

Report No.: EED32H00097802 Page 1 of 61

Product : 9.7 inch 3G PhoneTablet

Trade mark : Dragon Touch, KINGPAD,

KINGSLIM, AKASO

Model/Type reference : E97, E97 PRO, E97X, E97 PLUS,

E970, E97 ULTIMATE

Serial Number : N/A

Report Number : EED32H00097802

FCC ID : S5V-D970E1

Date of Issue : Dec. 30, 2015

Test Standards : 47 CFR Part 15 Subpart C (2014)

Test result : PASS

Prepared for:

Proexpress Distributor LLC 11011 GREENWOOD AVE. N APT 5, SEATTLE, WA 98103.

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Approved by Report Seal

heek luc

Reviewed by:

Date:

Dec. 30, 2015

Sheek Luo

Lab supervisor

Check No.: 2212890594

Page 2 of 61

2 Version

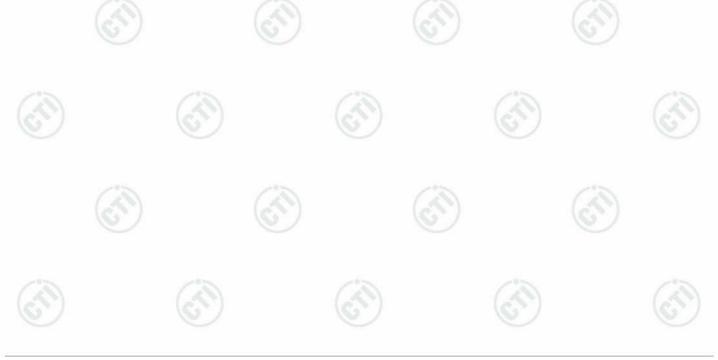
Version No.	Date	Description	(<u> </u>
00	Dec. 30, 2015	Original		
				Cio.
((3)	(67)	(67)	(6,2)

Page 3 of 61

3 Test Summary

Report No.: EED32H00097802

3 rest Summary	((((((((((((((((((((1.631	
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS


Remark:

Test according to KDB558074 D01 & ANSI C63.10-2013.

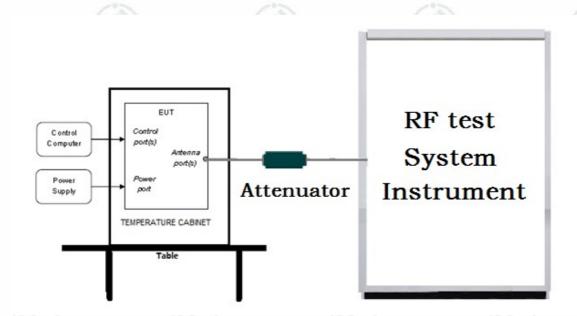
The tested sample(s) and the sample information are provided by the client.

Model No.: E97, E97 PRO, E97X, E97 PLUS, E970, E97 ULTIMATE

Only the model E97 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being model name and brand name.

4 Content

1 COVER PAGE	••••••	••••••		1
2 VERSION		•••••	•••••	2
3 TEST SUMMARY		••••••	•••••	
4 CONTENT				
5 TEST REQUIREMENT				
5.1.1 For Conducted 5.1.2 For Radiated I 5.1.3 For Conducted 5.2 TEST ENVIRONMENT	d test setup Emissions test setupd Emissions test setup			
6 GENERAL INFORMAT	TON	••••••	•••••	7
6.2 GENERAL DESCRIPT 6.3 PRODUCT SPECIFICA 6.4 DESCRIPTION OF SU 6.5 TEST LOCATION 6.6 TEST FACILITY 6.7 DEVIATION FROM ST 6.8 ABNORMALITIES FRO 6.9 OTHER INFORMATIO	N ATION OF EUT ATION SUBJECTIVE TO THIS ST. JPPORT UNITS TANDARDS OM STANDARD CONDITIONS N REQUESTED BY THE CUSTO JICERTAINTY (95% CONFIDENCE	ANDARD		
7 EQUIPMENT LIST	••••••	•••••	•••••	10
8 RADIO TECHNICAL R	EQUIREMENTS SPECIFICA	ATION		12
Appendix B) Condu- Appendix C) Band-e Appendix D) RF Co Appendix E) Power Appendix F) Antenn Appendix G) AC Po Appendix H) Restric	ccupied Bandwidtheted Peak Output Poweredge for RF Conducted Emisorducted Spurious Emissions Spectral Density	ssionsson		
	ST SETUP			
PHOTOGRAPHS OF EU	T CONSTRUCTIONAL DET	AILS		37



Report No.: EED32H00097802 Page 5 of 61

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

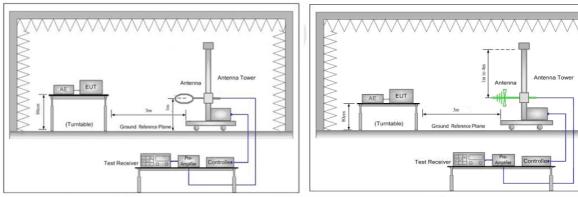
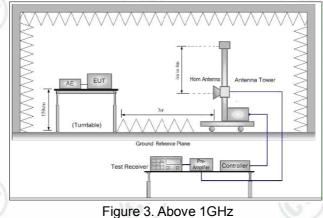
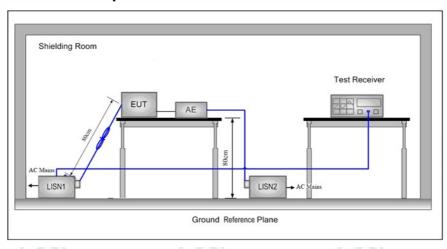



Figure 1. Below 30MHz


Figure 2. 30MHz to 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:					
Temperature:	24°C				
Humidity:	50% RH				
Atmospheric Pressure:	1010mbar				

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel				
rest Mode	1 X/KX	Low(L)	Middle(M)	High(H)		
05014	2402MHz ~2480 MHz	Channel 1	Channel 20	Channel40		
GFSK		2402MHz	2440MHz	2480MHz		
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.					

6 General Information

6.1 Client Information

Applicant:	Proexpress Distributor LLC	
Address of Applicant:	11011 GREENWOOD AVE. N APT 5, SEATTLE, WA 98103.	
Manufacturer:	Proexpress Distributor LLC	130
Address of Manufacturer:	11011 GREENWOOD AVE. N APT 5, SEATTLE, WA 98103.	(6.2.

