temperature:	22.6°C
Liquid Temperature:	22.3°C
ConvF:	39.772,33.946,37.835
Crest factor:	1:1


Maximum location: X=3.00, Y=-39.00

SAR 10g (W/Kg)	0.278277
SAR 1g (W/Kg)	0.512319

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	0.5317	0.2680	0.1383	0.0680	0.0281	0.0180

SAR, Z Axis Scan (X = 3, Y = -39)

MEASUREMENT 3

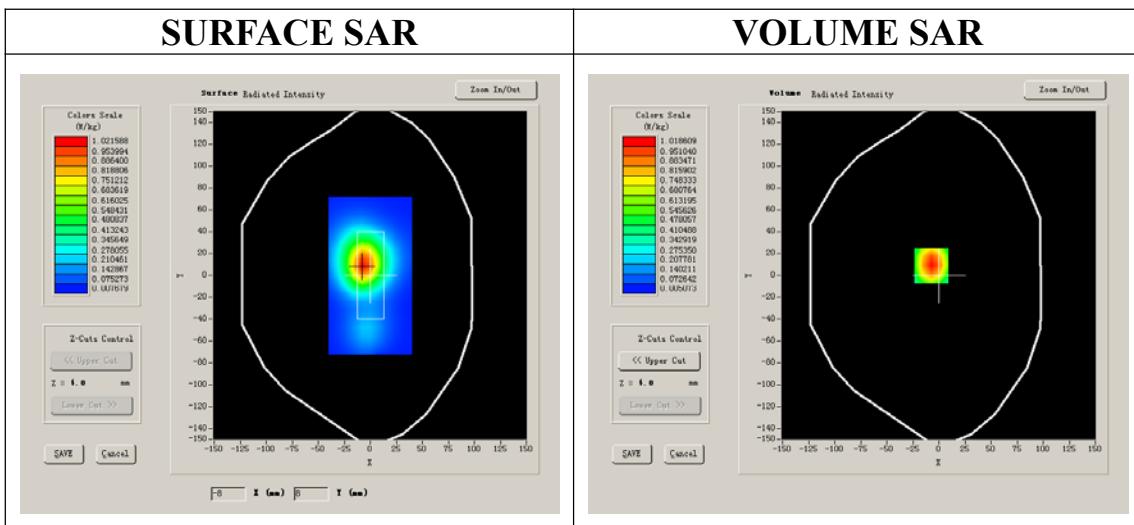
Type: Phone measurement (Complete)

