

FCC Part 15 Subpart B&C§15.247

RSS-247 ISSUE No.:2

Test Report

Equipment Under Test	Industrial Bluetooth Communication System
Model Name	Tufftalk
Applicant (FCC)	Sena Technologies, Inc.
Applicant (IC)	Sena Technologies, Inc.
Date of Test(s)	2018. 11. 20 ~ 2018. 11. 23
Date of Issue	2018. 11. 26

In the configuration tested, the EUT complied with the standards specified above.

Issue to	Issue by
Sena Technologies, Inc. 19, Heolleung-ro 569-gil, Gangnam-gu, Seoul, 06376, Republic of Korea Tel.: +82-2-571-8283 Fax: +82-2-573-7710	MOVON CORPORATION 498-2, Geumeo-ro, Pogok-eup, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17030 Tel.: +82-31-338-8837 Fax: +82-31-338-8847

Revision history

Revision	Date of issue	Description	Revised by
--	Nov 26, 2018	Initial	--

Table of contents

1. APPLICANT INFORMATION & LABORATORY INFORMATION.....	4
2. EUT DESCRIPTION.....	6
3. MEASUREMENT EQUIPMENT.....	7
4. TRANSMITTER RADIATED SPURIOUS EMISSIONS AND CONDUCTED SPURIOUS EMISSIONS.....	8

1. Applicant Information & Laboratory Information

1.1.1 Details of applicant & Manufacturer

Applicant(FCC) : Sena Technologies, Inc.
Address(FCC) : 19, Heolleung-ro 569-gil, Gangnam-gu, Seoul, 06376, Republic of Korea
Contact Person : Kim Seunghyeon
Telephone : +82-2-571-8283
Fax : -

Applicant(IC) : Sena Technologies, Inc.
Address(IC) : 210 Yangjae-dong, Seocho-gu Seoul 137-130 Korea (Republic Of)
Contact Person : Kim Seunghyeon
Telephone : +82-2-571-8283
Fax : -

1.1.2 Laboratory Information

Applicant : MOVON Corporation
Telephone : + 82-31-338-8837
Fax : + 82-31-338-8847
Test Site Number : FCC(KR0151)
Address : 498-2, Geumeo-ro, Pogok-eup, Cheoin-gu, Yongin-si, Gyeonggi-do, South Korea
Test Site Number : IC(6432B-3)
Address : 194-1 Geumeo-ri, Pogok-eup, Cheoin-gu, Yongin-si, Gyeonggi-do 449-812 Korea
Test Site Number : IC(21313-1)
Address : 494, Geumeo-ro, Pogok-eup, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 170-30
Yongin IP 17030 Korea

1.3. Summary of test results

The EUT has been tested according to the following specifications;

Section in FCC part 15	Section in RSS-GEN, RSS-247	Description	Result
§15.205 §15.209 §15.247(d)	5.5	Transmitter radiated spurious emissions, Conducted spurious emission	C
§15.109(a)	RSS-Gen 6	Receiver radiated spurious emission	C

The sample was tested according to the following specification:

FCC Parts 15.247; ANSI C63.4:2014, ANSI C63.10:2013

FCC Public Notice KDB 558074 D01v05

RSS-247 ISSUE No.: 2

RSS-GEN ISSUE 4

TEST SITE REGISTRATION NUMBER: FCC(KR0151), IC(6432B-3), IC(21313-1)

※ Abbreviation

C Complied

N/A Not applicable

F Fail

Approval Signatories

Test and Report Completed by :	Report Approval by :
Kin Son Test Engineer MOVON CORPORATION	Issac Jin Technical Manager MOVON CORPORATION

2. EUT Description

Kind of product	Bluetooth Communication System
Model	Tufftalk
FCC ID	S7A-SP27
IC Number	8154A-SP27
Serial Number	N/A
Power supply	DC 3.7V
Frequency range	2 402 MHz ~ 2 480 MHz
Modulation technique	GFSK
Number of channels	40
Antenna gain	3.26 dB i (Max.)
Test Site Registration Number	FCC(KR0151), IC(6432B-3), IC(21313-1)