6.2 General Description of EUT

2408MHz

2410MHz

2412MHz

5

6

14

15

16

Product Name:	9.7 inch 3G Phone Tablet						
Model No.:	E97, E97 F	E97, E97 PRO, E97X, E97 PLUS, E970, E97 ULTIMATE					
Test Mode No.:	E97	(6,0)	(6,2)				
Trade Mark:	Dragon To	uch, KINGPAD, KINGSLIM, AKASO					
EUT Supports Radios application:	Bluetooth V4.0 for BLE mode						
Duty Cycle:	100%		- (1			
Power Supply:	Adapter:	Model: WTA0502000USB1 Input: AC 100-240V, 50/60Hz, 0.3A Output: DC 5.0V=2000mA					
	Battery:	Li-ion 3.7V/6000mAH					
Sample Received Date:	Jul. 22, 2015						
Sample tested Date:	Jul. 22, 2015 to Dec. 30, 2015						

6.3 Product Specification subjective to this standard

Operation F	requency:	2402N	IHz~2480MHz	, -				
Bluetooth V	/ersion:	4.0)	(253)		(2)	
Modulation	Type:	GFSK					(0)	
Number of	Channel:	40	40					
Sample Typ	pe:	Portab	Portable production					
Test Power	Grade:	N/A (m	N/A (manufacturer declare)					
Test Softwa	are of EUT:	N/A (m	nanufacturer d	eclare)	/	6.	/	
Antenna Ty	tenna Type and Gain:: Type: Integral antenna Gain: -1.45dBi							
Test Voltag	je:	120V~	60Hz		(3)		(3)	
Operation F	requency eac	h of channe			(67)		(6,2,	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz	
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz	
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz	

24

25

26

2448MHz

2450MHz

2452MHz

34

35

36

2468MHz

2470MHz

2472MHz

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

2428MHz

2430MHz

2432MHz

Report No.: EED32H00097802 Page 8 of 61

7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd.has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 565659

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 565659.

IC-Registration No.: 7408A

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A.

IC-Registration No.: 7408B

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B.

NEMKO-Aut. No.: ELA503

Report No.: EED32H00097802 Page 9 of 61

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2/	DE navior conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB(1GHz-18GHz)
2	Dedicted Courieus emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB(1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Report No.: EED32H00097802 Page 10 of 61

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Communication test set test set	Agilent	N4010A	MY47230124	04-02-2015	04-01-2016
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2015	03-31-2016
Attenuator	HuaXiang	SHX370	15040701	04-01-2015	03-31-2016
Signal Generator	Keysight	N5182B	MY53051549	03-31-2015	03-30-2016
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002	(4)	01-13-2015	01-12-2016
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016
band rejection filter (GSM900)	Sinoscite	FL5CX01CA09C L12-0395-001		01-13-2015	01-12-2016
band rejection filter (GSM850)	Sinoscite	FL5CX01CA08C L12-0393-001		01-13-2015	01-12-2016
band rejection filter (GSM1800)	Sinoscite	FL5CX02CA04C L12-0396-002	75	01-13-2015	01-12-2016
band rejection filter (GSM1900)	Sinoscite	FL5CX02CA03C L12-0394-001	(4)	01-13-2015	01-12-2016
DC Power	Keysight	E3642A	MY54436035	03-31-2015	03-30-2016
PC-1	Lenovo	R4960d		04-01-2015	03-31-2016
BT&WI-FI Automatic control	R&S	OSPB157	101374	04-01-2015	03-31-2016
RF control unit	JS Tonscend	JS0806-2	2015860006	04-01-2015	03-31-2016
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		04-01-2015	03-31-2016

Conducted disturbance Test							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	06-30-2015	06-28-2016		
Receiver	R&S	ESCI	100009	06-30-2015	06-28-2016		
Temperature/ Humidity Indicator	Belida	TT-512	101	07-09-2015	07-07-2016		
Communication test set	Agilent	E5515C	GB47050533	01-13-2015	01-12-2016		
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016		
LISN	R&S	ENV216	100098	06-30-2015	06-28-2016		
LISN	schwarzbeck	NNLK8121	8121-529	06-30-2015	06-28-2016		
Voltage Probe	R&S	ESH2-Z3	100042	07-09-2014	07-08-2017		
Current Probe	R&S	EZ17	100106	07-09-2014	07-08-2017		
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017		

Report No. : EED32H00097802 Page 11 of 61

		3M Semi/full-anecl	noic Chamber		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber	TDK	SAC-3		06-02-2013	06-01-2016
TRILOG Broadband Antenna	schwarzbeck	VULB9163	9163-617	07-31-2015	07-29-2016
Microwave Preamplifier	Agilent	8449B	3008A02425	02-05-2015	02-04-2016
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-30-2015	06-28-2018
Receiver	R&S	ESCI	100435	06-30-2015	06-28-2018
Multi device Controller	maturo	NCD/070/10711112		01-13-2015	01-12-2016
LISN	schwarzbeck	NNBM8125	81251547	06-30-2015	06-28-2016
LISN	schwarzbeck	NNBM8125	81251548	06-30-2015	06-28-2016
Signal Generator	Agilent	E4438C	MY45095744	04-19-2015	04-18-2016
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Temperature/ Humidity Indicator	TAYLOR	1451	1905	07- 08-2015	07-06-2016
Communication test set	Agilent	E5515C	GB47050533	01-13-2015	01-12-2016
Cable line	Fulai(7M)	SF106	5219/6A	01-13-2015	01-12-2016
Cable line	Fulai(6M)	SF106	5220/6A	01-13-2015	01-12-2016
Cable line	Fulai(3M)	SF106	5216/6A	01-13-2015	01-12-2016
Cable line	Fulai(3M)	SF106	5217/6A	01-13-2015	01-12-2016
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18NM 12-0398-002	(C)	01-13-2015	01-12-2016
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX01CA09CL1 2-0395-001		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX01CA08CL1 2-0393-001		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX02CA04CL1 2-0396-002		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX02CA03CL1 2-0394-001	(3)	01-13-2015	01-12-2016
	1.07				

Report No. : EED32H00097802 Page 12 of 61

8 Radio Technical Requirements Specification

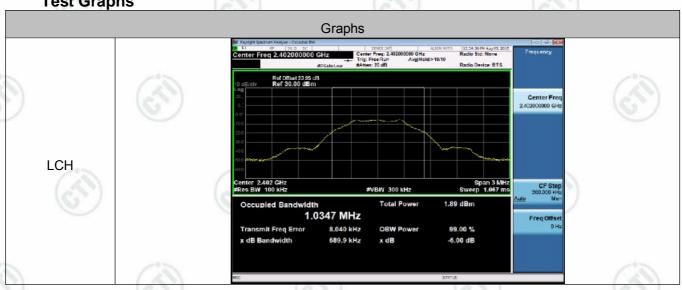
Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2014)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Page 13 of 61 Report No.: EED32H00097802