Area scan resolution: $dx=8\text{mm}, dy=8\text{mm}$

Zoom scan resolution: $dx=8\text{mm}, dy=8\text{mm}, dz=5\text{mm}$

Date of measurement: 17/10/2012

Measurement duration: 9 minutes 4 seconds

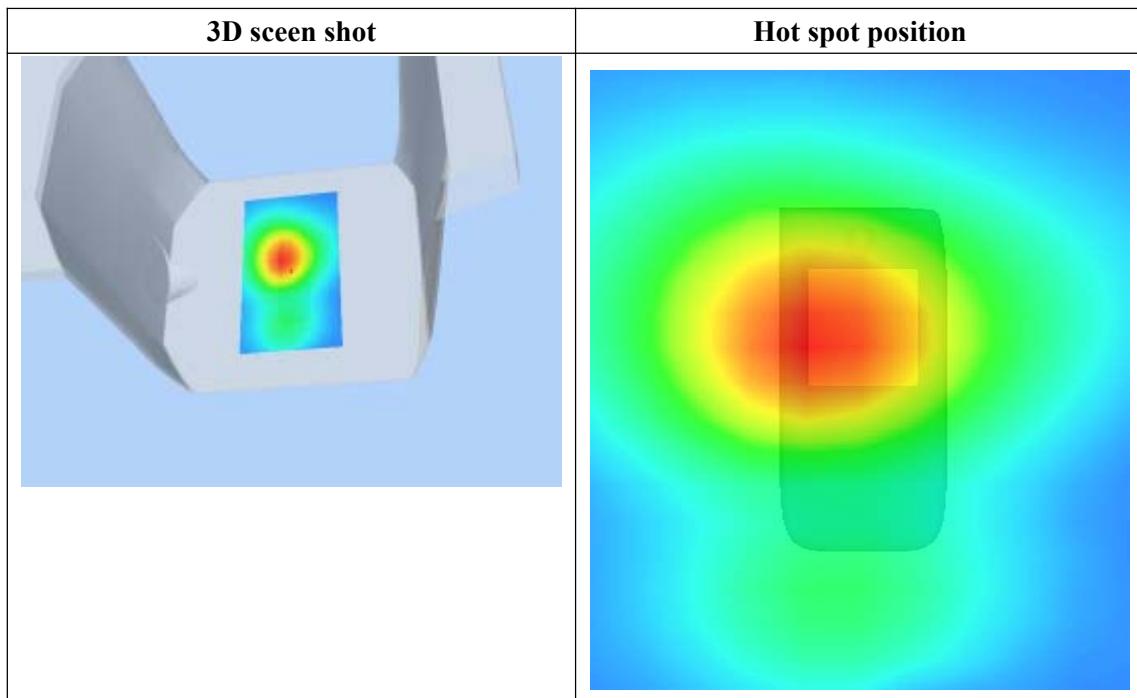
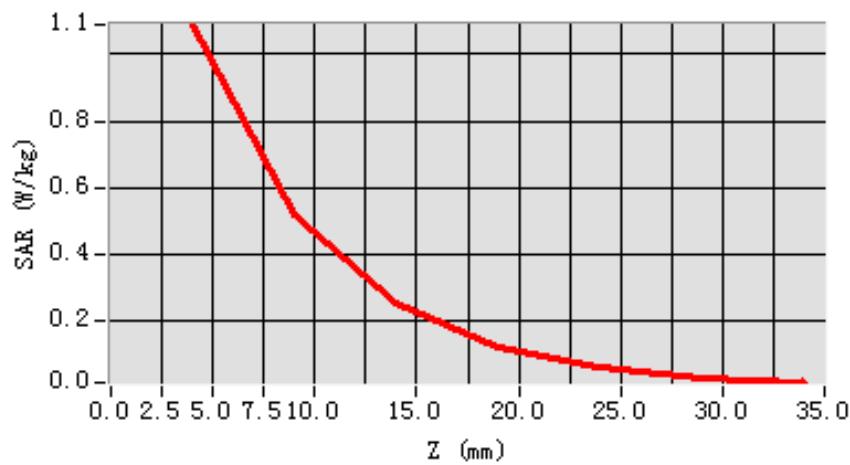

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	802.11B
Channels	Low
Signal	Duty Cycle: 1.00

B. SAR Measurement Results

Lower band SAR (channel 1):

Frequency (MHz)	2412.000000
Relative permittivity (real part)	52.548876
Relative permittivity	12.991650
Conductivity (S/m)	1.853978
Power drift (%)	-0.570000
Ambient Temperature:	22.6°C
Liquid Temperature:	22.3°C
ConvF:	39.772,33.946,37.835
Crest factor:	1:1



Maximum location: X=-7.00, Y=9.00

SAR 10g (W/Kg)	0.527242
SAR 1g (W/Kg)	1.034094

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	1.0893	0.5193	0.2525	0.1245	0.0595	0.0282

SAR, Z Axis Scan (X = -7, Y = 9)