2.1. Declarations by the manufacturer

None

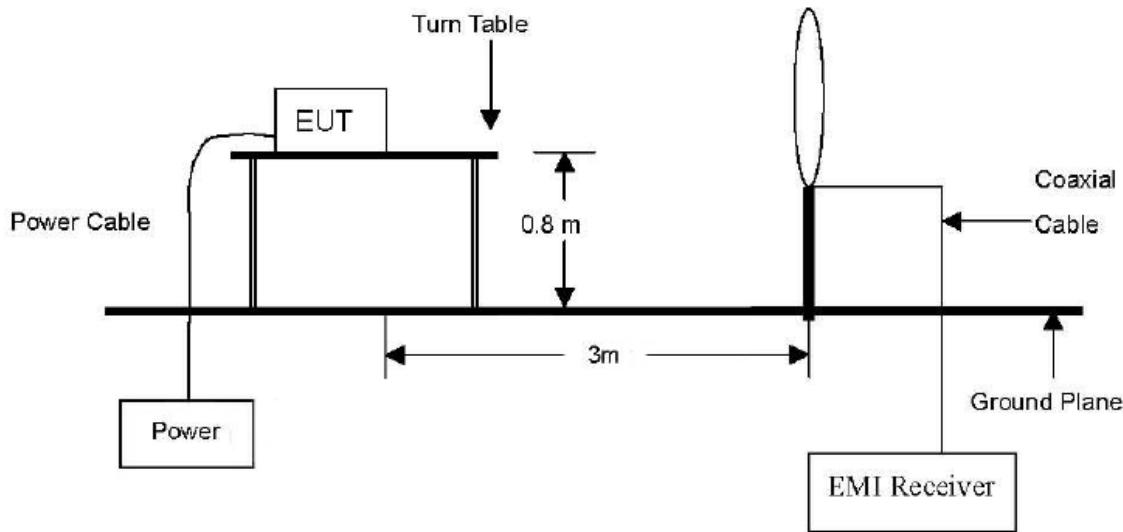
2.2. Details of modification

None

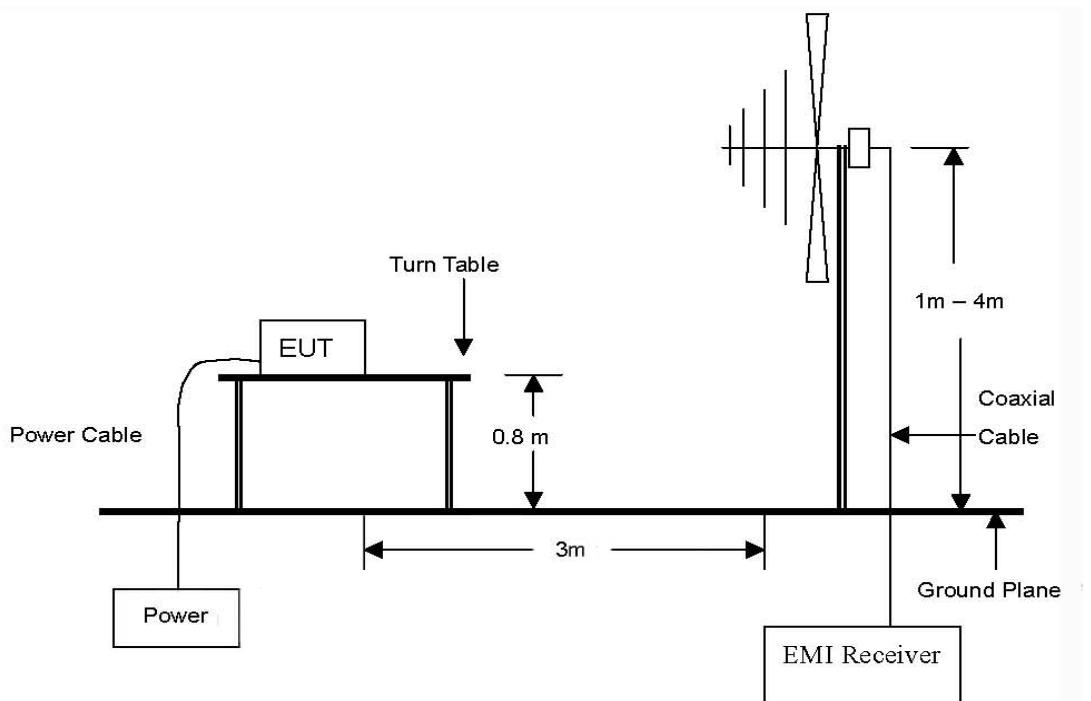
3. Measurement equipment.