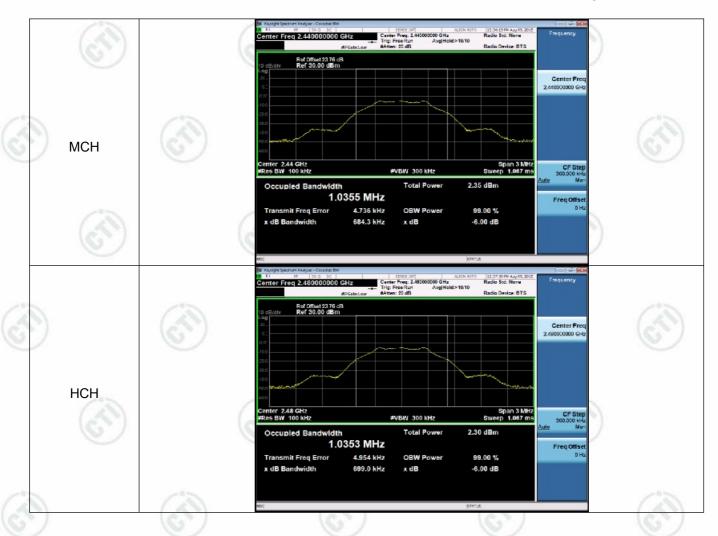

Appendix A) 6dB Occupied Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)	
Test Method:	ANSI C63.10-2013	
Test Setup:	Refer to section 5 for details	-0-
Limit:	≥ 500 kHz	(40)
Test Mode:	Non-hopping transmitting with GFSK modulation.	(0)
Instruments Used:	Refer to section 7 for details	
Test Results:	Pass	

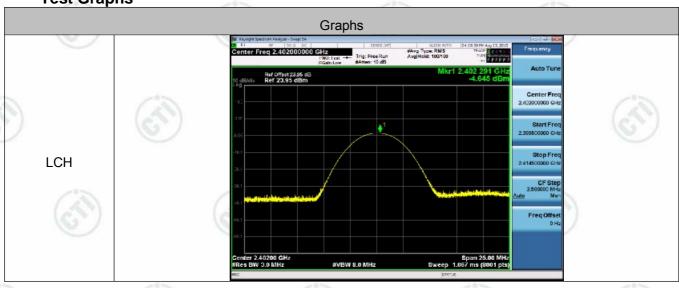
Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Limit(MHz)	Verdict	Remark
BLE	LCH	0.6899	1.0347	>0.5	PASS	
BLE	мсн	0.6843	1.0355	>0.5	PASS	Peak detector
BLE	HCH	0.6990	1.0353	>0.5	PASS	

Test Graphs





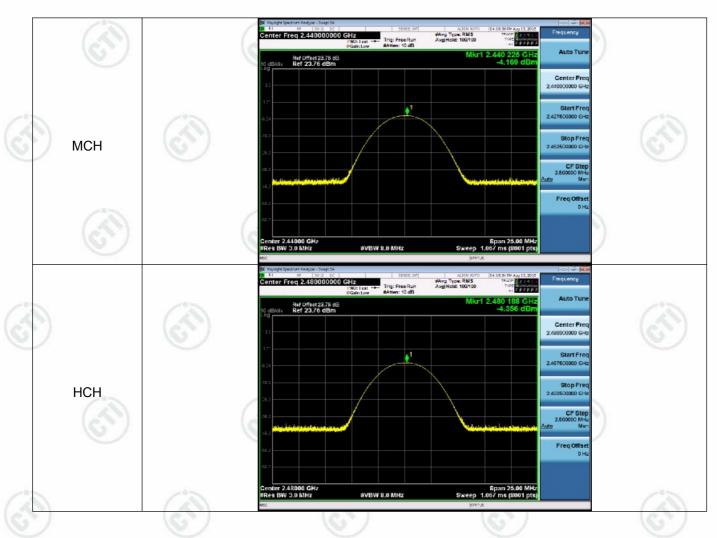

Appendix B) Conducted Peak Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)	
Test Method:	ANSI C63.10-2013	
Test Setup:	Refer to section 5 for details	-0-
Limit:	30dBm	(10)
Test Mode:	Non-hopping transmitting with GFSK modulation.	(0)
Instruments Used:	Refer to section 7 for details	
Test Results:	Pass	

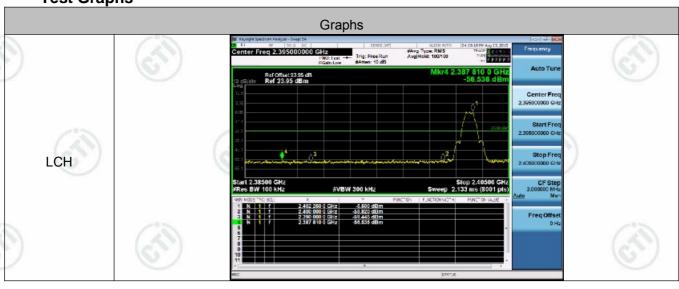
Test Result

Mode	Channel	Conduct Peak Power[dBm]	Limit(dBm)	Verdict
BLE	LCH	-4.645	30	PASS
BLE	MCH	-4.169	30	PASS
BLE	HCH	-4.356	30	PASS

Test Graphs



Page 16 of 61

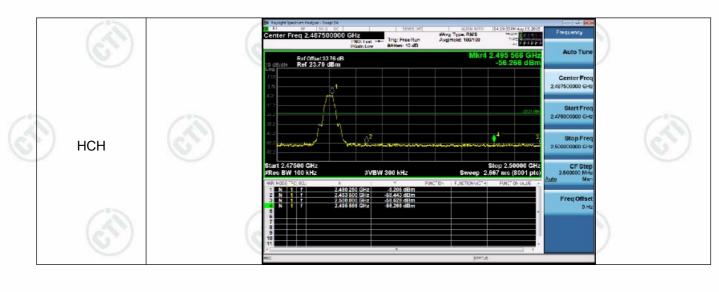

Appendix C) Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10-2013
Test Setup:	Refer to section 5 for details
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Mode:	Non-hopping and hopping transmitting with GFSK modulation.
Instruments Used:	Refer to section 7 for details
Test Results:	Pass

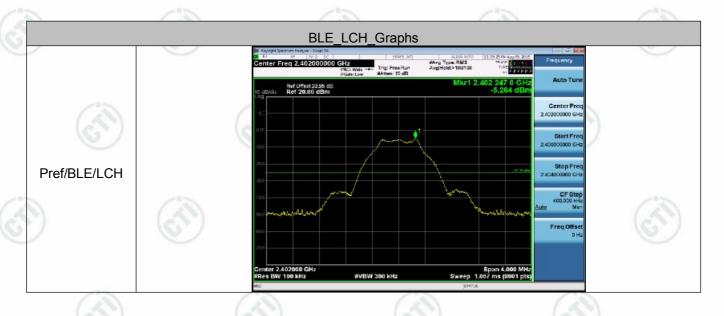
Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-5.500	-56.536	-25.5	PASS
BLE	HCH	-5.206	-56.266	-25.21	PASS

Test Graphs



Page 18 of 61

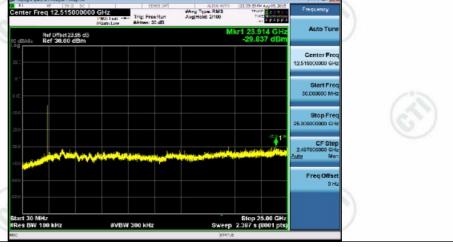

Appendix D) RF Conducted Spurious Emissions

47 CFR Part 15C Section 15.247 (d)
ANSI C63.10-2013
Refer to section 5 for details
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Non-hopping transmitting with GFSK modulation.
Refer to section 7 for details
Pass