MEASUREMENT 4

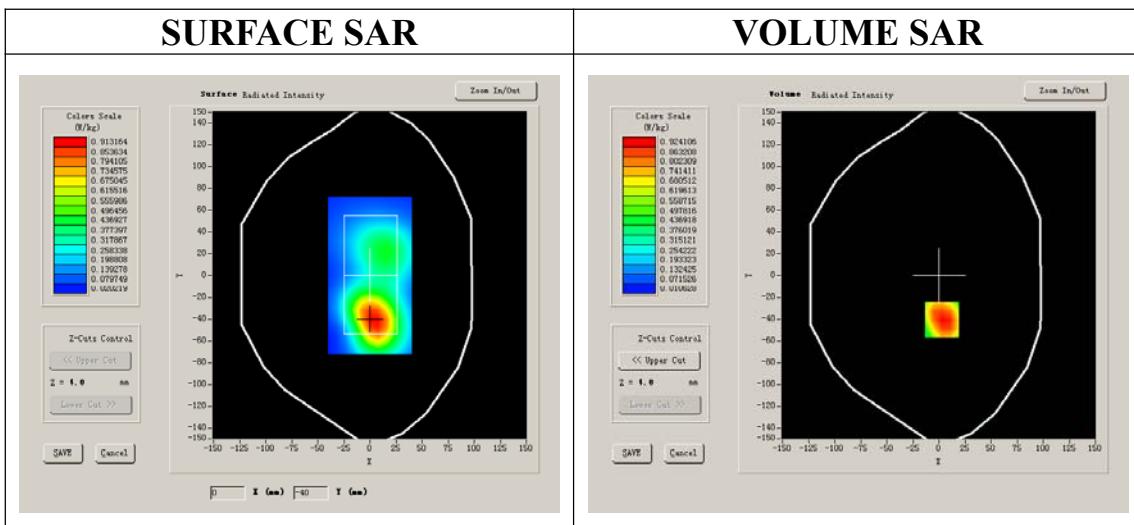
Type: Phone measurement (Complete)

Area scan resolution: $dx=8\text{mm}, dy=8\text{mm}$

Zoom scan resolution: $dx=8\text{mm}, dy=8\text{mm}, dz=5\text{mm}$

Date of measurement: 17/10/2012

Measurement duration: 9 minutes 4 seconds

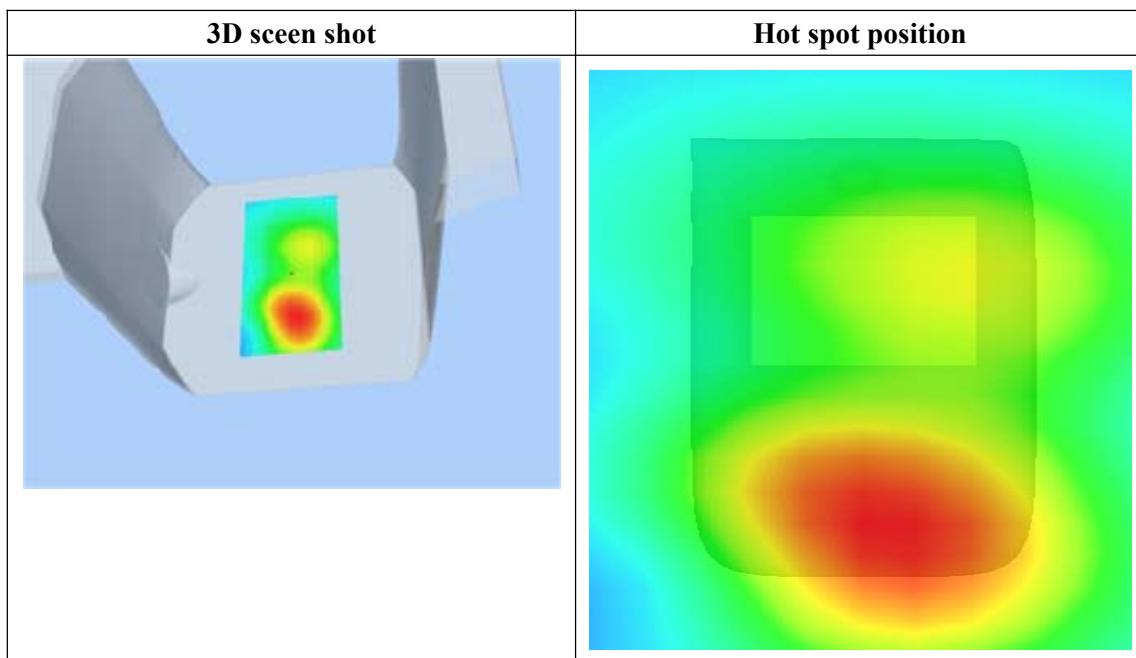
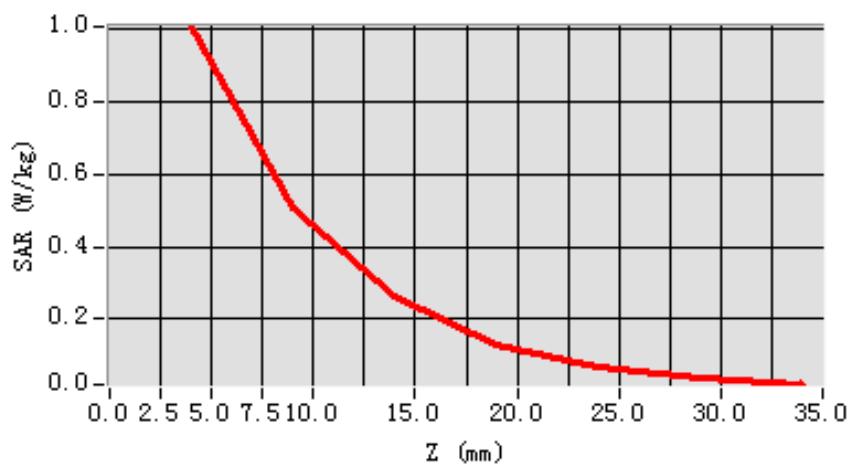