Equipment	Manufacturer	Model	Serial number	Calibration Interval	Calibration due.
Test Receiver	R&S	ESVS30	829673/015	1 year	2018-12-07
Signal Generator	R&S	SMB100A	178128	1 year	2018-12-08
Spectrum Analyzer	R&S	FSV-40	100832	1 year	2019-05-28
Horn Antenna	R&S	HF906	100236	2 year	2019-04-25
Horn Antenna	AH Systems	SAS-572	269	2 year	2019-08-01
Horn Antenna	AH Systems	SAS-573	164	2 year	2020-04-26
Bi-Log Ant.	S/B	VULB 9161SE	4159	2 year	2020-06-11
Power Amplifier	MITEQ	AFS43-01002600	2048519	1 year	2019-10-29
Controller	INNCO	CO2000	co200/064/6961003/L	N/A	N/A
Antenna Master	INNCO	MA4000	MA4000/038/6961003/L	N/A	N/A
Loop Antenna	ETS LINDGREN	6502	00118166	2 year	2020-10-30
Low Noise Amplifier	TESTEK	TK-PA18H	170013-L	1 year	2019-05-28
Power Amplifie	SONOMA INSTRUMENT	310N	185428	1 year	2018-12-07
RF Cable	SUHNER	SUCOFLEX100	84047746	N/A	N/A
RF Cable	SUHNER	SUCOFLEX102	801270/2	N/A	N/A
RF Cable	SUHNER	SUCOFLEX102	801270/2	N/A	N/A

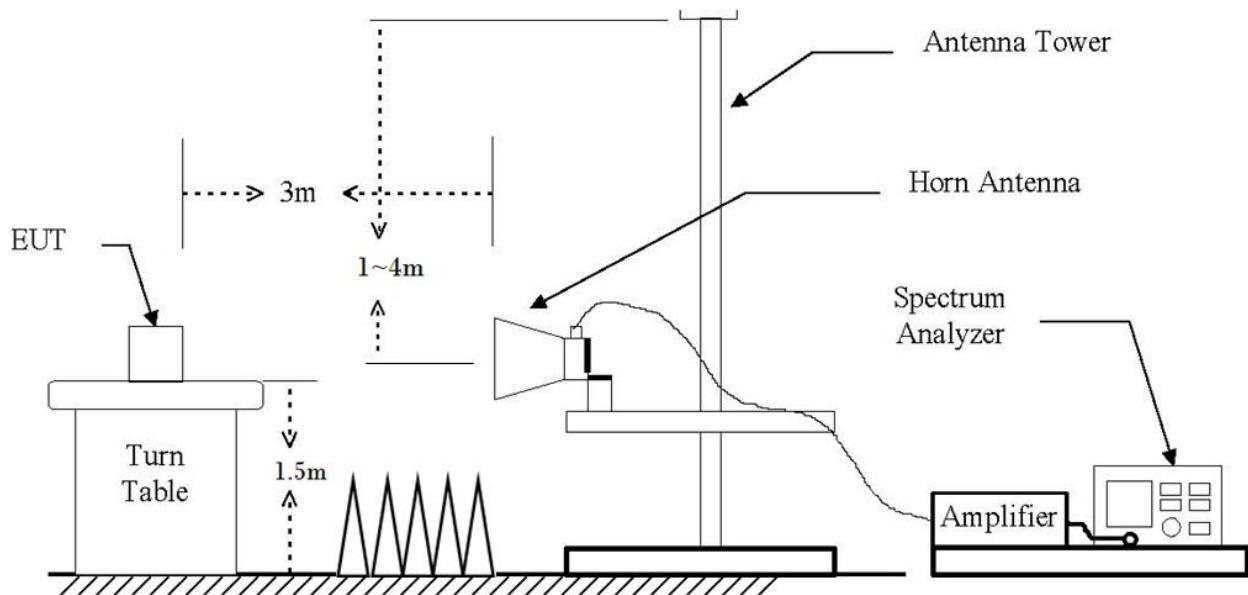
***Remark;**
Support equipment


Description	Manufacturer	Model	Serial number
Notebook computer	DELL	Latitude D510	-