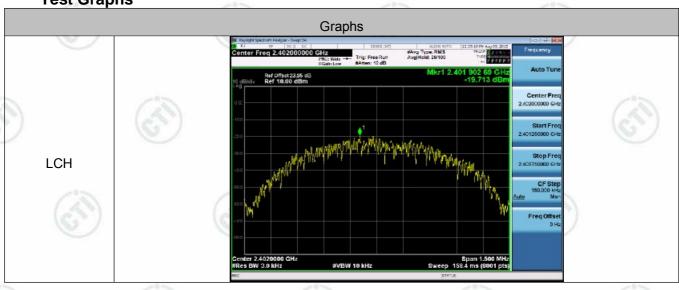
Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	 -5.264	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-4.801	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	-4.872	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs



Page 20 of 61


Appendix E) Power Spectral Density

Test Requirement:	47 CFR Part 15C Section 15.247 (e)	
Test Method:	ANSI C63.10-2013	
Test Setup:	Refer to section 5 for details	
Limit:	≤8.00dBm	20
Test Mode:	Non-hopping transmitting with GFSK modulation.	
Instruments Used:	Refer to section 7 for details	
Test Results:	Pass	

Result Table

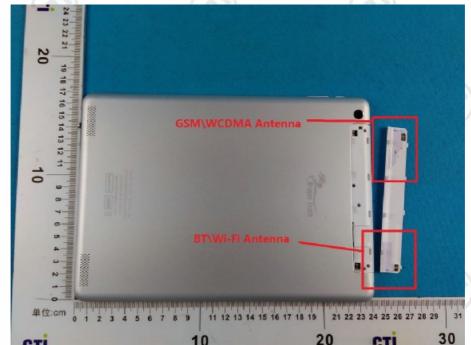
Mode	Channel	PSD [dBm]	Limit(dBm)	Verdict
BLE	LCH	-19.713	<8dBm	PASS
BLE	MCH	-19.266	<8dBm	PASS
BLE	HCH	-19.277	<8dBm	PASS

Test Graphs

Report No.: EED32H00097802 Page 24 of 61

Appendix F) Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -1.45dBi.

Report No. : EED32H00097802 Page 25 of 61

Appendix G) AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz-30MHz
	1) The mains terminal disturbance voltage test was conducted in a shielded room.
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
	 The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground

- EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Frequency range (MHz)	Limit (dBµV)				
Frequency range (MHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Measurement Data

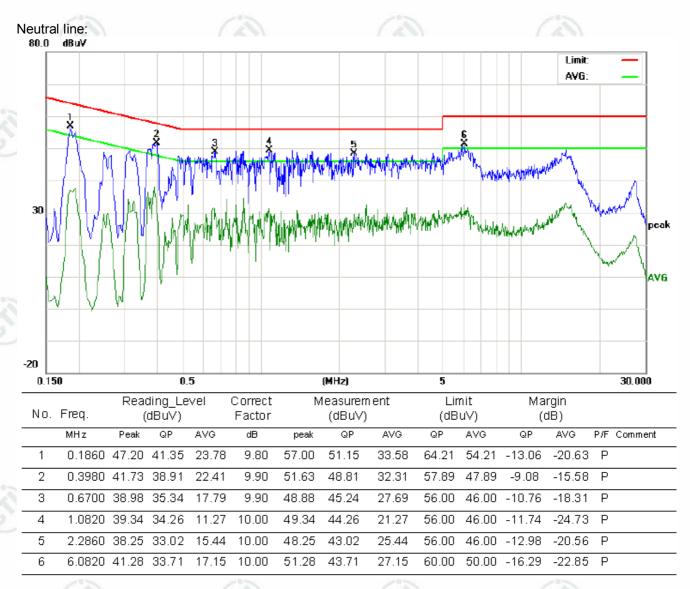
An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Page 26 of 61

20 0.150 0.5 (MHz) 5 30.000

	No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasuren (dBuV)		Lin (dB			rgin IB)		
_		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.1860	47.80	43.05	21.10	9.80	57.60	52.85	30.90	64.21	54.21	-11.36	-23.31	Р	
-	2	0.2500	40.00		15.17	9.80	49.80		24.97	61.75	51.75	-11.95	-26.78	Р	
	3	0.3220	38.34		18.05	9.82	48.16		27.87	59.65	49.65	-11.49	-21.78	Р	
-	4	0.8660	35.03		15.09	9.97	45.00		25.06	56.00	46.00	-11.00	-20.94	Р	
	5	2.1940	32.95		11.68	10.00	42.95		21.68	56.00	46.00	-13.05	-24.32	Р	
	6	5.5700	34.65		14.92	10.00	44.65	·	24.92	60.00	50.00	-15.35	-25.08	Р	



Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. Pretest the Voltage at 120V AC and 240V AC ,Find the worst Voltage is 120V AC, only show the worst data is the test report.

Report No. : EED32H00097802 Page 28 of 61

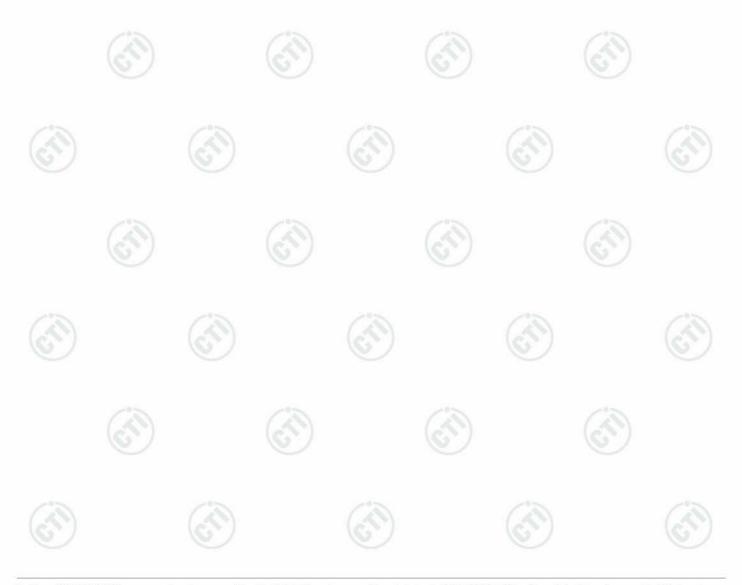
Appendix H) Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	VBW Remark	
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peal	<
	Above 4011-	Peak	1MHz	3MHz	Peak	1
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	Below 1GHz test procedu	ire as below:				
	a. The EUT was placed of at a 3 meter semi-aned determine the position b. The EUT was set 3 media was mounted on the too. The antenna height is determine the maximular polarizations of the antenna was tuned table was turned from e. The test-receiver system Bandwidth with Maximular f. Place a marker at the frequency to show con bands. Save the spect for lowest and highest	on the top of a rochoic camber. The choic camber. The choic camber is a cheer away from the poof a variable-by aried from one movalue of the fittenna are set to mission, the EUT is to heights from 0 degrees to 360 m was set to Petum Hold Mode, and of the restrict of the restrict pliance. Also more more manalyzer plochannel	he table was adiation. the interfer neight anter meter to for eld strength make the n f was arran f meter to degrees t eak Detect cted band of neasure any	ence-receinna tower. Four meters Sur meters Sur meters Sur measurement Sur meters Sur me	above the grant and vent. worst case a and the rotat maximum re nd Specified the restrict in the restrict in the restrict.	to a, wherevertion nd the able addin
	 g. Different between above to fully Anechoic Channel 18GHz the distance is h. Test the EUT in the lown. i. The radiation measure Transmitting mode, and Repeat above procedure. 	nber change form 1 meter and table towest channel , ments are perford d found the X ax	m table 0.8 le is 1.5 me the Highest rmed in X, kis positioni	metre to 1 tre). t channel Y, Z axis p ng which i	.5 metre(Ab positioning for t is worse ca	ove
Limit:	Frequency	Limit (dBµV	/m @3m)	Rer	mark	
	30MHz-88MHz	40.0	0	Quasi-pe	eak Value	
	88MHz-216MHz	43.5	5	· ·	eak Value	
	216MHz-960MHz	46.0		Quasi-peak Value		
	Z IOWINZ-90UWINZ	+0.0	U	Quasi-bi	eak Value	
	960MHz-1GHz Above 1GHz	54.0 54.0	0	Quasi-pe	eak Value eak Value je Value	