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	802.11B
Channels	Middle
Signal	Duty Cycle: 1.00

B. SAR Measurement Results

Middle band SAR (channel 6):

Frequency (MHz)	2437.000000
Relative permittivity (real part)	52.548876
Relative permittivity	12.991650
Conductivity (S/m)	1.853978
Power drift (%)	-0.720000
Ambient Temperature:	22.6°C
Liquid Temperature:	22.3°C
ConvF:	39.772,33.946,37.835
Crest factor:	1:1



Maximum location: X=3.00, Y=-41.00

SAR 10g (W/Kg)	0.528239
SAR 1g (W/Kg)	0.974481

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	1.0063	0.5060	0.2600	0.1314	0.0691	0.0353

SAR, Z Axis Scan (X = 3, Y = -41)

MEASUREMENT 5

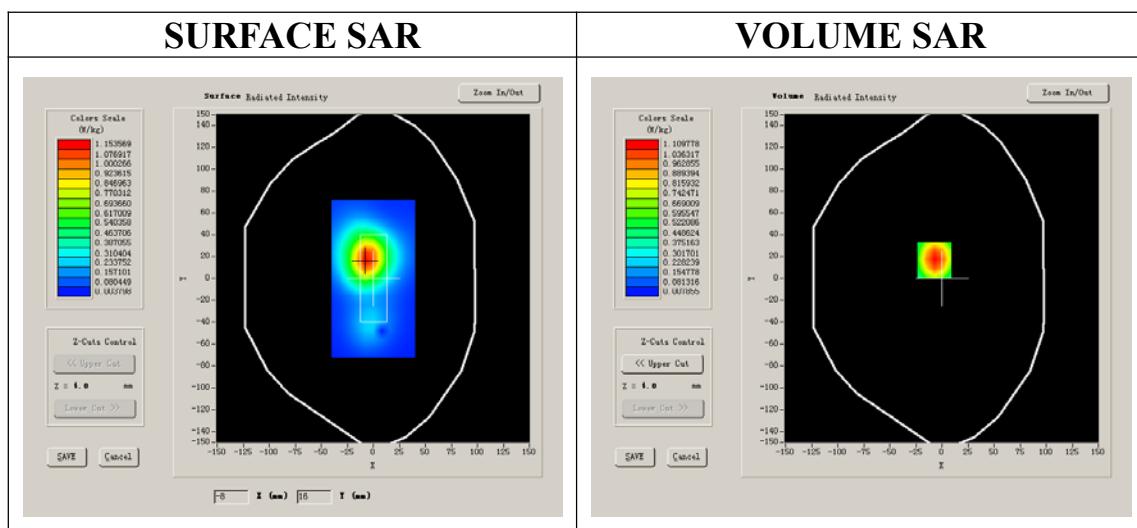
Type: Phone measurement (Complete)