4. Transmitter radiated spurious emissions and conducted spurious emissions


4.1. Test setup

4.1.1. Transmitter radiated spurious emissions


The diagram below shows the test setup that is utilized to make the measurements for emission from 9kHz to 30MHz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 MHz to 1 GHz emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 GHz to 40 GHz emissions.

4.2. Limit

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement , provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval , as permitted under paragraph(b)(3) of this section , the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.209(a) (see section §15.205(c))

According to § 15.109(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values :

Frequency (MHz)	Distance (Meters)	Radiated at 3M (dB μ V/m)	Radiated (μ V/m)
0.009–0.490	300	See the remark	2400/F(kHz)
0.490–1.705	30		24000/F(kHz)
1.705–30.0	30		30
30 - 88	3	40.0	100
88 – 216	3	43.52	150
216 – 960	3	46.02	200
Above 960	3	53.97	500

*Remark

1. Emission level in dB μ V/m=20 log (μ V/m)
2. Measurement was performed at an antenna to the closed point of EUT distance of meters.
3. Distance extrapolation factor =40log(Specific distance/ test distance)(dB)
 Limit line=Specific limits(dB μ V) + distance extrapolation factor.

4.3. Test procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.10:2013. In case of the air temperature of the test site is out of the range is 10 to 40°C before the testing proceeds the warm-up time of EUT maintain adequately.

4.3.1. Test procedures for radiated spurious emissions

1. The EUT is placed on a turntable, which is 0.8 m (Below 1 GHz) / 1.5 m (Above 1 GHz) above ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
6. Repeat above procedures until the measurements for all frequencies are complete.

*** Remark:**

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 10 kHz for Peak detection (PK) at frequency below 30 MHz
2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Peak detection (PK) or Quasi-peak detection (QP) at frequency below 1 GHz.
3. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1 GHz.
4. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1 GHz.

4.3.2. Test procedures for conducted spurious emissions

All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

Per the guidance of KDB 558074, section 5.4.1.1, the reference level for out of band emissions is established from the plots of this section since the band edge emissions are measured with a RBW of 100 kHz. This reference level is then used as the limit in subsequent plots for out of band spurious emissions shown in section 4.4.4. The limit for out of band spurious emission at the band edge is 30 dB below the fundamental emission level measured in a 100 kHz bandwidth.

4.4. Test result

Ambient temperature: 20°C

Relative humidity: 45% R.H.

4.4.1. Spurious radiated emission

The frequency spectrum from 9kHz to 30MHz was investigated. Emission levels are not reported muchlower than the limits by over 20 dB. All reading values are peak values.

To get a maximum emission levels from the EUT, the EUT was moved throughout the XY, XZ, and YZ planes.

A. Low channel (2 402 MHz)

Radiated emissions			Ant.	Correction factors		Total	Limit	
Frequency (MHz)	Reading (dB μ V)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
No other emissions were detected at a level greater than 20dB below limit.								

B. Middle channel (2 440 MHz)

Radiated emissions			Ant.	Correction factors		Total	Limit	
Frequency (MHz)	Reading (dB μ V)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
No other emissions were detected at a level greater than 20dB below limit.								

C. High channel (2 480 MHz)

Radiated emissions			Ant.	Correction factors		Total	Limit	
Frequency (MHz)	Reading (dB μ V)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
No other emissions were detected at a level greater than 20dB below limit.								

※ Remark

1. Actual = Reading + Ant. factor + CL (Cable loss)
2. Distance extrapolation factor = $40 \log (\text{specific distance} / \text{test distance})$ (dB)
3. Limit line = specific Limits (dB μ V) + Distance extrapolation factor
4. 15.31 Measurement standards.