Report No.: EED32H00097802 Page 29 of 61

Test plot as follows:

Freque (MH		Read Level (dBµV)	Level (dBµV/m)	Antenna Factor (dB/m)	Cable Loss (dB)	Premap Factor (dB)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis	Remark	Test channel
2390	.00	44.14	43.74	32.53	4.28	37.21	74	-30.26	Н	PK	Lowest
2390	.00	45.32	44.92	32.53	4.28	37.21	74	-29.08	V	PK	Lowest
2483	.50	45.26	45.29	32.71	4.51	37.19	74	-28.71	Н	PK	Highest
2483	.50	44.90	44.93	32.71	4.51	37.19	74	-29.07	V	PK	Highest


Remark:

- 1) Scan from the Restricted bands around fundamental frequency (Radiated) test data, The test data which are more than 20dB but below the Average limit not be reported.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3)Pretest the Voltage at 120V AC and 240V AC ,Find the worst Voltage is 120V AC,only show the worst data is the test report.

Report No.: EED32H00097802 Page 30 of 61

Appendix I) Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
ADOVE IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

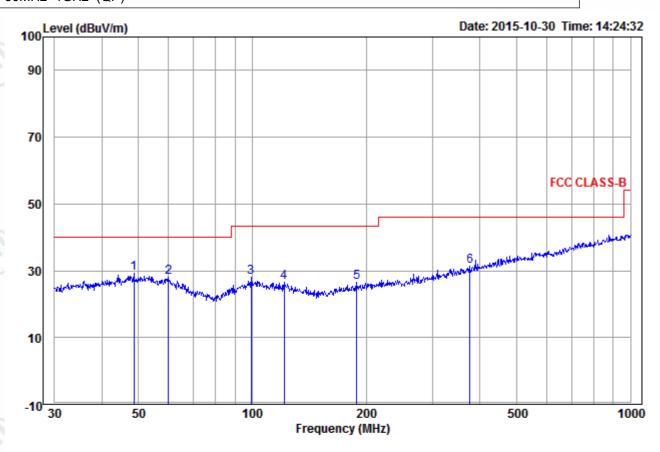
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

1 :	m	:	4

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-		300
0.490MHz-1.705MHz	24000/F(kHz)	-		30
1.705MHz-30MHz	30	-	(0.)	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

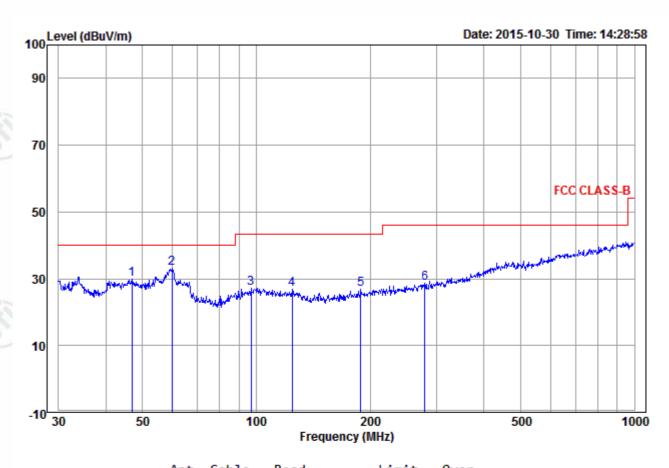


Report No. : EED32H00097802 Page 31 of 61

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)

	Freq		Cable Loss					Pol/Phase	Remark
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1 рр	48.67	14.99	1.30	12.97	29.26	40.00	-10.74	Horizontal	
2	60.07	13.77	1.43	12.92	28.12	40.00	-11.88	Horizontal	
3	99.18	13.04	1.57	13.31	27.92	43.50	-15.58	Horizontal	
4	121.55	11.52	1.57	13.44	26.53	43.50	-16.97	Horizontal	
5	189.07	11.23	2.09	13.27	26.59	43.50	-16.91	Horizontal	
6	375.94	15.60	2.76	13.11	31.47	46.00	-14.53	Horizontal	



Page 32 of 61

		Ant	Cable	Kead		Limit	Over			
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark	
	•									
_	MHz	dB/m	dR .	dRuV	dRuV/m	dRuV/m	dB			-
	1112	ub/ III	ub	abav	ubuv/ III	abav/ III	ub			
1	46.83	14.84	1.14	13.98	29.96	40.00	-10.04	Vertical		
2 pp	59.86	13.82	1.43	17.84	33.09	40.00	-6.91	Vertical		
3	96.77	12.58	1.58	13.02	27.18	43.50	-16.32	Vertical		
4	124.57	11.30	1.58	13.96	26.84	43.50	-16.66	Vertical		
5	189.07	11.23	2.09	13.57	26.89	43.50	-16.61	Vertical		
6	279.04	13.06	2.37	13.30	28.73	46.00	-17.27	Vertical		

Report No. : EED32H00097802 Page 33 of 61

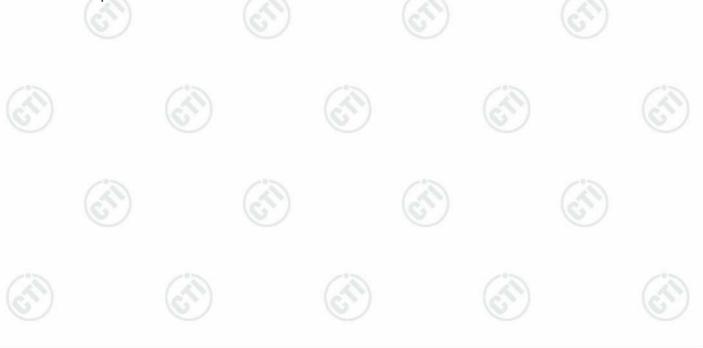
Transmitter Emission above 1GHz

Test Freque	ncy:	2402MHz						
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Antenna Polaxis
1257.465	30.36	38.37	2.58	47.12	41.69	74	-32.31	H
1663.803	31.17	37.72	2.97	46.92	43.34	74	-30.66	€ H
3299.775	33.34	37.03	5.56	47.11	48.98	74	-25.02	Н
4804.000	34.69	36.82	5.11	42.73	45.71	74	-28.29	Н
7206.000	36.42	37.46	6.66	42.75	48.37	74	-25.63	Н
9608.000	37.88	37.82	7.73	44.66	52.45	74	-21.55	Н
1364.182	30.60	38.18	2.69	46.32	41.43	74	-32.57	V
1668.044	31.18	37.72	2.98	47.40	43.84	74	-30.16	V
3291.385	33.34	37.04	5.56	46.71	48.57	74	-25.43	V
4804.000	34.69	36.82	5.11	42.20	45.18	74	-28.82	V
7206.000	36.42	37.46	6.66	42.89	48.51	74	-25.49	V
9608.000	37.88	37.82	7.73	44.14	51.93	74	-22.07	V