Area scan resolution: $dx=8\text{mm}, dy=8\text{mm}$

Zoom scan resolution: $dx=8\text{mm}, dy=8\text{mm}, dz=5\text{mm}$

Date of measurement: 17/10/2012

Measurement duration: 9 minutes 7 seconds

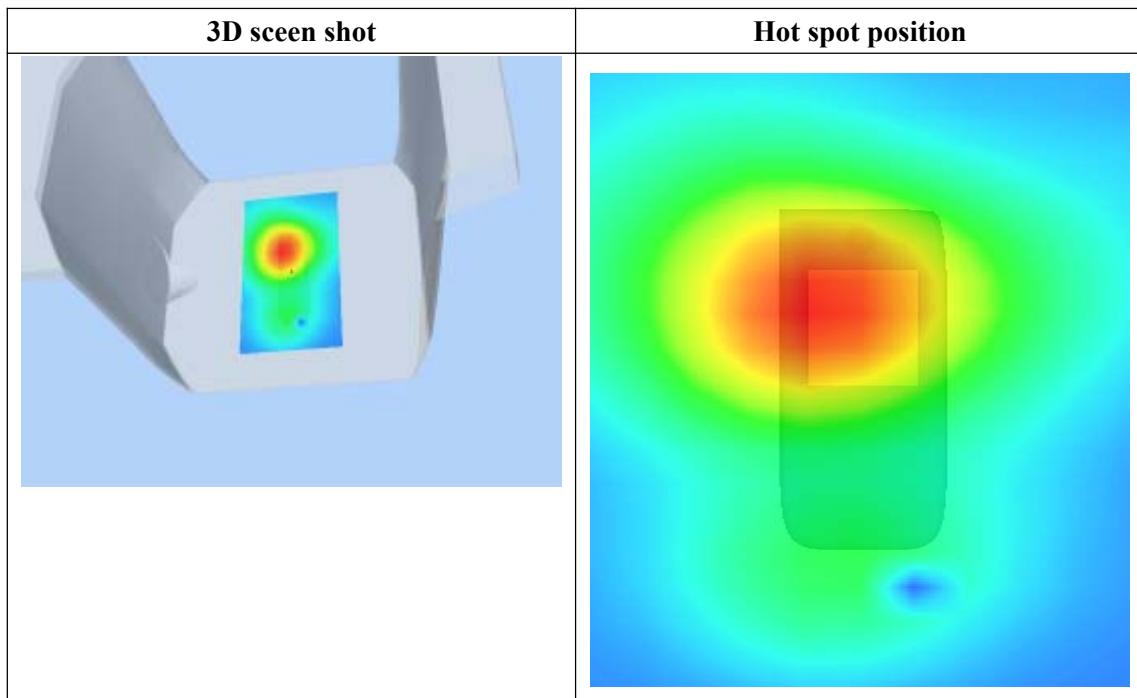
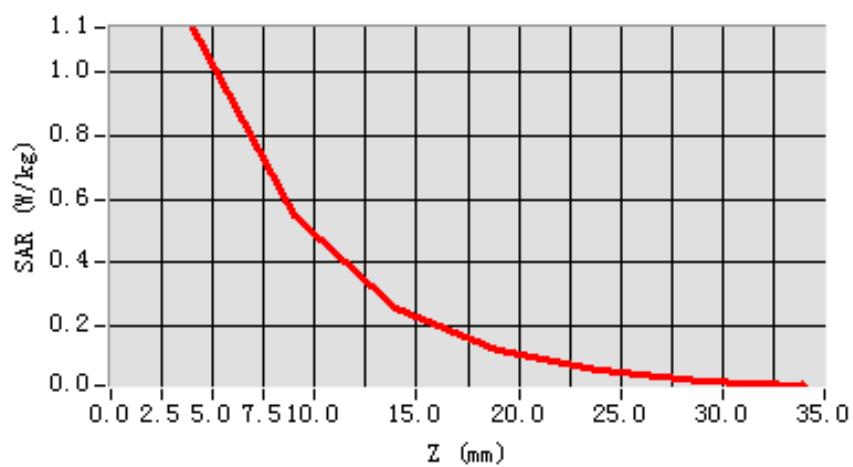