The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

4.4.2. Spurious radiated emission

The frequency spectrum from 30 MHz to 1 000 MHz was investigated. Emission levels are not reported much lower than the limits by over 20 dB. All reading values are peak values.

To get a maximum emission levels from the EUT, the EUT was moved throughout the XY, XZ, and YZ planes.

A. Low channel (2 402 MHz)

Radiated emissions			Ant.	Correction factors		Total	Limit	
Frequency (MHz)	Reading (dB μ V)	Detector mode	Pol.	Ant. factor (dB/m)	C.L. (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
No other emissions were detected at a level greater than 20dB below limit.								

B. Middle channel (2 441 MHz)

Radiated emissions			Ant.	Correction factors		Total	Limit	
Frequency (MHz)	Reading (dB μ V)	Detector mode	Pol.	Ant. factor (dB/m)	C.L. (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
No other emissions were detected at a level greater than 20dB below limit.								

C. High channel (2 480 MHz)

Radiated emissions			Ant.	Correction factors		Total	Limit	
Frequency (MHz)	Reading (dB μ V)	Detector mode	Pol.	Ant. factor (dB/m)	C.L. (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
No other emissions were detected at a level greater than 20dB below limit.								

* Remark

1. Actual = Reading + Ant. factor + CL (Cable loss)
2. 15.31 Measurement standards.

The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

4.4.3. Spurious radiated emission

The frequency spectrum above 1 000 MHz was investigated. Emission levels are not reported much lower than the limits by over 20 dB.

To get a maximum emission levels from the EUT, the EUT was moved throughout the XY, XZ, and YZ planes.

A. Low channel (2 402 MHz)

Radiated emissions			Ant.	Correction factors		Total	Limit	
Frequency (MHz)	Reading (dB μ V)	Detector mode	Pol.	Ant. factor (dB/m)	C.L. (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
No other emissions were detected at a level greater than 20dB below limit.								

B. Middle channel (2 441 MHz)

Radiated emissions			Ant.	Correction factors		Total	Limit	
Frequency (MHz)	Reading (dB μ V)	Detector mode	Pol.	Ant. factor (dB/m)	C.L. (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
No other emissions were detected at a level greater than 20dB below limit.								

C. High channel (2 480 MHz)

Radiated emissions			Ant.	Correction factors		Total	Limit	
Frequency (MHz)	Reading (dB μ V)	Detector mode	Pol.	Ant. factor (dB/m)	C.L. (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
No other emissions were detected at a level greater than 20dB below limit.								

* Remark

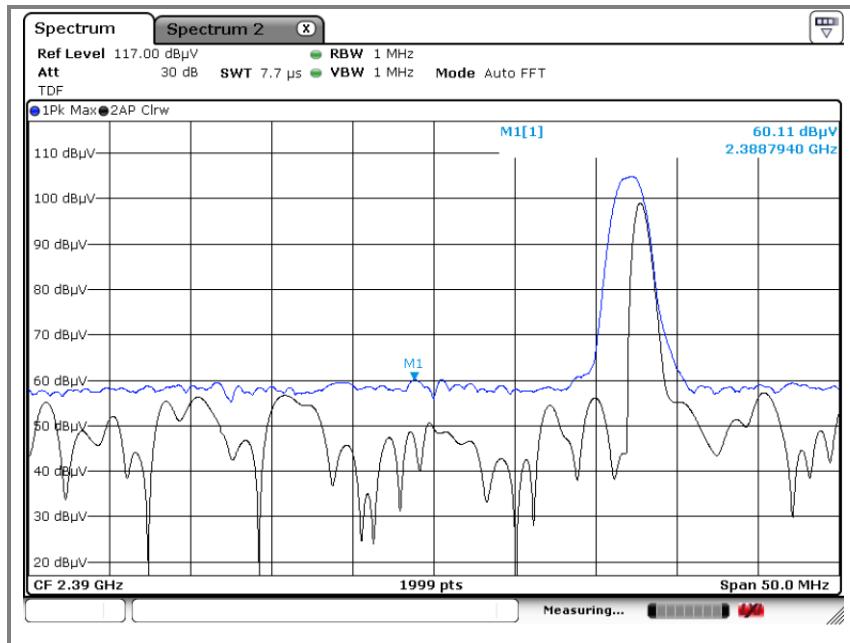
1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental Frequency.
2. Radiated emissions measured in frequency above 1 000 MHz were made with an instrument using peak/average detector mode.
3. Average test would be performed if the peak result were greater than the average limit.
4. Actual = Reading + Ant. factor- Amp + CL (Cable loss)
5. 15.31 Measurement standards.