Test Frequency:		2440MHz							
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Antenna Polaxis	
1518.111	30.90	37.94	2.84	46.87	42.67	74	-31.33	H	
1759.638	31.33	37.60	3.05	46.49	43.27	74	-30.73	(CH)	
3266.346	33.36	37.04	5.57	46.43	48.32	74	-25.68	Н	
4880.000	34.85	36.81	5.08	43.21	46.33	74	-27.67	Н	
7320.000	36.43	37.43	6.77	43.12	48.89	74	-25.11	Н	
9760.000	38.05	37.85	7.60	44.06	51.86	74	-22.14	Н	
1257.465	30.36	38.37	2.58	47.52	42.09	74	-31.91	V	
1668.044	31.18	37.72	2.98	46.78	43.22	74	-30.78	V	
3241.498	33.38	37.05	5.57	46.48	48.38	74	-25.62	V	
4880.000	34.85	36.81	5.08	41.46	44.58	74	-29.42	V	
7320.000	36.43	37.43	6.77	44.09	49.86	74	-24.14	V	
9760.000	38.05	37.85	7.60	44.71	52.51	74	-21.49	V	

Report No.: EED32H00097802 Page 34 of 61

Test Frequency:								
		2480MHz						
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Antenna Polaxis
1118.517	30.02	38.64	2.42	47.60	41.40	74	-32.60	H
1668.044	31.18	37.72	2.98	46.54	42.98	74	-31.02	€ P
3216.838	33.41	37.05	5.58	46.34	48.28	74	-25.72	Н
4960.000	35.02	36.80	5.05	42.57	45.84	74	-28.16	Н
7440.000	36.45	37.41	6.88	43.83	49.75	74	-24.25	Н
9920.000	38.22	37.88	7.47	45.22	53.03	74	-20.97	Н
1663.803	31.17	37.72	2.97	46.59	43.01	74	-30.99	V
2086.856	31.90	37.28	3.48	45.25	43.35	74	-30.65	V
3283.018	33.35	37.04	5.56	46.12	47.99	74	-26.01	V
4960.000	35.02	36.80	5.05	41.52	44.79	74	-29.21	V
7440.000	36.45	37.41	6.88	43.86	49.78	74	-24.22	V
9920.000	38.22	37.88	7.47	45.48	53.29	74	-20.71	V

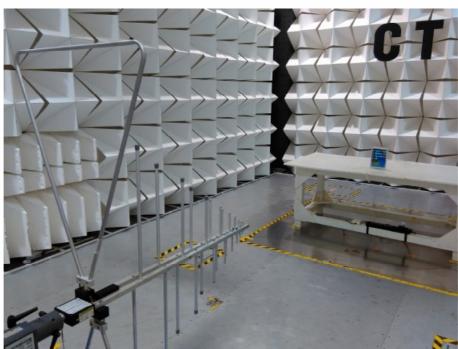

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

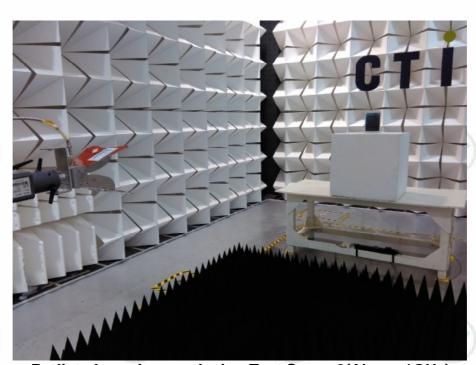
Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3)Pretest the Voltage at 120V AC and 240V AC ,Find the worst Voltage is 120V AC,only show the worst data is the test report.



Report No. : EED32H00097802 Page 35 of 61



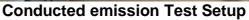
PHOTOGRAPHS OF TEST SETUP

Test mode No.: E97

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

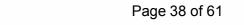
Page 36 of 61

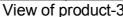

Report No.: EED32H00097802

Report No.: EED32H00097802 Page 37 of 61

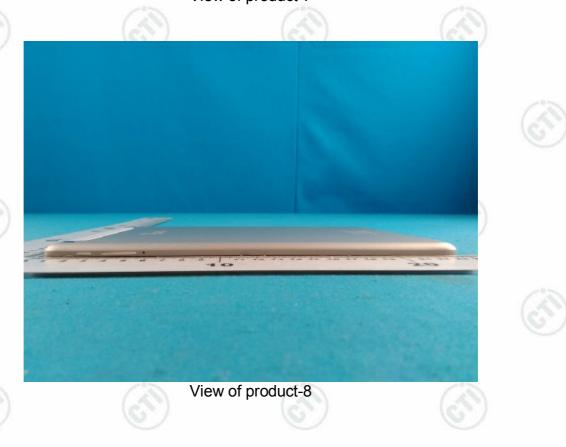
PHOTOGRAPHS OF EUT Constructional Details