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	802.11B
Channels	High
Signal	Duty Cycle: 1.00

B. SAR Measurement Results

Higher band SAR (channel 11):

Frequency (MHz)	2462.000000
Relative permittivity (real part)	52.548876
Relative permittivity	12.991650
Conductivity (S/m)	1.853978
Power drift (%)	-1.320000
Ambient Temperature:	22.6°C
Liquid Temperature:	22.3°C
ConvF:	39.772,33.946,37.835
Crest factor:	1:1



Maximum location: X=-7.00, Y=17.00

SAR 10g (W/Kg)	0.553880
SAR 1g (W/Kg)	1.089576

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	1.1356	0.5464	0.2587	0.1282	0.0615	0.0305

SAR, Z Axis Scan (X = -7, Y = 17)

System Performance Check Data(Body)

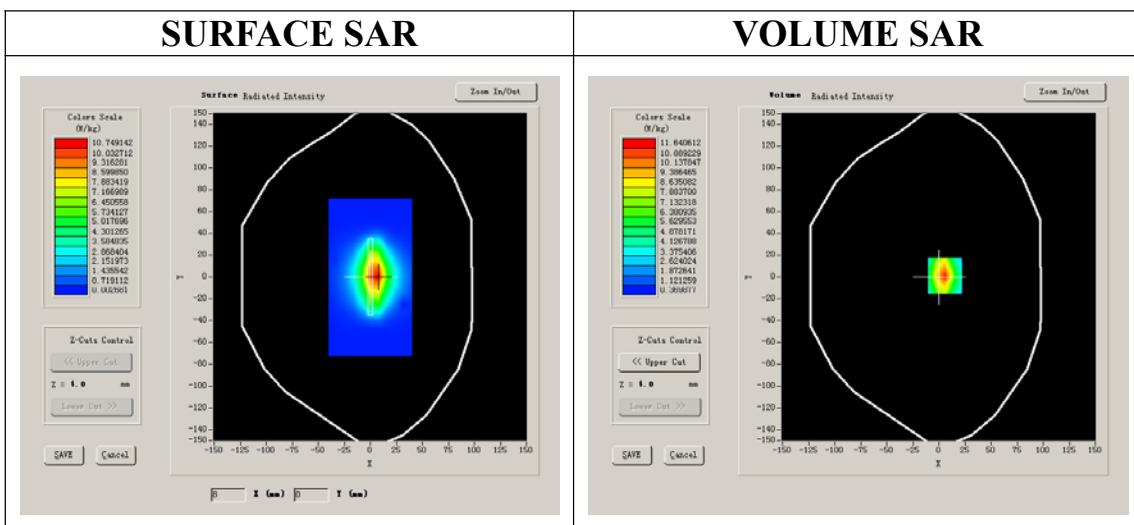
Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/10/2012