THE AMPLITUDE OF SPURIOUS EMISSIONS FROM INTENTIONAL RADIATORS AND EMISSIONS FROM UNINTENTIONAL RADIATORS WHICH ARE ATTENUATED MORE THAN 20 DB BELOW THE PERMISSIBLE VALUE NEED NOT BE REPORTED UNLESS SPECIFICALLY REQUIRED ELSEWHERE IN THIS PART.

4.4.4 Band Edge

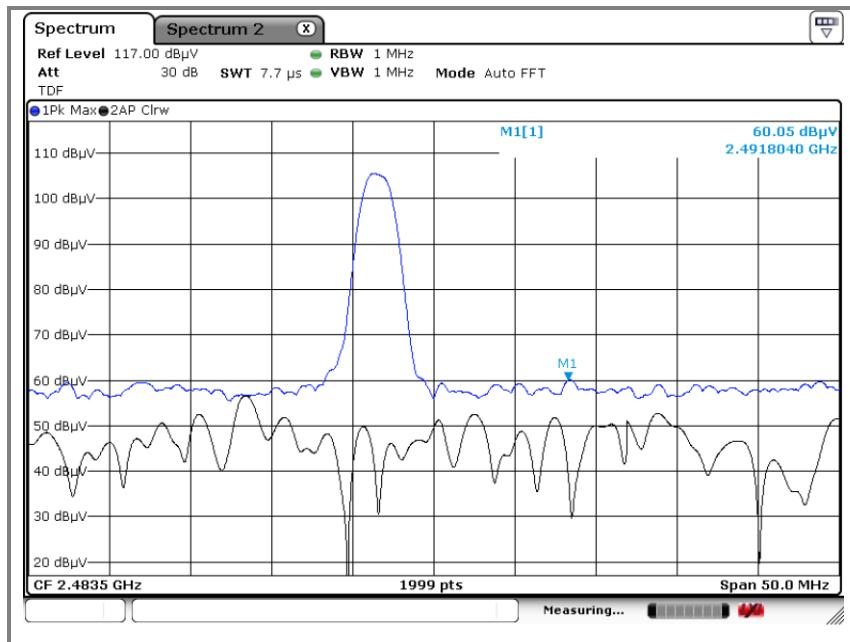
A. 2 310 - 2 390 MHz measurement (2 402MHz)

Radiated emissions			Ant.	Correction factors			Total	Limit	
Frequency (MHz)	Reading (dB μ V)	Detector mode	Pol.	Ant. factor (dB/m)	Amp+CL (dB)	Duty factor (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
2 327.30	59.15	Peak	V	28.09	39.03	-	48.21	74.00	25.79
2 377.45	46.21	Average	V	28.09	39.03	1.61	36.88	54.00	17.12
2 388.79	60.11	Peak	H	28.09	39.03	-	49.17	74.00	24.83
2 377.14	47.07	Average	H	28.09	39.03	1.61	37.74	54.00	16.26


B. 2 483.5 – 2 500 MHz measurement (2 480MHz)

Radiated emissions			Ant.	Correction factors			Total	Limit	
Frequency (MHz)	Reading (dB μ V)	Detector mode	Pol.	Ant. factor (dB/m)	Amp+CL (dB)	Duty factor (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
2495.58	59.17	Peak	V	28.09	39.03	-	48.23	74.00	25.77
2483.50	45.23	Average	V	28.09	39.03	1.61	35.90	54.00	18.10
2491.80	60.05	Peak	H	28.09	39.03	-	49.11	74.00	24.89
2483.50	47.16	Average	H	28.09	39.03	1.61	37.83	54.00	16.17

Operation mode: BLE(Worst Case)


A. Low channel(2 402 MHz)

Unwanted Emission data

B. High channel(2 480 MHz)

Unwanted Emission data