Test mode No.: E97





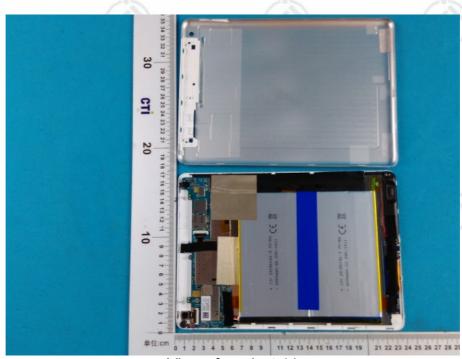
View of product-5

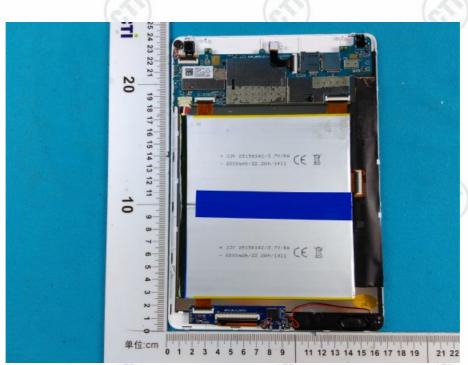


Page 40 of 61

View of product-7

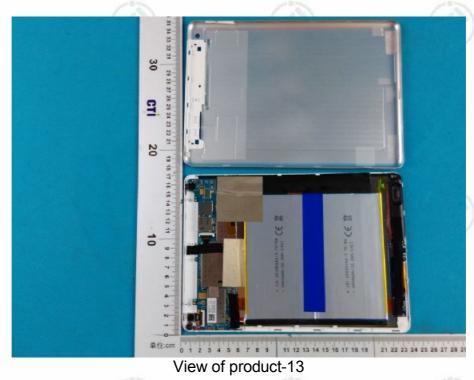
Page 41 of 61





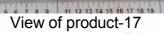
View of product-11

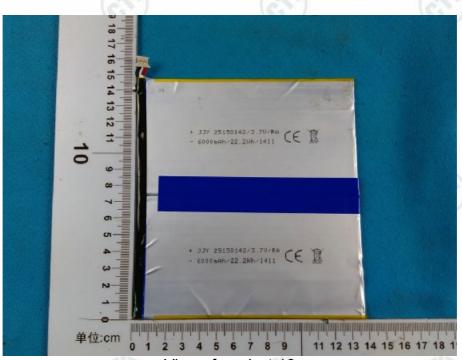
View of product-12

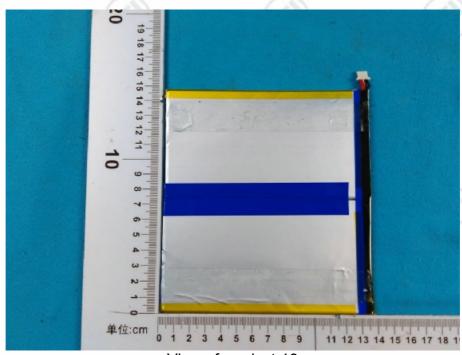


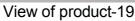


View of product-15



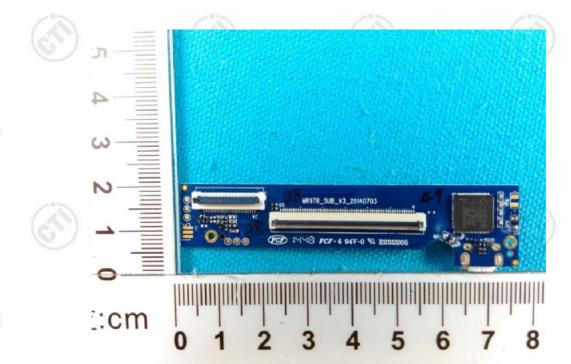


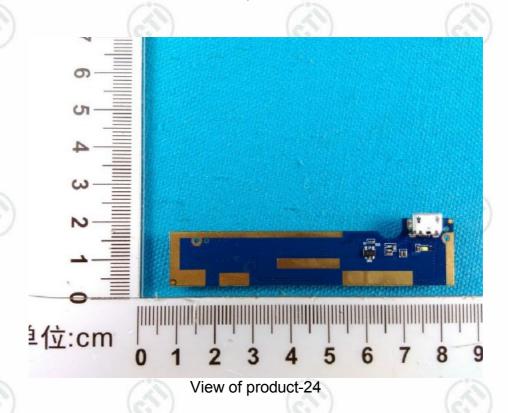




View of product-21

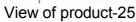
View of product-22

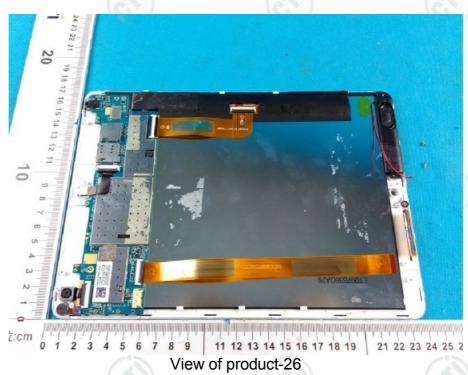




Page 48 of 61

View of product-23



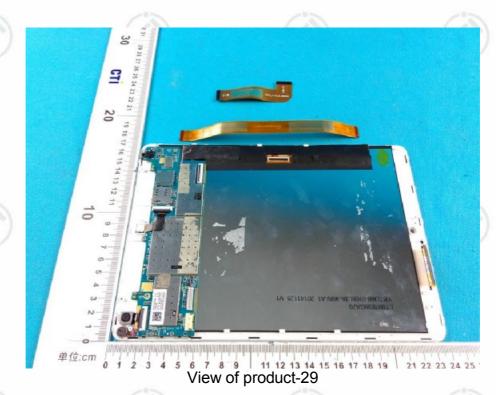


Page 49 of 61



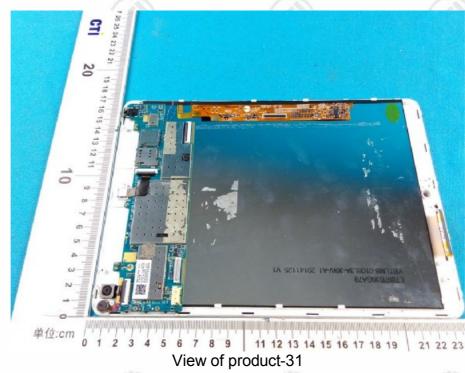
View of product-27

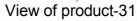
View of product-28

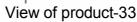


Page 51 of 61

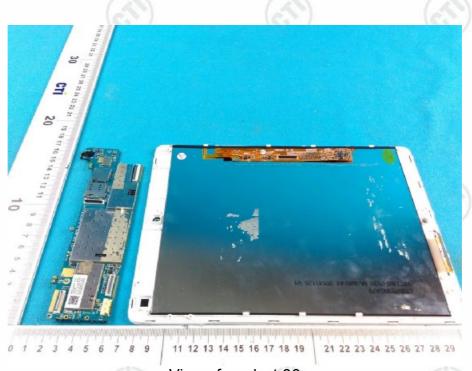








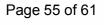
Page 53 of 61