Measurement duration: 13 minutes 27 seconds

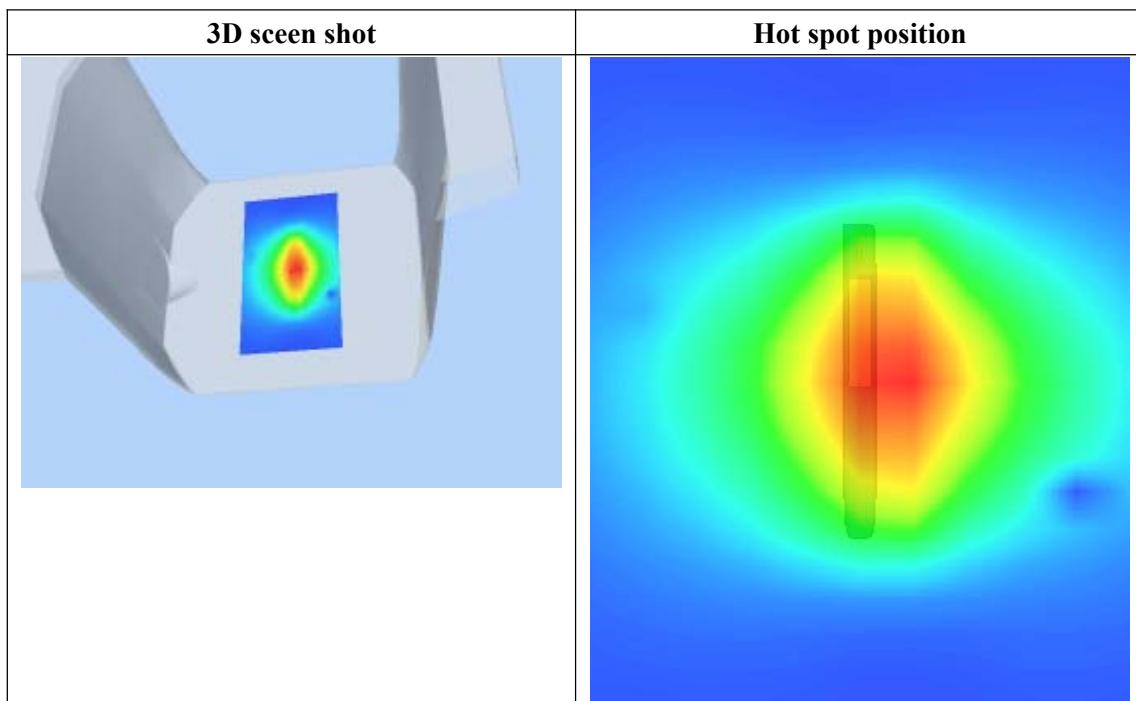
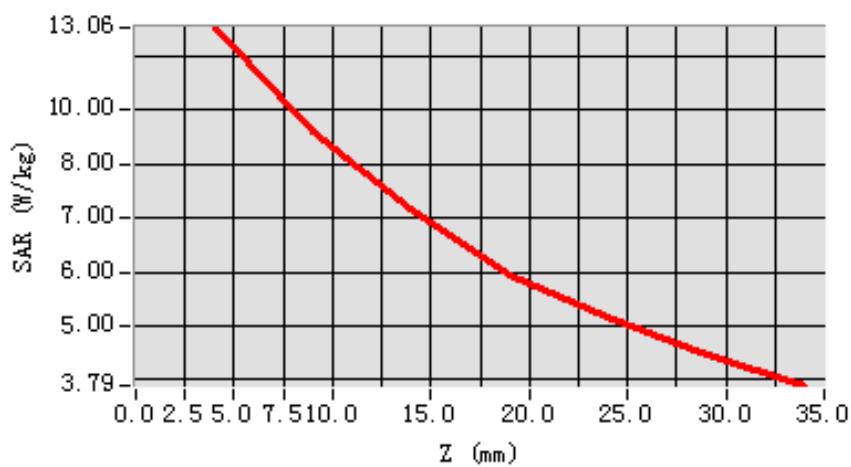

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	
Band	2450MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	2450.000000
Relative permittivity (real part)	52.548876
Relative permittivity	12.991650
Conductivity (S/m)	1.853978
Power Drift (%)	1.080000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.8°C
ConvF:	39.772,33.946,37.835
Crest factor:	1:1



Maximum location: X=-1.00, Y=-50.00

SAR 10g (W/Kg)	6.256773
SAR 1g (W/Kg)	12.789110

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	13.1279	6.8312	3.5991	1.3473

SAR, Z Axis Scan (X = -1, Y = -50)