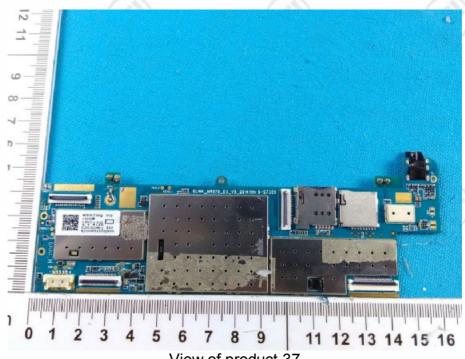


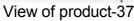
Page 54 of 61

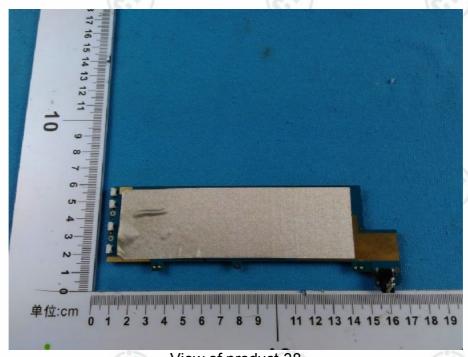
View of product-35

View of product-36

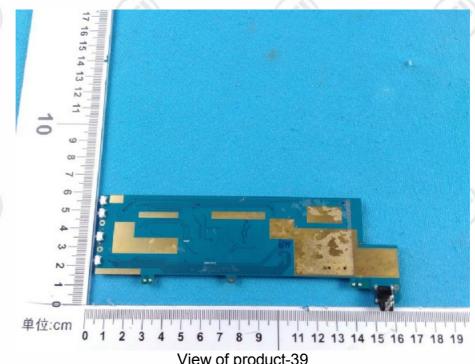


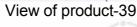


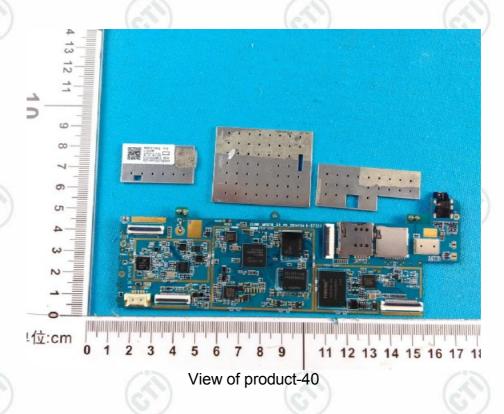




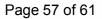
View of product-38

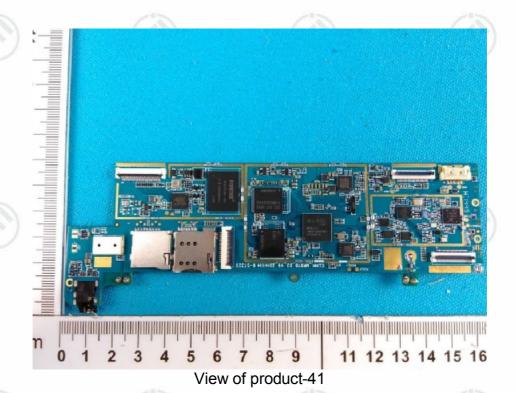


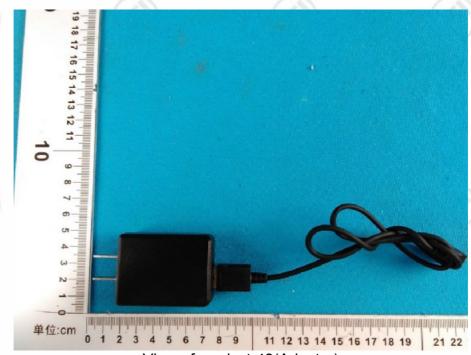


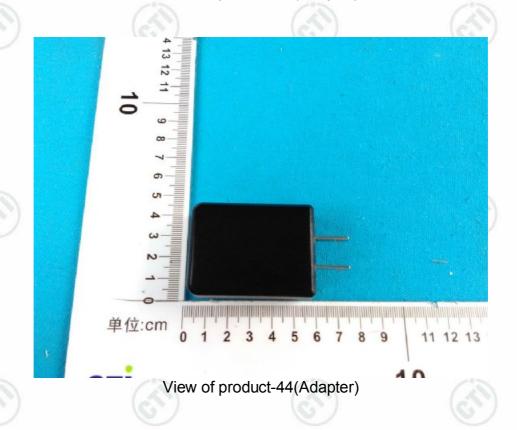


Page 56 of 61



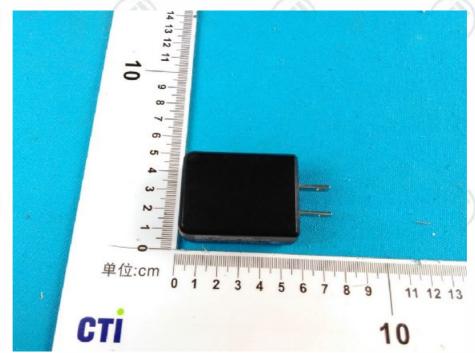


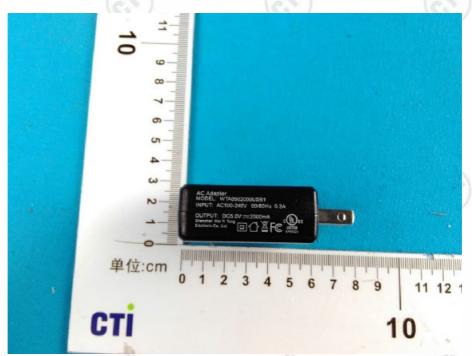




Page 58 of 61

View of product-43(Adapter)

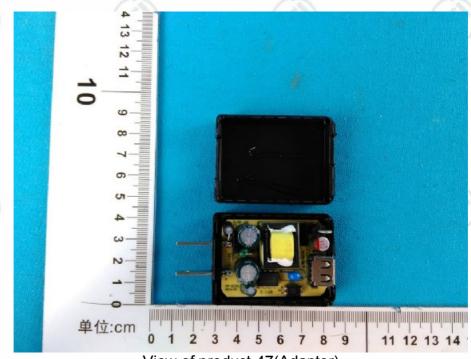


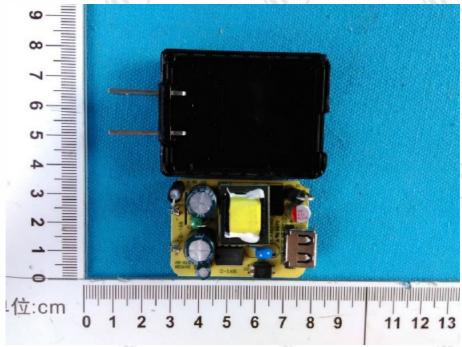


Page 59 of 61

View of product-45(Adapter)

View of product-46(Adapter)

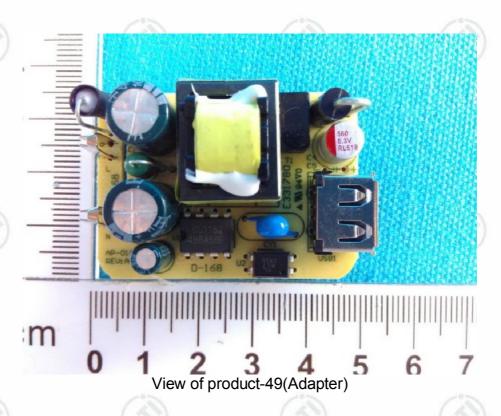


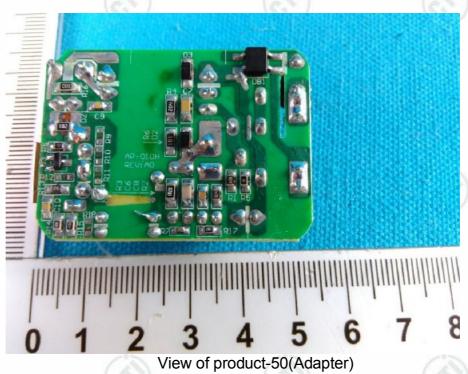


Page 60 of 61

View of product-47(Adapter)

View of product-48(Adapter)





Report No.: EED32H00097802 Page 61 of 61

(8787)

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com